Top Banner
Will Jenkins Intelligent Electronic Systems Human and Systems Engineering Department of Electrical and Computer Engineering Real-Time Vehicle Performance Monitoring With Data Integrity INTELLIGENT TRANSPORTATION SYSTEMS:
37

INTELLIGENT TRANSPORTATION SYSTEMS:

Mar 19, 2016

Download

Documents

Raoul

INTELLIGENT TRANSPORTATION SYSTEMS:. Real-Time Vehicle Performance Monitoring With Data Integrity. Will Jenkins Intelligent Electronic Systems Human and Systems Engineering Department of Electrical and Computer Engineering. Abstract. Goal of the thesis: - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: INTELLIGENT TRANSPORTATION SYSTEMS:

Will JenkinsIntelligent Electronic Systems

Human and Systems EngineeringDepartment of Electrical and Computer Engineering

Real-Time Vehicle Performance MonitoringWith Data Integrity

INTELLIGENT TRANSPORTATION SYSTEMS:

Page 2: INTELLIGENT TRANSPORTATION SYSTEMS:

Page 2 of 33Real-Time Vehicle Performance Monitoring With Data Integrity

AbstractGoal of the thesis: • Development of a vehicle position and

performance tracking system (VPPTS)• Design of buffering techniques to provide

data integrity for real-time monitoring applications

• Detailed analysis of the performance of these techniques in enhancing data integrity

Problem Statement:Limited bandwidth availability and weak signal

quality of wireless networks present problems that can hinder data integrity for any real-time monitoring system.

Hypothesis:A novel data buffering technique would

improve the integrity of the data transmission while using a wireless network that can be prone to interference and poor signal strength.

Data cache

Page 3: INTELLIGENT TRANSPORTATION SYSTEMS:

Page 3 of 33Real-Time Vehicle Performance Monitoring With Data Integrity

Introduction

Cornerstone of next generation intelligent transportation systems (ITS):• seamless integration of in-vehicle networking with existing wireless

telephony infrastructure;• remote access to on-board diagnostics and performance data.

Design is based on:

• popular standards for wireless communications — GSM/GPRS and CDMA2000/EvDO;

• in-vehicle standards for diagnostic information, OBD-II, J1708, J1939, is used to gather performance data;

• GPS technology to provide vehicle location;

• Web development tools to provide Internet access via a vehicle tracking web site.

Page 4: INTELLIGENT TRANSPORTATION SYSTEMS:

Page 4 of 33Real-Time Vehicle Performance Monitoring With Data Integrity

Intelligent Transportation Systems (ITS)

• Uses networks of collaborative vehicles to optimize traffic flow and provide dynamic routing capability (“intelligent network”)

• Relies heavily on vehicle communication systems including peer-to-peer and peer-to-base station communications

NETWORK

• Incorporates seamless integration of in-vehicle networking with existing wireless telephony

Page 5: INTELLIGENT TRANSPORTATION SYSTEMS:

Page 5 of 33Real-Time Vehicle Performance Monitoring With Data Integrity

System Overview

Wireless Network

Web / Database

Server

Page 6: INTELLIGENT TRANSPORTATION SYSTEMS:

Page 6 of 33Real-Time Vehicle Performance Monitoring With Data Integrity

Vehicle Networks: OBD-II/J1939/J1708

OBD-II Protocol Signal Type(s)SAE J1850 VPW Variable Pulse Width Modulation at 10.4k BaudSAE J1850 PWM Pulse Width Modulation at 41.7k Baud

ISO 9141-2Two Serial Lines at 10.4k Baud:

Half-duplex (L)Full-duplex (K)

ISO 15765 (CAN) Single or Dual Wire Serial Lines up to 500 Kbps

Heavy-Duty Protocol Signal Type(s)SAE J1708 Modified RS-485 network at 9.6k BaudSAE J1939 CAN-based at 250 Kbps

Page 7: INTELLIGENT TRANSPORTATION SYSTEMS:

Page 7 of 33Real-Time Vehicle Performance Monitoring With Data Integrity

GSM/GPRS and CDMA2000/EvDO Network

• Digitally encodes voice signals using the GSM 06.10 compressor models at 13kbps

