Top Banner
1 Introduction of 25 Gb/s VCSELs IEEE P802.3.ba 40Gb/s and 100Gb/s Ethernet Task Force May 2008, Munich Kenichiro Yashiki - NEC Hikaru Kouta - NEC
14

Introduction of 25 Gb/s VCSELs - IEEE-SAgrouper.ieee.org/groups/802/3/ba/public/may08/yashiki_01... · 2008. 5. 13. · VCSEL top view and cross section High differential gain (T.Aggerstam

Jan 28, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 1

    Introduction of 25 Gb/s VCSELs

    IEEE P802.3.ba 40Gb/s and 100Gb/s Ethernet Task ForceMay 2008, Munich

    Kenichiro Yashiki - NECHikaru Kouta - NEC

  • IEEE P802.3ba Task Force, May 2008, MunichPage 2

    Contributors and Supporters

    Jim Tatum - FinisarAkimasa Tanaka - Hamamatsu Photonics K. K. Shigenari Tomida - NEC ElectronicsKazuya Masu - Tokyo Institute of TechnologyShinji Ando - Tokyo Institute of TechnologyKohroh Kobayashi - Tokyo Institute of Technology

  • IEEE P802.3ba Task Force, May 2008, MunichPage 3

    Outline

    (1) Proposal4 parallel lanes 25 Gb/s PMD based on VCSELs for objectives to reach at least 100 m over OM3 MMF

    (2) Introduction of 25 Gb/s optical device・・・・1-µµµµm range VCSEL・・・・ Characteristics of TX, RX, Fiber・・・・ Experimental results and future work

  • IEEE P802.3ba Task Force, May 2008, MunichPage 4

    Proposal

    • 4 parallel lanes x 25 Gb/s (100 Gb/s) for objectives to reach at least 100 m

    • Over OM3 level fiber

    • 4-ch VCSELs and PIN-PDs are used• No retiming

  • IEEE P802.3ba Task Force, May 2008, MunichPage 5

    Motivation and Configuration for 4 ch x 25 Gb/s, 100 m

    4 channel parallel TX

    4 channel parallel RXPCS

    PCS

    4+4 MMF

    ~100 m

    •Assembly cost reduction by decreasing the number of signal channels•Same set of architecture with longer-distance efficient PMD (4 ch x 25 Gb/s, 10 km, 40 km)•Lower OE/EO power consumption than edge emitters used for longer distances

    PMA

    PMA

    MAC

    MAC

  • IEEE P802.3ba Task Force, May 2008, MunichPage 6

    Introduction of 25 Gb/s optical device

  • IEEE P802.3ba Task Force, May 2008, MunichPage 7

    1-µµµµm Range VCSEL for High Speed Direct Modulation

    • 1-µm range VCSELs (InGaAs QWs) have higher differential gain than 0.85 µm VCSELs (GaAs QWs).• 1-µm range VCSELs have the same oxide-confined structure with 0.85 µµµµm VCSELs

    Eye-diagram of 30 Gbps operation

    VCSEL top view and cross section

    High differential gain

    (T.Aggerstam et al., SPIE vol.4649 pp.19 2002)

    1 µm : InGaAs QWs0.85 µm :GaAs QWs

    Over 25 Gbps operation was demonstrated

    GaAs QWs

    InGaAs QWs

  • IEEE P802.3ba Task Force, May 2008, MunichPage 8

    PIN-PD

    • Conventional structure used at 1.3 / 1.55 µm rangeis available for 1-µm range

    • Bandwidth is > 20 GHz at a detector diameter of 30 µm • Insertion of an InP capacitance reduction layer

    Wavelength (μm)

    Qua

    ntum

    Effi

    cien

    cy (

    %)

    = feature for 25 Gbps operation =

    Wavelength dependence of Q.E. Bandwidth of ΦΦΦΦ30 µµµµm PIN-PD.

  • IEEE P802.3ba Task Force, May 2008, MunichPage 9

    Transmitter and Receiver Characteristics

    dB/HzTBDRIN12OMA (max)

    dBTBDExtinction ratio (min)

    dBm1.5Average Launch Power (max)

    nm1.6*RMS spectral width

    nm980-1100Center wavelength (range)

    Gb/s25Signal speed

    UnitValueDescription

    dBmTBDAverage power at receiver input (min)

    dBmTBDAverage Receiver Power (max)

    GHz20Min Bandwidth

    UnitValueDescription

    *Smaller amount of Chromatic dispersion at 1-µm range accepts wider RMS.

    TX

    RX

  • IEEE P802.3ba Task Force, May 2008, MunichPage 10

    Link and Cable Characteristics

    m0.5-100Operating Range

    dBTBDPower Budget

    MHz*km2000 (OM3)Effective Modal Bandwidth

    UnitValue parameter

    •1-µµµµm range MMF can be prepared from commercial MMF by using 1-µµµµm range light source

    0.8 1.0 1.2 1.4 1.6-200

    -150

    -100

    -50

    0

    50

    Ch

    rom

    atic

    Dis

    per

    sio

    n (

    ps/

    nm

    /km

    )

    Wavelength (µµµµm)

    ・0.85 µm ⇒ - 99.6 ps/nm/km• 0.98 µm ⇒ - 54.3 ps/nm/km・1.1 µm ⇒ - 28.1 ps/nm/km

    −= 4

    400 1

    4)(

    λλλλ SD

    Chromatic dispersion

    In here, S0=0.101

    λ0 =1310

    •Amount of Chromatic dispersion of 1-µµµµm range is smaller than half that of 0.85 µµµµm

  • IEEE P802.3ba Task Force, May 2008, MunichPage 11

    • up to 100 m 25 Gb/s error-free transmission

    Experimental results

    Setup for HPC

    • GI50 MMF 100 m(sorted from OM2 fibers)

    • PRBS 27-1(compatible to 8B10B)

    • no retiming• Driver / TIA SiGe BiCMOS• λλλλ = 1.07 µµµµm

    Reciever ICoutput

    20Gbps

    16Gbps

    25Gbps

    Driver IC VCSEL

    PIN-PD Receiver IC

    GI50 MMF

    Achievements introduced here was supported by Ministry of Education, Culture, Sports, Science and Technology of Japan (April 2005- March 2008)

    *Minimum received power will be more improved bytuning ICs for Ethernet in the future

  • IEEE P802.3ba Task Force, May 2008, MunichPage 12

    Future work

    • Finely tuning device* parameters for link budget for 25 Gb/s 100 m transmission• Jitter• Crosstalk• Fiber specs for 1-µm range(transmission demonstration with various

    bandwidth MMF)

    *optical devices and ICs

  • IEEE P802.3ba Task Force, May 2008, MunichPage 13

    Conclusion

    • We propose no-retimed PMD to address objectives to reach 100 m over OM3 at 100 Gb/s(4 ch x 25 Gb/s) with VCSELs

    •1-µm range directly modulated VCSELs meet the objectives

  • IEEE P802.3ba Task Force, May 2008, MunichPage 14

    Thank you!