Top Banner

of 22

I 5 Ion Implantation

Apr 08, 2018

Download

Documents

Shy Nee
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/6/2019 I 5 Ion Implantation

    1/22

    Professor Nathan Cheung, U.C. Berkeley EECS143 Lecture #7

    Ion Implantation

    x

    mask

    Si

    + C(x)as-implant profile

    * Concentration Profile is a single-peak functionof depth

    x

  • 8/6/2019 I 5 Ion Implantation

    2/22

    Professor Nathan Cheung, U.C. Berkeley EECS143 Lecture #7

    Advantages of Ion Implantation

    Precise control of dose and depth profile Low-temp. process (can use photoresist as mask) Wide selection of masking materials

    e.g. photoresist, oxide, poly-Si, metal

    Less sensitive to surface cleaning procedures Excellent lateral dose uniformity (< 1% variation across 8 wafer)

    n+n+

    Application example: formation of self-aligned source/drain regions

    SiO 2 p-Si

    As +As + As +

    Poly Si Gate

  • 8/6/2019 I 5 Ion Implantation

    3/22

    Professor Nathan Cheung, U.C. Berkeley EECS143 Lecture #7

    Monte Carlo Simulation of 50keV Boron implanted into Si

    5000ionssimulation

  • 8/6/2019 I 5 Ion Implantation

    4/22

    Professor Nathan Cheung, U.C. Berkeley EECS143 Lecture #7

    [Conc] = # of atoms/ cm 3

    [dose] = # of atoms/ cm 2

    Depth x in cm

    dose ( ) = C x dx0

    C(x) in #/cm 3

    (1) Range and profile shape depends on the ion energy

    (for a particular ion/substrate combination)(2) Height (i.e. Concentration) of profile depends onthe implantation dose

  • 8/6/2019 I 5 Ion Implantation

    5/22

    Professor Nathan Cheung, U.C. Berkeley EECS143 Lecture #7

    (3) Mask layer thickness can block ion penetration

    Thin mask

    Thick Mask

    photoresistSiO

    2 ,

    Si 3 N 4 , or others

    Completeblocking IncompleteBlockingSUBSTRATE

  • 8/6/2019 I 5 Ion Implantation

    6/22

    Professor Nathan Cheung, U.C. Berkeley EECS143 Lecture #7

    Ion Implanter

    e.g. AsH 3 As+ , AsH + , H + , AsH 2+

    Magnetic Mass seperation

    Ion source

    Translational wafer holder

    motion.

    As+

    AcceleratorColumn

    Accelerator Voltage: 1-200kV Dose ~ 10 11-1016 /cm2 Accuracy of dose:

  • 8/6/2019 I 5 Ion Implantation

    7/22

    Professor Nathan Cheung, U.C. Berkeley EECS143 Lecture #7

  • 8/6/2019 I 5 Ion Implantation

    8/22

    Professor Nathan Cheung, U.C. Berkeley EECS143 Lecture #7

    Photographof the Eaton HE3High Energy

    Implanter,showing theion beamhitting the300mm wafer

    end-station

  • 8/6/2019 I 5 Ion Implantation

    9/22

    Professor Nathan Cheung, U.C. Berkeley EECS143 Lecture #7

    Implantation Dose

    [ ]

    2

    # cm

    area Implant time Implant

    q ampsinCurrent Beam Ion

    =

    =

    Overscanning of beam across wafer is common.In general , Implant area > Wafer area

  • 8/6/2019 I 5 Ion Implantation

    10/22

    Professor Nathan Cheung, U.C. Berkeley EECS143 Lecture #7

    A

    Secondaryelectroneffecteliminated

    e

    Faradaycup

    ion +

    +V

    Practical Implantation Dosimetry

    + bias applied to

    Faraday Cup to collectall secondary electrons.Cup current = Ion current

    * Charge collected by integrating cup current / cup area = dose

  • 8/6/2019 I 5 Ion Implantation

    11/22

    Professor Nathan Cheung, U.C. Berkeley EECS143 Lecture #7

    Dose [#/area] : looking downward, how many fishper unit area for ALL depths

    Concentration [#/volume] :Looking at a particular location,how many fish per unit volume

    Meaning of Dose and Concentration

  • 8/6/2019 I 5 Ion Implantation

    12/22

    Professor Nathan Cheung, U.C. Berkeley EECS143 Lecture #7

    Ion Implantation Energy Loss Mechanisms

    Si+

    +

    Si

    Si

    e e

    + +Electronicstopping

    Nuclearstopping

    Crystalline Si substrate damaged by collision

    Electronic excitation creates heat

  • 8/6/2019 I 5 Ion Implantation

    13/22

    Professor Nathan Cheung, U.C. Berkeley EECS143 Lecture #7

    Light ions/at higher energy more electronic stopping

    Heavier ions/at lower energy more nuclear stopping

    EXAMPLESImplanting into Si:

    Energy Loss and Ion Properties

    H+

    B+

    As +

    Electronic stoppingdominates

    Electronic stoppingdominates

    Nuclear stoppingdominates

  • 8/6/2019 I 5 Ion Implantation

    14/22

    Professor Nathan Cheung, U.C. Berkeley EECS143 Lecture #7

    Stopping Mechanisms

    E1(keV) E2(keV)B into Si 3 17P into Si 17 140As into Si 73 800

  • 8/6/2019 I 5 Ion Implantation

    15/22

    Professor Nathan Cheung, U.C. Berkeley EECS143 Lecture #7

    Substrate

    Less crystallinedamageSe > S n

    More crystallinedamage atend of rangeSn > S e

    Surface

    x ~ Rp

    A+

    Eo =incidentkineticenergy

    Se

    E ~ 0

    Sn

    E=E o

    Se

    Sn

    Depth xSn dE/dx| nSe dE/dx| e

  • 8/6/2019 I 5 Ion Implantation

    16/22

    Professor Nathan Cheung, U.C. Berkeley EECS143 Lecture #7

    (1) Restore Si crystallinity.

    (2) Put dopants into Si substitutional sitesfor electrical activation

    After implantation, we need an annealing step.~900 oC, 30min to

    Implantation Damage

  • 8/6/2019 I 5 Ion Implantation

    17/22

    Professor Nathan Cheung, U.C. Berkeley EECS143 Lecture #7

    Gaussian Approximation of Implant ProfileC(x)

    C p

    0.61 C p

    R p R px=0

    x

    Choose Gaussian functionas approximation

    linear scale

    log scale

    x

    x

    ( )

    ( )

    ( )

    straggleallongitudin R

    range projected ReCp xC

    p

    p

    R

    R x

    p

    p

    ==

    =

    2

    2

    2

  • 8/6/2019 I 5 Ion Implantation

    18/22

    Professor Nathan Cheung, U.C. Berkeley EECS143 Lecture #7

    Rp and Rp values are given in tables or chartse.g. see pp. 93-94 of Jaeger

    Projected Range and Straggle

    Note: this means 0.02 m.

  • 8/6/2019 I 5 Ion Implantation

    19/22

    Professor Nathan Cheung, U.C. Berkeley EECS143 Lecture #7

    Rp and Rp values from Monte Carlo simulation[see 143 Reader for other ions]

    (both theoretical & expt values are well known for Si substrate)

    10 100 1000100

    1000

    10000

    Rp =185.34201 +6.5308 E -0.01745 E2 +2.098e-5 E 3 -8.884e-9 E 4

    Rp =51.051+32.60883 E -0.03837 E2 +3.758e-5 E 3 -1.433e-8 E 4

    Rp

    Rp

    B1 1 into Si

    P r o j e c

    t e d R a n g e

    & S t r a g g

    l e i n

    A n g s

    t r o m

    Ion Energy E in keV

  • 8/6/2019 I 5 Ion Implantation

    20/22

    Professor Nathan Cheung, U.C. Berkeley EECS143 Lecture #7

    ( )

    ( )[ ] p p RC

    dx xC

    dx xC

    =

    =

    +

    2

    0x

    p p

    RC

    =

    2 p R4.0

    Gaussian

    Using Gaussian Approximation:

    +negligible

    Dose-Concentration Relationship

    Dose =

    Cp

  • 8/6/2019 I 5 Ion Implantation

    21/22

    Professor Nathan Cheung, U.C. Berkeley EECS143 Lecture #7

    (2) Projected Range :

    (3) Longitudinal Straggle :

    (1) Dose ( ) =

    C x dx0

    Definitions of Profile Parameters

    (4) Skewness:-describes asymmetry between left side and right side

    (5) Kurtosis:

    ( )dx xC x R p

    0

    1

    ( ) ( ) ( )dx xC R x R p p

    0

    22 1

    ( ) ( ) 00,1 303

    3 or M dx xC R p x M ( ) ( )

    0

    4 dx xC R x p

    R px

    C(x)

    Kurtosis characterizes thecontributions of the tailregions

  • 8/6/2019 I 5 Ion Implantation

    22/22

    Professor Nathan Cheung, U.C. Berkeley EECS143 Lecture #7

    Common Approximations used to describe implant profiles

    1. Gaussian Distribution - SimpleBetter fit near peak regions

    2. Pearson IV Distribution - 4 shape-parameters, messy algebraBetter fit even down to low concentrationregions. Default model used in CAD tools

    In EE143, we use Guassian approximation for convenience. This discussion of Pearson IV is just for your reference