Top Banner
Integrated Circuit Design ELCT 701 (Winter 2019) Notes on Dynamic Behavior of Inverters Dr. Eman Azab Assistant Professor Office: C3.315 E-mail: [email protected] Dr. Eman Azab Electronics Dept., Faculty of IET The German University in Cairo 1
33

Integrated Circuit Design ELCT 701 - GUC

Oct 29, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Integrated Circuit Design ELCT 701 - GUC

Integrated Circuit Design ELCT 701 (Winter 2019)

Notes on Dynamic Behavior of

InvertersDr. Eman Azab

Assistant Professor

Office: C3.315

E-mail: [email protected]

Dr. Eman Azab

Electronics Dept., Faculty of IET

The German University in Cairo

1

Page 2: Integrated Circuit Design ELCT 701 - GUC

Notes on CMOS InverterDynamic Behavior

Dr. Eman Azab

Electronics Dept., Faculty of IET

The German University in Cairo

2

Page 3: Integrated Circuit Design ELCT 701 - GUC

Calculation of Propagation

delays

Dr. Eman Azab

Electronics Dept., Faculty of IET

The German University in Cairo

3

Notes:

In the previous lecture, weassumed that the input voltageis an ideal step with zero riseand fall time

In practice, the input signal hasnon-zero rise and fall time

β€œπ‰π’“ & 𝝉𝒇”

We can use the calculatedpropagation delays at idealinput voltage to obtain theactual delays

These equations are empiricalones, yet they provide goodestimation of the actual delays

Page 4: Integrated Circuit Design ELCT 701 - GUC

Calculation of rise and fall time

Dr. Eman Azab

Electronics Dept., Faculty of IET

The German University in Cairo

4

Example:

A CMOS inverter with the following parameters: VDD=5V,

Β΅nCox= 20Β΅A/V2, W/Ln=10, VT,n=1V, Cload=1pF, Calculate

β€˜tfall’?

tfall is the time that the load capacitor discharge from 90% to 10% ofVOH

Output voltage will drop from 4.5V to 0.5V

Using the average current method:

Assignment, Calculate the fall time using differential equations!

πΌπ‘Žπ‘£π‘” =1

2𝐼𝐷,𝑛(𝑉𝑖𝑛 = 5𝑉, π‘‰π‘œπ‘’π‘‘ = 4.5𝑉) + 𝐼𝐷,𝑛(𝑉𝑖𝑛 = 5𝑉, π‘‰π‘œπ‘’π‘‘ = 0.5𝑉)

πΌπ‘Žπ‘£π‘” =1

2

π‘˜π‘›2

(𝑉𝑖𝑛 βˆ’ 𝑉𝑇,𝑛)2 +

π‘˜π‘›2(2 𝑉𝑖𝑛 βˆ’ 𝑉𝑇,𝑛 π‘‰π‘œπ‘’π‘‘ βˆ’ π‘‰π‘œπ‘’π‘‘

2 = 0.9875π‘šπ΄

πœπ‘“π‘Žπ‘™π‘™ =πΆπ‘™π‘œπ‘Žπ‘‘βˆ†π‘‰π‘œπ‘’π‘‘

πΌπ‘Žπ‘£π‘”=πΆπ‘™π‘œπ‘Žπ‘‘ 4.5 βˆ’ 0.5

πΌπ‘Žπ‘£π‘”= 4.05 𝑛𝑠

Page 5: Integrated Circuit Design ELCT 701 - GUC

Inverter Design with Delay

Constraints

Dr. Eman Azab

Electronics Dept., Faculty of IET

The German University in Cairo

5

How to select the transistor’s aspect ratio to satisfy delay

constraints?

