Top Banner
Course Outline (EN (EN 5305 5305) Semiconductor ) Semiconductor Devices & Technology Devices & Technology Course Outline By Dr. Yaseer A. Durrani Dept. of Electronics Engineering University of Engineering & Technology, Taxila Course Outline Technology: Introduction & Historical Perspective Modern CMOS Technology Crystal Growth, Wafer Fabrication & Basic Properties of Si Wafers Semiconductor Manufacturing – Lithography Thermal Oxidation, Dopant Diffusion, Ion Implantation, Thin film deposition, Etching Back-End Technology 2 Back-End Technology Device: Semiconductor Devices Dielectric Materials & Insulations Magnetic Properties & Superconductivity Optical properties of Materials
27
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Introduction 1

Cours

e O

utlin

e

(EN

(E

N 5

305

5305) S

em

icond

ucto

r ) S

em

icond

ucto

r D

evic

es &

Technolo

gy

Devic

es &

Technolo

gy

Cours

e O

utlin

e

By D

r. Yaseer

A. D

urra

ni

De

pt. o

f Ele

ctro

nic

s E

ng

ine

erin

gU

niv

ers

ity o

f En

gin

ee

ring

& T

ech

no

log

y, Ta

xila

Cours

e O

utlin

e�

Technolo

gy:

–In

troductio

n &

His

toric

al P

ers

pectiv

e–

Modern

CM

OS

Technolo

gy

–C

rysta

l Gro

wth

, Wafe

r Fabric

atio

n &

Basic

Pro

pertie

s o

f S

i Wafe

rs–

Sem

iconducto

r Manufa

ctu

ring

–Lith

ogra

phy

–T

herm

al O

xid

atio

n, D

opant

Diffu

sio

n, Io

n Im

pla

nta

tion,

Thin

film d

epositio

n, E

tchin

g–

Back-E

nd T

echnolo

gy

2

–B

ack-E

nd T

echnolo

gy

�D

evic

e:

–S

em

iconducto

r Devic

es

–D

iele

ctric

Mate

rials

& In

sula

tions

–M

agnetic

Pro

pertie

s &

Superc

onductiv

ity–

Optic

al p

ropertie

s o

f Mate

rials

Page 2: Introduction 1

Refe

rence B

ooks

�S

ilico

nV

LS

IT

echno

logy,

Fund

am

enta

ls,

Pra

ctic

e&

Mode

ling,

Jam

es

D.

Plu

mm

er,

M.D

.Deal,

P.

B.

Griffin

,P

ears

on

Publis

her,

ISD

N:978-8

1-3

17-2

60

4-4

�S

em

icon

du

cto

rD

evic

es,

Kanna

an

Kan

o,

Pre

ntic

eH

all

Publis

her,

ISB

N:81-2

03-2

877-9

�D

evic

eE

lectro

nic

sfo

rIn

tegra

ted

Circ

uits

,R

.S

.M

ulle

r,T

.I.

Kam

ins,IS

BN

:978-8

1-2

65-1

09

6-2

3

Gra

din

g P

olic

y�

Assig

nm

en

ts0

8%

�Q

uiz

ze

s

12

%

�M

id2

0%

�C

ou

rse

Pro

ject/C

ase

Stu

die

s2

0%

�F

ina

l 4

0%

4

Page 3: Introduction 1

Intro

ductio

n to

Devic

e &

(EN

5305) S

em

icond

ucto

r (E

N 5

305) S

em

icond

ucto

r D

evic

es &

Technolo

gy

Devic

es &

Technolo

gy

Intro

ductio

n to

Devic

e &

Technolo

gy

By D

r. Yaseer

A. D

urra

ni

De

pt. o

f Ele

ctro

nic

s E

ng

ine

erin

gU

niv

ers

ity o

f En

gin

ee

ring

& T

ech

no

log

y, Ta

xila

5

Outlin

e

�C

MO

S T

ech

on

log

yS

ca

ling

�H

isto

rica

l Tre

nd

s &

Fu

ture

Pre

dic

tion

s

�M

ate

rials

& D

evic

es

�S

em

ico

nd

ucto

r Te

ch

no

log

y F

am

ilies

6

Page 4: Introduction 1

CM

OS

Technolo

gy

�In

tegra

ted

Circ

uit

(IC)

isan

ele

ctro

nic

netw

ork

fabric

ate

din

asin

gle

pie

ce

of

sem

iconducto

rm

ate

rial

�S

em

icon

ducto

rsurfa

ce

issubje

cte

dto

vario

us

pro

cessin

gste

ps

inw

hic

him

puritie

sand

oth

er

mate

rials

are

added

with

specific

geom

etric

alpatte

rns

�F

abric

atio

nste

ps

are

se

que

nced

tofo

rmth

ree

dim

ensio

na

lre

gio

ns

that

act

as

transis

tors

&in

terc

onnects

that

form

the

sw

itchin

gor

am

plific

atio

nnetw

ork

19

60

s1

99

0s

Technolo

gy S

calin

g�

Evolu

tion

of

Silic

on

Inte

gra

ted

Circ

uits

sin

ce

1960s

–In

cre

asin

g:

circ

uit

com

ple

xity

,packin

gdensity

,chip

siz

e,

speed

&re

liability

–D

ecre

asin

g:

featu

resiz

e,

pric

eper

bit,

pow

er

(dela

y)

pro

duct

�C

urre

ntly

,te

chnolo

gy

scalin

ghas

ath

reefo

ldobje

ctiv

e:

–R

educe

the

gate

dela

yby

30%

(43%

incre

ase

infre

quency)

–D

ouble

the

transis

tor

density

–S

avin

g50%

ofpow

er

(at

43%

incre

ase

infre

quency)

�H

ow

isscalin

gachie

ved?

�H

ow

isscalin

gachie

ved?

