Top Banner
Human Health Effects 689 enables them to use more of their valuable resources for other purposes. However, elevated CO 2 also provides more of the raw materials needed for oxidant enzyme synthesis, leading to higher levels of antioxidative compounds—such as ascorbate, or vitamin C. Research shows this happens with enough frequency that higher CO 2 levels will lead to higher concentrations of antioxidants, leading to better health. Additional information on this topic, including reviews of newer publications as they become available, can be found at http://www.co2 science.org/subject/a/antioxidants.php . References Ali, M.B., Hahn, E.J. and Paek, K.-Y. 2005. CO 2 -induced total phenolics in suspension cultures of Panax ginseng C.A. Mayer roots: role of antioxidants and enzymes. Plant Physiology and Biochemistry 43: 449-457. Barbale, D. 1970. The influence of the carbon dioxide on the yield and quality of cucumber and tomato in the covered areas. Augsne un Raza (Riga) 16: 66-73. Bunce, J.A. 2001. Seasonal patterns of photosynthetic response and acclimation to elevated carbon dioxide in field-grown strawberry. Photosynthesis Research 68: 237- 245. Bushway, L.J. and Pritts, M.P. 2002. Enhancing early spring microclimate to increase carbon resources and productivity in June-bearing strawberry. Journal of the American Society for Horticultural Science 127: 415-422. Caldwell, C.R., Britz, S.J. and Mirecki, R.M. 2005. Effect of temperature, elevated carbon dioxide, and drought during seed development on the isoflavone content of dwarf soybean [Glycine max (L.) Merrill] grown in controlled environments. Journal of Agricultural and Food Chemistry 53: 1125-1129. Campbell, D.E. and Young, R. 1986. Short-term CO 2 exchange response to temperature, irradiance, and CO 2 concentration in strawberry. Photosynthesis Research 8: 31-40. Deng, X. and Woodward, F.I. 1998. The growth and yield responses of Fragaria ananassa to elevated CO 2 and N supply. Annals of Botany 81: 67-71. Dennison, B.A., Rockwell, H.L., Baker, S.L. 1998. Fruit and vegetable intake in young children. J. Amer. Coll. Nutr. 17: 371-378. Desjardins, Y., Gosselin, A. and Yelle, S. 1987. Acclimatization of ex vitro strawberry plantlets in CO 2 - enriched environments and supplementary lighting. Journal of the American Society for Horticultural Science 112: 846- 851. Dickinson, V.A., Block, G., Russek-Cohen, E. 1994. Supplement use, other dietary and demographic variables, and serum vitamin C in NHANES II. J. Amer. Coll. Nutr. 13: 22-32. Estiarte, M., Penuelas, J., Kimball, B.A., Hendrix, D.L., Pinter Jr., P.J., Wall, G.W., LaMorte, R.L. and Hunsaker, D.J. 1999. Free-air CO 2 enrichment of wheat: leaf flavonoid concentration throughout the growth cycle. Physiologia Plantarum 105: 423-433. Gomez-Carrasco, J.A., Cid, J.L.-H., de Frutos, C.B., Ripalda-Crespo, M.J., de Frias, J.E.G. 1994. Scurvy in adolescence. J. Pediatr. Gastroenterol. Nutr. 19: 118-120. Hampl, J.S., Taylor, C.A., Johnston, C.S. 1999. Intakes of vitamin C, vegetables and fruits: Which schoolchildren are at risk? J. Amer. Coll. Nutr. 18: 582-590. Heinonen, I.M., Meyer, A.S. and Frankel, E.N. 1998. Antioxidant activity of berry phenolics on human low- density lipoprotein and liposome oxidation. Journal of Agricultural and Food Chemistry 46: 4107-4112. Idso, S.B., Kimball, B.A., Shaw, P.E., Widmer, W., Vanderslice, J.T., Higgs, D.J., Montanari, A. and Clark, W.D. 2002. The effect of elevated atmospheric CO 2 on the vitamin C concentration of (sour) orange juice. Agriculture, Ecosystems and Environment 90: 1-7. Johnston, C.S., Solomon, R.E., Corte, C. 1998. Vitamin C status of a campus population: College students get a C minus. J. Amer. Coll. Health 46: 209-213. Keutgen, N., Chen, K. and Lenz, F. 1997. Responses of strawberry leaf photosynthesis, chlorophyll fluorescence and macronutrient contents to elevated CO 2 . Journal of Plant Physiology 150: 395-400. Kimball, B.A., Mitchell, S.T. 1981. Effects of CO 2 enrichment, ventilation, and nutrient concentration on the flavor and vitamin C content of tomato fruit. HortScience 16: 665-666. Lin, J.-S and Wang, G.-X. 2002. Doubled CO 2 could improve the drought tolerance better in sensitive cultivars than in tolerant cultivars in spring wheat. Plant Science 163: 627-637. Madsen, E. 1971. The influence of CO 2 -concentration on the content of ascorbic acid in tomato leaves. Ugeskr. Agron. 116: 592-594. Madsen, E. 1975. Effect of CO 2 environment on growth, development, fruit production and fruit quality of tomato from a physiological viewpoint. In: Chouard, P. and de Bilderling, N. (Eds.) Phytotronics in Agricultural and Horticultural Research. Bordas, Paris, pp. 318-330.
100

Human Health Effects - Granicus

Mar 05, 2023

Download

Documents

Khang Minh
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Human Health Effects - Granicus

Human Health Effects  

689

enables them to use more of their valuable resources for other purposes. However, elevated CO2 also provides more of the raw materials needed for oxidant enzyme synthesis, leading to higher levels of antioxidative compounds—such as ascorbate, or vitamin C. Research shows this happens with enough frequency that higher CO2 levels will lead to higher concentrations of antioxidants, leading to better health.

Additional information on this topic, including reviews of newer publications as they become available, can be found at http://www.co2 science.org/subject/a/antioxidants.php. References Ali, M.B., Hahn, E.J. and Paek, K.-Y. 2005. CO2-induced total phenolics in suspension cultures of Panax ginseng C.A. Mayer roots: role of antioxidants and enzymes. Plant Physiology and Biochemistry 43: 449-457.

Barbale, D. 1970. The influence of the carbon dioxide on the yield and quality of cucumber and tomato in the covered areas. Augsne un Raza (Riga) 16: 66-73.

Bunce, J.A. 2001. Seasonal patterns of photosynthetic response and acclimation to elevated carbon dioxide in field-grown strawberry. Photosynthesis Research 68: 237-245.

Bushway, L.J. and Pritts, M.P. 2002. Enhancing early spring microclimate to increase carbon resources and productivity in June-bearing strawberry. Journal of the American Society for Horticultural Science 127: 415-422.

Caldwell, C.R., Britz, S.J. and Mirecki, R.M. 2005. Effect of temperature, elevated carbon dioxide, and drought during seed development on the isoflavone content of dwarf soybean [Glycine max (L.) Merrill] grown in controlled environments. Journal of Agricultural and Food Chemistry 53: 1125-1129.

Campbell, D.E. and Young, R. 1986. Short-term CO2 exchange response to temperature, irradiance, and CO2 concentration in strawberry. Photosynthesis Research 8: 31-40.

Deng, X. and Woodward, F.I. 1998. The growth and yield responses of Fragaria ananassa to elevated CO2 and N supply. Annals of Botany 81: 67-71.

Dennison, B.A., Rockwell, H.L., Baker, S.L. 1998. Fruit and vegetable intake in young children. J. Amer. Coll. Nutr. 17: 371-378.

Desjardins, Y., Gosselin, A. and Yelle, S. 1987. Acclimatization of ex vitro strawberry plantlets in CO2-enriched environments and supplementary lighting. Journal

of the American Society for Horticultural Science 112: 846-851.

Dickinson, V.A., Block, G., Russek-Cohen, E. 1994. Supplement use, other dietary and demographic variables, and serum vitamin C in NHANES II. J. Amer. Coll. Nutr. 13: 22-32.

Estiarte, M., Penuelas, J., Kimball, B.A., Hendrix, D.L., Pinter Jr., P.J., Wall, G.W., LaMorte, R.L. and Hunsaker, D.J. 1999. Free-air CO2 enrichment of wheat: leaf flavonoid concentration throughout the growth cycle. Physiologia Plantarum 105: 423-433.

Gomez-Carrasco, J.A., Cid, J.L.-H., de Frutos, C.B., Ripalda-Crespo, M.J., de Frias, J.E.G. 1994. Scurvy in adolescence. J. Pediatr. Gastroenterol. Nutr. 19: 118-120.

Hampl, J.S., Taylor, C.A., Johnston, C.S. 1999. Intakes of vitamin C, vegetables and fruits: Which schoolchildren are at risk? J. Amer. Coll. Nutr. 18: 582-590.

Heinonen, I.M., Meyer, A.S. and Frankel, E.N. 1998. Antioxidant activity of berry phenolics on human low-density lipoprotein and liposome oxidation. Journal of Agricultural and Food Chemistry 46: 4107-4112.

Idso, S.B., Kimball, B.A., Shaw, P.E., Widmer, W., Vanderslice, J.T., Higgs, D.J., Montanari, A. and Clark, W.D. 2002. The effect of elevated atmospheric CO2 on the vitamin C concentration of (sour) orange juice. Agriculture, Ecosystems and Environment 90: 1-7.

Johnston, C.S., Solomon, R.E., Corte, C. 1998. Vitamin C status of a campus population: College students get a C minus. J. Amer. Coll. Health 46: 209-213.

Keutgen, N., Chen, K. and Lenz, F. 1997. Responses of strawberry leaf photosynthesis, chlorophyll fluorescence and macronutrient contents to elevated CO2. Journal of Plant Physiology 150: 395-400.

Kimball, B.A., Mitchell, S.T. 1981. Effects of CO2 enrichment, ventilation, and nutrient concentration on the flavor and vitamin C content of tomato fruit. HortScience 16: 665-666.

Lin, J.-S and Wang, G.-X. 2002. Doubled CO2 could improve the drought tolerance better in sensitive cultivars than in tolerant cultivars in spring wheat. Plant Science 163: 627-637.

Madsen, E. 1971. The influence of CO2-concentration on the content of ascorbic acid in tomato leaves. Ugeskr. Agron. 116: 592-594.

Madsen, E. 1975. Effect of CO2 environment on growth, development, fruit production and fruit quality of tomato from a physiological viewpoint. In: Chouard, P. and de Bilderling, N. (Eds.) Phytotronics in Agricultural and Horticultural Research. Bordas, Paris, pp. 318-330.

Page 2: Human Health Effects - Granicus

Climate Change Reconsidered  

 690  

Niewiadomska, E., Gaucher-Veilleux, C., Chevrier, N., Mauffette, Y. and Dizengremel, P. 1999. Elevated CO2 does not provide protection against ozone considering the activity of several antioxidant enzymes in the leaves of sugar maple. Journal of Plant Physiology 155: 70-77.

Polle, A., Eiblmeier, M., Sheppard, L. and Murray, M. 1997. Responses of antioxidative enzymes to elevated CO2 in leaves of beech (Fagus sylvatica L.) seedlings grown under a range of nutrient regimes. Plant, Cell and Environment 20: 1317-1321.

Pritchard, S.G., Ju, Z., van Santen, E., Qiu, J., Weaver, D.B., Prior, S.A. and Rogers, H.H. 2000. The influence of elevated CO2 on the activities of antioxidative enzymes in two soybean genotypes. Australian Journal of Plant Physiology 27: 1061-1068.

Ramar, S., Sivaramakrishman, V., Manoharan, K. 1993. Scurvy—a forgotten disease. Arch. Phys. Med. Rehabil. 74: 92-95.

Rice-Evans, C.A. and Miller, N.J. 1996. Antioxidant activities of flavonoids as bioactive components of food. Biochemical Society Transactions 24: 790-795.

Schwanz, P. and Polle, A. 2001. Growth under elevated CO2 ameliorates defenses against photo-oxidative stress in poplar (Populus alba x tremula). Environmental and Experimental Botany 45: 43-53.

Schwanz, P. and Polle, A. 1998. Antioxidative systems, pigment and protein contents in leaves of adult mediterranean oak species (Quercus pubescens and Q. ilex) with lifetime exposure to elevated CO2. New Phytologist 140: 411-423.

Tajiri, T. 1985. Improvement of bean sprouts production by intermittent treatment with carbon dioxide. Nippon Shokuhin Kogyo Gakkaishi 32(3): 159-169.

Wang, H., Cao, G. and Prior, R.L. 1996. Total antioxidant capacity of fruits. Journal of Agricultural and Food Chemistry 44: 701-705.

Wang, S.Y., Bunce, J.A. and Maas, J.L. 2003. Elevated carbon dioxide increases contents of antioxidant compounds in field-grown strawberries. Journal of Agricultural and Food Chemistry 51: 4315-4320.

Wang, S.Y. and Jiao, H. 2000. Scavenging capacity of berry crops on superoxide radicals, hydrogen peroxide, hydroxyl radicals, and singlet oxygen. Journal of Agricultural and Food Chemistry 48: 5677-5684.

Wang, S.Y. and Lin, H.S. 2000. Antioxidant activity in fruit and leaves of blackberry, raspberry, and strawberry is affected by cultivar and maturity. Journal of Agricultural and Food Chemistry 48: 140-146.