• General Packet Radio Service (GPRS) – data communication layer over a GSM wireless transmission link (171.2 Kbps)

• Global System for Mobile Communication (GSM) - the fastest growing mobile communication standard based on TDMA

Internet

Wireless Network

• Packet format allows for full compatibility with existing Internet services

• Code Division Multiple Access (CDMA) 2000 – theoretically allows for greater capacity than GSM (144 Kbps)

• Evolution Data Only (1xEV-DO) – enhances CDMA2000 with high data rate capabilities by time division multiplexing the downlink allowing up to 3.1 Mbps downlink and 1.8 Mbps uplink

Page 8: INTELLIGENT TRANSPORTATION SYSTEMS:

Page 8 of 33Real-Time Vehicle Performance Monitoring With Data Integrity

Similar Proposed Systems

• Many proposed systems exploit the above technologies and enhancements to provide a wireless-based location tracking system

• Incorporate enhancements to increase the accuracy of GPS such as Differential GPS (DGPS) and also wide area augmentation system (WAAS)

• Exploit the wireless communication network to assist GPS

• The VPPTS incorporates GPS and vehicle performance data and permits real-time tracking and post analysis of this data

Page 9: INTELLIGENT TRANSPORTATION SYSTEMS:

Page 9 of 33Real-Time Vehicle Performance Monitoring With Data Integrity

Generation 1: Proof of Concept Prototype

• Sony Ericsson GC-82 EDGE PC card

• Garmin GPS 35-PC

• Laptop with two COM ports (RS232) and a 16-bit compatible PCMCIA port

• BR-3 OBD-II Interface

• Operates on OBD-II protocols specified in SAE J1850

Page 10: INTELLIGENT TRANSPORTATION SYSTEMS:

Page 10 of 33Real-Time Vehicle Performance Monitoring With Data Integrity

Generation 2: Campus Bus Network Pilot

• A PC104 embedded solution was developed.

• The shuttles operate on the heavy-duty protocols J1708 and J1939.

• Windows XP Embedded operating system

• Geographical Information System (GIS) providing faster map rendering based on GPS coordinates.

Page 11: INTELLIGENT TRANSPORTATION SYSTEMS:

Page 11 of 33Real-Time Vehicle Performance Monitoring With Data Integrity

Generation 2: Embedded Pilot System Components

• Sony Ericsson GC-83 EDGE/GPRS PC card

• Garmin GPS 35-PC

• Kontron MOPSlcd7 PC-104+ CPU board

• Dearborn DPAIII/PC104 Interface

Page 12: INTELLIGENT TRANSPORTATION SYSTEMS:

Page 12 of 33Real-Time Vehicle Performance Monitoring With Data Integrity

Generation 3: Integrated Single Board Computer

• A single board computer system that can operate in tight spaces in a vehicle (i.e. behind dash or under seat)

• Integrated I/O and communication modules (GPS, vehicle interface, and wireless device)

• Embedded Linux OS

• Uses less resources than Windows XP Embedded, which reduces the requirements for the hardware

Page 13: INTELLIGENT TRANSPORTATION SYSTEMS:

Page 13 of 33Real-Time Vehicle Performance Monitoring With Data Integrity

Generation 3: Embedded Pilot System

• Kyocera KPC650 1xEV-DO PC card

• Micro/sys SBC4495

• Elmscan 5

• Autotap HDV100A

Page 14: INTELLIGENT TRANSPORTATION SYSTEMS:

Page 14 of 33Real-Time Vehicle Performance Monitoring With Data Integrity

Initial Web/Database Server

Table ContentsStops Label and GPS coordinates

Routes Label and list of topology in-order of traversalBuses Current location

• Separate database for real-time and stored data are maintained

• Apache web server

• Tomcat extensions

• Five http servlets to maintain data flow from the vehicle to the database to the user interface.

Page 15: INTELLIGENT TRANSPORTATION SYSTEMS:

Page 15 of 33Real-Time Vehicle Performance Monitoring With Data Integrity

Web Interface with GIS Database Backend

Issues with initial web and database server:

• Map size (>1 MB only for campus)

• Resources used by applet

Solutions:

• Geographical Information System (GIS) mapping system generate images on-the-fly (Google Maps, Microsoft Local Live)

• Creating a JavaScript-based interactive website based on AJAX

• GIS allows for information relative to GPS coordinates to be displayed providing a more interactive experience.