–A

llth

edevic

edim

ensio

ns

(late

ral&

vertic

al)

are

reduced

by

1/α

–C

oncentra

tion

densitie

sare

incre

ased

by

α

–D

evic

evolta

ges

reduced

by

1/α

(not

inall

scalin

gm

eth

ods)

–T

ypic

ally

1/α

=0.7

(30%

reductio

nin

the

dim

ensio

ns)

�S

calin

gvaria

ble

sare

:–

Supply

volta

ge:

Vd

d →V

dd/α

–G

ate

length

:L

→L/α

–G

ate

wid

th:

W→

W/α

–G

ate

-oxid

eth

ickness:

tox →

tox/α

–Junctio

ndepth

:X

j →X

j /α–

Substra

tedopin

g:

NA →

NA ×

α

Page 5: Introduction 1

Technolo

gy S

calin

g�

Ele

ctric

field

acro

ss

gate

-oxid

edoes

not

chang

ew

hen

techno

log

yis

scale

dcalle

dconsta

nt

field

scalin

g�

Ifpo

wer

sup

ply

volta

ge

ism

ain

tain

ed

consta

nt

the

scalin

gis

calle

dco

nsta

nt

volta

ge.

Inth

iscase,

ele

ctric

field

acro

ss

ga

te-o

xid

ein

cre

ases

as

technolo

gy

isscale

ddow

n�

Due

togate

-oxid

ebre

akdo

wn,

belo

w0.8

µm

only

“consta

nt

field

”scalin

gis

used

�S

om

econsequences

30%

scalin

gin

consta

nt

field

regim

e(α

=1.4

3,

1/α

=0.7

):–

Devic

e/d

ieare

a:

L→

(1/α

)2

=0.4

9–

Inpra

ctic

e,

uP

sdie

siz

egro

ws

about

25%

per

technolo

gy

genera

tion

�T

ransis

tor

density

:(u

nit

are

a)

/(W×

L)

→α

2=

2.0

4�

Tra

nsis

tor

density

:(u

nit

are

a)

/(W×

L)

→α

2=

2.0

4–

Inpra

ctic

e,

mem

ory

density

has

been

sca

ling

as

exp

ecte

d.

(nottru

efo

ruP

s…

)�

Gate

capacita

nce:

L/

tox

→1/α

=0.7

�D

rain

curre

nt:

(W/L

(V2/to

x )→

1/α

=0.7

�G

ate

dela

y:

(C×

V)

/I

→1/α

=0.7

,F

requency

→α

=1.4

3–

Inpra

ctic

e,

uP

sfre

quency

ha

sdouble

devery

techn

olo

gy

genera

tion

(2to

3years

)!T

his

faste

rin

cre

ase

rate

isdue

totw

ofa

cto

rs:

•N

um

ber

of

ga

tedela

ys

inclo

ck

cycle

decre

ases

with

time

(desig

ns

becom

ehig

hly

pip

elin

ed)

•A

dvanced

techniq

ues

reduce

avera

ge

gate

dela

y30%

per

genera

tion

Technolo

gy S

calin

g�

Pow

er:

V2

×f

→(1

/α)2

=0.4

9�

Pow

er

density

:1/to

V2

×f

→1

�A

ctiv

ecapacita

nce/u

nit-a

rea:

Po

we

rdis

sip

atio

nis

afu

nctio

nof

op

era

tion

frequency,

pow

er

supply

volta

ge

and

of

circ

uit

siz

e(n

um

ber

ofdevic

es)

�If

we

norm

aliz

eth

epo

we

rde

nsity

toV

fw

eobta

inth

eactiv

ecapacita

nce

per

unit

are

afo

ra

giv

en

circ

uit.

This

para

me

ter

can

be

co

mpare

dw

ithoxid

ecapacita

nce

per

unit

are

a:

1/to

x→

α=

1.4

3–

Inp

ractic

e,

for

uP

s,

activ

eca

pa

cita

nce

/unit-a

rea

on

lyin

cre

ase

sb

/w3

0%

-3

5%

.

Tw

ofo

ldim

pro

ve

me

nt

inlo

gic

de

nsity

b/w

tech

no

log

ies

isn

ot

ach

ieve

d

�In

terc

onnects

scalin

g:

�In

terc

onnects

scalin

g:

–H

igher

densitie

sare

only

possib

leif

the

inte

rconnects

als

oscale

.–

Reduced

wid

th→

incre

ased

resis

tance

–D

enser

inte

rconnects

→hig

her

capacita

nce

–T

oaccount

for

incre

ase

dpara

sitic

s&

inte

gra

tion

com

ple

xity

more

inte

rconnectio

nla

yers

are

added:

–T

hin

ne

r&

tigh

ter

laye

rs→

loca

lin

terc

on

ne

ctio

ns

–T

hic

ke

r&

sp

ars

er

laye

rs→

glo

ba

lin

terc

on

ne

ctio

ns

&p

ow

er

Inte

rco

nn

ects

are

sca

ling

as

exp

ecte

d

Page 6: Introduction 1

Technolo

gy S

calin

gP

ara

me

ter

Co

nsta

nt F

ield

Co

nsta

nt V

olta

ge

Su

pp

ly v

olta

ge

(Vdd )

1/α

1

Le

ng

th (L

)1

/α1

Wid

th (W

)1

/α1

Ga

te-o

xid

e th

ickn

ess (to

x )1

/α1

Ju

nctio

n d

ep

th (X

j )1

/α1

Su

bstra

te d

op

ing

(NA )

αα

Ele

ctric

field

acro

ss g

ate

oxid

e (E

)1

α

De

ple

tion

laye

r thic

kn

ess

1/α

1/α

Sca

ling

Va

riab

les

Ga

te a

rea

(Die

are

a)

1/α

21

/α2

Ga

te c

ap

acita

nce

(loa

d) (C

)1

/α1

Dra

in-c

urre

nt (Id

ss )

1/α

α

Tra

nsco

nd

ucta

nce

(gm

)1

α

Ga

te d

ela

y1

/α1

/α2

Cu

rren

t de

nsity

αα

3

DC

& D

yn

am

ic p

ow

er d

issip

atio

n1

/α2

α

Po

we

r de

nsity

3

Po

we

r-De

lay p

rod

uct

1/α

31

De

vic

e

Re

pe

rcu

ssio

n

Circ

uit

Re

pe

rcu

ssio

n

Technolo

gy S

calin

g�

Ele

ctro

n B

eam

Lith

ogra

phy (E

BL)