9.2.3. Medicinal Constituents Primitive medical records indicate that extracts from many species of plants have been used for treating a variety of human health problems for perhaps the past 3,500 years (Machlin, 1992; Pettit et al., 1993, 1995). In modern times the practice has continued, with numerous chemotherapeutic agents being isolated (Gabrielsen et al., 1992a). Until recently, however, no studies had investigated the effects of atmospheric CO2 enrichment on specific plant compounds of direct medicinal value. Stuhlfauth et al. (1987) studied the individual and combined effects of atmospheric CO2 enrichment and water stress on the production of secondary metabolites in the woolly foxglove (Digitalis lanata EHRH), which produces the cardiac glycoside digoxin that is used in the treatment of cardiac insufficiency. Under controlled well-watered conditions in a phytotron, a near-tripling of the air’s CO2 content increased plant dry weight production in this medicinal plant by 63 percent, while under water-stressed conditions the CO2-induced dry weight increase was 83 percent. In addition, the concentration of digoxin within the plant dry mass was enhanced by 11 percent under well-watered conditions and by 14 percent under conditions of water stress. In a subsequent whole-season field experiment, Stuhlfauth and Fock (1990) obtained similar results. A near-tripling of the air’s CO2 concentration led to a 75 percent increase in plant dry weight production per unit land area and a 15 percent increase in digoxin yield per unit dry weight of plant, which combined to produce a doubling of total digoxin yield per hectare of cultivated land. Idso et al. (2000) evaluated the response of the tropical spider lily (Hymenocallis littoralis Jacq. Salisb.) to elevated levels of atmospheric CO2 over four growing seasons. This plant has been known since ancient times to possess anti-tumor activity; in modern times it has been shown to contain constituents that are effective against lymphocytic leukemia and ovary sarcoma (Pettit et al., 1986). These same plant constituents also have been proven to be effective against the U.S. National Cancer Institute’s panel of 60 human cancer cell lines, demonstrating greatest effectiveness against melanoma, brain, colon, lung, and renal cancers (Pettit et al., 1993). In addition, it exhibits strong anti-viral activity against Japanese encephalitis and

Page 3: Human Health Effects - Granicus

Human Health Effects  

691

yellow, dengue, Punta Tora, and Rift Valley fevers (Gabrielsen et al., 1992a,b). Idso et al. determined that a 75 percent increase in the air’s CO2 concentration produced a 56 percent increase in the spider lily’s below-ground bulb biomass, where the disease-fighting substances are found. In addition, for these specific substances, they observed a 6 percent increase in the concentration of a two-constituent (1:1) mixture of 7-deoxynarciclasine and 7-deoxy-trans-dihydronarciclasine, an 8 percent increase in pancratistatin, an 8 percent increase in trans-dihydronarciclasine, and a 28 percent increase in narciclasine. Averaged together and combined with the 56 percent increase in bulb biomass, these percentage concentration increases resulted in a total mean active-ingredient increase of 75 percent for the plants grown in air containing 75 percent more CO2.

Other plant constituents that perform important functions in maintaining human health include sugars, lipids, oils, fatty acids, and macro- and micro-nutrients. Although concerns have been raised about the availability of certain of the latter elements in plants growing in a CO2-enriched world (Loladze, 2002), the jury is still out with respect to this subject as a consequence of the paucity of pertinent data. Literally thousands of studies have assessed the impact of elevated levels of atmospheric CO2 on the quantity of biomass produced by agricultural crops, but only a tiny fraction of that number have looked at any aspect of food quality. From what has been learned about plant protein, antioxidants, and the few medicinal substances that have been investigated in this regard, there is no reason to believe these other plant constituents would be present in lower concentrations in a CO2-enriched world and ample evidence that they may be present in significantly higher concentrations and greater absolute amounts. Additional information on this topic, including reviews of newer publications as they become available, can be found at http://www.co2 science.org/subject/h/co2healthpromoting.php. References Gabrielsen, B., Monath, T.P., Huggins, J.W., Kefauver, D.F., Pettit, G.R., Groszek, G., Hollingshead, M., Kirsi, J.J., Shannon, W.F., Schubert, E.M., Dare, J., Ugarkar, B., Ussery, M.A., Phelan, M.J. 1992a. Antiviral (RNA) activity of selected Amaryllidaceae isoquinoline constituents and synthesis of related substances. Journal of Natural Products 55: 1569-1581.

Gabrielsen, B., Monath, T.P., Huggins, J.W., Kirsi, J.J., Hollingshead, M., Shannon, W.M., Pettit, G.R. 1992b. Activity of selected Amaryllidaceae constituents and related synthetic substances against medically important RNA viruses. In: Chu, C.K. and Cutler, H.G. (Eds.) Natural Products as Antiviral Agents. Plenum Press, New York, NY, pp. 121-35.

Idso, S.B., Kimball, B.A., Pettit III, G.R., Garner, L.C., Pettit, G.R., Backhaus, R.A. 2000. Effects of atmospheric CO2 enrichment on the growth and development of Hymenocallis littoralis (Amaryllidaceae) and the concentrations of several antineoplastic and antiviral constituents of its bulbs. American Journal of Botany 87: 769-773.

Loladze, I. 2002. Rising atmospheric CO2 and human nutrition: toward globally imbalanced plant stoichiometry? Trends in Ecology & Evolution 17: 457-461.

Machlin, L.G. 1992. Introduction. In: Sauberlich, H.E. and Machlin, L.J. (Eds.) Beyond deficiency: New views on the function and health effects of vitamins. Annals of the New York Academy of Science 669: 1-6.

Pettit, G.R., Pettit III, G.R., Backhaus, R.A., Boyd, M.R., Meerow, A.W. 1993. Antineoplastic agents, 256. Cell growth inhibitory isocarbostyrils from Hymenocallis. Journal of Natural Products 56: 1682-1687.

Pettit, G.R., Pettit III, G.R., Groszek, G., Backhaus, R.A., Doubek, D.L., Barr, R.J. 1995. Antineoplastic agents, 301. An investigation of the Amaryllidaceae genus Hymenocallis. Journal of Natural Products 58: 756-759.

Stuhlfauth, T. and Fock, H.P. 1990. Effect of whole season CO2 enrichment on the cultivation of a medicinal plant, Digitalis lanata. Journal of Agronomy and Crop Science 164: 168-173.

Stuhlfauth, T., Klug, K. and Fock, H.P. 1987. The production of secondary metabolites by Digitalis lanata during CO2 enrichment and water stress. Phytochemistry 26: 2735-2739.

9.3. Human Longevity The past two centuries have witnessed a significant degree of global warming as the earth recovered from the Little Ice Age and entered the Current Warm Period. Simultaneously, the planet has seen an increase in its atmospheric CO2 concentration. What effect have these trends had on human longevity? Although no one can give a precise quantitative answer to this question, it is possible to assess their relative importance by considering the history of human longevity.

Page 4: Human Health Effects - Granicus

Climate Change Reconsidered  

 692  

Tuljapurkar et al. (2000) examined mortality over the period 1950-1994 in Canada, France, Germany (excluding the former East Germany), Italy, Japan, the United Kingdom, and the United States, finding that “in every country over this period, mortality at each age has declined exponentially at a roughly constant rate.” In discussing these findings, Horiuchi (2000) notes that the average lifespan of early humans was about 20 years, but that in the major industrialized countries it is now about 80 years, with the bulk of this increase having come in the past 150 years. He then notes that “it was widely expected that as life expectancy became very high and approached the ‘biological limit of human longevity,’ the rapid ‘mortality decline’ would slow down and eventually level off,” but “such a deceleration has not occurred.” “These findings give rise to two interrelated questions,” says Horiuchi: (1) “Why has mortality decline not started to slow down?” and (2) “Will it continue into the future?” Some points to note in attempting to answer these questions are the following. First, in Horiuchi’s words, “in the second half of the nineteenth century and the first half of the twentieth century, there were large decreases in the number of deaths from infectious and parasitic diseases, and from poor nutrition and disorders associated with pregnancy and childbirth,” which led to large reductions in the deaths of infants, children, and young adults. In the second half of the twentieth century, however, Horiuchi notes that “mortality from degenerative diseases, most notably heart diseases and stroke, started to fall,” and the reduction was most pronounced among the elderly. Some suspected this latter drop in mortality might have been achieved “through postponing the deaths of seriously ill people,” but data from the United States demonstrate, in his words, that “the health of the elderly greatly improved in the 1980s and 1990s, suggesting that the extended length of life in old age is mainly due to better health rather than prolonged survival in sickness.” Additional support for this conclusion comes from the study of Manton and Gu (2001). With the completion of the latest of the five National Long-Term Care Surveys of disability in U.S. citizens over 65 years of age—which began in 1982 and extended to 1999 at the time of the writing of their paper—these researchers were able to discern two trends: (1) disabilities in this age group decreased over the entire period studied, and (2) disabilities decreased at a rate that grew ever larger with the passing of time. Over

the 17-year period of record, the percentage of the group that was disabled dropped 25 percent, from 26.2 percent in 1982 to 19.7 percent in 1999. The percentage disability decline rate per year for the periods 1982-1989, 1989-1994, and 1994-1999 was 0.26, 0.38, and 0.56 percent per year, respectively. Commenting on the accelerating rate of this disability decline, the authors say “it is surprising, given the low level of disability in 1994, that the rate of improvement accelerated” over the most recent five-year interval. Looking outside the United States, Oeppen and Vaupel (2002) reported that “world life expectancy more than doubled over the past two centuries, from roughly 25 years to about 65 for men and 70 for women.” They noted that “for 160 years, best-performance life expectancy has steadily increased by a quarter of a year per year,” and they emphasized that this phenomenal trend “is so extraordinarily linear that it may be the most remarkable regularity of mass endeavor ever observed.” These observations demonstrate that if the increases in air temperature and CO2 concentration of the past two centuries were bad for our health, their combined negative influence was minuscule compared to whatever else was at work in promoting this vast increase in worldwide human longevity. It is that “whatever else” to which we now turn our attention. It is evident that in developed countries, the elderly are living longer with the passing of time. This phenomenon is likely due to ever-improving health in older people, which in turn is likely the result of continuing improvements in the abilities of their bodies to repair cellular damage caused by degenerative processes associated with old age, i.e., stresses caused by the reactive oxygen species that are generated by normal metabolism (Finkel and Holbrook, 2000). Wentworth et al. (2003) report they found “evidence for the production of ozone in human disease,” specifically noting that “signature products unique to cholesterol ozonolysis are present within atherosclerotic tissue at the time of carotid endarterectomy, suggesting that ozone production occurred during lesion development.” According to Marx (2003), “researchers think that inflammation of blood vessels is a major instigator of plaque formation,” that “ozone contributes to plaque formation by oxidizing cholesterol,” and that the new findings “suggest new strategies for preventing

Page 5: Human Health Effects - Granicus

Human Health Effects  

693

atherosclerosis.” Also according to Marx, Daniel Steinberg of the University of California, San Diego, says that although it’s still too early to definitively state whether ozone production in plaques is a major contributor to atherosclerosis, he expresses his confidence that once we know for sure, we’ll know which antioxidants will work in suppressing plaque formation. Reactive oxygen species (ROS) generated during cellular metabolism or peroxidation of lipids and proteins also play a causative role in the pathogenesis of cancer, along with coronary heart disease (CHD), as demonstrated by Slaga et al. (1987), Frenkel (1992), Marnett (2000), Zhao et al. (2000) and Wilcox et al. (2004). However, as noted by Yu et al. (2004), “antioxidant treatments may terminate ROS attacks and reduce the risks of CHD and cancer, as well as other ROS-related diseases such as Parkinson’s disease (Neff, 1997; Chung et al., 1999; Wong et al., 1999; Espin et al., 2000; Merken and Beecher, 2000).” As a result, they say that “developing functional foods rich in natural antioxidants may improve human nutrition and reduce the risks of ROS-associated health problems.” Consider, in this regard, the common strawberry. Wang et al. (2003) report that strawberries are especially good sources of natural antioxidants. They say that “in addition to the usual nutrients, such as vitamins and minerals, strawberries are also rich in anthocyanins, flavonoids, and phenolic acids,” and that “strawberries have shown a remarkably high scavenging activity toward chemically generated radicals, thus making them effective in inhibiting oxidation of human low-density lipoproteins (Heinonen et al., 1998).” They also note that Wang and Jiao (2000) and Wang and Lin (2000) “have shown that strawberries have high oxygen radical absorbance activity against peroxyl radicals, superoxide radicals, hydrogen peroxide, hydroxyl radicals, and singlet oxygen.” And they say that “anthocyanins have been reported to help reduce damage caused by free radical activity, such as low-density lipoprotein oxidation, platelet aggregation, and endothelium-dependent vasodilation of arteries (Heinonen et al., 1998; Rice-Evans and Miller, 1996).” Our reason for citing all of this information is that Wang et al. (2003) have recently demonstrated that enriching the air with carbon dioxide increases both the concentrations and activities of many of these helpful substances. They determined, for example, that strawberries had higher concentrations of

ascorbic acid and glutathione when grown in CO2-enriched environments. They also learned that “an enriched CO2 environment resulted in an increase in phenolic acid, flavonol, and anthocyanin contents of fruit.” For nine different flavonoids there was a mean concentration increase of 55 percent in going from the ambient atmospheric CO2 concentration to ambient + 300 ppm CO2, and a mean concentration increase of 112 percent in going from ambient to ambient + 600 ppm CO2. Also, they report that “high flavonol content was associated with high antioxidant activity.” There is little reason to doubt that similar concentration and activity increases in the same and additional important phytochemicals in other food crops would occur in response to the same increases in the air’s CO2 concentration. Indeed, the aerial fertilization effect of atmospheric CO2 enrichment is a near-universal phenomenon that operates among plants of all types, and it is very powerful (e.g., Mayeux et al., 1997; Idso and Idso, 2000). There must have been significant concomitant increases in the concentrations and activities of the various phytochemicals in these foods that act as described by Wang et al. (2003). Could some part of the rapid lengthening of human longevity reported by Oeppen and Vaupel (2002) be due to enhanced CO2 in the air putting more antioxidants in our diets? Two recent experiments showing the positive effects of antioxidants on animal lifespan provide some additional evidence that this may be the case. Melov et al. (2000) examined the effects of two superoxide dismutase-/catalase-like mimetics (EUK-8 and EUK-134) on the lifespan of normal and mutant Caenorhabditis elegans worms that ingested various concentrations of the mimetics. In all of their experiments, treatment of normal worms with the antioxidant mimetics significantly increased both mean and maximum lifespan. Treatment of normal worms with only 0.05 mM EUK-134, for example, increased their mean lifespan by fully 54 percent. In mutant worms whose lifespan had been genetically shortened by 37 percent, treatment with 0.5 mM EUK-134 restored their lifespan to normal by increasing their mutation-reduced lifespan by 67 percent. It also was determined that these effects were not due to a reduction in worm metabolism, which could have reduced the production of oxygen radicals, but “by augmenting natural antioxidant defenses without having any overt effects on other traits.” In the words of the authors, “these results suggest that