Page 16: INTELLIGENT TRANSPORTATION SYSTEMS:

Page 16 of 33Real-Time Vehicle Performance Monitoring With Data Integrity

Buses

ID Bus ID Route ID Latitude Longitude1 898 Maroon 33.4539 88.7942

2 903 Maroon 33.4589 88.7984

3 1003 Express 33.4549 88.7945

Gauges

ID Bus ID speed RPM TPS EngineLoad FuelEconomy CoolantTemp1 898 12 1456 25 35 8 88

2 903 14 1543 14 15 10 89

3 1003 2 945 0 7 13 86

Vehicle Database Enhancement

ProtocolProtocol Name Param ID Param

NameParam Index

Param Translation Parm Units

J1708 54 speed X 0.5 mph

J1939 0CF00400 rpm 3 0.125 rpm

• Store RAW data stringData String Example

vehicleID|date|time|latitude|longitude|1st parameter=protocol;ID,index,value|2ndparameter=protocol;ID,index,value|3rdparameter=protocol;ID,index,value|…

vehicleId=2|date=240706|utc=115052|gpsN=33.467185|gpsW=-88.795952|data1=J1850;010D,0;4D|data2=J1850;010C,0;17E4|data3=J1850;0111,0;19|data4=J1850;0104,0;17|data5=J1850;0105,0;88

• Provide a protocol table for translation

Page 17: INTELLIGENT TRANSPORTATION SYSTEMS:

Page 17 of 33Real-Time Vehicle Performance Monitoring With Data Integrity

InitializeVehicle Interface

Device

Send CurrentGPS and PID

Data

SetCommunication

Protocol

RetrieveGPSData

PollVehicle

Data

DecodeNMEA

Sentence

Initial Vehicle Communicator Process

• The vehicle interface device must be initialized.

• The GPS data is gathered.

• NMEA GPRMC sentence contains UTC data, longitude, and latitude.

• Send data via wireless communication network

• The communication protocol is set based on vehicle protocol.

• Specified vehicle data is polled

What if the connection becomes degraded?

Page 18: INTELLIGENT TRANSPORTATION SYSTEMS:

Page 18 of 33Real-Time Vehicle Performance Monitoring With Data Integrity

• This technique increases the reliability of the system by making sure the data is transmitted to the server

Data Collection Process: Data Buffering Techniques

• Adding a data cache allows the transmission of stored data along with new data

• Initial buffering technique stored timed-out data to a file and transmitted at the end of the day

What if the transmission takes longer than the data

resolution (e.g. 1 second)?

• Data integrity was not ensured with this approach

Page 19: INTELLIGENT TRANSPORTATION SYSTEMS:

Page 19 of 33Real-Time Vehicle Performance Monitoring With Data Integrity

Multi-Threaded Approach: Enhancing Data Buffering

• Data integrity was not ensured with a single-threaded application as data might not be gathered during timeout

• A multi-threaded approach was developed

• Each thread handles communication to a specific interface (vehicle, GPS, network)

• Semaphores are used to synchronize the data between the threads

Page 20: INTELLIGENT TRANSPORTATION SYSTEMS:

Page 20 of 33Real-Time Vehicle Performance Monitoring With Data Integrity

Experiment Scenario: Generation 2 Experiment 1• Single-threaded application with data-caching buffering

technique

• Monitor 2 buses over a single day of operation

• Wireless conditions: Good

• Data resolution: 1 second

• Bus 1205

• J1939 vehicle network

• CDMA2000/1xEV-DO wireless network

• Bus 903

• J1708 vehicle network

• GSM/GPRS wireless network

Page 21: INTELLIGENT TRANSPORTATION SYSTEMS:

Page 21 of 33Real-Time Vehicle Performance Monitoring With Data Integrity

Experiment Scenario: Generation 2 Experiment 1

Page 22: INTELLIGENT TRANSPORTATION SYSTEMS:

Page 22 of 33Real-Time Vehicle Performance Monitoring With Data Integrity

Experiment Scenario: Generation 2 Experiment 1

Shuttle Bus 903 1205

Network GSM/GPRS CDMA2000/EVDO

Total Data Strings Available 52200 50791

Total Data Strings Gathered 42345 50087

Transmission Attempts of Gathered Data Strings 42345 50087

Timeouts During Transmission 1383 229

Gathered Data Strings Successfully Transmitted 42345 50087

Percent Gathered Data Strings Buffered 2.65% 0.44%

Percent Buffered Data Strings Successfully Transmitted 100% 100%

Percent Data Strings Not Gathered 18.88% 1.39%

Average Successful Transmission Time (seconds) 0.767 0.365

Page 23: INTELLIGENT TRANSPORTATION SYSTEMS:

Page 23 of 33Real-Time Vehicle Performance Monitoring With Data Integrity

Experiment Scenario: Generation 2 Experiment 2• Single-threaded application with data-caching buffering

technique

• Monitor 2 buses over a single day of operation

• Wireless conditions: Poor

• Data resolution: 1 second

• Bus 1205

• J1939 vehicle network

• CDMA2000/1xEV-DO wireless network

• Bus 903

• J1708 vehicle network

• GSM/GPRS wireless network

Page 24: INTELLIGENT TRANSPORTATION SYSTEMS:

Page 24 of 33Real-Time Vehicle Performance Monitoring With Data Integrity

Experiment Scenario: Generation 2 Experiment 2

Focus on this hour

Page 25: INTELLIGENT TRANSPORTATION SYSTEMS:

Page 25 of 33Real-Time Vehicle Performance Monitoring With Data Integrity

Experiment Scenario: Generation 2 Experiment 2

During this time data gathering has halted while reconnecting

Page 26: INTELLIGENT TRANSPORTATION SYSTEMS:

Page 26 of 33Real-Time Vehicle Performance Monitoring With Data Integrity

Experiment Scenario: Generation 2 Experiment 2

Shuttle Bus 903 1205

Network GSM/GPRS CDMA2000/EVDO

Total Data Strings Available 161 30647

Total Data Strings Gathered 140 4969

Transmission Attempts of Gathered Data Strings 140 4696

Timeouts During Transmission 11 1068

Gathered Data Strings Successfully Transmitted 140 4065

Percent Gathered Data Strings Buffered 6.83% 3.48%

Percent Buffered Data Strings Successfully Transmitted 100% 86.56%

Percent Data Strings Not Gathered 13.04% 84.68%

Average Successful Transmission Time (seconds) 0.854 0.420

Page 27: INTELLIGENT TRANSPORTATION SYSTEMS:

Page 27 of 33Real-Time Vehicle Performance Monitoring With Data Integrity

Experiment Scenario: Generation 3 Experiment

• Multi-threaded application with data-caching buffering technique

• Monitor single vehicle for 40 minutes

• Wireless conditions: Good with one interruption

• Data resolution: 1 second

• Test Vehicle

• J1850 vehicle network

• CDMA2000/1xEV-DO wireless network

Page 28: INTELLIGENT TRANSPORTATION SYSTEMS:

Page 28 of 33Real-Time Vehicle Performance Monitoring With Data Integrity

Experiment Scenario: Generation 3 Experiment

Focus on this time

Page 29: INTELLIGENT TRANSPORTATION SYSTEMS:

Page 29 of 33Real-Time Vehicle Performance Monitoring With Data Integrity

Experiment Scenario: Generation 2 Experiment 2

Timeouts occurred

Send buffered data from consecutive timeouts.

Page 30: INTELLIGENT TRANSPORTATION SYSTEMS:

Page 30 of 33Real-Time Vehicle Performance Monitoring With Data Integrity

Experiment Scenario: Generation 2 Experiment 2

Vehicle Test Vehicle

Total Data Strings Available 2488

Total Data Strings Gathered 2509

Transmission Attempts of Gathered Data Strings 2267

Timeouts During Transmission 48

Gathered Data Successfully Transmitted 2509

Percent Gathered Data Strings Buffered 42.85%

Percent Buffered Data Strings Successfully Transmitted 100%

Percent Data Strings Not Gathered -0.85%

Average successful transmission time (seconds) 0.433

Page 31: INTELLIGENT TRANSPORTATION SYSTEMS:

Page 31 of 33Real-Time Vehicle Performance Monitoring With Data Integrity

Conclusions: VPPTS prototype

• Developed a real-time vehicle performance monitoring

• Combined GPS and wireless networking technologies

• Incorporated vehicle performance data

• Integration of a GIS database

• Reduced initial resources

• Added greater interactivity (playback tool)

Page 32: INTELLIGENT TRANSPORTATION SYSTEMS:

Page 32 of 33Real-Time Vehicle Performance Monitoring With Data Integrity

Conclusions: Data Buffering technique

• Reduced data lost with wireless transmission compared to a non-buffering system

• Retransmission of old data helps ensure data integrity

• Using a multi-threaded application enhanced this technique

Page 33: INTELLIGENT TRANSPORTATION SYSTEMS:

Page 33 of 33Real-Time Vehicle Performance Monitoring With Data Integrity

Future Work and Research• Delayed Transmission

• Accumulate multiple data strings at a time

• 5 – 10 second resolutions• Buffering Technique Enhancement

• Monitor the network performance

• Dynamically change the send buffer

• Reduce the number of transmission timeouts• GPS Signal as a Trigger

• Prevent duplicate data strings

• Produce more reliable performance analysis reports.• Modular Architecture

• Seamless transition between wireless transmission mediums (cellular, WIFI, WIMAX, etc.)

• Ad hoc vehicular network

Page 34: INTELLIGENT TRANSPORTATION SYSTEMS:

Page 34 of 33Real-Time Vehicle Performance Monitoring With Data Integrity

Questions

Page 35: INTELLIGENT TRANSPORTATION SYSTEMS:

Page 35 of 33Real-Time Vehicle Performance Monitoring With Data Integrity

References• L. Figueiredo, I. Jesus, J.A.T. Machado, J.R. Ferreira, J.L. Martins de Carvalho, Towards the

Development of Intelligent Transportation Systems. IEEE Intelligent Transportation Systems Proceedings, Oakland, CA, 2001, 25-29.

• Garmin. “What is GPS.” [online]. Available: http://www.garmin.com/aboutGPS/index.html

• T. Yunck, G. Lindal, C. Liu, The role of GPS in precise Earth observation, Position Location and Navigation Symposium, Dec. 1988, 251-258

• GSMWorld. [online]. Available: http://www.gsmworld.com/technology/faq.shtml

• J. Cai, D. Goodman, General Packet Radio in GSM, IEEE Communications Magazine, 35(10), 1997, pp 122-131.

• S. Godavarty, S. Broyles and M. Parten, Interfacing to the On-board Diagnostic System, Proceedings Vehicular Technology Conference Vol. 4, pp. 2000-2004, 24-28 Sept. 2000.

• SAE J 1850 May 2001, Class B Data Communication Network Interface, 2004 SAE Handbook, SAE International, 2004.

• SAE J 1979 April 2002, E/E Diagnostic Test Modes Equivalent to ISO/DIS 15031: April 30, 2002, 2004 SAE Handbook, SAE International, 2004.

• NMEA 0183 Standard for Interfacing Marine Electronic Devices, Version 2.0, National Marine Electronics Association, Mobile, AL, January 1992.

• J. Brittain, I.F. Darwin, Tomcat: the definitive guide (O'Reilly, 2003).

• K. English, L. Feaster, Community geography: GIS in action (ESRI Press, 2003).

• MARIS. [online]. Available: http://www.maris.state.ms.us/index.html

Page 36: INTELLIGENT TRANSPORTATION SYSTEMS:

Page 36 of 33Real-Time Vehicle Performance Monitoring With Data Integrity

In-Vehicle Networking (OBD-II)

• The 1990 Clean Air Act and the Environmental Protection Agency established strict emission standards and inspection/maintenance (I/M) programs.

• The Society for Automotive Engineers (SAE) produced a set of automotive standards and practices that regulated the development of diagnostic systems that would check for emission violations.

• These standards were expanded to create the on-board diagnostic system – OBD-II

• In 1996, the EPA adopted these standards and practices and mandated their installation in all light-duty vehicles.

Page 37: INTELLIGENT TRANSPORTATION SYSTEMS:

Page 37 of 33Real-Time Vehicle Performance Monitoring With Data Integrity

Demo