–P

atte

rns a

re d

eriv

ed d

irectly

from

dig

ital d

ata

–P

rocess c

an b

e d

irect: n

o m

asks

–P

atte

rn c

hanges c

an b

e im

ple

mente

d q

uic

kly

–H

ow

ever:

•E

quip

ment c

ost is

hig

h•

Larg

e a

mount o

f time re

quire

d to

access a

ll the p

oin

ts o

n w

afe

r

Optic

s te

chnolo

gy

Technolo

gy

node

248nm

merc

ury

-xen

on la

mp

180 -

250nm

248nm

kry

pto

n-flu

orid

e la

ser

130 -

180nm

248nm

kry

pto

n-flu

orid

e la

ser

130 -

180nm

193nm

arg

on-flu

orid

e la

ser

100 -

130nm

157nm

fluorin

e la

ser

70 -

100nm

13.4

nm

extre

me U

V50 -

70nm

Page 7: Introduction 1

�W

e a

re n

ow

in a

perio

d w

here

technolo

gy &

devic

e in

novatio

ns a

re re

quire

d.

Beyond 2

020, n

ew

curre

ntly

unkno

wn in

ventio

ns w

ill be re

quire

dCell d

imensio

ns

Devic

e S

calin

g O

ver T

ime

m

10µ

m

10

m

Fea

ture

Siz

e

0.1

µm

130

nm

in 2

00

2 Era

of S

imple

Scalin

g

Scalin

g +

Innovatio

n(IT

RS

)

Inventio

n

~16%

incre

ase in

com

ple

xity

each y

ear (n

ow

:6.3

% fo

r µP,

12%

for D

RA

M)

~13%

decre

ase in

featu

re s

ize e

ach y

ear (n

ow

: ~10%

)

0.2

m in

1997

His

toric

al T

rends &

Futu

re P

redic

tions

Ato

mic

dim

ensio

ns

0.1

nm

1n

m

10n

m

19

60

1980

2000

202

02040

Tran

sitio

n R

eg

ion

Qu

an

tum

Effects

Do

min

ate

Ato

mic

Dim

en

sio

ns

Ye

ar

18 n

m in

2018

Inventio

n

Year o

f Pro

ductio

n

1998

2000

2002

2004

2007

2010

2013

2016

2018

Tech

nolo

gy N

ode (h

alf p

itch)

250 n

m

180 n

m

130 n

m

90 n

m

65 n

m

45 n

m

32 n

m

22 n

m

18 n

m

MPU

Prin

ted G

ate

Length

100 n

m

70 n

m

53 n

m

35 n

m

25 n

m

18 n

m

13 n

m

10 n

m

DR

AM

Bits/C

hip

(Sam

plin

g)

256M

512M

1G

4G

16G

32G

64G

128G

128G

MPU

Tra

nsisto

rs/Chip

(x10

6)

550

1100

2200

4400

8800

14,0

00

Min

Supply

Volta

ge (v

olts)

1.8

-2.5

1.5

-1.8

1.2

-1.5

0.9

-1.2

0.8

-1.1

0.7

-1-0

06-0

.9

0.5

-0.8

0.5

-0.7

His

toric

al T

rends &

Futu

re P

redic

tions

14

Page 8: Introduction 1

�In

ventio

n o

f BJT

transis

tor -

1947, B

ell L

abs

�E

xposed ju

nctio

ns h

ad d

egra

ded s

urfa

ce p

ropertie

s a

nd n

o p

ossib

ility o

f connectin

g m

ultip

le d

evic

es

�B

ell

Lab,

1957:

Double

Diffu

sed

Pro

cess

�A

dvanta

ge:

Connectio

nof

multip

ledevic

es

but

no

ICs

�D

isadvanta

ge:

Degra

datio

nby

exposed

junctio

ns

at

the

surfa

ce

�In

1950s,

Allo

yju

nctio

nte

chn

olo

gy

used.

Ge

used

as

cry

sta

l,III

&V

gro

up

ato

ms

used

as

dopants

Inte

gra

ted C

ircuits

Gro

wn ju

nctio

n te

chnolo

gy in

1950s

Al w

ires

NN

P

N

P

N

N

PN

NN

P

Do

ub

le d

iffused

Me

sa

tech

no

logy

So

lid S

tate

B d

iffusio

n

So

lid S

tate

P d

iffusio

n

Co

nta

cts

Allo

ye

d

Me

sa

Etc

he

d

NN PN PN

N PN

N

NP

P

NNN

P

N

SiO

2

N

PN

�P

lanar p

rocess (H

oern

i-Fairc

hild

, late

1950s). F

irst “passiv

ate

d”

junctio

ns

Pla

nar D

esig

n o

f BT

Js

Boro

n d

iffusio

n

N

�B

egin

nin

g o

f Silic

on te

chnolo

gy &

end o

f Ge d

evic

es

�Im

ple

menta

tion o

f maskin

g o

xid

e to

pro

tect ju

nctio

ns a

t Si s

urfa

ce

SiO

2

Mask

Oxid

atio

n p

ossib

le fo

r S

i not g

ood fo

r Ge

Oxid

atio

n &

out d

iffusio

n

Lith

ogra

phy to

open

win

dow

in S

iO2

Phosphoru

s d

iffusio

n

thro

ugh th

e o

xid

e m

ask

P

NNN

P

N

SiO

2

N

PN

Boro

n d

iffusio

n

Page 9: Introduction 1

Dep

osited F

ilm

Ph

otoresist Mask

Ligh

t

�B

egin

nin

gof

ICs

in1959

�B

asic

ph

oto

lithogra

ph

ypro

ce

ss.