Page 6: Human Health Effects - Granicus

Climate Change Reconsidered  

 694  

endogenous oxidative stress is a major determinant of the rate of aging,” the significance of which statement resides in the fact that antioxidants tend to reduce such stresses in animals, including man. Another study addressing the subject was conducted by Larsen and Clarke (2002), who fed diets with and without coenzyme Q to wild-type Caenorhabditis elegans and several mutants during the adult phases of their lives, while they recorded the lengths of time they survived. This work revealed that “withdrawal of coenzyme Q from the diet of wild-type nematodes extends adult life-span by ~60 percent.” In addition, they found that the lifespans of the four different mutants they studied were extended by a Q-less diet. More detailed experiments led them to conclude that the life-span extensions were due to reduced generation and/or increased scavenging of reactive oxygen species, leading them to conclude in the final sentence of their paper that “the combination of reduced generation and increased scavenging mechanisms are predicted to result in a substantial decrease in the total cellular ROS and thereby allow for an extended life-span.” In light of these many diverse observations of both plants and animals, there is some reason to believe that the historical increase of CO2 in the air has helped lengthen human lifespans since the advent of the Industrial Revolution, and that its continued upward trend will provide more of the same benefit. Additional information on this topic, including reviews of newer publications as they become available, can be found at http://www.co2 science.org/subject/h/humanlifespan.php. References Chung, H.S., Chang, L.C., Lee, S.K., Shamon, L.A., Breemen, R.B.V., Mehta, R.G., Farnsworth, N.R., Pezzuto, J.M. and Kinghorn, A.D. 1999. Flavonoid constituents of chorizanthe diffusa with potential cancer chemopreventive activity. Journal of Agricultural and Food Chemistry 47: 36-41.

Espin, J.C., Soler-Rivas, C. and Wichers, H.J. 2000. Characterization of the total free radical scavenger capacity of vegetable oils and oil fractions using 2,2-diphenyl-1-picryhydrazyl radical. Journal of Agricultural and Food Chemistry 48: 648-656.

Finkel, T. and Holbrook, N.J. 2000. Oxidants, oxidative stress and the biology of ageing. Nature 408: 239-247.

Frenkel, K. 1992. Carcinogen-mediated oxidant formation and oxidative DNA damage. Pharmacology and Therapeutics 53: 127-166.

Heinonen, I.M., Meyer, A.S. and Frankel, E.N. 1998. Antioxidant activity of berry phenolics on human low-density lipoprotein and liposome oxidation. Journal of Agricultural and Food Chemistry 46: 4107-4112.

Horiuchi, S. 2000. Greater lifetime expectations. Nature 405: 744-745.

Idso, C.D. and Idso, K.E. 2000. Forecasting world food supplies: The impact of the rising atmospheric CO2 concentration. Technology 7S: 33-56.

Larsen, P.L. and Clarke C.F. 2002. Extension of life-span in Caenorhabditis elegans by a diet lacking coenzyme Q. Science 295: 120-123.

Manton, K.G. and Gu, X.L. 2001. Changes in the prevalence of chronic disability in the United States black and nonblack population above age 65 from 1982 to 1999. Proceedings of the National Academy of Science, USA 98: 6354-6359.

Marnett, L.J. 2000. Oxyradicals and DNA damage. Carcinogenesis 21: 361-370.

Marx, J. 2003. Ozone may be secret ingredient in plaques’ inflammatory stew. Science 302: 965.

Mayeux, H.S., Johnson, H.B., Polley, H.W. and Malone, S.R. 1997. Yield of wheat across a subambient carbon dioxide gradient. Global Change Biology 3: 269-278.

Melov, S., Ravenscroft, J., Malik, S., Gill, M.S., Walker, D.W., Clayton, P.E., Wallace, D.C., Malfroy, B., Doctrow, S.R. and Lithgow, G.J. 2000. Extension of life-span with superoxide dismutase/catalase mimetics. Science 289: 1567-1569.

Merken, H.M. and Beecher, G.R. 2000. Measurement of food flavonoids by high-performance liquid chromatography: a review. Journal of Agricultural and Food Chemistry 48: 577-599.

Neff, J. 1997. Big companies take nutraceuticals to heart. Food Processing 58: 37-42.

Oeppen, J. and Vaupel, J.W. 2002. Broken limits to life expectancy. Science 296: 1029-1030.

Rice-Evans, C.A. and Miller, N.J. 1996. Antioxidant activities of flavonoids as bioactive components of food. Biochemical Society Transactions 24: 790-795.

Slaga, T.J., O’Connell, J., Rotstein, J., Patskan, G., Morris, R., Aldaz, M. and Conti, C. 1987. Critical genetic determinants and molecular events in multistage skin

Page 7: Human Health Effects - Granicus

Human Health Effects  

695

carcinogenesis. Symposium on Fundamental Cancer Research 39: 31-34.

Tuljapurkar, S., Li, N. and Boe, C. 2000. A universal pattern of mortality decline in the G7 countries. Nature 405: 789-792.

Wang, S.Y., Bunce, J.A. and Maas, J.L. 2003. Elevated carbon dioxide increases contents of antioxidant compounds in field-grown strawberries. Journal of Agricultural and Food Chemistry 51: 4315-4320.

Wang, S.Y. and Jiao, H. 2000. Scavenging capacity of berry crops on superoxide radicals, hydrogen peroxide, hydroxyl radicals, and singlet oxygen. Journal of Agricultural and Food Chemistry 48: 5677-5684.

Wang, S.Y. and Lin, H.S. 2000. Antioxidant activity in fruit and leaves of blackberry, raspberry, and strawberry is affected by cultivar and maturity. Journal of Agricultural and Food Chemistry 48: 140-146.

Wang, S.Y. and Zheng, W. 2001. Effect of plant growth temperature on antioxidant capacity in strawberry. Journal of Agricultural and Food Chemistry 49: 4977-4982.

Wentworth Jr., P., Nieva, J., Takeuchi, C., Glave, R., Wentworth, A.D., Dilley, R.B., DeLaria, G.A., Saven, A., Babior, B.M., Janda, K.D., Eschenmoser, A. and Lerner, R.A. 2003. Evidence for ozone formation in human atherosclerotic arteries. Science 302: 1053-1056.

Willcox, J.K., Ash, S.L. and Catignani, G.L. 2004. Antioxidants and prevention of chronic disease. Critical Reviews in Food Science and Nutrition 44: 275-295.

Wong, S.S., Li, R.H.Y. and Stadlin, A. 1999. Oxidative stress induced by MPTP and MPP+: Selective vulnerability of cultured mouse astocytes. Brain Research 836: 237-244.

Yu, L., Haley, S., Perret, J. and Harris, M. 2004. Comparison of wheat flours grown at different locations for their antioxidant properties. Food Chemistry 86: 11-16.

Zhao, J., Lahiri-Chatterjee, M., Sharma, Y. and Agarwal, R. 2000. Inhibitory effect of a flavonoid antioxidant silymarin on benzoyl peroxide-induced tumor promotion, oxidative stress and inflammatory responses in SENCAR mouse skin. Carcinogenesis 21: 811-816.

9.4. Food vs. Nature Norman Borlaug, the father of the Green Revolution, recently expressed in a Science editorial his concern over the challenge of “feeding a hungry world” by noting that “some 800 million people still experience chronic and transitory hunger each year,” and that “over the next 50 years, we face the daunting job of

feeding 3.5 billion additional people, most of whom will begin life in poverty” (Borlaug, 2007). He described how the scientific and technological innovations he played a major role in discovering and implementing helped reduce the proportion of hungry people in the world “from about 60% in 1960 to 17% in 2000.” Had that movement failed, he says, environmentally fragile land would have been brought into agricultural production and the resulting “soil erosion, loss of forests and grasslands, reduction in biodiversity, and extinction of wildlife species would have been disastrous.” Rising CO2 concentrations in the air helped make it possible to feed a growing global population in the past without devasting nature, but what of the future? The world’s poulation in 2008 was estimated to be 6.7 billion and is projected to reach between 9.1 and 9.7 billion by 2050 (United Nations, 2009; U.S. Census Bureau, 2008). There is real concern about our ability to feed the world’s population a mere 50 years hence. Tilman et al. (2001) analyzed the global environmental impacts likely to occur if agriculture is to keep pace with population growth. They report that “humans currently appropriate more than a third of the production of terrestrial ecosystems and about half of usable freshwaters.” They estimate that the amount of land devoted to agriculture by the year 2050 will have to increase 18 percent to meet the rising demand for food. Because developed countries are expected to withdraw large areas of land from farming over the next 50 years for recreation, open space, and reforestration, the net loss of natural ecosystems to cropland and pasture in developing countries will amount to about half of all potentially suitable remaining land, which would “represent the worldwide loss of natural ecosystems larger than the United States.” Similar warnings of a coming food vs. nature conflict have been expressed by other scientists, for example, Wallace (2000) and Raven (2002).

What, if anything, can be done to address this conflict between the need to produce food and the wish to preserve nature? And what role, if any, will climate change play in averting the crisis or making it even worse?

We begin by observing that the fear that there isn’t enough land to support a growing population’s food needs is a very old one, dating at least to Thomas Malthus (1798) and expressed in our day by popular writers such as Paul Ehrlich (2008) and Al Gore (1992). Predictions of widespread famine have

Page 8: Human Health Effects - Granicus

Climate Change Reconsidered  

 696  

been wrong before, as trends in food production and daily intake of calories per capita, while not linear in the short term, show long-term positive trends that are driven primarily by gains in yields per acre, not expansion of the area under cultivation (Alexandratos, 1995; Goklany, 1999; Waggoner and Ausubel, 2001). Malthusian concerns are misplaced because, as Max Singer once explained, “multiplying food production by five times over the next one hundred or two hundred years will be easier than multiplying it by over seven times as we did in the last two hundred years. No miracles, no scientific breakthroughs, no unknown lands or unexpected new resources, and no reforms of human character or government are required. All that is required is a continuing use of current evolutionary processes in technology and in economic dvelopment, and as much peace as we have had in the last century” (Singer, 1987).

We also agree with the sensible assessment of science writer Gregg Easterbrook that “the whole notion that there is a proper level of population for Homo sapiens, or for any species, would be nonsensical to nature” and “there is no reason in principle that the Earth cannot support vastly more human beings than live upon it today, with other species preserved and wild habitats remaining intact” (Easterbrook, 1995). Similar sentiments have been expressed by Waggoner (1995, 1996), Waggoner et al. (1996), and Meyer and Ausubel (1999).

Regardless of whether the goal of feeding a growing population while protecting nature is attainable, the question remains about global warming’s role in this very real conflict. Tilman and a second set of collaborators, writing a year after their previously cited analysis, said “raising yields on existing farmland is essential for ‘saving land for nature’” (Tilman et al. (2002). They proposed a three-part strategy: (1) increasing crop yield per unit of land area, (2) increasing crop yield per unit of nutrients applied, and (3) increasing crop yield per unit of water used.

With respect to the first of these efforts— increasing crop yield per unit of land area—the researchers note that in many parts of the world the historical rate-of-increase in crop yield is declining as the genetic ceiling for maximal yield potential is being approached. This “highlights the need for efforts to steadily increase the yield potential ceiling.” With respect to the second effort—increasing crop yield per unit of nutrients applied—they note that “without the use of synthetic fertilizers, world food

production could not have increased at the rate [that it did in the past] and more natural ecosystems would have been converted to agriculture.” Hence, they say the solution “will require significant increases in nutrient use efficiency, that is, in cereal production per unit of added nitrogen.” With respect to the third effort—increasing crop yield per unit of water used—Tilman et al. note that “water is regionally scarce,” and that “many countries in a band from China through India and Pakistan, and the Middle East to North Africa either currently or will soon fail to have adequate water to maintain per capita food production from irrigated land.”

The ongoing rise in the atmosphere’s CO2 concentration will help the world’s farmers achieve all three parts of the Tilman strategy. First, since atmospheric CO2 is the basic “food” of nearly all plants, the more of it there is in the air, the better they function and the more productive they become. As discussed in Section 9.2, a 300 ppm increase in the atmosphere’s CO2 concentration would increase the productivity of earth’s herbaceous plants by 30 to 50 percent (Kimball, 1983; Idso and Idso, 1994) and the productivity of its woody plants by 50 to 80 percent (Saxe et al., 1998; Idso and Kimball, 2001). These increases will be in addition to whatever yield gains are made possible by advances in plant genetics, pest control, and other agricultural practices. Consequently, as the air’s CO2 content continues to rise, so too will the land-use efficiency and productive capacity of the planet improve.

