Top Banner
Hydroeconomic analysis framework for agricultural water management Marco P. Maneta, PhD Geosciences Department The University of Montana, Missoula [email protected] October 4, 2013
29

Hydroeconomic analysis framework for agricultural water ... · 7 8 9 Corn 0.5 0.0 0.5 1.0 Change in land (x100) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 Tomato 0 6 7 0. water management. water

Oct 14, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Hydroeconomic analysis framework for agricultural water ... · 7 8 9 Corn 0.5 0.0 0.5 1.0 Change in land (x100) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 Tomato 0 6 7 0. water management. water

Hydroeconomic analysis framework for agricultural watermanagement

Marco P. Maneta, PhD

Geosciences DepartmentThe University of Montana, Missoula

[email protected]

October 4, 2013

Page 2: Hydroeconomic analysis framework for agricultural water ... · 7 8 9 Corn 0.5 0.0 0.5 1.0 Change in land (x100) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 Tomato 0 6 7 0. water management. water

Integrated hydroeconomic analysisObjectives

How do droughts impact crop mix and water use?

How does agricultural change impact water availability and otherwater uses?

How do farmers respond to water policy?

What water policy maximizes the social and economic benefits ofirrigated agriculture while mitigating the negative impacts on otherwater users

M. Maneta (UM) Hydroeconomic analysis October 2013 2 / 17

Page 3: Hydroeconomic analysis framework for agricultural water ... · 7 8 9 Corn 0.5 0.0 0.5 1.0 Change in land (x100) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 Tomato 0 6 7 0. water management. water

Integrated hydroeconomic model

Optimization variables:- Crop mix and acreage- Hired and family labor used- Water applied- Amounts of seeds used- Amount of fertilizer used- Amount of pesticides used- Capital- Energy/electricity used

Productionfunction

Climate Flows

Production costs

Social constraints:- Available labor

Physical constraints:- Available land

Policy constraints:- Water allocation rules- Environmental flow mandates- Nitrogen export limits - Subsidies on production- Subsidies on acreage- Minimum wages

External price of inputs:- Price of fertilizers

- Price of seeds- Price of hired labor

- Price of energy- Price of water

Market price of crops

Environmental Social Farmer revenues

Trade-off curves showing the best(Pareto-optimal) policies

Risk aversion costs

PrecipitationGW availableSW available

Crop mixEvapotranspirationGWdemandSW demand

Optimization objectives

Agroeconomic model

Hydroclimatic model

Gross revenue

M. Maneta (UM) Hydroeconomic analysis October 2013 3 / 17

Page 4: Hydroeconomic analysis framework for agricultural water ... · 7 8 9 Corn 0.5 0.0 0.5 1.0 Change in land (x100) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 Tomato 0 6 7 0. water management. water

Economic model of agricultural production

maxX

net =∑j

pjqj(Xi ,j ,Paramsi ,j)−∑i

ciXi ,j−1

2ψjX

2land ,j

maxX

net =∑j

pj qj(Xi ,j ,Paramsi ,j) −∑i

ciXi ,j −1

2ψjX

2land ,j

qj (Xi ,j ,Paramsi ,j) = τj

(∑i

βi ,j Xi ,jρ

) νρ

Xi ,j =

Alfalfa Corn · · · cropj

land...

water...

.... . .

...inputi · · · xi ,j

M. Maneta (UM) Hydroeconomic analysis October 2013 4 / 17

Page 5: Hydroeconomic analysis framework for agricultural water ... · 7 8 9 Corn 0.5 0.0 0.5 1.0 Change in land (x100) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 Tomato 0 6 7 0. water management. water

Economic model of agricultural production

maxX

net =∑j

pj qj(Xi ,j ,Paramsi ,j) −∑i

ciXi ,j−1

2ψjX

2land ,j

maxX

net =∑j

pj qj(Xi ,j ,Paramsi ,j) −∑i

ciXi ,j −1

2ψjX

2land ,j

qj (Xi ,j ,Paramsi ,j) = τj

(∑i

βi ,j Xi ,jρ

) νρ

Xi ,j =

Alfalfa Corn · · · cropj

land...

water...

.... . .