ICpatte

rnis

transfe

rred

from

mask

tosilic

on

by

prin

ting

iton

wafe

rusin

glig

ht

sensitiv

ere

sis

tm

ate

rial

Photo

lithogra

phy u

sed fo

r Patte

rn F

orm

atio

n

Su

bstrate

Film

dep

ositionP

hotoresist ap

plication

Dep

osited F

ilm

Exp

osure

Develop

men

tE

tchin

g R

esist removal

Etch

mask

�IC

sused

pho

tolith

ogra

ph

y&

maskin

gto

fabric

ate

that

allo

ws

inte

gra

tion

of

multip

ledevic

es

sid

eby

sid

eon

aw

afe

r�

Bip

ola

rT

ransis

tor

&re

sis

tors

made

inbase

regio

n�

Accura

cy

of

pla

cem

ent

~1/4

to1/3

oflin

ew

idth

bein

gprin

ted

�IC

islo

cate

datsurfa

ce

ofS

iw

afe

r(~

500µ

mth

ick)

Vcc

C

B BJT

0V

Alig

nm

ent o

f Layers

Via

Inte

rconnect

M1

M2O

XID

E

Em

itter

Colle

cto

r

PN

N

PN

PB

Resis

tor C

E

Conta

ct to

colle

cto

r

R=

L/W

•Rs

P

P W

ell

N W

ell

PN

P+

P+

N+

N+

PM

OS

NM

OS

Via

Silic

ide

Oxid

e

Isola

tion

M1O

XID

E

TiN

Sch

em

atic

of IC

s w

ith T

wo

Me

tal L

eve

ls

Resis

tor

E

Page 10: Introduction 1

�M

eta

l Pla

nariz

atio

n re

quire

s m

ultip

le m

eta

l layers

�M

eta

l Depositio

n�

Patte

rnin

g�

Fill D

iele

ctric

�P

lanariz

atio

n�

Conta

ct V

ias

�C

onta

ct D

epositio

n

IC w

ith 5

-Level M

eta

llizatio

n S

chem

e

�M

ost o

f the b

asic

technolo

gie

s in

silic

on c

hip

manufa

ctu

ring c

an b

e s

imula

ted

�S

imula

tion is

now

used fo

r:�

Desig

nin

g n

ew

pro

cesses a

nd d

evic

es

�E

xplo

ring th

e lim

its o

f sem

iconducto

r devic

es a

nd te

chnolo

gy (R

&D

)�

“C

ente

ring”

manufa

ctu

ring p

rocesses

�S

olv

ing m

anufa

ctu

ring p

roble

ms

Com

pute

r Sim

ula

tion T

ools

(TC

AD

)

Sim

ula

tion o

f advanced

local o

xid

atio

n p

rocess

Sim

ula

tion o

f photo

resis

t exposure

Page 11: Introduction 1

�N

PN

& P

NP

Bip

ola

r Junctio

n T

ransis

tors

�F

ield

Effe

ct T

ransis

tors

(FE

T)

�M

eta

l-Oxid

e-S

em

iconducto

r FE

T (M

OS

FE

T)

�Junctio

n F

ET

(JF

ET

)�

Oth

ers

:�

PN

Junctio

n, R

esis

tor, C

apacito

r, Photo

-Dio

de a

nd P

hoto

-Tra

nsis

tor

Physic

al D

evic

es

21

�S

em

iconducto

rs:

Si,

Ge,C

om

pound

(III-V,II-V

I)�

Siato

mhas:

�E

lectro

norb

its2-8

-4oute

rhalf

filled

�C

ovale

nt

boun

deach

(share

ele

ctro

n)

with

4oth

er

Siato

ms

�S

table

,hig

him

pedance

(poor

conducto

r)�

Conductio

nin

Pure

Silic

on

Cry

sta

l�

Energ

yadded

tofre

eshare

dele

ctro

nin

lattic

e�

Ele

ctro

nis

free

but

leaves

anet

+ve

charg

eor

hole

trapped

at

mis

sin

gele

ctro

nsite

Mate

rials

& D

evic

es

hole

trapped

at

mis

sin

gele

ctro

nsite

�H

ole

sw

illattra

ct&

recaptu

reele

ctro

ns

�E

lectro

ns

will

flow

thro

ugh

lattic

eu

ntil

recom

bin

ing

with

hole

�S

ponta

neous

therm

al

ge

nera

tion

of

hole

-ele

ctro

npairs

alw

ays

occurrin

g;

there

fore

,S

ican

conduct

poorly

Page 12: Introduction 1

Intrin

sic

Carrie

r Concentra

tion

�In

trinsic

concentra

tion o

f carrie

rs fo

r thre

e c

om

mon s

em

iconducto

r mate

rials

�S

i, at ro

om

tem

pera

ture

: ni~

1.4

x 1

010/ c

ubic

cm

�S

i lattic

e h

as ~

5x10

22

ato

ms/c

ubic

cm

. There

fore

tem

pera

ture

, only

1 in

3.5

x10

12

ato

ms in

volv

ed

•Ele

ctro

n &

hole

genera

tion o

ccur a

t ele

vate

d

tem

pera

ture

(above 0

K). n

=p

•Energ

y B

and G

ap d

ete

rmin

es th

e in

trinsic

carrie

r concentra

tion. n

iE

gG

e < E

gS

i < E

gG

aA

s

•For d

evic

es w

e n

eed c

oncentra

tions: n

& p

>>

ni

Sem

iconducto

r Mate

rials

& D

opants

�In

trinsic

Sem

iconducto

rs�

Colu

mn 4

ato

ms in

a la

ttice (S

i, Ge)

�C

om

pound S

em

iconducto

rs�

Colu

mn 3

-5 a

tom

s (G

aA

s, In

P)

�C

olu

mn 2

-6 a

tom

s (C

dS

, CdS

e, C

dTe, Z

nO

)�

Dopants

�R

epla

ce a

n in

trinsic

ato

m w

ith o

ne th

at a

s a

dditio

nal o

r few

er e

lectro

ns in

oute

r orb

it�

For S

ilicon:

�F

ew

er e

lectro

ns: B

24

�F

ew

er e

lectro

ns: B

�M

ore

ele

ctro

ns: P

or A

s

Page 13: Introduction 1

Doped S

i Lattic

en≈N

Dp≈N

A�

Re

pla

ce

an

ato

m�

B–

mobile

hole

�P

or

As–

mobile

ele

ctro

n

�N

-typ

eD

op

an

t�

Donate

an

ele

ctro

n�

Colu

mn

5m

ate

rials

(P,

As)

