Top Banner
4.1Antiderivatives and Indefinite Integrals.notebook 1 February 07, 2014 Ch. 4‐ Antiderivatives & Indefinite Integrals
16

Ch. 4‐ Antiderivatives Indefinite Integrals · 2014-02-07 · 4.1Antiderivatives and Indefinite Integrals.notebook 14 February 07, 2014 Initial Conditions and Particular Solutions

Jul 17, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Ch. 4‐ Antiderivatives Indefinite Integrals · 2014-02-07 · 4.1Antiderivatives and Indefinite Integrals.notebook 14 February 07, 2014 Initial Conditions and Particular Solutions

4.1­Antiderivatives and Indefinite Integrals.notebook

1

February 07, 2014

Ch. 4‐Antiderivatives

& Indefinite Integrals

Page 2: Ch. 4‐ Antiderivatives Indefinite Integrals · 2014-02-07 · 4.1Antiderivatives and Indefinite Integrals.notebook 14 February 07, 2014 Initial Conditions and Particular Solutions

4.1­Antiderivatives and Indefinite Integrals.notebook

2

February 07, 2014

Theorem:If F is an antiderivative of f on an interval I, then the most general antiderivative of f on I is

G(x) = F(x) + Cwhere C is a constant.

Page 3: Ch. 4‐ Antiderivatives Indefinite Integrals · 2014-02-07 · 4.1Antiderivatives and Indefinite Integrals.notebook 14 February 07, 2014 Initial Conditions and Particular Solutions

4.1­Antiderivatives and Indefinite Integrals.notebook

3

February 07, 2014

G(x) = F(x) + C

• C is called the constant of integration

• G is the general antiderivative of f

• G(x) = F(x) + C is the general solution of the differential equation G '(x) = F '(x) = f(x)

• A differential equation in x and y is an equation that involves x, y, and derivatives of y.  (y' = 3x)

Page 4: Ch. 4‐ Antiderivatives Indefinite Integrals · 2014-02-07 · 4.1Antiderivatives and Indefinite Integrals.notebook 14 February 07, 2014 Initial Conditions and Particular Solutions

4.1­Antiderivatives and Indefinite Integrals.notebook

4

February 07, 2014

Example:Find the general solution of the differential equation y' = 2.In other words, find the original equation that gives you this derivative.

Page 5: Ch. 4‐ Antiderivatives Indefinite Integrals · 2014-02-07 · 4.1Antiderivatives and Indefinite Integrals.notebook 14 February 07, 2014 Initial Conditions and Particular Solutions

4.1­Antiderivatives and Indefinite Integrals.notebook

5

February 07, 2014

Example: Find the antiderivative of y = 2x.

Page 6: Ch. 4‐ Antiderivatives Indefinite Integrals · 2014-02-07 · 4.1Antiderivatives and Indefinite Integrals.notebook 14 February 07, 2014 Initial Conditions and Particular Solutions

4.1­Antiderivatives and Indefinite Integrals.notebook

6

February 07, 2014

dydx     = f (x)

When solving a differential equation of the form

it is convenient to write it in the equivalent differential form

dy = f(x) dx.

The operation of finding all solutions of this equation is called antidifferentiation (or indefinite integration) and is denoted by an integral sign ∫.

Page 7: Ch. 4‐ Antiderivatives Indefinite Integrals · 2014-02-07 · 4.1Antiderivatives and Indefinite Integrals.notebook 14 February 07, 2014 Initial Conditions and Particular Solutions

4.1­Antiderivatives and Indefinite Integrals.notebook

7

February 07, 2014

variable of integration

integrand

constant of integration

antiderivative    of f(x)

y =

Notations of Antiderivatives

The expression is read as the anderivave of  f with respect to x.  The differenal  dx serves to idenfy x as the variable of integraon.  The term indefinite integral is a synonym for anderivave.

The inverse nature of integration and differentiation can be verified by substituting F'(x) for f(x) in the indefinite integration definition to obtain

Moreover, if ∫f(x)dx = F(x) + C, then

These two equations allow you to obtain integration formulas directly from differentiation formulas, as shown in the following summary.