Regarding the second strategy, of increasing crop yield per unit of nutrients applied, many studies have investigated the effects of an increase in the air’s CO2 content on plants growing in soils with different nitrogen concentrations. (See Chapter 7, Section 7.3.7, for a thorough review of these studies.) These studies found that many plants increase their photosynthetic nitrogen-use efficiency when atmospheric CO2 concentration is raised. For example, Smart et al. (1998) found wheat grown in controlled-environment chambers maintained at an atmospheric CO2 concentration of 1,000 ppm increased average plant biomass by approximately 15 percent, irrespective of soil nitrogen content.

Zerihun et al. (2000) studied the effects of CO2 enrichment on sunflowers using three different soil nitrogen concentrations and found whole plant biomass values that were 44, 13 and 115 percent greater than those of the plants growing in ambient air at low, medium and high levels of soil nitrogen,

Page 9: Human Health Effects - Granicus

Human Health Effects  

697

respectively. Deng and Woodward (1998) found that strawberries grown in high CO2 environments produced 17 percent greater fresh fruit weight even when receiving the lowest levels of nitrogen fertilization. Newman et al. (2003) investigated the effects of two levels of nitrogen fertilization and an approximate doubling of the air’s CO2 concentration on the growth of tall fescue, an important forage crop. They found the plants grown in the high-CO2 air and under low N conditions photosynthesized 15 percent more and produced 53 percent more dry matter (DM).

Demmers-Derks et al. (1998) grew sugar beets at atmospheric CO2 concentrations of 360 and 700 ppm and high and low nitrogen treatment levels, and found the extra CO2 enhanced total plant biomass by 13 percent even in plants receiving the low nitrogen treatments. Also working with sugar beets, Romanova et al. (2002) doubled atmospheric CO2 concentrations while fertilizing plants with three different levels of nitrate-nitrogen. The plants exhibited rates of net photosynthesis that were approximately 50 percent greater than those displayed by the plants grown in ambient air, regardless of soil nitrate availability.

Fangmeier et al. (2000) grew barley plants in containers at atmospheric CO2 concentrations of either 360 or 650 ppm and either a high or low nitrogen fertilization regime. The elevated CO2 had the greatest relative impact on yield when the plants were grown under the less-than-optimum low-nitrogen regime, i.e., a 48 percent increase vs. 31 percent under high-nitrogen conditions.

Finally, the review and analysis of Kimball et al. (2002) of most FACE studies conducted on agricultural crops since the introduction of that technology back in the late 1980s found that in response to a 300-ppm increase in the air’s CO2 concentration, rates of net photosynthesis in several C3 grasses were enhanced by an average of 46 percent under conditions of ample soil nitrogen supply and by 44 percent when nitrogen was limiting to growth. Clover experienced a 38 percent increase in belowground biomass production at ample soil nitrogen, and a 32 percent increase at low soil nitrogen. Wheat and ryegrass experienced an average increase of 18 percent at ample nitrogen, while wheat experienced only a 10 percent increase at low nitrogen. Other studies have found that many species of plants respond to increases in the air’s CO2 content by increasing fine-root numbers and surface area, which tends to increase total nutrient uptake under CO2-enriched conditions (Staddon et al., 1999; Rouhier

and Read, 1998; BassiriRad et al., 1998; and Barrett et al., 1998). This once again advances the Tilman strategy of increasing crop yield per unit of available nutrient. (See Chapter 7, Section 7.8.2, for a thorough review of those studies.)

Tilman’s third strategy—increasing crop yield per unit of water used—is also advanced by rising levels of CO2 in the atmosphere. Plants exposed to elevated levels of atmospheric CO2 generally do not open their leaf stomatal pores—through which they take in carbon dioxide and give off water vapor—as wide as they do at lower CO2 concentrations and tend to produce fewer of these pores per unit area of leaf surface. Both changes tend to reduce most plants’ rates of water loss by transpiration. The amount of carbon they gain per unit of water lost—or water-use efficiency—therefore typically rises, increasing their ability to withstand drought.

In the study of Serraj et al. (1999), soybeans grown at 700 ppm CO2 displayed 10 to 25 percent reductions in total water loss while simultaneously exhibiting increases in dry weight of as much as 33 percent. Likewise, Garcia et al. (1998) determined that spring wheat grown at 550 ppm CO2 exhibited a water-use efficiency that was about one-third greater than that exhibited by plants grown at 370 ppm CO2. Hakala et al. (1999) reported that twice-ambient CO2 concentrations increased the water-use efficiency of spring wheat by 70 to 100 percent, depending on experimental air temperature.

Hunsaker et al. (2000) reported CO2-induced increases in water-use efficiency for field-grown wheat that were 20 and 10 percent higher than those displayed by ambiently grown wheat subjected to high and low soil nitrogen regimes, respectively. Also, pea plants grown for two months in growth chambers receiving atmospheric CO2 concentrations of 700 ppm displayed an average water-use efficiency that was 27 percent greater than that exhibited by ambiently grown control plants (Gavito et al., 2000). (See Chapter 7, Section 7.2, for a thorough review of those studies.)

An issue related to water-use efficiency that could become more important in the future is the buildup of soil salinity from repeated irrigations, which can sometimes reduce crop yields. Similarly, in natural ecosystems where exposure to brackish or salty water is commonplace, saline soils can induce growth stress in plants not normally adapted to coping with this problem. The studies reported below show that rising atmospheric CO2 concentrations also can help to alleviate this problem.

Page 10: Human Health Effects - Granicus

Climate Change Reconsidered  

 698  

Mavrogianopoulos et al. (1999) reported that atmospheric CO2 concentrations of 800 and 1200 ppm stimulated photosynthesis in parnon melons by 75 and 120 percent, respectively, regardless of soil salinity, which ranged from 0 to 50 mM NaCl. Atmospheric CO2 enrichment also partially alleviated the negative effects of salinity on melon yield, which increased with elevated CO2 at all salinity levels.

Maggio et al. (2002) grew tomatoes at 400 and 900 ppm in combination with varying degrees of soil salinity and noted that plants grown in elevated CO2 tolerated an average root-zone salinity threshold value that was about 60 percent greater than that exhibited by plants grown at 400 ppm CO2 (51 vs. 32 mmol dm-

3 Cl). The review of Poorter and Perez-Soba (2001) found no changes in the effect of elevated CO2 on the growth responses of most plants over a wide range of soil salinities, in harmony with the earlier findings of Idso and Idso (1994).

These various studies suggest that elevated CO2 concentrations will help farmers achieve all three of the strategies Tilman et al. say are essential to addressing the conflict between feeding a growing human population and preserving space for nature. The actual degree of crop yield enhancement likely to be provided by the increase in atmospheric CO2 concentration expected to occur between 2000 and 2050 has been calculated by Idso and Idso (2000) to be sufficient—but just barely—to close the gap between the supply and demand for food some four decades from now. Consequently, letting the evolution of technology take its course—which includes continued emissions of CO2 into the atmosphere by industry—appears to be the only way we can grow enough food to support ourselves in the year 2050 without taking unconscionable amounts of land and freshwater resources from nature.

In spite of the dilemma described above and the fact that enhanced levels of CO2, in the air are a necessary part of the solution, the IPCC calls for strict measures to reduce anthropogenic CO2 emissions—a strategy that, if it has any effect at all on plant and animal life, would lead to lower land-use efficiency, lower nitrogen-use efficiency, and lower plant water-use efficiency, just the opposite of what Tilman et al. called for.

One might ask whose predictions are more reliable, the IPCC’s computer-model-generated forecasts of catastrophic consequences due to rising temperatures a century or longer from now, or our projections of human population growth and

agricultural productivity just four decades into the future? In addition to the obvious time differential between the two sets of predictions, human population growth and agricultural productivity are much better-understood processes than is global climate change, which involves a host of complex phenomena that span a spatial scale of fully 14 orders of magnitude, ranging from the planetary scale of 107 meters to the cloud microphysical scale of 10-6 meter.

Many of the component processes that comprise today’s state-of-the-art climate models are so far from adequately understood (see Chapters 1 and 2) that even the signs of their impacts on global temperature change (whether positive or negative) are not yet known. Consequently, in light of the much greater confidence that can realistically be vested in demographic and agricultural production models, it would seem that much greater credence can be placed in our predictions than in the predictions of climate doom.

In conclusion, the aerial fertilization effect of the increase in the air’s CO2 content that is expected to occur by the year 2050 would boost crop yields by the amounts required to prevent mass starvation in many parts of the globe, without a large-scale encroachment on the natural world. Acting prematurely to reduce human CO2 emissions, as urged by the IPCC, could interrupt this response, resulting in the death by starvation of millions of people, loss of irreplaceable natural ecosystems, or both.

Additional information on this topic, including reviews of newer publications as they become available, can be found at http://www.co2 science.org/subject/f/food.php.  

References Alexandratos, N. 1995. World Agriculture: Towards 2010. John Wiley & Sons. New York, NY.

Ball, M.C., Cochrane, M.J. and Rawson, H.M. 1997. Growth and water use of the mangroves Rhizophora apiculata and R. stylosa in response to salinity and humidity under ambient and elevated concentrations of atmospheric CO2. Plant, Cell and Environment 20: 1158-1166.

Barrett, D.J., Richardson, A.E. and Gifford, R.M. 1998. Elevated atmospheric CO2 concentrations increase wheat root phosphatase activity when growth is limited by phosphorus. Australian Journal of Plant Physiology 25: 87-93.

Page 11: Human Health Effects - Granicus

Human Health Effects  

699

BassiriRad, H., Reynolds, J.F., Virginia, R.A. and Brunelle, M.H. 1998. Growth and root NO3- and PO4

3- uptake capacity of three desert species in response to atmospheric CO2 enrichment. Australian Journal of Plant Physiology 24: 353-358.

Borlaug, N. 2007. Feeding a hungry world. Science 318: 359.

Conley, M.M., Kimball, B.A., Brooks, T.J., Pinter Jr., P.J., Hunsaker, D.J., Wall, G.W., Adams, N.R., LaMorte, R.L., Matthias, A.D., Thompson, T.L., Leavitt, S.W., Ottman, M.J., Cousins, A.B. and Triggs, J.M. 2001. CO2 enrichment increases water-use efficiency in sorghum. New Phytologist 151: 407-412.

De Luis, J., Irigoyen, J.J. and Sanchez-Diaz, M. 1999. Elevated CO2 enhances plant growth in droughted N2-fixing alfalfa without improving water stress. Physiologia Plantarum 107: 84-89.

Demmers-Derks, H., Mitchell, R.A.G., Mitchell, V.J. and Lawlor, D.W. 1998. Response of sugar beet (Beta vulgaris L.) yield and biochemical composition to elevated CO2 and temperature at two nitrogen applications. Plant, Cell and Environment 21: 829-836.

Deng, X. and Woodward, F.I. 1998. The growth and yield responses of Fragaria ananassa to elevated CO2 and N supply. Annals of Botany 81: 67-71.

Easterbrook, G. 1995. A Moment on the Earth. Penguin Books, New York, NY.

Ehrlich, P.R. and Ehrlich, A.H. 2008. The Dominant Animal: Human Evolution and the Environment. Island Press, Washington, DC.

Fangmeier, A., Chrost, B., Hogy, P. and Krupinska, K. 2000. CO2 enrichment enhances flag leaf senescence in barley due to greater grain nitrogen sink capacity. Environmental and Experimental Botany 44: 151-164.

Garcia, R.L., Long, S.P., Wall, G.W., Osborne, C.P., Kimball, B.A., Nie, G.Y., Pinter Jr., P.J., LaMorte, R.L. and Wechsung, F. 1998. Photosynthesis and conductance of spring-wheat leaves: field response to continuous free-air atmospheric CO2 enrichment. Plant, Cell and Environment 21: 659-669.

Gavito, M.E., Curtis, P.S., Mikkelsen, T.N. and Jakobsen, I. 2000. Atmospheric CO2 and mycorrhiza effects on biomass allocation and nutrient uptake of nodulated pea (Pisum sativum L.) plants. Journal of Experimental Botany 52: 1931-1938.

Goklany, I.M. 1999. Meeting global food needs: the environmental trade-offs between increasing land conversion and land productivity. Technology 6: 107-130.

Gore, A. 1992. Earth in the Balance. Houghton Mifflin, New York, NY.

Hakala, K., Helio, R., Tuhkanen, E. and Kaukoranta, T. 1999. Photosynthesis and Rubisco kinetics in spring wheat and meadow fescue under conditions of simulated climate change with elevated CO2 and increased temperatures. Agricultural and Food Science in Finland 8: 441-457.

Huang, J., Pray, C. and Rozelle, S. 2002. Enhancing the crops to feed the poor. Nature 418: 678-684.

Hunsaker, D.J., Kimball. B.A., Pinter Jr., P.J., Wall, G.W., LaMorte, R.L., Adamsen, F.J., Leavitt, S.W., Thompson, T.L., Matthias, A.D. and Brooks, T.J. 2000. CO2 enrichment and soil nitrogen effects on wheat evapotranspiration and water use efficiency. Agricultural and Forest Meteorology 104: 85-105.

Idso, C.D. and Idso, K.E. 2000. Forecasting world food supplies: The impact of the rising atmospheric CO2 concentration. Technology 7S: 33-55.

Idso, K.E. and Idso, S.B. 1994. Plant responses to atmospheric CO2 enrichment in the face of environmental constraints: a review of the past 10 years’ research. Agricultural and Forest Meteorology 69: 153-203.

Idso, S.B. and Kimball, B.A. 2001. CO2 enrichment of sour orange trees: 13 years and counting. Environmental and Experimental Botany 46: 147-153.