�P

-typ

eD

op

an

t�

Acceptele

ctro

ns

(additio

nalhole

s)

�C

olu

mn

3m

ate

rials

(B)

�L

igh

tlyd

op

ed

or

he

avily

do

pe

d�

Lig

htly

do

pe

do

rh

ea

vily

do

pe

d�

Lig

htly

doped

N-,

N--,

P-,

P—

�H

eavily

doped

N+

,N

++

,P

+,P

++

Resis

tivity

Change w

ith D

opin

g

µn >

µp

�R

esis

tivity

(ρ):

Inohm

-mete

rs�

R=ρ

.Length

/Are

a=ρ

.L/A

�D

opant

Perc

enta

ges

�N

--or

P--

:<

10

14

cm

-3

�1

in5

x10

8cm

-3

�N

-or

P-

:10

14

to10

16

cm

-3

�N

or

P:10

16

to10

18

cm

-3

�N

+or

P+

:10

18to

10

20

cm

-3

�N

++

or

P+

+:>

10

20

cm

-3

�1

in5

x10

2cm

-3(0

.2%

)�

1in

5x

10

2cm

-3(0

.2%

)�

r=1/(q

µn n

+qµ

p p)

�µ

carrie

rm

ob

ilitydep

ends

on

scatte

ring

i.e.

dopa

nts

,la

ttice

imperfe

ctio

ns

(defe

cts

)&

vib

ratio

n(te

mpera

ture

)

Page 14: Introduction 1

Donor &

Accepto

r Bands

�B

and

Model&

Bond

Modelof

Intrin

sic

(Undoped)

Silic

on

�B

and

Model&

Bond

Modelof

n-ty

pe

Silic

on

doped

with

As

�V

ale

nce

Band

–ele

ctro

ns

bound

inla

ttice

�C

onductio

nB

and

–fre

eele

ctro

ns

�E

nerg

yG

ap

(EG)

–am

ount

of

energ

yre

quire

dto

move

an

ele

ctro

nfro

mE

Cto

EV

�D

onors

�E

Dclo

se

toE

C

�Little

energ

yre

quire

dto

rele

ase

ele

ctro

n�

Accepto

r�

EA

clo

se

toE

V

n=

p

n=

p=

ni

Energ

y

Gap

T>

0K

�E

Aclo

se

toE

V

�Little

energ

yre

quire

dto

rele

ase

hole

tovale

nce

band

Very

sm

all io

niz

atio

n

energ

ies E

D a

nd E

A

n=

NA

s

ni =

1.4

5x10

10c

m-3

at R

T (3

00K

)

Intrin

sic

Carrie

r Concentra

tion�

N=

ND

�R

ela

tively

consta

nt o

ver

opera

ting ra

nge

�F

rom

freezeout

regio

n�

To p

rocessin

g te

mpera

ture

�A

t pro

cessin

g te

mpera

ture

s�

Intrin

sic

carrie

r levels

dom

inate

nn >

>p

nn

i ≈p

i

n-ty

pe s

em

iconducto

r

intrin

sic

sem

iconducto

r

Fre

e c

arrie

r concentra

tion V

s. T

em

p

Page 15: Introduction 1

Ferm

i-Dira

c P

robability

F(E

)=

1F

erm

i level is

the e

nerg

y a

t whic

h p

robability

of

Ferm

i Dira

c p

robability

functio

n:

�P

robability

ofan

ele

ctro

noccupy

an

energ

ysta

te�

Pauli

Exclu

sio

nP

rincip

le(n

otw

oele

ctro

ns

can

occupy

sam

equantu

msta

te)

�E

fF

erm

ile

vel

defin

ed

as

the

energ

yw

here

the

pro

bability

of

findin

ga

nele

ctro

nis

50%

�E

fF

erm

iLevel

�C

ente

red

for

intrin

sic

:E

F=

Ei(S

om

eele

ctro

ns,

som

ehole

s)

�N

-doped

causes

the

levelto

rise:

EF

>E

i(More

ele

ctro

ns,

few

hole

s)

�P

-doped

causes

the

levelto

fall:

EF

<E

i(Few

ele

ctro

ns,

more

hole

s)

F(E

)=

1

1+

exp(

E−

EF

kT

)

Intrin

sic

Sem

iconducto

rn-ty

pe S

em

iconducto

rp=

type S

em

iconducto

r

Conductio

n B

and

Vale

nce B

and

Ferm

i level is

the e

nerg

y a

t whic

h p

robability

of

findin

g a

n e

lectro

n F

(Ef)=

1/(1

+1)=

0.5

belo

w E

i

above E

i

p=

Na

n=

Nd

Majo

rity

carrie

rs

EF

≈E

g /2

Majo

rity c

arrie

rs

Undoped

N-d

oped S

i

P-d

oped S

i

Dis

tributio

n o

f Fre

e C

arrie

rs�

EF

isa

gre

ate

st

use

insem

iconducto

rsis

invis

ualiz

ing

the

ele

ctro

nic

pro

pertie

s(c

arrie

rconcentra

tions

&ty

pe)

thro

ugh

the

band

dia

gra

mconcept

�To

calc

ula

ten

&p

ina

giv

en

situ

atio

n,

we

need

tokno

wth

epro

ba

bility

of

findin

gth

em

at

energ

yle

velE

,num

ber

&positio

nof

allo

wed

energ

yle

vels

�A

llow

able

energ

yle

vels

:�

Energ

yle

vels

exis

tsabove

Ec

&belo

wE

v

�A

ppro

xim

atio

ns

for

num

ber

ofallo

we

dele

ctro

nenerg

yle

vels

are

:

n=

F(E

)N(E

)dE

≅E

C

∞∫N

C

1

1+

exp(

E−

EF

kT)

NV

=2( 2

πm

h ∗

h2

)3

/2N

C=

2( 2

πm

e ∗

h2

)3

/2

p=

[1−F

(E)]N

(E)dE

≅−∞ E

V∫N

Vexp(−

EF

−E

V

kT)

