Top Banner
1 INTEGRATION of FUNCTION of ONE VARIABLE INDEFINITE INTEGRAL Finding the indefinite integrals Reduction to basic integrals, using the rule .... ) ( ) ( = dx x f x f n 1. ( ) dx x x x + 3 2. + dx x x 3 2 ) 3 2 ( 3. dx x + 100 ) 3 2 ( 4. dx x + 3 2 1 5. dx x x + + 2 2 1 2 6. dx x x x + + + 2 2 1 2 7. dx x x x + + 2 2 2 8. dx x x + + 2 2 1 2 9. dx x x + 1 2 10. dx x - 2 9 1 11. + dx x x 2 2 1 12. dx x x x x + 2 13. + dx x x 1 2 2 14. dx x x 90 2 ) 1 2 ( + 15. dx x x 2 4 3 ) 1 ( - 16. dx x x + 2 sin 1 2 sin 2 17. xdx 2 sin 18. xdx 3 sin 19. xdx tan 20. xdx 2 tan 21. xdx e x cosh 22. dx x x 2 sin 23. dx x x ln 24. dx x x ln 1 25. dx x x 3 / 2 ) (ln 1 26. dx e e x x 10 ) 3 2 ( + 27. dx e e x x + 3 2 28. dx x x 2 1 29. dx x x + + ) 1 2 ( cos ) 1 2 sin( 2 30. dx x x - 2 2 1 ) (arcsin 31. dx x) 4 tanh( 32. dx x) 3 ( sinh 2 33. dx x + 2 6 1 1 34. dx x x - - 2 1 1 35. dx x x x x - - + 1 1 2 36. + dx x cos 1 1 Right or wrong? 1. c x x xdx x + = sin 2 sin 2 2. + - = c x x xdx x cos sin 3. + + - = c x x x xdx x sin cos sin 4. c x dx x + + = + 3 ) 1 2 ( ) 1 2 ( 3 2 5. c x dx x + + = + 3 2 ) 1 2 ( ) 1 2 ( 6. c x dx x + + = + 6 ) 1 2 ( ) 1 2 ( 3 2 Answers: 1. c x x + + 4 5 2 4 2 / 5 2. c x x x + - - 2 2 9 12 ln 4 3. c x + + 202 ) 3 2 ( 101 4. c x + + 2 3 2 ln
7

INTEGRATION of FUNCTION of ONE VARIABLE INDEFINITE ...math.bme.hu/~nagyi/calc1/integraloffofonevariable.pdfFinding the indefinite integrals Reduction to basic integrals, using the

Jul 17, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: INTEGRATION of FUNCTION of ONE VARIABLE INDEFINITE ...math.bme.hu/~nagyi/calc1/integraloffofonevariable.pdfFinding the indefinite integrals Reduction to basic integrals, using the

1

INTEGRATION of FUNCTION of ONE VARIABLE

INDEFINITE INTEGRAL

Finding the indefinite integrals

Reduction to basic integrals, using the rule ....)()( =⋅′∫ dxxfxf n

1. ( )dxxxx∫ +3 2. ∫

+dx

x

x

3

2)32(

3. dxx∫ +100)32(

4. dxx

∫+ 32

1 5. dx

xx∫

++ 22

1

2 6. dx

xx

x

∫++

+

22

1

2

7. dxxx

x

∫++ 22

2 8. dx

xx∫

++ 22

1

2

9. dx

x

x

∫+1

2

10. dx

x∫

29

1 11. ∫

+

dx

xx2

2

1 12. dx

x

xxx

∫+

2

13. ∫+

dxx

x

122

14. dxxx902 )12( +∫ 15. dxxx

243 )1( −∫

16. dxx

x∫

+

2sin

12sin

2 17. xdx∫

2sin 18. xdx∫3

sin

19. ∫ xdxtan 20. xdx∫2

tan 21. xdxex

cosh∫

22. dxxx∫2sin 23. dx

x

x

∫ln

24. dxxx

∫ln

1

25. dxxx

3/2)(ln1∫ 26. dxee

xx 10)32( +∫ 27. dxe

e

x

x

∫+ 32

28. dxx

x

21

∫ 29. dxx

x

∫+

+

)12(cos

)12sin(2

30. dx

x

x

∫−

2

2

1

)(arcsin

31. ∫ dxx)4tanh( 32. dxx)3(sinh 2

∫ 33. dx

x∫

+2

61

1

34. dx

x

x

∫−

21

1 35. dx

xx

xx

∫−

−+

1

12 36. ∫

+

dxxcos1

1

Right or wrong?