Kimball, B.A. 1983. Carbon dioxide and agricultural yield: An assemblage and analysis of 430 prior observations. Agronomy Journal 75: 779-788.

Kimball, B.A., Idso, S.B., Johnson, S. and Rillig, M.C. 2007. Seventeen years of carbon dioxide enrichment of sour orange trees: final results. Global Change Biology 13: 2171-2183.

Kimball, B.A., Kobayashi, K. and Bindi, M. 2002. Responses of agricultural crops to free-air CO2 enrichment. Advances in Agronomy 77: 293-368.

Maggio, A., Dalton, F.N. and Piccinni, G. 2002. The effects of elevated carbon dioxide on static and dynamic indices for tomato salt tolerance. European Journal of Agronomy 16: 197-206.

Malmstrom, C.M. and Field, C.B. 1997. Virus-induced differences in the response of oat plants to elevated carbon dioxide. Plant, Cell and Environment 20: 178-188.

Malthus, T. 1798. Essay on the Principles of Population. Cambridge University Press, Cambridge, UK. (Reprint 1992).

Maroco, J.P., Edwards, G.E. and Ku, M.S.B. 1999. Photosynthetic acclimation of maize to growth under elevated levels of carbon dioxide. Planta 210: 115-125.

Page 12: Human Health Effects - Granicus

Climate Change Reconsidered  

 700  

Mavrogianopoulos, G.N., Spanakis, J. and Tsikalas, P. 1999. Effect of carbon dioxide enrichment and salinity on photosynthesis and yield in melon. Scientia Horticulturae 79: 51-63.

Nasholm, T., Ekblad, A., Nordin, A., Giesler, R., Hogberg, M. and Hogberg, P. 1998. Boreal forest plants take up organic nitrogen. Nature 392: 914-916.

Newman, J.A., Abner, M.L., Dado, R.G., Gibson, D.J., Brookings, A. and Parsons, A.J. 2003. Effects of elevated CO2, nitrogen and fungal endophyte-infection on tall fescue: growth, photosynthesis, chemical composition and digestibility. Global Change Biology 9: 425-437.

Meyer, P.S. and Ausubel, J.H. 1999. Carrying capacity: a model with logistically varying limits. Technological Forecasting & Social Change 61(3): 209-214.

Poorter, H. and Perez-Soba, M. 2001. The growth response of plants to elevated CO2 under non-optimal environmental conditions. Oecologia 129: 1-20.

Raven, P.H. 2002. Science, sustainability, and the human prospect. Science 297: 954-959.

Romanova, A.K., Mudrik, V.A., Novichkova, N.S., Demidova, R.N. and Polyakova, V.A. 2002. Physiological and biochemical characteristics of sugar beet plants grown at an increased carbon dioxide concentration and at various nitrate doses. Russian Journal of Plant Physiology 49: 204-210.

Rouhier, H. and Read, D.J. 1998. The role of mycorrhiza in determining the response of Plantago lanceolata to CO2 enrichment. New Phytologist 139: 367-373.

Saxe, H., Ellsworth, D.S. and Heath, J. 1998. Tree and forest functioning in an enriched CO2 atmosphere. New Phytologist 139: 395-436.

Serraj, R., Allen Jr., L.H. and Sinclair, T.R. 1999. Soybean leaf growth and gas exchange response to drought under carbon dioxide enrichment. Global Change Biology 5: 283-291.

Singer, M. 1987. Passage to a Human World. Hudson Institute, Indianapolis, IN.

Smart, D.R., Ritchie, K., Bloom, A.J. and Bugbee, B.B. 1998. Nitrogen balance for wheat canopies (Triticum aestivum cv. Veery 10) grown under elevated and ambient CO2 concentrations. Plant, Cell and Environment 21: 753-763.

Staddon, P.L., Fitter, A.H. and Graves, J.D. 1999. Effect of elevated atmospheric CO2 on mycorrhizal colonization, external mycorrhizal hyphal production and phosphorus inflow in Plantago lanceolata and Trifolium repens in

association with the arbuscular mycorrhizal fungus Glomus mosseae. Global Change Biology 5: 347-358.

Tilman, D., Cassman, K.G., Matson, P.A., Naylor, R. and Polasky, S. 2002. Agricultural sustainability and intensive production practices. Nature 418: 671-677.

Tilman, D., Fargione, J., Wolff, B., D’Antonio, C., Dobson, A., Howarth, R., Schindler, D., Schlesinger, W.H., Simberloff, D. and Swackhamer, D. 2001. Forecasting agriculturally driven global environmental change. Science 292: 281-284.

United Nations. 2009. World population prospects. The 2008 revision. Department of Economic and Social Affairs, Population Division. ESA/P/WP.210.

U.S. Census Bureau. 2008. Global births increase even as fertility rates decline. [News release] International Population Data Base. 15 Dec.

Waggoner, P.E. 1995. How much land can ten billion people spare for nature? Does technology make a difference? Technology in Society 17: 17-34.

Waggoner, P.E. 1996. Earth’s carrying capacity. Science 274 (5287): 481-485.

Waggoner, P.E., Ausubel, J.H., and Wernick, I.K. 1996. Lightening the tread of population on the land: American examples. Population and Development Review 22 (3): 531-545.

Waggoner, P.E. and Ausubel, P.E. 2001. How much will feeding more and wealthier people encroach on forests? Population and Development Review 27(2): 239–257 .

Wallace, J.S. 2000. Increasing agricultural water use efficiency to meet future food production. Agriculture, Ecosystems & Environment 82: 105-119.

Zerihun, A., Gutschick, V.P. and BassiriRad, H. 2000. Compensatory roles of nitrogen uptake and photosynthetic N-use efficiency in determining plant growth response to elevated CO2: Evaluation using a functional balance model. Annals of Botany 86: 723-730.

Zhu, J., Goldstein, G. and Bartholomew, D.P. 1999. Gas exchange and carbon isotope composition of Ananas comosus in response to elevated CO2 and temperature. Plant, Cell and Environment 22: 999-1007.

Page 13: Human Health Effects - Granicus

Human Health Effects  

701

9.5. Biofuels Biofuels are liquid and gaseous fuels made from organic matter. They include ethanol, biodiesel, and methanol. Biofuels may have some advantages over gasoline and diesel fuels, but they are more expensive to produce and can supply only a small part of the world’s total transportation energy needs. Because they compete with food crops and nature for land and nutrients, expanding the use of biofuels could negatively affect human health and natural ecosystems.

The IPCC does not discuss biofuels in the contributions of Group I (Science) or Group II (Impacts, Adaptation and Vulnerability) to the Fourth Assessment Report. When it finally does discuss them, in two sections of the contribution of Group III (Mitigation), it fails to address the likely adverse consequences of increased use of biofuels on human health and the natural environment. We discuss those consequences in this section. 9.5.1. About Biofuels Biofuels are not new—Henry Ford’s first vehicle was fueled by ethanol—and conversion technologies exist or are in development for converting biomass into a wide range of biofuels suitable for heating, electric production, and transportation. For example, residues from agriculture and forestry long have been used by the lumber and papermaking industries to generate heat and power. Methane from animal waste and composting is captured and used locally or sold in commercial markets.

Of particular interest, and the focus of this section, is the biochemical conversion using enzymes of corn, soybeans, sugarcane, and other food crops into ethanol, biodiesel, and other biofuels used mainly for transportation. The country with the most aggressive biofuels program in the world is Brazil. After the country launched its National Alcohol Program in 1975, ethanol production in Brazil rose dramatically and now accounts for approximately 40 percent of total fuel consumption in the country’s passenger vehicles (EIA, 2008).

Ethanol became popular as a gasoline supplement in the U.S. during the 1990s, when Congress mandated that oil refiners add oxygenates to their product to reduce some emissions. Congress did not provide liability protection for the makers of methyl tertiary butyl ether (MTBE), ethanol’s main

competitor in the oxygenate business, so most companies quickly switched from MTBE to ethanol (Lehr, 2006). Some states also began to mandate ethanol use for reasons discussed below.

Most ethanol made in the U.S. comes from corn. Its production consumed 13 percent of the U.S. corn crop (1.43 billion bushels of corn grain) in 2005 and an estimated 20 percent of the 2006 crop. E10 (a blend of 10 percent ethanol and 90 percent gasoline) is widely available. E85 is an alternative fuel (85 percent ethanol and 15 percent gasoline) available mainly in corn-producing states; vehicles must be modified to use this fuel. The Energy Policy Act of 2005 mandated the use of 4 billion gallons of ethanol in 2006. The 2007 Energy Independence and Security Act (EISA) subsequently mandated the use of 36 billion gallons of renewable fuels by 2022—16 billion gallons of cellulosic ethanol, 15 billion gallons of corn ethanol, and 5 billion gallons of biodiesel and other advanced biofuels (U.S. Congress, 2007).

Federal subsidies to ethanol producers in the U.S. cost taxpayers about $2 billion a year (Dircksen, 2006). Congress protects domestic ethanol producers by imposing a 2.5 percent tariff and 54 cents per gallon duty on imports. Ethanol producers with plants of up to 60 million gallons annual production capacity are eligible to receive a production incentive of 10 cents per gallon on the first 15 million gallons of ethanol produced each year. Ethanol is also subsidized by scores of other countries and by at least 19 U.S. states (Doornbosch and Steenblick, 2007, Annex 1, pp. 45-47).

U.S. ethanol output rose from 3.4 billion gallons from 81 facilities in 2004 to 9 billion gallons from 170 facilities in 2008 (RFA, 2009). According to a forecast by the Energy Information Administration (EIA), “total U.S. biofuel consumption rises from 0.3 quadrillion Btu (3.7 billion gallons) in 2005 to 2.8 quadrillion Btu (29.7 billion gallons) in 2030, when it represents about 11.3 percent of total U.S. motor vehicle fuel on a Btu basis” (EIA, 2008). In 2005 ethanol represented about 2 percent of total gasoline consumption, and biodiesel less than 0.2 percent of diesel consumption, in the U.S.

Doornbosch and Steenblick (2007), in a report produced for the Organization for Economic Cooperation and Development (OECD), reported that “global production of biofuels amounted to 0.8 EJ [exajoule] in 2005, or roughly 1% of total road transport fuel consumption. Technically, up to 20 EJ from conventional ethanol and biodiesel, or 11% of

Page 14: Human Health Effects - Granicus

Climate Change Reconsidered  

 702  

total demand for liquid fuels in the transport sector, has been judged possible by 2050.” Also for the world as a whole, EIA predicts “alternative fuels [will] account for only 9 percent of total world liquids use in 2030, despite an average annual increase of 5.6 percent per year, from 2.5 million barrels per day in 2005 to 9.7 million barrels per day in 2030” (EIA, 2008).

References

Dircksen, J. 2006. Ethanol: bumper crop for agribusiness, bitter harvest for taxpayers. Policy Paper #121. National Taxpayers Union. July 20.

Doornbosch, R. and Steenblick, R. 2007. Biofuels: is the cure worse than the disease? Organization for Economic Cooperation and Development. Paris.

EIA. 2008. International energy outlook 2008. Energy Information Administration. Report #:DOE/EIA-0484(2008).

Lehr, J.H. 2006. Are the ethanol wars over? PERC Reports, Property and Environment Research Center. March.

RFA. 2009. Growing innovation: America’s energy future starts at home. 2009 ethanol industry outlook. Renewable Fuels Association. Washington, DC.

U.S. Congress. 2007. Energy Independence and Security Act of 2007.

9.5.2. Costs and Benefits Proponents of biofuels say their increased production will increase the supply of transportation fuels and therefore lead to lower prices. Critics of biofuels point out that ethanol often costs more, not less, than gasoline, either because of production costs or supplies that can’t keep pace with government mandates, and therefore leads to higher prices at least in the short run.

Ethanol has only two-thirds the energy content of gasoline, which makes it a poor value for most consumers. The production cost of ethanol (which is only one component in determining its price) has fallen as a result of technological innovation and economies of scale, but some properties of ethanol continue to make it expensive compared to gasoline. Transportation costs for ethanol, for example, are high because it picks up water if it travels through

existing pipelines, diluting the ethanol and corroding the pipelines. Therefore, it is being trucked to the Northeast and along the Gulf Coast. Ethanol must be kept in a different container at the terminal and is blended into the gasoline in the truck on its way to the retailer from the terminal. This has caused regional shortages, further increasing the retail prices in these areas (Dircksen, 2006). Ethanol also has been promoted as a fuel additive to reduce emissions. It reduces carbon monoxide in older vehicles and dilutes the concentration of aromatics in gasoline, reducing emissions of toxins such as benzene. Because ethanol has only two-thirds the energy content per volume as gasoline, it increases volumetric fuel use (with small increases in energy efficiency.) Ethanol increases air emissions such as aldehydes. In some areas, the use of 10 percent ethanol blends may increase ozone due to local atmospheric conditions (Niven, 2004).

Ethanol also is promoted as a “homegrown” and renewable energy source, so using more of it could help reduce a country’s dependency on foreign oil, which in turn might benefit national security and international relations. But ethanol used in the U.S. mostly supplants oil from domestic suppliers, which is more expensive than foreign oil, and leaves the country’s dependency on foreign oil the same or even makes it higher (Yacobucci, 2006). Rural communities benefit from the economic boost that comes from higher prices for corn and the jobs created by ethanol plants, but those economic benefits come at a high price in terms of higher food prices and tax breaks financed by government debt or higher taxes on other goods and services. Finally, biofuels are renewable resources, which advocates say makes them environmentally friendlier than fossil fuels. But the energy consumed to make biofuels—to plant, fertilize, irrigate, and harvest corn and other feedstocks as well as to generate the heat used during the fermentation process and to transport biofuels to markets by train or trucks—is considerable. Fossil fuels (natural gas or coal) are typically the source of that energy. This environmental impact is the focus of the rest of this section. References Dircksen, J. 2006. Ethanol: bumper crop for agribusiness, bitter harvest for taxpayers. Policy Paper #121. National Taxpayers Union. July 20.