Page 16: Introduction 1

Carrie

rs in

Bands

EG=

ECE

V

EC-E

VB

an

d g

ap

EF

Heavy d

opin

g m

oves E

Fto

EC

2/

3

2)

2(

2h

kTm

Nh

V

∗π

=

2/

3

2)

2(

2h

kTm

Ne

C

∗π

=

p=

[1−

F(E

)]N(E

)dE

≅−

EV

∫N

Vex

p(−

EF

−E

V

kT)

�E

lectro

ns in

Conductio

n B

and

�H

ole

s in

Vale

nce B

and

n=

F(E

)N(E

)dE

≅E

C

∞∫N

C

1

1+

exp(

E−

EF

kT

)

Carrie

r Concentra

tion

Charg

e N

eutra

lity

Energ

y B

and D

ependence o

n T

em

pera

ture

La

rge

rte

mp

era

ture

we

ake

ns

the

bo

nd

ing

b/w

ato

ms

ca

usin

gb

an

dg

ap

en

erg

yE

G(e

ne

rgy

ne

ed

ed

tofre

ee

-hp

airs

)to

de

cre

ase

�E

Gis

tem

pe

ratu

red

ep

en

de

nt

•Co

nd

uctio

n&

va

len

ce

ba

nd

be

nd

•Fe

rmile

ve

lb

ase

do

nd

op

an

tco

nce

ntra

tion

•Co

nve

rge

on

Eia

ste

mp

era

ture

incre

ase

s

•EG(e

V)=

1.1

7-4

-4.

73

x1

0-4T

2/(T+

63

6)≈

1.1

6-

(3x1

0-4)T

EG

sh

rinks w

ith T

Page 17: Introduction 1

Exam

ple

En

erg

y le

ve

ls fo

r

sh

allo

w d

op

an

ts a

re

clo

se

to th

e m

ajo

rity

ca

rrier b

an

ds

RT

1000°

C

�D

opin

g b

y A

s &

B re

sults

in p

-type S

i at R

T

In in

trinsic

Si a

t 1000°

C

n≈p≈n

i at 1

000°

C

p>

>n

Ele

ctro

n-H

ole

Pair G

enera

tion

�W

he

nio

niz

ing

rad

iatio

nstrik

es

ase

mic

on

du

cto

r,it

ma

ye

xcite

an

ele

ctro

no

ut

of

itse

ne

rgy

leve

la

nd

co

nse

qu

en

tlyle

ave

ah

ole

.T

his

pro

ce

ss

isca

lled

EP

H

�E

PH

are

co

nsta

ntly

ge

ne

rate

dfro

mth

erm

al

en

erg

ya

sw

ell,

inth

ea

bse

nce

of

an

ye

xte

rna

l

en

erg

yso

urc

e

�E

PH

are

als

oa

pt

tore

co

mb

ine

.C

on

se

rva

tion

of

en

erg

yd

em

an

ds

tha

tth

ese

reco

mb

ina

tion

eve

nts

,in

wh

ich

an

ele

ctro

nlo

se

sa

na

mo

un

to

fe

ne

rgy

larg

er

tha

nth

eb

an

dg

ap

,b

e

acco

mp

an

ied

by

the

em

issio

no

fth

erm

al

en

erg

y(in

the

form

of

ph

on

on

s)

or

rad

iatio

n(in

the

form

of

ph

oto

ns)

34

Page 18: Introduction 1

Tra

ppin

g P

henom

ena

�N

on

-eq

uilib

rium

free

ca

rriers

ca

nb

eg

en

era

ted

inb

ulk

se

mic

on

du

cto

rm

ate

rials

by

va

riou

s

pro

ce

sse

s,

su

ch

as

ligh

ta

bso

rptio

n,

hig

he

lectric

field

,ca

rrier

inje

ctio

nth

rou

gh

ab

arrie

r,

irrad

iatio

nw

ithh

igh

-en

erg

yp

artic

les

�A

fter

the

pro

ce

ss

wh

ich

ha

sg

en

era

ted

the

no

n-e

qu

ilibriu

mca

rriers

ha

sce

ase

d,

the

syste

m

retu

rns

toe

qu

ilibriu

md

ue

toth

ea

nn

ihila

tion

of

EP

Hb

yre

co

mb

ina

tion

.If

the

ca

rriers

tha

t

reco

mb

ine

are

bo

thfre

e(e

lectro

nin

co

nd

uctio

nba

nd

&h

ole

invale

nce

ba

nd

),th

eir

an

nih

ilatio

n

pro

ce

ss

isca

lled

ba

nd

-to-b

an

dre

co

mb

ina

tion

�If

on

eo

fth

eca

rriers

isca

ptu

red

on

alo

ca

lize

dsta

te(i.e

.,it

ha

sa

fixe

dp

ositio

nin

se

mic

on

du

cto

r)&

oth

er

on

eis

free

ca

lled

reco

mb

ina

tion

on

loca

lize

dsta

tes

�In

reco

mb

ina

tion

pro

ce

ss,

an

am

ou

nt

of

en

erg

yis

rele

ase

db

ye

mis

sio

no

fe

ithe

ra

ph

oto

n

(rad

iativ

ere

co

mb

ina

tion

),o

ra

ph

on

on

(no

n-ra

dia

tive

reco

mb

ina

tion

),o

rse

co

nd

ary

ele

ctro

n35

(rad

iativ

ere

co

mb

ina

tion

),o

ra

ph

on

on

(no

n-ra

dia

tive

reco

mb

ina

tion

),o

rse

co

nd

ary

ele

ctro

n

(Au

ge

rre

co

mb

ina

tion

),e

tc.

�C

arrie

rca

ptu

red

on

alo

ca

lize

dsta

teca

nre

co

mb

ine

with

an

op

po

site

sig

nca

rrier,

ifth

is

op

po

site

sig

nca

rrier

issu

bse

qu

en

tlyca

ptu

red

on

sa

me

localiz

ed

sta

te,

or

itca

nb

ere

lea

se

din

the

co

rresp

on

din

gb

an

d.