1. cxx

xdxx +=∫ sin2

sin

2

2. ∫ +−= cxxxdxx cossin

3. ∫ ++−= cxxxxdxx sincossin 4. cx

dxx ++

=+∫ 3

)12()12(

3

2

5. cxdxx ++=+∫32 )12()12( 6. c

xdxx +

+=+∫ 6

)12()12(

3

2

Answers:

1. c

x

x ++

45

24

2/5 2. c

xx

x +−−2

2

912ln4 3. c

x+

+

202

)32( 101

4. c

x

+

+

2

32ln

Page 2: INTEGRATION of FUNCTION of ONE VARIABLE INDEFINITE ...math.bme.hu/~nagyi/calc1/integraloffofonevariable.pdfFinding the indefinite integrals Reduction to basic integrals, using the

2

5. cx ++ )1arctan( 6. c

xx

+++

2

)22ln( 2

7. cx

xx

++−++

)1arctan(2

)22ln( 2

8. cxarsh ++ )1( 9. cx ++12 10. c

x

+

3arcsin 11. cxarch ++ )1(

12. c

x

x +−2

2 13. c

x

++

4

)12ln( 2

14. c

x

++

364

)12( 912

15. c

x

+−

12

)1(34

16. c

xx

+−−

2

2cot

2

2cos 17. c

xx

+−

4

2sin

2 18. c

xx ++−

3

coscos

3

19. cx +− cosln

20. cxx +−tan 21. c

xex

++

24

2

22. c

x

+−

2

cos2

23. c

x

+

3

)(ln2 2/3

24. cx +lnln

25. c

x

+

5

)(ln3 3/5

26. c

ex

++

22

)32( 11

27. c

ex

++

2

)32ln( 28. c

x

+⋅ 22ln

2

29. c

x

+

+ )12cos(2

1 30. c

x

+

3

)(arcsin 3

31. cx +)4cosh(ln4

1 32. cx

x

+

6

)6sinh(

2

1

33. cx

+

6

)6(sinh 1

34. cxx +−+2

1arcsin 35. cxx ++− ln212 36. c

x

+

2tan

Right or wrong? 1. w 2. w 3. r 4. w 5. w 6. r

Integration by parts

∫ ∫ ′−=′ dxxgxfxgxfdxxgxf )()()()()()(

1. dxexx

∫−

+ )12( 2. ∫ − dxxx )13cos( 3. ∫ arctgxdx

4. ∫ + xdxx ln)1( 5. dxx )1ln( 2+∫ 6. xdxe

x

cos∫

Answers:

1. cexx

++−−)32( 2. c

x

x

x

+−

+−

9

)13cos()13sin(

3 3. c

xxarctgx +

+−

2

)1ln( 2

4. cx

x

xx

x

+−−

+

4ln

2

22

5. carctgxxxx ++−+ 22)1ln( 2

6. cxxe

x

++

2

)cos(sin

Integration of rational functions

1. ∫+−

dxxx

x

232

3

2. dxx

x

∫+12

4

3. dxxxx

xx

∫−+

++

)2)(2(

322

4. dxxx

x

∫−

+

)2(

322

5. dxxx

x

∫+

)4(

122

2

6. dxxxx

xx

∫++

++

)1)(1(

53222

2

7. dxx

x

∫+1

8. dxx

x

∫+12

2

9. dxx

x

∫−1

22

3

Page 3: INTEGRATION of FUNCTION of ONE VARIABLE INDEFINITE ...math.bme.hu/~nagyi/calc1/integraloffofonevariable.pdfFinding the indefinite integrals Reduction to basic integrals, using the

3

Answers:

1. cxxx

x

+−+−−+ 2ln81ln32

2

2. cxx

x

++− arctan3

3

3. cxxx +−+++− 2ln8

132ln

8

9ln

4

3 4. cx

x

x +−++− 2ln4

7

2

3ln

2

7

5. cxx +++− )4ln(8

9ln

4

1 2 6. cxx

x

x +−++−− arctan31ln25

ln2

7. cxx ++− 1ln 8. cxx +− arctan 9. cxx +−+ 1ln22

Integration by substitution

1. dxx∫ −

216 2. dxxx∫ − 2

2 3. dx

xx∫

+22

1

1

4. dxxx∫ + 3 5. dxx

∫++ 121

1 6. dx

xx∫

+

1

7. dxe

e

x

x

∫+

1

12

2

8. dxee

e

xx

x

∫++

+

34

1

2 9. dx

x

x

∫−

4

21

10. dxx

∫+ sin1

1 11. dx

x∫

+ sin2

1 12. dx

x

x

∫− cos1

cos

Answers:

1. c

xxx

+

−+

2

41

48

4arcsin8 2. c

xar

xx +−

−−−−

2

)1cosh(1)1()1(

2

1 2

3. c

x

x

++

21

4. cxx ++−+2/32/5

)3(2)3(5

2

5. cxx +++−+ )121ln(12 6. cx ++ )1ln(2

7. cxex

+−+ )1ln( 2 8. c

xex

+++

33

)3ln( 9. cx +− )(arcsincot

3

1 3

10. c

x

+

+

2tan1

2 11. c

x

++

3

1)2/tan(2arctan

3

2 12. cxx +−− )2/cot(

DEFINITE INTEGRALS

Express the limits as definite integrals:

1. ∑=

n

k

kkP

xc

1

2

0

lim , where P is a partition of [ ]2,0 .

2. k

n

k kP

x

c

∆∑=

10

1lim , where P is a partition of [ ]4,1 .

3. k

n

k

kP

xc ∆−∑=

1

2

0

4lim , where P is a partition of [ ]1,0 .

Page 4: INTEGRATION of FUNCTION of ONE VARIABLE INDEFINITE ...math.bme.hu/~nagyi/calc1/integraloffofonevariable.pdfFinding the indefinite integrals Reduction to basic integrals, using the

4

Answers:

1. dxx∫2

0

2 2. dxx∫4

1

1 3. dxx∫ −

1

0

24

Find the derivative of

1. ∫x

tdt

0

cos 2. dtt

x

∫ +

0

21 3. dtt

x

∫2

0

cos

4. dt

t

x

∫−

sin

02

1

1 5. dt

t

x

∫+

2

0

61

1

Answers:

1. x

x

2

cos 2. 2

1 x+ 3. xx cos2 ⋅ 4. 1 5. 12

1

2

x

x

+

Find the average value of f over the given interval. At what point or points in the given

interval does the function assume its average value?

1. 1)( 2−= xxf , [ ]3,0 2. xxf sin)( = , [ ]π2,0 3. 1)( −= xxf , [ ] [ ]3,1,1,1−

Answers:

1. 0=avef , f(1)=0 2. 0=

avef , 0)( =πf 3. [ ] 2/1,1,1 −=−

avef ,

aveff =± )2/1( ,

[ ] 1,3,1 =avef , f(2)=1

Find upper and lower bounds for the value of

1. dxx

∫+

2/1

0

21

1 2. dxx )sin(

1

0

2

∫ 3. dxx∫ +

1

0

8

4. dxx∫ +

1

0

71 5. dx

x

ex

∫+

−100

0100

6. dxx∫ +

1

0

cos1

7. Suppose that f is continuous and that ∫ =

2

1

4)( dxxf . Show that f (x)=4 at least once on [ ]2,1 .

Answers: upper bound=ub, lower bound=lb

1. up=1/2, lb=2/5 2. ub=sin1, lb=0 3. ub=3, lb= 8 4. ub= 2 , lb=1

5. ub=1/100, lb= 200/100−

e 6. ub= 2 , lb=1 7. From the value of integral we get

4=avef . The function f is continuous, therefore f takes on 4 at least once on the given interval.