Page 15: Human Health Effects - Granicus

Human Health Effects  

703

Niven, R.K. 2005. Ethanol in gasoline: environmental impacts and sustainability, review article. Renewable & Sustainable Energy Reviews 9(6): 535-555.

Yacobucci, B.D. 2006. Fuel ethanol: background and public policy issues. Congressional Research Service. March 3.

9.5.3. Net Emissions The US 2007 Energy Independence and Security Act (EISA) mandates that life-cycle greenhouse gas emissions of corn ethanol, cellulosic ethanol, and advanced biofuels achieve 20 percent, 60 percent, and 50 percent greenhouse gas (GHG) emission reductions relative to gasoline, respectively. But there is considerable controversy over whether these fuels do in fact reduce GHG emissions.

Numerous studies of GHG emissions produced during the life-cycle of ethanol (from the planting of crops to consumption as a fuel) have found them to be less than those of gasoline, with most estimates around 20 percent (Hill et al., 2006; Wang et al., 2007; CBO, 2009). Emissions vary considerably based on the choice of feedstock, production process, type of fossil fuels used, location, and other factors (ICSU, 2009). Liska et al. (2009), in their study of life-cycle emissions of corn ethanol systems, found the direct-effect GHG emissions of ethanol (without any offset due to changes in land use) to be “equivalent to a 48% to 59% reduction compared to gasoline, a twofold to threefold greater reduction than reported in previous studies,” largely because they incorporate a credit for the commercial use of dry distilled grain (DDG). They report that “in response to the large increase in availability of distillers grains coproduct from ethanol production and the rise in soybean prices, cattle diets now largely exclude soybean meal and include a larger proportion of distillers grains coproduct (Klopfenstein et al., 2008). Thus, the energy and GHG credits attributable to feeding distillers grains must be based on current practices for formulating cattle diets.” They give corn ethanol systems DDG credits ranging from 19% to 38% depending on region and type of fossil fuels used.

None of these estimates, however, takes into account the emission increases likely to come about from land-use changes. Righelato and Spracklen (2007) wrote that using ethanol derived from crops as a substitute for gasoline, and vegetable oils in place of diesel fuel, “would require very large areas of land in

order to make a significant contribution to mitigation of fossil fuel emissions and would, directly or indirectly, put further pressure on natural forests and grasslands.” The two British scientists calculated that a 10 percent substitution of biofuels for gasoline and diesel fuel would require “43% and 38% of current cropland area in the United States and Europe, respectively,” and that “even this low substitution level cannot be met from existing arable land.”

Righelato and Spracklen add that “forests and grasslands would need to be cleared to enable production of the energy crops,” resulting in “the rapid oxidation of carbon stores in the vegetation and soil, creating a large up-front emissions cost that would, in all cases examined, out-weigh the avoided emissions.” They report further that individual life-cycle analyses of the conversion of sugar cane, sugar beet, wheat, and corn to ethanol, as well as the conversion of rapeseed and woody biomass to diesel, indicate that “forestation of an equivalent area of land would sequester two to nine times more carbon over a 30-year period than the emissions avoided by the use of the biofuel.” They conclude that “the emissions cost of liquid biofuels exceeds that of fossil fuels.”

Fargione et al. (2008), writing in Science, said “increasing energy use, climate change, and carbon dioxide (CO2) emissions from fossil fuels make switching to low-carbon fuels a high priority. Biofuels are a potential low-carbon energy source, but whether biofuels offer carbon savings depends on how they are produced.” They explain that “converting native habitats to cropland releases CO2 as a result of burning or microbial decomposition of organic carbon stored in plant biomass and soils. After a rapid release from fire used to clear land or from the decomposition of leaves and fine roots, there is a prolonged period of GHG release as coarse roots and branches decay and as wood products decay or burn. We call the amount of CO2 released during the first 50 years of this process the ‘carbon debt’ of land conversion. Over time, biofuels from converted land can repay this carbon debt if their production and combustion have net GHG emissions that are less than the life-cycle emissions of the fossil fuels they displace. Until the carbon debt is repaid, biofuels from converted lands have greater GHG impacts than those of the fossil fuels they displace.” Fargione et al. calculate the number of years required to repay carbon debts for six areas: Brazilian Amazon (319 years), Brazilian Cerrado wooded (17 years), Brazilian Cerrado grassland (37 years), Indonesian or Malaysian lowland tropical rainforest

Page 16: Human Health Effects - Granicus

Climate Change Reconsidered  

 704  

(86 years), Indonesian or Malaysian peatland tropical rainforest (423 years), and U.S. central grassland (93 years). They observe that no carbon debt is incurred when abandoned cropland or marginal prairie in the U.S. is used without irrigation to produce ethanol. They conclude that “the net effect of biofuels production via clearing of carbon-rich habitats is to increase CO2 emissions for decades or centuries relative to the emissions caused by fossil fuel use,” and “at least for current or developing biofuels technologies, any strategy to reduce GHG emissions that causes land conversion from native ecosystems to cropland is likely to be counterproductive.” In a companion essay in the same issue of Science, Searchinger et al. (2008) also describe the carbon debt due to land-use conversion, but measure it as the difference between biofuels and gasoline in GHG emissions measured in grams per MJ (megajoule) of energy. They begin by explaining that “to produce biofuels, farmers can directly plow up more forest or grassland, which releases to the atmosphere much of the carbon previously stored in plants and soils through decomposition or fire. … Alternatively, farmers can divert existing crops or croplands into biofuels, which causes similar emissions indirectly. The diversion triggers higher crop prices, and farmers around the world respond by clearing more forest and grassland to replace crops for feed and food.”

Searchinger et al. used the Greenhouse gases Regulated Emissions and Energy use in Transportation (GREET) computer program created by the Center for Transportation Research at Argonne National Laboratory to calculate the GHGs in grams of CO2 equivalent emissions per MJ of energy consumed over the production and use life-cycles of gasoline, corn ethanol, and biomass ethanol fuels. They observe that “emissions from corn and cellulosic ethanol emissions exceed or match those from fossil fuels, and therefore produce no greehouse benefits,” unless biofuels are given a “carbon uptake credit” for the amount of carbon dioxide removed from the air by the growing biofuels feedstocks. When that adjustment is made, they estimate that gasoline (which gets no carbon uptake credit) produces 92g/MJ; corn ethanol, 74g/MJ; and biomass ethanol, 27g/MJ.

Searchinger et al. then calculate the amount of land that would be converted from forest and grassland into cropland to support the biofuels and, like Fargione et al. (2008), apply the GHG emissions

due to land-use change to each type of fuel. The result is that total net GHG emissions from both kinds of biofuel exceed those from gasoline, 177g vs. 92g in the case of corn ethanol and 138g vs. 92g in the case of biomass ethanol. They conclude that “corn-based ethanol, instead of producing a 20% savings, nearly doubles greenhouse emissions over 30 years and increases greenhouse gases for 167 years. Biofuels from switchgrass, if grown on U.S. corn lands, increase emissions by 50%. This result raises concerns about large biofuels mandates and highlights the value of using waste products.”

Coming to much the same conclusion, Laurance (2007) observed that “tropical forests, in particular, are crucial for combating global warming, because of their high capacity to store carbon and their ability to promote sunlight-reflecting clouds via large-scale evapotranspiration,” which led him to conclude that “such features are key reasons why preserving and restoring tropical forests could be a better strategy for mitigating the effects of carbon dioxide than dramatically expanding global biofuel production.”

Doornbosch and Steenblick (2007), while reporting that biofuels could provide up to 11 percent of the total world demand for road transport fuel by 2050, say “an expansion on this scale could not be achieved, however, without significant impacts on the wider global economy. In theory there might be enough land available around the globe to feed an ever increasing world population and produce sufficient biomass feedstock simultaneously, but it is more likely that land-use constraints will limit the amount of new land that can be brought into production leading to a ‘food-versus-fuel’ debate.”

Looking at a different environmental impact of expanded biofuel production, Crutzen and three collaborators calculated the amount of nitrous oxide (N2O) that would be released to the atmosphere as a result of using nitrogen fertilizer to produce the crops used for biofuels (Crutzen et al., 2007). Their work revealed that “all past studies have severely underestimated the release rates of N2O to the atmosphere, with great potential impact on climate warming” because, as they report, N2O “is a ‘greenhouse gas’ with a 100-year average global warming potential 296 times larger than an equal mass of CO2.” The consequence is that “when the extra N2O emission from biofuel production is calculated in ‘CO2-equivalent’ global warming terms, and compared with the quasi-cooling effect of ‘saving’ emissions of CO2 derived from fossil fuel,

Page 17: Human Health Effects - Granicus

Human Health Effects  

705

the outcome is that the production of commonly used biofuels, such as biodiesel from rapeseed and bioethanol from corn, can contribute as much or more to global warming by N2O emissions than cooling by fossil fuel savings.”

Crutzen et al. concluded that “on a globally averaged basis the use of agricultural crops for energy production … can readily be detrimental for climate due to the accompanying N2O emissions.” Their concerns were confirmed by a 2009 report from the International Council for Science (ICSU), which found “the increased N2O flux associated with producing ethanol from corn is likely to more than offset any positive advantage from reduced carbon dioxide fluxes (compared to burning fossil fuels). Even for ethanol from sugar cane or biodiesel from rapeseed, emissions of nitrous oxide probably make these fuels less effective as an approach for reducing global warming than has been previously believed” (ICSU, 2009).

Producing ethanol from crop residues, or stover, is often proposed as a way to avoid carbon emissions arising from land conversion. But as Lal (2007) points out, crop residues perform many vital functions. He reports that “there are severe adverse impacts of residue removal on soil and environmental degradation, and negative carbon sequestration as is documented by the dwindling soil organic carbon reserves.” He notes that “the severe and widespread problem of soil degradation, and the attendant agrarian stagnation/deceleration, are caused by indiscriminate removal of crop residues.” Lal concludes that “short-term economic gains from using crop residues for biofuel must be objectively assessed in relation to adverse changes in soil quality, negative nutrients and carbon budget, accelerated erosion, increase in non-point source pollution, reduction in agronomic production, and decline in biodiversity.”

Finally, while using abandoned or degraded lands to produce biomass, rather than converting existing cropland or forests, is often alleged to reduce carbon emissions (e.g., Fargione et al., 2008), the ICSU report notes that “of course, if the lands have the potential to revert to forests, conversion to biofuels represents a lost opportunity for carbon storage. The environmental consequences of inputs (irrigation water, fertilizer) required to make degraded and marginal lands productive must also be considered” (ICSU, 2009).

In conclusion, the production and use of biofuels frequently does not reduce net GHG emissions relative to gasoline, the fossil fuel they are intended to

replace. Therefore, there is no basis from an environmental perspective for preferring them to fossil fuels.

References

CBO. 2009. The impact of ethanol use on food prices and greenhouse-gas emissions. Congressional Budget Office. April.

Crutzen, P.J., Mosier, A.R., Smith, K.A. and Winiwarter, W. 2007. N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmospheric Chemistry and Physics Discussions 7: 11,191-11,205.

Doornbosch, R. and Steenblick, R. 2007. Biofuels: is the cure worse than the disease? Organization for Economic Cooperation and Development. Paris.

Fargione, J., Hill, J., Tilman, D., Polasky, S. and Hawthorne, P. 2008. Land clearing and the biofuels carbon debt. Science 319: 1235-1237.

Hill, J., Nelson, E., Tilman, D., Polasky, S. and Tiffany, D. 2006. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proceedings of the National Academy of Sciences 103 (30): 11206-11210.

ICSU. 2009. Biofuels: environmental consequences and interactions with changing land use. Proceedings of the Scientific Committee on Problems of the Environment (SCOPE) International Biofuels Project Rapid Assessment, International Council for Science (ICSU). 22-25 September 2008, Gummersbach, Germany. R.W. Howarth and S. Bringezu, eds.

Lal, R. 2007. Farming carbon. Soil & Tillage Research 96: 1-5.

Laurance, W.F. 2007. Forests and floods. Nature 449: 409-410.

Liska, A.J, Yang, H.S., Bremer, V.R., Klopfenstein, T.J., Walters, D.T., Galen, E.E. and Cassman, K.G. 2009. Improvements in life cycle energy efficiency and greenhouse gas emissions of corn-ethanol. Journal of Industrial Ecology 13 (1).

Righelato, R. and Spracklen, D.V. 2007. Carbon mitigation by biofuels or by saving and restoring forests? Science 317: 902.

Searchinger, T., Heimlich, R., Houghton, R.A., Dong, F., Elobeid, A., Fabiosa, J., Tokgoz, S., Hayes, D. and Yu, T-H. 2008. Science 319: 1238-1239.

Wang, M., Wu, M., and Huo, H. 2007. Life-cycle energy and greenhouse gas emission impacts of different corn

Page 18: Human Health Effects - Granicus

Climate Change Reconsidered  

 706  

ethanol plant types. Environmental Research Letters 2 (2): 024001.