For simplicity, if we considered Cload as a constant cap. (interconnect only)independent on transistor’s sizing, it’s a straight forward problem, ex.:

We have to balance between delays constraints and the rest of the inverter’sparameters

Note: If we took the parasitic caps of the transistors into consideration, wehave to calculate the capacitance per unit length first

Page 6: Integrated Circuit Design ELCT 701 - GUC

Delay Calculations using

first-order RC approximationDynamic Behavior

Dr. Eman Azab

Electronics Dept., Faculty of IET

The German University in Cairo

6

Page 7: Integrated Circuit Design ELCT 701 - GUC

Β© Digital Integrated Circuits2nd Inverter

CMOS Inverter: Transient Response

tpHL = f(Ron.CL)

= 0.69 RonCL

V outVout

R n

R p

VDDV DD

V in 5 VDDV in 5 0

(a) Low-to-high (b) High-to-low

CLCL

Page 8: Integrated Circuit Design ELCT 701 - GUC

Β© Digital Integrated Circuits2nd Inverter

CMOS Inverter Propagation Delay

RC Network Approach

VDD

Vout

Vin = VDD

Ron

CL

tpHL = f(Ron.CL)

= 0.69 RonCL

t

Vout

VDD

RonCL

1

0.5

ln(0.5)

0.36

Page 9: Integrated Circuit Design ELCT 701 - GUC

Β© Digital Integrated Circuits2nd Inverter

0 0.5 1 1.5 2 2.5

x 10-10

-0.5

0

0.5

1

1.5

2

2.5

3

t (sec)

Vout(V

)

tp = 0.69 CL (Reqn+Reqp)/2

tpLHtpHL

CMOS Inverter Propagation Delay

RC Network Approach

Page 10: Integrated Circuit Design ELCT 701 - GUC

Β© Digital Integrated Circuits2nd Inverter

What is a Transistor?

VGS VT

Ron

S D

A Switch!

|VGS|

An MOS Transistor

Page 11: Integrated Circuit Design ELCT 701 - GUC

Β© Digital Integrated Circuits2nd Inverter

The MOS Transistor

Polysilicon Aluminum

Page 12: Integrated Circuit Design ELCT 701 - GUC

Β© Digital Integrated Circuits2nd Inverter

MOS Transistors -

Types and Symbols

D

S

G

D

S

G

G

S

D D

S

G

NMOS Enhancement NMOS

PMOS

Depletion

Enhancement

B

NMOS with

Bulk Contact

Page 13: Integrated Circuit Design ELCT 701 - GUC

Β© Digital Integrated Circuits2nd Inverter

Threshold Voltage: Concept

n+n+

p-substrate

DSG

B

VGS

+

-

Depletion

Region

n-channel

Page 14: Integrated Circuit Design ELCT 701 - GUC

Β© Digital Integrated Circuits2nd Inverter

The Threshold Voltage

Page 15: Integrated Circuit Design ELCT 701 - GUC

Β© Digital Integrated Circuits2nd Inverter

The Body Effect

-2.5 -2 -1.5 -1 -0.5 00.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

VBS

(V)

VT (

V)

Page 16: Integrated Circuit Design ELCT 701 - GUC

Β© Digital Integrated Circuits2nd Inverter

Current-Voltage Relations

A good ol’ transistor

QuadraticRelationship

0 0.5 1 1.5 2 2.50

1

2

3

4

5

6x 10

-4

VDS

(V)

I D(A

)

VGS= 2.5 V

VGS= 2.0 V

VGS= 1.5 V

VGS= 1.0 V

Resistive Saturation

VDS = VGS - VT

Page 17: Integrated Circuit Design ELCT 701 - GUC

Β© Digital Integrated Circuits2nd Inverter

Transistor in Linear

n+n+

p-substrate

D

S

G

B

VGS

xL

V(x)+–

VDS

ID

MOS transistor and its bias conditions

Page 18: Integrated Circuit Design ELCT 701 - GUC

Β© Digital Integrated Circuits2nd Inverter

Transistor in Saturation

n+n+

S

G

VGS

D

VDS > VGS - VT

VGS - VT+-

Pinch-off

Page 19: Integrated Circuit Design ELCT 701 - GUC

Β© Digital Integrated Circuits2nd Inverter

Current-Voltage Relations

Long-Channel Device

Page 20: Integrated Circuit Design ELCT 701 - GUC

Β© Digital Integrated Circuits2nd Inverter

A model for manual analysis

Page 21: Integrated Circuit Design ELCT 701 - GUC

Β© Digital Integrated Circuits2nd Inverter

Current-Voltage Relations

The Deep-Submicron Era

LinearRelationship

-4

VDS

(V)

0 0.5 1 1.5 2 2.50

0.5

1

1.5

2

2.5x 10

I D(A

)