Evaluate the integrals:

1. dxxx )(

1

0

2+∫ 2. dx

x∫−

1

2

2

2 3. ∫ +

π

0

)cos1( dxx

4. dxxx

)11

(4

1

2/1

3−∫ 5. dx

x

x

∫−

4

9

1 6. dxxx 13

3

1

1

2+∫

Page 5: INTEGRATION of FUNCTION of ONE VARIABLE INDEFINITE ...math.bme.hu/~nagyi/calc1/integraloffofonevariable.pdfFinding the indefinite integrals Reduction to basic integrals, using the

5

7. dttt34

1

0

3 )1( +∫ 8. dttt3/1

7

0

2)1( +∫ 9. dx

x

x

∫− +

0

14

3

9

10. dxx

∫π

03

tan 11. dxx

x

∫−

+

2

1

21

4 12. dx

x

x

∫−

3/

0cos41

sin4π

13. dxe

e

x

x

∫+

4ln

01

2 14. dx

x∫

1

0

24

1 15. ∫

+

2

0

228 t

dt

16. dx

xx∫

−+

1

2/12

443

6 17. dx

xx∫

+−

4

2

2106

1 18. xdxe

x

sinh

2ln

0

19. dxx

x

∫4

1

cosh8 20. dx

xx

e

e

∫2

ln

1

Answers:

1. 1 2. 1 3. π 4.-5/6 5. 3 6. 3/22/5 7. 15/16 8. 45/8 9. 2/)103( −

10. 3ln2 11. 2(ln5-ln2) 12. –ln3 13. 2(ln5-ln2) 14. π/6 15. π/16 16. π/2

17. π/2 18. (3-2ln2)/4 19. 16(sinh2-sinh1) 20. )12(2 −

APPLICATIONS of DEFINITE INTEGRALS

Area

1. Find the total area of the region between the curve and the X-axis

a) 23,22

≤≤−−−= xxxy b) 22,43

≤≤−−= xxxy

c) 81,3/1 ≤≤−= xxy

2. Find the area of the region enclosed by the curves

a) 2,22

=−= yxy b) xyxxy =−= ,22

c) xxyxy 4,22+−== d) 2,

2+== yxyx

e) 1,44 42=−=+ yxyx f) 3,2,4

22−=−−=−= xxxyxy

g) 3,2,42

=+−=−= xxyxy h) 2,,/1 === xxyxy

3. Find the area of the region bounded by the curves

a) y = 1/x, y = 5/2 – x b) xxy 22+= , 24 xy −=

c) 2yx = , 4/31 2yx += d) xyxxy 3),1( =−=

e) π/2,sin xyxy == f) 53,)1( 2−=−= xyxy

4. The region bounded below by 2xy = and above by y=4 is to be partitioned into two

subsections of equal area by cutting across it with the horizontal line y=c. Find the value of c.

5. Determine the area of the region enclosed by the Y-axis, the graph of xy = and its tangent

line touching the curve at the point whose abscissa is 4.

6. Find the slope of the line y=mx ( m positive number), if the area of the region enclosed by this

line and the graph of 2xy = is equal to 36.

Answers:

1.a) 28/3 b) 8 c) 51/4 2.a) 32/3 b) 9/2 c) 8/3 d) 9/2 e) 104/15 f) 11/3

g) 11/6 h) 3/2-ln2 3.a) 15/8-2ln2 b) 9 c) 8/3 d) 32/3 e) 1-π/4 f) 1/6

Page 6: INTEGRATION of FUNCTION of ONE VARIABLE INDEFINITE ...math.bme.hu/~nagyi/calc1/integraloffofonevariable.pdfFinding the indefinite integrals Reduction to basic integrals, using the

6

4. 23 )4(=c 5. 2/3 6. m=6

Volume

1. Rotate the given curve about the X-axis and determine the volume of the generated solid

a) xy /1= , [ ]3,1∈x b) 2

cos1x

y += , [ ]2/,2/ ππ−∈x c) xxey = , [ ]1,0∈x

2. Rotate the given curve about the Y-axis and determine the volume of the generated solid

a) 2

1

1

xy

+

= , [ ]1,2/1∈y b) xy ln= , [ ]2/3,2/1∈y c) xey = , [ ]2,1∈y

3. Rotate the graph of the function 2/3xy = ( axy ≤≤≥ 0,0 ) about both the Y-axis and the X-

axis. What is the value of a if both solids have the same volume?