9.5.4. Impact on Food Prices Biofuel refineries compete with livestock growers and food processors for corn, soybeans, and other feedstocks usually used to produce biofuels in the United States, leading to higher animal feed and ingredient costs for farmers, ranchers, and food manufacturers. Some of that cost is eventually passed on to consumers. A study by the Congressional Budget Office (CBO) found “the demand for corn for ethanol production, along with other factors, exerted upward pressure on corn prices, which rose by more than 50 percent between April 2007 and April 2008. Rising demand for corn also increased the demand for cropland and the price of animal feed” (CBO, 2009). The CBO estimated that increased use of ethanol “contributed between 0.5 and 0.8 percentage points of the 5.1 percent increase in food prices measured by the consumer price index (CPI).”

Johansson and Azar (2007) analyzed what they called the “food-fuel competition for bio-productive land,” developing in the process “a long-term economic optimization model of the U.S. agricultural and energy system,” wherein they found that the competition for land to grow crops for both food and fuel production leads to a situation where “prices for all crops as well as animal products increase substantially.” Similarly, Doornbosch and Steenblick (2007) say “any diversion of land from food or feed production to production of energy biomass will influence food prices from the start, as both compete for the same inputs. The effects on farm commodity prices can already be seen today. The rapid growth of the biofuels industry is likely to keep these prices high and rising throughout at least the next decade (OECD/FAO, 2007).”

Runge and Senauer (2007), writing in Foreign Affairs, reported that the production of corn-based ethanol in the United States “takes so much supply to keep ethanol production going that the price of corn—and those of other food staples—is shooting up around the world.” The rising prices caused food riots to break out in Haiti, Bangladesh, Egypt, and Mozambique in April 2008, prompting Jean Ziegler, the United Nations’ “special rapporteur on the right to food,” to call using food crops to create ethanol “a crime against humanity” (CNN, 2008). Jeffrey Sachs, director of Columbia University’s Earth Institute, said

at the time, “We’ve been putting our food into the gas tank—this corn-to-ethanol subsidy which our government is doing really makes little sense” (Ibid.). Former U.S. President Bill Clinton was quoted by the press as saying “corn is the single most inefficient way to produce ethanol because it uses a lot of energy and because it drives up the price of food” (Ibid.). Unfortunately, as the CBO report concluded a year later, corn is likely to remain the main source of ethanol for quite some time as “current technologies for producing cellulosic ethanol are not commercially viable” (CBO, 2009).

References

CBO. 2009. The impact of ethanol use on food prices and greenhouse-gas emissions. Congressional Budget Office. April.

CNN. 2008. Riots, instability spread as food prices skyrocket. April 14. http://www.cnn.com/2008/WORLD/ americas/04/14/world.food.crisis/ Accessed 4 May 2009.

Doornbosch, R. and Steenblick, R. 2007. Biofuels: is the cure worse than the disease? Organization for Economic Cooperation and Development. Paris.

Johansson, D.J.A. and Azar, C. 2007. A scenario based analysis of land competition between food and bioenergy production in the US. Climatic Change 82: 267-291.

Klopfenstein, T.J., Erickson, G.E. and Bremmer, V.R. 2008. Board-invited review: use of distillers byproducts in the beef cattle feeding industry. Journal of Animal Science 86 (5): 1223-1231.

Lehr, J.H. 2006. Are the ethanol wars over? PERC Reports, Property and Environment Research Center. March.

Liska, A.J, Yang, H.S., Bremer, V.R., Klopfenstein, T.J., Walters, D.T., Galen, E.E. and Cassman, K.G. 2009. Improvements in life cycle energy efficiency and greenhouse gas emissions of corn-ethanol. Journal of Industrial Ecology 13 (1):

OECD/FAO. 2007. Agricultural Outlook 2007-2016. Organization for Economic Cooperation and Development/Food and Agriculture Organization (United Nations). Paris, Rome.

Runge, C.F. and Senauer, B. 2007. How biofuels could starve the poor. Foreign Affairs 86: 41-53.

Page 19: Human Health Effects - Granicus

Human Health Effects  

707

9.5.5. Use of Water

The third strategy proposed by Tilman et al. (2002) to address the conflict between growing food and preserving natural ecosystems is finding ways to conserve water. Biofuels, as the following studies demonstrate, fail to advance this objective.

Elcock (2008) projects that 12.9 billion gallons per day of water will be consumed in the manufacture of ethanol by 2030. This “increase accounts for roughly 60% of the total projected nationwide increase in water consumption over the 2005-2030 period, and it is more than double the amount of water projected to be consumed for industrial and commercial use in 2030 by the entire United States.”

A 2009 study by Argonne National Laboratory estimated life-cycle water consumption for one gallon of four types of fuel: ethanol, gasoline from domestic conventional crude oil, gasoline from Saudi conventional crude oil, and gasoline from Canadian oil sands (Wu et al., 2009). For ethanol, they estimated an average consumption of 3.0 gallon of water/gallon of corn ethanol during the production process in a corn dry mill, a yield of 2.7 gallons of ethanol per bushel of corn, and the average consumptive use of irrigation water for corn farming in three U.S. Department of Agriculture Regions (5, 6, and 7) representing the vast majority of corn production in the United States. They found “total groundwater and surface water use for corn growing vary significantly across the three regions, producing 1 gallon of corn-based ethanol consumes a net of 10 to 17 gallon of freshwater when the corn is grown in Regions 5 and 6, as compared with 324 gallon when the corn is grown in Region 7.” When these figures are adjusted to reflect the lower Btu/gallon of ethanol compared to gasoline (75,700 / 115,000, or .66), the amount of water consumed per gallon of gasoline equivalent ranges from 15.2 to 25.8 gallons in Regions 5 and 6 and 492 gallons in Region 7.

Wu et al. (2009) found the amount of water required to create a gallon of gasoline was dramatically less: 3.4-6.6 gallons of water to make one gallon of gasoline from U.S. conventional crude oil, 2.8-5.8 gallons to make one gallon of gasoline from Saudi conventional crude, and 2.6-6.2 gallons to make one gallon of gasoline from Canadian oil sands.

An even more recent review of the literature conducted by the International Council for Science (ICSU) found “the water requirements of biofuel-derived energy are 70 to 400 times larger than other energy sources such as fossil fuels, wind or solar.

Roughly 45 billion cubic meters of irrigation water were used for biofuel production in the [sic] 2007, or some 6 times more water than people drink globally” (ICSU, 2009). The authors also point out that “severe water pollution can result from runoff from agricultural fields and from waste produced during the production of biofuels,” and that “the increase in corn [production] to support ethanol goals in the United States is predicted to increase nitrogen inputs to the Mississippi River by 37%.”

In light of this evidence, there can be little doubt that biofuels are a much less efficient use of scarce water resources than are fossil fuels. This means increased reliance on fossil fuels would make it more difficult to increase food production per unit of water in the future, one of Tilman et al.’s three strategies to solve the food vs. nature conflict. References Elcock, D. 2009. Baseline and projected water demand data for energy and competing water use sectors. U.S. Department of Energy, ANL/EUS/TM/08-8 for US DOE/NETL.

Tilman, D., Cassman, K.G., Matson, P.A., Naylor, R. and Polasky, S. 2002. Agricultural sustainability and intensive production practices. Nature 418: 671-677.

ICSU. 2009. Biofuels: environmental consequences and interactions with changing land use. Proceedings of the Scientific Committee on Problems of the Environment (SCOPE) International Biofuels Project Rapid Assessment, International Council for Science (ICSU). 22-25 September 2008, Gummersbach, Germany. R.W. Howarth and S. Bringezu, eds.

Wu, M., Mintz, M., Wang, M. and Arora, S. 2009. Consumptive water use in the production of ethanol and petroleum gasoline. U.S. Department of Energy, Office of Scientific and Technical Information, Center for Transportation Research, Energy Systems Division, Argonne National Laboratory.

9.5.6. Conclusion The production and use of biofuels has increased dramatically in recent years, due largely to government mandates and taxpayer subsidies. But the alleged environmental benefits of these “renewable fuels” disappear upon close inspection. As Doornbosch and Steenblick (2007) say in their OECD report, “when such impacts as soil acidification,

Page 20: Human Health Effects - Granicus

Climate Change Reconsidered  

 708  

fertilizer use, biodiversity loss and toxicity of agricultural pesticides are taken into account, the overall environmental impacts of ethanol and biodiesel can very easily exceed those of petrol and mineral diesel. The conclusion must be that the potential of the current technologies of choice—ethanol and biodiesel—to deliver a major contribution to the energy demands of the transport sector without compromising food prices and the environment is very limited.” The decision by the IPCC and many environmental groups to embrace ethanol pits energy production against food production, making even worse the conflict between the two that this section has addressed. There can be little doubt that ethanol mandates and subsidies have made both food and energy more, not less, expensive, and therefore less

available to a growing population. The extensive damage to natural ecosystems already caused by this poor policy decision, and the much greater destruction yet to come, are a high price to pay for refusing to understand and utilize the true science of climate change. Additional information on this topic, including reviews of newer publications as they become available, can be found at http://www.co2science.org/subject/b/biofuels.php References Doornbosch, R. and Steenblick, R. 2007. Biofuels: is the cure worse than the disease? Organization for Economic Cooperation and Development. Paris.

Page 21: Human Health Effects - Granicus

709

Appendix 1

Acronyms ACWT Atlantic core water temperature

AGAGE Advanced Global Atmospheric Gases Experiment

AGW anthropogenic global warming

AMF arbuscular mycorrhizal fungi

AMO Atlantic Multidecadal Oscillation

AMSR Advanced Microwave Scanning Radiometer

APSIM Agricultural Production Systems Simulator

AO/NAO Arctic Oscillation/North Atlantic Oscillation

AsA ascorbic acid

ASI aeolian sand influx

ATLAS Airborne Thermal and Land Applications Sensor

AVHRR Advanced Very High Resolution Radiometer

Ba barium

BATS Bermuda Atlantic Time-Series Study

BC2 Carlsbad Cavern (New Mexico)

BCC Buckeye Creek Cave (West Virginia)

BioCON Biodiversity, Carbon Dioxide, and Nitrogen Effects on Ecosystem Functioning

BIOME3 Biogeochemical Model

BP before present

BSW bog surface wetness

Bt Bacillus thuringiensis

BYDV barley yellow dwarf virus

Ca calcium

CAM Crassulacean Acid Metabolism

CASA Carnegie-Ames-Stanford Approach

CBSC Carbon-based secondary compounds

CCN Cloud condensation nuclei

CDC Canadian Drought Code

CERES Clouds and the Earth’s Radiant Energy System

CEVSA Carbon Exchanges in the Vegetation-Soil-Atmosphere System

CFC chlorofluorocarbons

CGCM Coupled General Circulation Models

CH2CII iodocarbon chloroiodomethane

CH3C1 methyl chloride

CH4 methane

CH2I2 diiodomethane

CHD coronary heart disease

CMAP Climate Prediction Center Merged Analysis of Precipitation

CO2 carbon dioxide

CPR Continuous Plankton Recorder

CPY Climactic Pointer Years

CRF cosmic ray flux

CRII cosmic ray-induced ionization

CRP1 Core Research Project 1

CRU Climate Research Unit

CS2 carbon disulfide

CSIRO Commonwealth Scientific and Industrial Research Organization (Australia)

CWP Current Warm Period

CVD cardiovascular disease

CZCS Coastal Zone Color Scanner

DACP Dark Ages cold period

DDG dry distilled grain

DGGE denaturing gradient gel electrophoresis

DM dry matter

DMS dimethyl sulfide

DOC dissolved organic carbon

Page 22: Human Health Effects - Granicus

Climate Change Reconsidered  

710

ECCO Estimating Circulation and Climate of the Ocean

ECMWF European Centre for Medium-Range Weather Forecasts

EDC96 European Project for Ice Coring in Antarctica Dome C

EIA Energy Information Administration (U.S.)