Page 8: Ch. 4‐ Antiderivatives Indefinite Integrals · 2014-02-07 · 4.1Antiderivatives and Indefinite Integrals.notebook 14 February 07, 2014 Initial Conditions and Particular Solutions

4.1­Antiderivatives and Indefinite Integrals.notebook

8

February 07, 2014

Basic Integration Rules

Log Function: 

Natural Exponential Function:

Exponential Function:

Page 9: Ch. 4‐ Antiderivatives Indefinite Integrals · 2014-02-07 · 4.1Antiderivatives and Indefinite Integrals.notebook 14 February 07, 2014 Initial Conditions and Particular Solutions

4.1­Antiderivatives and Indefinite Integrals.notebook

9

February 07, 2014

Page 10: Ch. 4‐ Antiderivatives Indefinite Integrals · 2014-02-07 · 4.1Antiderivatives and Indefinite Integrals.notebook 14 February 07, 2014 Initial Conditions and Particular Solutions

4.1­Antiderivatives and Indefinite Integrals.notebook

10

February 07, 2014

Formulas to know!!! MEMORIZEFunction Particular Antiderivative 

Page 11: Ch. 4‐ Antiderivatives Indefinite Integrals · 2014-02-07 · 4.1Antiderivatives and Indefinite Integrals.notebook 14 February 07, 2014 Initial Conditions and Particular Solutions

4.1­Antiderivatives and Indefinite Integrals.notebook

11

February 07, 2014

Examples:

Page 12: Ch. 4‐ Antiderivatives Indefinite Integrals · 2014-02-07 · 4.1Antiderivatives and Indefinite Integrals.notebook 14 February 07, 2014 Initial Conditions and Particular Solutions

4.1­Antiderivatives and Indefinite Integrals.notebook

12

February 07, 2014

More Examples:

Page 13: Ch. 4‐ Antiderivatives Indefinite Integrals · 2014-02-07 · 4.1Antiderivatives and Indefinite Integrals.notebook 14 February 07, 2014 Initial Conditions and Particular Solutions

4.1­Antiderivatives and Indefinite Integrals.notebook

13

February 07, 2014

More Examples:

*Rewrite the function when necessary.

Page 14: Ch. 4‐ Antiderivatives Indefinite Integrals · 2014-02-07 · 4.1Antiderivatives and Indefinite Integrals.notebook 14 February 07, 2014 Initial Conditions and Particular Solutions

4.1­Antiderivatives and Indefinite Integrals.notebook

14

February 07, 2014

Initial Conditions and Particular SolutionsThe equation y = ∫f(x)dx has many solutions (each differing from the others by a constant). 

This means that the graphs of any two antiderivatives of f are vertical translations of each other. 

In many applications of integration, you are given enough 

information to determine a particular solution. To do this, 

you need only know the value of y = F(x) for one value of x. 

This information is called an initial condition.

F(x) = x3 – x + C          General solution

F(2) = 4              Initial condition

Using the initial condition that F(2)=4, find the equation that passes through this point.  This equation is the particular solution.

Page 15: Ch. 4‐ Antiderivatives Indefinite Integrals · 2014-02-07 · 4.1Antiderivatives and Indefinite Integrals.notebook 14 February 07, 2014 Initial Conditions and Particular Solutions

4.1­Antiderivatives and Indefinite Integrals.notebook

15

February 07, 2014

Example:

1. Write a function that could have the derivative: 

Is this the only possibility?

2. Assume that (1, ­1) is a point on the graph of the function.

How is this added information helpful?

Page 16: Ch. 4‐ Antiderivatives Indefinite Integrals · 2014-02-07 · 4.1Antiderivatives and Indefinite Integrals.notebook 14 February 07, 2014 Initial Conditions and Particular Solutions

4.1­Antiderivatives and Indefinite Integrals.notebook

16

February 07, 2014

Particle Motion Example:A particle moves in a straight line and has acceleration given by 

Its initial velocity is Its initial displacement isFind its position function, s(t).