...inputi · · · xi ,j

M. Maneta (UM) Hydroeconomic analysis October 2013 4 / 17

Page 6: Hydroeconomic analysis framework for agricultural water ... · 7 8 9 Corn 0.5 0.0 0.5 1.0 Change in land (x100) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 Tomato 0 6 7 0. water management. water

Economic model of agricultural production

maxX

net =∑j

pj qj(Xi ,j ,Paramsi ,j) −∑i

ciXi ,j−1

2ψjX

2land ,j

maxX

net =∑j

pj qj(Xi ,j ,Paramsi ,j) −∑i

ciXi ,j −1

2ψjX

2land ,j

qj (Xi ,j ,Paramsi ,j) = τj

(∑i

βi ,jXρi ,j

) νρ

qj (Xi ,j ,Paramsi ,j) = τj

(∑i

βi ,j Xi ,jρ

) νρ

Xi ,j =

Alfalfa Corn · · · cropj

land...

water...

.... . .

...inputi · · · xi ,j

M. Maneta (UM) Hydroeconomic analysis October 2013 4 / 17

Page 7: Hydroeconomic analysis framework for agricultural water ... · 7 8 9 Corn 0.5 0.0 0.5 1.0 Change in land (x100) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 Tomato 0 6 7 0. water management. water

Economic model of agricultural production

maxX

net =∑j

pj qj(Xi ,j ,Paramsi ,j) −∑i

ciXi ,j−1

2ψjX

2land ,j

maxX

net =∑j

pj qj(Xi ,j ,Paramsi ,j) −∑i

ciXi ,j −1

2ψjX

2land ,j

qj (Xi ,j ,Paramsi ,j) = τj

(∑i

βi ,j Xi ,jρ

) νρ

Xi ,j =

Alfalfa Corn · · · cropj

land...

water...

.... . .

...inputi · · · xi ,j

M. Maneta (UM) Hydroeconomic analysis October 2013 4 / 17

Page 8: Hydroeconomic analysis framework for agricultural water ... · 7 8 9 Corn 0.5 0.0 0.5 1.0 Change in land (x100) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 Tomato 0 6 7 0. water management. water

Economic model of agricultural production

maxX

net =∑j

pj qj(Xi ,j ,Paramsi ,j) −∑i

ciXi ,j−1

2ψjX

2land ,j

maxX

net =∑j

pj qj(Xi ,j ,Paramsi ,j) −∑i

ciXi ,j −1

2ψjX

2land ,j

qj (Xi ,j ,Paramsi ,j) = τj

(∑i

βi ,j Xi ,jρ

) νρ

Xi ,j =

Alfalfa Corn · · · cropj

land...

water...

.... . .

...inputi · · · xi ,j

M. Maneta (UM) Hydroeconomic analysis October 2013 4 / 17

Page 9: Hydroeconomic analysis framework for agricultural water ... · 7 8 9 Corn 0.5 0.0 0.5 1.0 Change in land (x100) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 Tomato 0 6 7 0. water management. water

Economic model of agricultural production

maxX

net =∑j

pj qj(Xi ,j ,Paramsi ,j) −∑i

ciXi ,j −1

2ψjX

2land ,j

qj (Xi ,j ,Paramsi ,j) = τj

(∑i

βi ,j Xi ,jρ

) νρ

Xi ,j =

Alfalfa Corn · · · cropj

land...

water...

.... . .

...inputi · · · xi ,j

M. Maneta (UM) Hydroeconomic analysis October 2013 4 / 17

Page 10: Hydroeconomic analysis framework for agricultural water ... · 7 8 9 Corn 0.5 0.0 0.5 1.0 Change in land (x100) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 Tomato 0 6 7 0. water management. water

Hydrologic engine: HEC-HMSSimulation of water availability

Water distribution and availability is simulated using HEC-HMS

M. Maneta (UM) Hydroeconomic analysis October 2013 5 / 17

Page 11: Hydroeconomic analysis framework for agricultural water ... · 7 8 9 Corn 0.5 0.0 0.5 1.0 Change in land (x100) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 Tomato 0 6 7 0. water management. water

Remote Sensing of agricultural activityLandsat, MODIS

Information on crop acreage, yield and evapotranspiration

M. Maneta (UM) Hydroeconomic analysis October 2013 6 / 17

Page 12: Hydroeconomic analysis framework for agricultural water ... · 7 8 9 Corn 0.5 0.0 0.5 1.0 Change in land (x100) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 Tomato 0 6 7 0. water management. water