VGS= 2.5 V

VGS= 2.0 V

VGS= 1.5 V

VGS= 1.0 V

Early Saturation

Page 22: Integrated Circuit Design ELCT 701 - GUC

Β© Digital Integrated Circuits2nd Inverter

Velocity Saturation

x (V/Β΅m)xc = 1.5

un

(m/s

)

usat = 105

Constant mobility (slope = Β΅)

Constant velocity

Page 23: Integrated Circuit Design ELCT 701 - GUC

Β© Digital Integrated Circuits2nd Inverter

Perspective

IDLong-channel device

Short-channel device

VDSVDSAT VGS - VT

VGS = VDD

Page 24: Integrated Circuit Design ELCT 701 - GUC

Β© Digital Integrated Circuits2nd Inverter

ID versus VGS

0 0.5 1 1.5 2 2.50

1

2

3

4

5

6x 10

-4

VGS

(V)

I D(A

)

0 0.5 1 1.5 2 2.50

0.5

1

1.5

2

2.5x 10

-4

VGS

(V)

I D(A

)

quadratic

quadratic

linear

Long Channel Short Channel

Page 25: Integrated Circuit Design ELCT 701 - GUC

Β© Digital Integrated Circuits2nd Inverter

ID versus VDS

-4

VDS(V)0 0.5 1 1.5 2 2.5

0

0.5

1

1.5

2

2.5x 10

I D(A

)

VGS= 2.5 V

VGS= 2.0 V

VGS= 1.5 V

VGS= 1.0 V

0 0.5 1 1.5 2 2.50

1

2

3

4

5

6x 10

-4

VDS(V)

I D(A

)

VGS= 2.5 V

VGS= 2.0 V

VGS= 1.5 V

VGS= 1.0 V

Resistive Saturation

VDS = VGS - VT

Long Channel Short Channel

Page 26: Integrated Circuit Design ELCT 701 - GUC

Β© Digital Integrated Circuits2nd Inverter

A unified model

for manual analysis

S D

G

B

Page 27: Integrated Circuit Design ELCT 701 - GUC

Β© Digital Integrated Circuits2nd Inverter

Simple Model versus SPICE

0 0.5 1 1.5 2 2.50

0.5

1

1.5

2

2.5x 10

-4

VDS

(V)

I D(A

)

VelocitySaturated

Linear

Saturated

VDSAT=VGT

VDS=VDSAT

VDS=VGT

Page 28: Integrated Circuit Design ELCT 701 - GUC

Β© Digital Integrated Circuits2nd Inverter

A PMOS Transistor

-2.5 -2 -1.5 -1 -0.5 0-1

-0.8

-0.6

-0.4

-0.2

0x 10

-4

VDS (V)

I D(A

)

Assume all variablesnegative!

VGS = -1.0V

VGS = -1.5V

VGS = -2.0V

VGS = -2.5V

Page 29: Integrated Circuit Design ELCT 701 - GUC

Β© Digital Integrated Circuits2nd Inverter

Transistor Model

for Manual Analysis

Page 30: Integrated Circuit Design ELCT 701 - GUC

Β© Digital Integrated Circuits2nd Inverter

The Transistor as a Switch

VGS VT

Ron

S D

ID

VDS

VGS = VD D

VDD/2 VDD

R0

Rmid

Page 31: Integrated Circuit Design ELCT 701 - GUC

Dynamic Power

Calculations

Dr. Eman Azab

Electronics Dept., Faculty of IET

The German University in Cairo

31

Page 32: Integrated Circuit Design ELCT 701 - GUC

Dynamic Power Dissipation

Dr. Eman Azab

Electronics Dept., Faculty of IET

The German University in Cairo

32

Switching Power Dissipation:

Changing the input voltage from high to low (or low to high) causescharging and discharging of the load capacitance

This process leads to power dissipation in the form of heat at theseswitching instants

F is the switching frequency

Page 33: Integrated Circuit Design ELCT 701 - GUC

Dynamic Power Dissipation

Dr. Eman Azab

Electronics Dept., Faculty of IET

The German University in Cairo

33

Notes on: Switching Power

Dissipation

Power dissipation is directlyproportional to the circuitswitching speed

Higher speed more power

dissipation

Power dissipation isindependent of transistor sizing

Power-delay product:

A performance parameter to

evaluate the inverter design