Th

eca

ptu

reo

fse

co

nd

ca

rrier

with

an

op

po

site

sig

no

nsa

me

localiz

ed

sta

tele

ad

sto

an

nih

ilatio

no

fp

air

an

dit

isca

lled

reco

mb

ina

tion

on

alo

ca

lize

dsta

te.

Ifth

e

ca

ptu

red

ca

rrier

isre

lea

se

din

the

ba

nd

,th

eca

ptu

rece

nte

ris

ca

lled

atra

p.

Th

en

the

ca

ptu

re

pro

ce

ss

isca

lled

trap

pin

ga

nd

the

rele

ase

pro

ce

ss

isca

lled

de

trap

pin

g

a.

Intrin

sic

absorp

tion &

band-to

-band re

com

bin

atio

nb.

Recom

bin

atio

n le

vels

c.

Tra

ppin

g le

vels

Shockle

y, R

ead , H

all R

ecom

bin

atio

n (S

RH

)�

SR

Hre

co

mb

ina

tion

isin

dire

ct

tran

sitio

no

fca

rriers

b/w

co

nd

uctio

n&

va

len

ce

ba

nd

s

•Tra

ps

du

eto

imp

uritie

sre

su

ltin

inte

rme

dia

tetra

psta

tes

•Ca

rriers

tran

sitio

nto

trap

&th

en

ca

ptu

reth

eo

pp

osite

ca

rrier

at

trap

sa

te

�M

ino

rityca

rrier

co

nce

ntra

tion

isa

limitin

ge

lem

en

tin

ca

ptu

rep

roce

ss

(lots

of

ma

jority

ca

rrier

alre

ad

ytra

pp

ed

)

�R

eco

mb

ina

tion

of

Ca

rriers

�S

iis

an

ind

irect

se

mic

on

ducto

rso

ind

irect

reco

mb

ina

tion

(Sh

ockle

y-R

ea

d-H

all)

occu

rs

thro

ug

htra

ps

loca

ted

inth

em

id-g

ap

�C

arrie

rR

eco

mb

ina

tion

&G

en

era

tion

�T

rap

s(d

efe

cts

,m

eta

lim

pu

rities)

pre

se

nt

insilic

on

act

eith

er

toa

nn

ihila

teca

rriers

(reco

mb

ina

tion

)o

rp

rod

uce

(ge

ne

ratio

n)

the

m

36

(reco

mb

ina

tion

)o

rp

rod

uce

(ge

ne

ratio

n)

the

m

�S

urfa

ce

of

Siw

ithtra

ps

lea

dto

su

rface

reco

mb

ina

tion

ve

locity,

wh

ich

affe

cts

ca

rrier

lifetim

e

intrin

sic

Si

n-ty

pe S

i; a tra

p (b

elo

w E

F ) is a

lways

filled w

ith e

lectro

n=

majo

rity c

arrie

r and w

aits

for a

min

ority

hole

tR =1/s

vth N

t

Life

time, c

aptu

re c

ross s

ectio

nth

erm

al v

elo

city, &

traps

SR

H re

com

bin

atio

n/g

enera

tion ra

te

U=

np−

ni 2

τ(p+

n+

2ni cosh( E

T−

Ei

kT))

np>

ni 2

U>

0 re

com

bin

atio

nnp<

ni 2

U<

0 g

enera

tion

lifetim

e tr ≠

tgU

max

for E

T =E

i

s=

sv

th Nit

U=

s(np

−n

i 2)

p+

n+

2n

i cosh

(E

T−

Ei

kT)

Page 19: Introduction 1

Sem

iconducto

r Devic

es

Re

ve

rse

bia

se

d d

iod

eF

orw

ard

bia

se

d d

iod

e

n+

for lo

w re

sis

tance

p-n

Dio

des a

t Therm

al E

quilib

rium

Dopants

positio

ns

are

fixed

Carrie

rs m

ove &

cre

ate

deple

tion la

yers

Majo

rity

hole

sM

inority

hole

s

Majo

rity

ele

ctro

ns

Min

ority

ele

ctro

ns

Uncom

pensate

d a

ccepto

rs &

donors

At th

erm

al e

quilib

rium

charg

e n

eutra

lity

qN

+d x

n =qN

-A xp

leads to

asym

metric

al d

eple

tion la

yers

Ele

ctric

field

only

in

deple

tion la

yer

Page 20: Introduction 1

p-n

Dio

des a

t Therm

al E

quilib

rium

Bu

ild-in

vo

ltag

e d

ete

rmin

ed

by d

op

ing

on

bo

th s

ide

s o

f the

p-n

jun

ctio

n

No

cu

rren

t flow

s a

t the

rma

l

eq

uilib

rium

n0n ≈

ND

p0n ≈

ni 2/N

D

p-n

Dio

des U

nder B

ias

Revers

e b

iased d

iode

(-+

)Min

ority

ele

ctro

ns &

ho

les d

rift

(sm

all c

urre

nt)

I

V

Forw

ard

bia

sed d

iode

Ma

jority

ele

ctro

ns (a

nd

ho

les) d

iffuse

,

be

co

me

min

ority

ca

rriers

an

d p

rod

uce

larg

e c

urre

nt

hole

s

(+ -)

I~exp(q

V/k

T)

I

V

Page 21: Introduction 1

p-n

Dio

des U

nder F

orw

ard

Bia

s

De

ple

tion

laye

r sh

rinks

Ele

ctric

field

de

cre

ase

s

Ju

nctio

n p

ote

ntia

l de

cre

ase

s b

y V

a

En

erg

y b

arrie

r de

cre

ase

s b

y q

Va

J ⇑

J~

exp(q

Va /k

T)

p-n

Dio

des U

nder R

evers

e B

ias

De

ple

tion

laye

r sp

rea

ds m

ain

ly to

the

low

do

pe

d s

ide

Ele

ctric

field

incre

ase

s

Ju

nctio

n p

ote

ntia

l incre

ase

s b

y V

a

En

erg

y b

arrie

r incre

ase

s b

y q

Va

J0A

Page 22: Introduction 1

Boltz

man

appro

xim

atio

n

Built-in

volta

ge

Junctio

n a

t Therm

al E

quilib

rium

Min

ority

& m

ajo

rity c

arrie

rs

Ferm

i pote

ntia

ls in

n a

nd p

-regio

ns

Epeak

=2V

b

xd

Pois

son’s

equatio

n:

divE

ε0 ε

Si

E=

1q

dE

i

dx

E-fie

ld is

wh

ere

Ei =

f(x)