Recursive hydroeconomic model calibrationSatellite data assimilation stage

Information gets incorporated in the model as it becomes available.The model improves with time as more information is assimilated into themodel

Data Assimilation FrameworkEnsemble Kalman Filter

Agroeconomic model

Agronomic model parameterget sequentially updatedwith the latest observations

Satellite Data:- Crop Acreage- Yield- Evapotranspiration

Hydrologic Data:- Water available- Streamflows- Water quality- Diversion points- Well fields

Additional Data:- Labor data- Irrigation technology- Crop Calendar

M. Maneta (UM) Hydroeconomic analysis October 2013 7 / 17

Page 13: Hydroeconomic analysis framework for agricultural water ... · 7 8 9 Corn 0.5 0.0 0.5 1.0 Change in land (x100) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 Tomato 0 6 7 0. water management. water

Ensemble Kalman Filter...or how quantity can be a substitute of quality

M. Maneta (UM) Hydroeconomic analysis October 2013 8 / 17

Page 14: Hydroeconomic analysis framework for agricultural water ... · 7 8 9 Corn 0.5 0.0 0.5 1.0 Change in land (x100) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 Tomato 0 6 7 0. water management. water

Ensemble Kalman Filter...or how quantity can be a substitute of quality

M. Maneta (UM) Hydroeconomic analysis October 2013 8 / 17

Page 15: Hydroeconomic analysis framework for agricultural water ... · 7 8 9 Corn 0.5 0.0 0.5 1.0 Change in land (x100) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 Tomato 0 6 7 0. water management. water

Ensemble Kalman Filter...or how quantity can be a substitute of quality

M. Maneta (UM) Hydroeconomic analysis October 2013 8 / 17

Page 16: Hydroeconomic analysis framework for agricultural water ... · 7 8 9 Corn 0.5 0.0 0.5 1.0 Change in land (x100) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 Tomato 0 6 7 0. water management. water

Ensemble Kalman Filter...or how quantity can be a substitute of quality

M. Maneta (UM) Hydroeconomic analysis October 2013 8 / 17

Page 17: Hydroeconomic analysis framework for agricultural water ... · 7 8 9 Corn 0.5 0.0 0.5 1.0 Change in land (x100) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 Tomato 0 6 7 0. water management. water

Test runFarm in Yolo county, CA

Demonstration for a farm in California

610 ac commercial farm

All crops under irrigation

Farmer is not water constrained

Four crops (Alfalfa, wheat, corn, and tomato)

Three inputs (land, water, labor)

Xi ,j =

Alfalfa Wheat Corn Toms

land...

water...

labor. . .

...

M. Maneta (UM) Hydroeconomic analysis October 2013 9 / 17

Page 18: Hydroeconomic analysis framework for agricultural water ... · 7 8 9 Corn 0.5 0.0 0.5 1.0 Change in land (x100) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 Tomato 0 6 7 0. water management. water

ResultsData assimilation stage and parameter identification

0.0

0.1

0.2

0.3

0.4

0.5

0.6

β

Alfalfa

Bland Bwater Blabor

Wheat Corn

0.0

0.1

0.2

0.3

0.4

0.5

0.6

β

Tomato

0.66

0.68

0.70

0.72

0.74

σ

0.66

0.68

0.70

0.72

0.74

σ

0 5 10 15 20Assimilation cycles

10

15

20

25

30

τ

0 5 10 15 20Assimilation cycles

0 5 10 15 20Assimilation cycles

0 5 10 15 20Assimilation cycles

10

15

20

25

30

τ

M. Maneta (UM) Hydroeconomic analysis October 2013 10 / 17

Page 19: Hydroeconomic analysis framework for agricultural water ... · 7 8 9 Corn 0.5 0.0 0.5 1.0 Change in land (x100) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 Tomato 0 6 7 0. water management. water

ResultsReproduction of baseline observations

120 140 160 180 200 220 240Land (ac.)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Pro

babili

ty

Alfalfa

140 150 160 170 180 190 200 210 220Land (ac.)

0.00

0.01

0.02

0.03

0.04

0.05Wheat

70 80 90 100 110 120 130 140Land (ac.)