Answers:

1. a)3

2π b) )22

4

3(2 +π

π c) )1(4

2−e

π

2.a) )2

12(ln −π b) )(

2

3 ee −π

c) )22ln42ln2( 2+−π 3. a=144/49

Arc length

1. Calculate the arc length of the curve

a) 21,2

1

6

3

≤≤+= xx

xy b) 40,

2/3≤≤= xxy

c) 22,4

1

82

4

≤≤+= yy

yx d) 90,

5

4 4/5≤≤= xxy

2. Find the value of b knowing that the arc length of the curve segment given by the graph of the

function 19

2)(

2/3+= xxf and lying between the points a=0 and b is equal to 42 units.

3. Find the arc length of

a) 2ln2ln,2

≤≤−+

=

xee

y

xx

b) dtty

x

∫=0

2cos , 4/0 π≤≤ x

Answers:

1.a) 17/12 b) )110(27

8 2/3− c) 25/16 d) 232/15 2. b=27 3.a) 3/2 b) 1

IMPROPER INTEGRALS

A) Evaluate the integrals:

1. dxx∫∞

1

001.1

1 2. ∫

∞−+

2

24

2

x

dx 3. dx

x∫−

1

1

3/2

1 4. ∫

∞−+

22 )1(

2

x

xdx 5. dx

x

x

∫∞

+0

21

arctan 6. dxxe

x

∫∞−

0

7. ∫−

2

0

24 x

dx 8. ∫

2

0 1x

dx 9. dxxe

x

∫∞

∞−

−2

2 10. ∫1

0

ln xdx 11. ∫∞

−2

21

2

x

dx 12. ∫

2/

0

tan

π

xdx

13. ∫∞

++0

2 )1)(1( xx

dx 14. ∫

−++

1

2 65xx

dx 15. dx

x

ex

∫−1

0

Page 7: INTEGRATION of FUNCTION of ONE VARIABLE INDEFINITE ...math.bme.hu/~nagyi/calc1/integraloffofonevariable.pdfFinding the indefinite integrals Reduction to basic integrals, using the

7

B) Test the integrals for convergence (integration, comparison test)

1. dxexx/1

2ln

0

2 −−

∫ 2. ∫+

π

0 sin xx

dx 3. ∫

+1

31x

dx 4. ∫

+01 x

e

dx 5. ∫

+06

1x

dx

6. ∫∞

2ln x

dx 7. dx

x

ex

∫∞

1

8. dxx

x

∫∞

+

π

cos2 9. ∫

∞−+14

x

dx

C) Find the values of p for which each integral converges

1. ∫2

1)(ln pxx

dx 2. ∫

2)(ln pxx

dx

Answers:

A) 1. 1000 2. 3π/4 3. 6 4. 0 5. 8/2

π 6. 0 7. π/2 8. 4 9. 0 10. -1

11. ln3 12. +∞ 13. π/4 14. ln2 15. 2(1-1/e)

B) 1. convergent, the value of the integral is 2ln/1−e 2.

xxx

1

sin

10 ≤

+⟨ , dx

x∫π

0

1 is

convergent therefore the original integral is convergent 3. 33

1

1

10

xx

⟨+

⟨ , dxx∫+∞

1

3

1 is

convergent therefore the original integral is convergent 4. x

x

e

e

⟨+

⟨1

10 , dxe

x

∫+∞

0

is

convergent therefore the original integral is convergent 5. convergent 6. divergent ,

01

ln

1⟩⟩

xx

, dxx∫+∞

2

1 is divergent 7. divergent 8. divergent 9. convergent

C) 1. convergent if p<1 , divergent if p≥1 2. convergent if p˃1 , divergent if p≤1