E=

−d

φdx

;φ=

−E

i

q

Ele

ctro

sta

tic p

ote

ntia

l

p-n

Dio

des U

nder B

iasCarrie

r In

jectio

n a

nd E

xtra

ctio

n

Curre

ntdis

tributio

n in

a p

-n d

iode

For th

e fo

rward

bia

sin

g c

onditio

n

No re

com

bin

atio

n

assum

ed in

the

SC

R

Page 23: Introduction 1

Bre

akdow

n o

f a p

-n D

iode

Ze

ne

r effe

ct

Ava

lan

ch

e e

ffect

Bre

akdow

n V

olta

ge o

f a p

-n D

iode

Eg ⇑

5-7

V5-7

V

•E

brfie

ld in

cre

ases w

ith N

Dbut n

ot v

ery

much

•W

depl ~

1/√

ND

Vbr =

Ebr •W

depl

so V

brdecre

ases w

ith N

D

Page 24: Introduction 1

Bip

ola

r Tra

nsis

tors

�E

-Bju

nctio

nis

forw

ard

bia

sed=

inje

cts

min

ority

carrie

rsto

base

�B

ase

(ele

ctric

ally

neutra

l)is

responsib

lefo

rele

ctro

ntra

nsp

ort

via

diffu

sio

n(o

rdrift

als

oif

the

build

inele

ctric

field

exis

ts)

tocolle

cto

r�

C-B

dio

de

isre

vers

ebia

sed

&colle

cts

transporte

dcarrie

s

VB

E >0

VB

C <0

p-n

-p

IE =IE

n +IE

pIC

=a

IEa<

1

IB =IE

p +Ire

c

IEIC

IB

n-p

-nIC

p-n

-p

Ind

ivid

ua

l

de

vic

e

Bip

ola

r Junctio

n T

ransis

tors

Forw

ard

s b

ias

Revers

e b

ias

Cu

rren

tC

om

po

ne

nts

sm

allF

orw

ard

Opera

tion M

ode

Early

Effe

ct

min

ority

carrie

rs

Inje

cte

dele

ctro

ns

Extra

cte

d

ele

ctro

ns

hole

s

Forw

ard

Opera

tion M

ode

Early

V

olta

ge

Page 25: Introduction 1

Bip

ola

r Junctio

n T

ransis

tors

Bre

akd

ow

n V

olta

ge

s

Co

mm

on

Ba

se

Co

mm

on

Em

itter

Colle

cto

r-Base ju

nctio

n

Cu

rren

t Ga

in β

/1-α

Kirk

Effe

ct

Recom

bin

atio

n in

the E

-B S

pace C

harg

e R

egio

n

β =

IC/IB

MO

SF

ET

, NM

OS

& P

MO

SV

G>

VT

to c

reate

s

stro

ng in

vers

ion

deple

tion

Lin

ea

r Re

gio

n, L

ow

VD

Op

era

tion

of N

MO

S-F

ET

Sa

tura

tion

Re

gio

n, C

ha

nn

el S

tarts

to P

inch

-Off

Sa

tura

tion

Re

gio

n,

ch

an

ne

l sh

orte

ns b

eyo

nd

pin

ch

-off, L

’<

L

Page 26: Introduction 1

Modern

MO

S T

ransis

tors

Gate

LD

D

Lig

htly

Do

pe

dD

rain

(LD

D)

use

d

tore

du

ce

the

ele

ctric

field

in

dra

ind

ep

letio

nre

gio

n&

ho

t

ca

rrier

effe

cts

isola

tion

Dra

inS

ourc

e

Self a

ligned c

onta

cts

decre

ase re

sis

tance

Sem

iconducto

r Technolo

gy F

am

ilies

�F

irst

circ

uits

were

based

on

BJT

as

asw

itch

beca

use

MO

Scirc

uits

limita

tions

rela

ted

tola

rge

oxid

echarg

es

19

60

s

19

70

s

19

80

s &

be

yo

nd

Sm

alle

r pow

er

consum

ptio

n

Page 27: Introduction 1

Futu

re C

halle

nges

�3

sta

ge

sfo

rfu

ture

de

ve

lop

me

nt:

Ma

teria

ls/p

roce

ss in

no

va

tion

sB

eyo

nd

Si C

MO

S

“Technolo

gy P

erfo

rmance B

ooste

rs”

Inventio

nS

ilicid

e

Po

lyG

ate

Su

bstr

ate

Silic

ide

Sid

ew

all

Sp

acer

Rch

an

Sou

rce

Drain

S/D

Ext

S/D

Ext

Gate

Die

lectr

ic

??

?

Gate

Sourc

eD

rain

• Spin

-based d

evic

es

• Mole

cula

r devic

es

• Rapid

sin

gle

flux q

uantu

m• Q

uantu

m c

ellu

lar a

uto

mata

• Resonant tu

nnelin

g d

evic

es

• Sin

gle

ele

ctro

n d

evic

es

Ma

teria

ls/p

roce

ss in

no

va

tion

s

NO

WD

evic

e in

no

va

tion

s

IN 5

-15

YE

AR

S

IN 1

5 Y

EA

RS

??

�T

rad

ition

al fin

FE

T (u

pp

er le

ft), a trig

ate

on

SO

I (up

pe

r righ

t), triga

te o

n b

ulk

silic

on

(low

er le

ft)

an

d a

pse

ud

o-trig

ate

on

SO

I (low

er rig

ht)

�M

an

y o

the

r ap

plic

atio

ns e

.g. M

EM

s &

ma

ny n

ew

de

vic

e s

tructu

res e

.g. c

arb

on

na

no

tub

e

de

vic

es, a

ll use

ba

sic

silic

on

tech

no

log

y fo

r fab

rica

tion

So

urc

e

Ga

te

Dra

in

SiO

2

Futu

re C

halle

nges