0.00

0.01

0.02

0.03

0.04

0.05

0.06Corn

50 100 150 200 250 300Land (ac.)

0.000

0.005

0.010

0.015

0.020Tomato

200 400 600 800 1000 1200 1400Water (cf/ac)

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

Pro

babili

ty

250 300 350 400 450 500 550 600 650 700Water (cf/ac)

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

200 250 300 350 400 450 500 550 600 650Water (cf/ac)

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0 200 400 600 800 1000 1200Water (cf/ac)

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

0.0045

500 1000 1500 2000 2500 3000 3500 4000Labor(hrs)

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

Pro

babili

ty

300 400 500 600 700 800 900 1000Labor(hrs)

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

200 300 400 500 600 700 800 900 1000Labor(hrs)

0.000

0.001

0.002

0.003

0.004

0.005

0 5000 10000 15000 20000 25000Labor(hrs)

0.00000

0.00005

0.00010

0.00015

0.00020

M. Maneta (UM) Hydroeconomic analysis October 2013 11 / 17

Page 20: Hydroeconomic analysis framework for agricultural water ... · 7 8 9 Corn 0.5 0.0 0.5 1.0 Change in land (x100) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 Tomato 0 6 7 0. water management. water

ResultsReproduction of baseline observations

120 140 160 180 200 220 240Land (ac.)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Pro

babili

ty

Alfalfa

140 150 160 170 180 190 200 210 220Land (ac.)

0.00

0.01

0.02

0.03

0.04

0.05Wheat

70 80 90 100 110 120 130 140Land (ac.)

0.00

0.01

0.02

0.03

0.04

0.05

0.06Corn

50 100 150 200 250 300Land (ac.)

0.000

0.005

0.010

0.015

0.020Tomato

200 400 600 800 1000 1200 1400Water (cf/ac)

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

Pro

babili

ty

250 300 350 400 450 500 550 600 650 700Water (cf/ac)

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

200 250 300 350 400 450 500 550 600 650Water (cf/ac)

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0 200 400 600 800 1000 1200Water (cf/ac)

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

0.0045

500 1000 1500 2000 2500 3000 3500 4000Labor(hrs)

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

Pro

babili

ty

300 400 500 600 700 800 900 1000Labor(hrs)

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

200 300 400 500 600 700 800 900 1000Labor(hrs)

0.000

0.001

0.002

0.003

0.004

0.005

0 5000 10000 15000 20000 25000Labor(hrs)

0.00000

0.00005

0.00010

0.00015

0.00020

M. Maneta (UM) Hydroeconomic analysis October 2013 12 / 17

Page 21: Hydroeconomic analysis framework for agricultural water ... · 7 8 9 Corn 0.5 0.0 0.5 1.0 Change in land (x100) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 Tomato 0 6 7 0. water management. water

ResultsSimulation of scenarios

Test drive: New water allocation rules that results in:- Scenario 1: 30% reduction in water available- Scenario 2: 50% reduction in water available

M. Maneta (UM) Hydroeconomic analysis October 2013 13 / 17

Page 22: Hydroeconomic analysis framework for agricultural water ... · 7 8 9 Corn 0.5 0.0 0.5 1.0 Change in land (x100) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 Tomato 0 6 7 0. water management. water

ResultsImpact of a reduced access to water

0.5 0.4 0.3 0.2 0.1 0.0 0.1 0.2Change in land (x100)

0

1

2

3

4

5

6

7

8

9

Pro

babili

ty

Alfalfa

0.3 0.2 0.1 0.0 0.1Change in land (x100)

0

2

4

6

8

10

12Wheat

0.5 0.4 0.3 0.2 0.1 0.0 0.1 0.2Change in land (x100)

0

1

2

3

4

5

6

7

8

9Corn

0.5 0.0 0.5 1.0Change in land (x100)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5Tomato

0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 0.1Change in water (x100)

0

1

2

3

4

5

6

7

Pro

babili

ty

0.5 0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4Change in water (x100)

0

1

2

3

4

5

6

0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6Change in water (x100)

0

1

2

3

4

5

1.0 0.5 0.0 0.5 1.0 1.5Change in water (x100)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8Change in labor (x100))

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Pro

babili

ty

0.4 0.2 0.0 0.2 0.4Change in labor (x100))

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8Change in labor (x100))

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1.0 0.5 0.0 0.5 1.0 1.5 2.0Change in labor (x100))

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

30% Restriction

50% Restriction

Realocation of resources under water restrictions (relative change respect to baseline)

M. Maneta (UM) Hydroeconomic analysis October 2013 14 / 17

Page 23: Hydroeconomic analysis framework for agricultural water ... · 7 8 9 Corn 0.5 0.0 0.5 1.0 Change in land (x100) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 Tomato 0 6 7 0. water management. water

ResultsSummary of impacts

Baseline 30% reduction 50% reduction

Water available 2300 1610 1150Water used 2060 1610 1150Shadow value $0.0 $9.00 $25.3% loss net rev -2.76 -11.3% change hiring -11.7 -28.9

M. Maneta (UM) Hydroeconomic analysis October 2013 15 / 17

Page 24: Hydroeconomic analysis framework for agricultural water ... · 7 8 9 Corn 0.5 0.0 0.5 1.0 Change in land (x100) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 Tomato 0 6 7 0. water management. water

Conclusions

Hydroeconomic models can be a valuable tool to inform policy andwater management

Coupled with remote sensing in a data assimilation framework permitsoperationalization

Hydroeconomic models may help develop water markets

Assimilation of frequent RS data permits the detection of gradualchanges in farming practices

Impact of water shortage on rural economies is not proportional toshortage amounts

M. Maneta (UM) Hydroeconomic analysis October 2013 16 / 17

Page 25: Hydroeconomic analysis framework for agricultural water ... · 7 8 9 Corn 0.5 0.0 0.5 1.0 Change in land (x100) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 Tomato 0 6 7 0. water management. water

Conclusions

Hydroeconomic models can be a valuable tool to inform policy andwater management

Coupled with remote sensing in a data assimilation framework permitsoperationalization

Hydroeconomic models may help develop water markets

Assimilation of frequent RS data permits the detection of gradualchanges in farming practices

Impact of water shortage on rural economies is not proportional toshortage amounts

M. Maneta (UM) Hydroeconomic analysis October 2013 16 / 17

Page 26: Hydroeconomic analysis framework for agricultural water ... · 7 8 9 Corn 0.5 0.0 0.5 1.0 Change in land (x100) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 Tomato 0 6 7 0. water management. water

Conclusions

Hydroeconomic models can be a valuable tool to inform policy andwater management

Coupled with remote sensing in a data assimilation framework permitsoperationalization

Hydroeconomic models may help develop water markets

Assimilation of frequent RS data permits the detection of gradualchanges in farming practices

Impact of water shortage on rural economies is not proportional toshortage amounts

M. Maneta (UM) Hydroeconomic analysis October 2013 16 / 17

Page 27: Hydroeconomic analysis framework for agricultural water ... · 7 8 9 Corn 0.5 0.0 0.5 1.0 Change in land (x100) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 Tomato 0 6 7 0. water management. water

Conclusions

Hydroeconomic models can be a valuable tool to inform policy andwater management

Coupled with remote sensing in a data assimilation framework permitsoperationalization

Hydroeconomic models may help develop water markets

Assimilation of frequent RS data permits the detection of gradualchanges in farming practices

Impact of water shortage on rural economies is not proportional toshortage amounts

M. Maneta (UM) Hydroeconomic analysis October 2013 16 / 17

Page 28: Hydroeconomic analysis framework for agricultural water ... · 7 8 9 Corn 0.5 0.0 0.5 1.0 Change in land (x100) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 Tomato 0 6 7 0. water management. water

Conclusions

Hydroeconomic models can be a valuable tool to inform policy andwater management

Coupled with remote sensing in a data assimilation framework permitsoperationalization

Hydroeconomic models may help develop water markets

Assimilation of frequent RS data permits the detection of gradualchanges in farming practices

Impact of water shortage on rural economies is not proportional toshortage amounts

M. Maneta (UM) Hydroeconomic analysis October 2013 16 / 17

Page 29: Hydroeconomic analysis framework for agricultural water ... · 7 8 9 Corn 0.5 0.0 0.5 1.0 Change in land (x100) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 Tomato 0 6 7 0. water management. water

THANK YOU

M. Maneta (UM) Hydroeconomic analysis October 2013 17 / 17