EF-Tu protein synthesis elongation factor

ENSO El Nino-Southern Oscillation

EQC eolian quartz content

FACE Free-air CO2 Enrichment

FACTS Forest Atmosphere Carbon Transfer and Storage

FB Foxe Basin

FD flux data

GBR Great Barrier Reef

GCM General Circulation Models

GCR galactic cosmic rays

GCTE Global Change and Terrestrial Ecosystems

GDP Gross Domestic Product

GEI Glacier Expansion Index

GHG green house gas(es)

GIMMS Global Inventory Modeling and Mapping Studies

GIS Greenland Ice Sheet

GISS Goddard Institute of Space Studies

GLO-PEM Global Production Efficiency Model

gNDVI Normalized Difference Vegetation Index over the Growing Season

GPCP Global Precipitation Climatology Project

gr gram(s)

GRACE Gravity Recovery and Climate Experiment

GREET Greenhouse gases Regulated Emissions and Energy use in Transportation

GSH glutathione

GSL global sea level

HC1 Hidden Cave (Guadalupe Mountains)

HR heterotrophic respiration

HSG hematite stained grain

IE infection efficiency

IMAR Inner Mongolia Autonomous Region

IMR Indian Monsoon rainfall

IPCC Intergovernmental Panel on Climate Change

IPCC 2007-I Intergovernmental Panel on Climate Change — Group 1 Contribution

IPCC 2007-II Intergovernmental Panel on Climate Change — Group II Contribution

IPCC 2007-II Intergovernmental Panel on Climate Change — Group III Contribution

IPCC-FAR Intergovernmental Panel on Climate Change — First Assessment Report

IPCC-SAR Intergovernmental Panel on Climate Change — Second Assessment Report

IPCC-TAR Intergovernmental Panel on Climate Change — Third Assessment Report

IPCC-AR4 Intergovernmental Panel on Climate Change — Fourth Assessment Report

IRD ice rafted debris

ISCCP International Satellite Cloud Climatology Project

ISM Indian Summer Monsoon

ITCZ Intertropical Convergence Zone

ITS2 Internal Transcribed Spacer Region 2

IUCN International Union for Conservation of Nature

LBM larch budmoth

LCA low cloud amount

LCLU land cover and land use

LGM Last Glacial Maximum

LIA Little Ice Age

LST land surface temperature

LTM long-term mean standardization

m meter

Ma BP million years before present

MAAT mean annual air temperature

MBP mass balance potential

MDR main development region

ME surface melt

MJ mega joule

MS methanesulfonate

MSA methanesulfonic Acid

MTBE methyl tertiary butyl ether

Page 23: Human Health Effects - Granicus

Acronyms  

711

MWP Medieval Warm Period

MXD maximum latewood density

MY multiyear

N2O nitrous oxide

NABE North Atlantic Bloom Experiment

NADW North Atlantic deep water

NAM Northern Annular Mode

NAO North Atlantic Oscillation

NAS National Academy of Sciences

NDVI Normalized Difference Vegetation Index

NEP net ecosystem production

NIPCC Nongovernmental International Panel on Climate Change

NMHC non-methane hydrocarbon

NPP net primary production

nss-SO42- non-sea-salt sulfate

NWS National Weather Service

O3 ozone

OCS carbonyl sulfide

OLR outgoing longwave radiation

OM organic matter

OTC open-top chambers

P precipitation

PAL Pathfinder AVHRR [Advanced Very High Resolution Radiometer] Land

PDO Pacific Decadal Oscillation

PDSI Palmer Drought Severity Index

PF polar front

PGR post-glacial rebound

PI potential intensity

PIZ perennial ice zone

ppb parts per billion

ppm parts per million

Ps solid precipitation

RACM Regional Atmospheric Climate Model

RCC rapid climate change

RCS regional curve standardization

Rd ratio of diffuse

Rda area-based dark respiration

Rdm mass-based dark respiration

rDNA ribosomal deoxyribonucleic acid

Rg solar irradiance

ROS reactive oxygen species

RWP Roman Warm Period

SACC Screen-Aided CO2 Control

SAT surface air temperature

SB Southern Beaufort Sea

SCC Swiss Canopy Crane Project

SCPDSI Self-Calibrating Palmer Drought Severity Index

SeaWiFS Sea-Viewing Wide Field-Of-View Sensor

SEPP Science & Environmental Policy Project

SFP South Fork Payette

SMB surface mass balance

SMR snowmelt runoff

SODA Simple Ocean Data Assimilation

SOM soil organic matter

SPAR Soil-Plant-Atmosphere-Research Facility (Mississippi)

SPCZ South Pacific Convergence Zone

SPM Summaries for Policymakers

SPS sucrose-phosphate synthase

SSM/I Special Sensor Microwave Imager

SSMR Scanning Multichannel Microwave Radiometer

SN/SSN sunspot number

SST sea surface temperatures

STF subtropical front

SU surface sublimation

SWE snow water equivalent

SWF shortwave flux

SWM Southwest Monsoon

TBE tick-borne encephalitis

TBEV tick-borne encephalitis virus

TC tropical cyclones

Tmax maximum temperature

Tmin minimum temperature

TMI Tropical Rainfall Measuring Mission Microwave Imager

Topt optimum temperature

Page 24: Human Health Effects - Granicus

Climate Change Reconsidered  

712

TP Tibetan Plateau

TRFO tropical rainforest

TRMM Tropical Rainfall Measuring Mission

TSI total solar irradiance

UHI urban heat island

UNEP United Nations Environment Program

UV ultraviolet

VS vertical wind shear

WAIS West Antarctic Ice Sheet

WH Western Hudson Bay

WMO World Meteorological Organization

WNP Western North Pacific

WSC water-soluble carbohydrate

WT wild type

WUE water use efficiency

Page 25: Human Health Effects - Granicus

713

Appendix 2  

Table 7.1.1 – Plant Dry Weight (Biomass) Responses to Atmospheric CO2 Enrichment  

Table 7.1.1 reports the results of peer-reviewed scientific studies indicating the biomass growth response of plants to a 300-ppm increase in atmospheric CO2 concentration. Plants are listed by both common and/or scientific names, followed by the number of experimental studies conducted on each plant, the mean biomass response to a 300-ppm increase in the air’s CO2 content, and the standard error of that mean.Whenever the CO2 increase was not exactly 300 ppm, a linear adjustment was computed. For example, if the CO2 increase was 350 ppm and the growth response was a 60 percent enhancement, the adjusted 300-ppm CO2 growth response was calculated as (300/350) x 60% = 51%. The data in this table are printed by permission of the Center for the Study of Carbon Dioxide and Global Change and were taken from its Plant Growth database as it existed on 23 March 2009. Additional data are added to the database at approximately weekly intervals and can be accessed free of charge at the Center’s website at http://www.co2science.org/data/plant_growth/dry/dry_subject.php. This online database also archives information pertaining to the experimental conditions under which each plant growth experiment was conducted, as well as the complete reference to the journal article from which the experimental results were obtained. The Center’s online database also lists percent increases in plant biomass for 600- and/or 900-ppm increases in the air’s CO2 concentration.

Plant Name # of

Studies Arithmetic

Mean Standard

Error

[Phytoplankton] 1 7% 0%

Abelmoschus esculentus [Okra] 1 8% 0%

Abies alba [Silver Fir] 5 33.20% 11.60%

Abies faxoniana [Minjiang Fir] 2 16.50% 1.10%

Absinth Sagewort [Artemisia absinthium] 2 161.50% 44.20%

Abutilon theophrasti [Velvet Leaf] 14 32.10% 13.70%

Acacia aneura [Mulga Acacia] 1 0% 0%

Acacia auriculiformis [Acacia, Earleaf] 1 0% 0%

Acacia catechu [Black Cutch] 6 62.70% 8.50%

Acacia colei [Acacia] 1 89% 0%

Acacia coriacea [Wiry Wattle] 1 50% 0%

Acacia dealbata [Silver Wattle] 1 106% 0%

Acacia implexa 1 77% 0%

Acacia irrorata 1 64% 0%

Acacia magium [Brown Saiwood] 3 19% 6.90%

Acacia mearnsii [Black Wattle] 1 48% 0%

Plant Name # of

Studies Arithmetic

Mean Standard

Error

Acacia melanoxylon [Blackwood] 1 164% 0%

Acacia minuta [Coastal Scrub Wattle] 2 110% 22.60%

Acacia nilotica [Gum Arabic Tree] 8 316.30% 54.10%

Acacia saligna [Orange Wattle] 1 55% 0%

Acacia tetragonophylla [Acacia] 1 55% 0%

Acacia, Earleaf [Acacia auriculiformis] 3 22.70% 7.90%

Acacia, Mulga [Acacia aneura] 1 0% 0%

Acer barbatum [Southern Sugar Maple] 1 95% 0%

Acer pensylvanicum [Striped Maple] 4 28.80% 8.40%

Acer pseudoplatanus [Sycamore] 3 34.30% 12.80%

Acer rubrum [Red Maple] 13 44.20% 13.30%

Acer saccharum [Sugar Maple] 12 48.30% 13.10%

Achillea millefolium [Yarrow] 3 24.70% 12.60%

Aechmea magdalenae [Understory Herb] 1 30% 0%

Agave deserti [Desert Agave] 4 34.80% 10.30%

Agave salmiana [Agave] 1 43% 0%

Page 26: Human Health Effects - Granicus

 

 

Plant Name # of

Studies Arithmetic

Mean Standard

Error

Agave vilmoriniana [Leaf Succulent] 2 14% 9.90%

Agave, Desert [Agave deserti] 4 34.80% 10.30%

Agropyron repens [C3 Grass] 1 41% 0%

Agropyron smithii [Western Wheatgrass] 3 50.30% 42.20%

Agrostemma githago [Corncockle] 1 21% 0%

Agrostis canina [Velvet Bentgrass] 1 124% 0%

Agrostis capillaris [Colonial Bentgrass] 9 37.10% 11.70%

Albiza, Tall [Albizia procera] 8 125.60% 16.30%

Albizia procera [Tall Albiza] 8 125.60% 16.30%

Alder, Black [Alnus glutinosa] 3 24.30% 9.10%

Alder, Manchurian [Alnus hirsuta] 5 24% 5.50%

Alder, Mountain [Alnus incana] 1 50% 0%

Alder, Red [Alnus rubra] 6 34.50% 7.70%

Alloteropsis semialata [Cockatoo Grass] 6 41.20% 3.70%

Alnus glutinosa [Black Alder] 3 24.30% 9.10%

Alnus hirsuta [Manchurian Alder] 5 24% 5.50%

Alnus incana [Mountain Alder] 1 50% 0%

Alnus rubra [Red Alder] 6 34.50% 7.70%

Amaranth [Amaranthus tricolor] 1 20% 0%

Amaranth, Grain [Amaranthus hypochondriacus] 2 5.50% 3.90%

Amaranth, Redroot [Amaranthus retroflexus] 16 6.40% 3.50%

Amaranth, Slender [Amaranthus viridis] 4 -2.30% 3.20%

Amaranth, Slim [Amaranthus hybridus] 6 14% 5.60%

Amaranthus hybridus [Slim Amaranth] 6 14% 5.60% Amaranthus hypochondriacus [Grain Amaranth] 2 5.50% 3.90%

Amaranthus retroflexus [Redroot Amaranth] 16 6.40% 3.50%

Amaranthus tricolor [Amaranth] 1 20% 0%

Amaranthus viridis [Slender Amaranth] 4 -2.30% 3.20%

Ambrosia artemisiifolia [Annual Ragweed] 13 28.80% 7%

Ambrosia dumosa [White Burrobush] 2 164% 36.10%

Ambrosia trifida [Great Ragweed] 3 26% 8.20%

American Pokeweek [Phytolacca americana] 8 -2.40% 13.80%

Amorpha canescens [Leadplant] 3 40.30% 63.30% Amur Silvergrass [Miscanthus sacchariflorus] 1 -27% 0%

Ananas comosus [Pineapple] 2 5% 9.20%

Andropogon appendiculatus [Vlei Bluegrass] 6 50.50% 6.90%

Andropogon gerardii [Big Bluestem] 12 20.30% 7.20%

Andropogon virginicus [Broomsedge] 2 0% 0%

Anemone cylindrica [Candle Anemone] 1 84% 0%

Plant Name # of

Studies Arithmetic

Mean Standard

Error

Anemone, Candle [Anemone cylindrica] 1 84% 0%

Anthoxanthum odoratum [Sweet Vernal Grass] 1 170% 0%

Anthyllis vulneraria [Common Kidney Vetch] 6 45.30% 17.50%

Arabidopsis thaliana [Thale Cress] 10 219.70% 81.40%

Arachis glabrata [Florigraze Peanut] 2 20.50% 1.10%

Arachis hypogaea [Peanut] 24 84.20% 23.10%

Armeria maritima [Thrift Seapink] 1 -45% 0%

Arrhenatherum elatius [Tall Oatgrass] 7 18.60% 9.60%

Artemisia absinthium [Absinth Sagewort] 2 161.50% 44.20%

Artemisia tridentata [Big Sagebrush] 4 24.30% 6.10%

Asclepias syriaca [Common Milkweed] 1 69% 0%

Asclepias tuberosa [Butterfly Milkweed] 1 108% 0%

Ash, European [Fraxinus excelsior] 6 14.20% 6%

Ash, Green [Fraxinus pennsylvanica] 1 32% 0%

Ash, White [Fraxinus americana] 4 33.80% 7.30%

Aspen, Bigtooth [Populus grandidentata] 1 29% 0%

Aspen, Hybrid [Populus tremula x Populus tremuloides] 6 40.30% 18%

Aspen, Quaking [Populus tremuloides] 32 60.60% 10%

Aster pilosus [White Oldfield Aster] 2 62.50% 26.50%

Aster tripolium [Sea Aster] 4 9.50% 3.90%

Aster, Sea [Aster tripolium] 4 9.50% 3.90%

Aster, White Oldfield [Aster pilosus] 2 62.50% 26.50%

Austrodanthonia caespitosa [Wallaby Grass] 2 78% 4.20%

Avena barbata [Slender Oat] 6 22.80% 5.80%

Avena fatua [Wild Oat] 8 32.90% 8.40%

Avena sativa [Red Oat] 10 23.80% 7.30%

Avicennia germinans [Black Mangrove] 2 22.50% 5.30%

Azolla pinnata [Water Fern] 4 54.30% 27%

Bagpod [Sesbania vesicaria] 1 60% 0%

Bahiagrass [Paspalum notatum] 3 10% 1.90%

Bald Cypress [Taxodium distichum] 4 10.30% 11.90%

Barley [Hordeum vulagare] 15 41.50% 5.70%

Barrelcactus, California [Ferocactus acanthodes] 1 30% 0%

Barrelclover [Medicago truncatula] 6 52.80% 9.60%

Bauhinia variegata [Mountain Ebony] 6 82.80% 9.70%

Bean, Adsuki [Vigna angularis] 4 60% 5.20%

Bean, Broad [Vicia faba] 4 46.30% 13.50%

Bean, Castor [Ricinus communis] 7 53.60% 16.30%

Bean, Garden [Phaseolus vulgaris] 17 64.30% 20.30%

Page 27: Human Health Effects - Granicus

 

 

Plant Name # of

Studies Arithmetic

Mean Standard

Error

Bean, Tepary [Phaseolus acutifolius] 2 70% 9.90%

Beech, American [Fagus grandifolia] 1 88% 0%

Beech, European [Fagus sylvatica] 12 30.90% 10.60%

Beet, Common [Beta vulgaris] 24 79.50% 26%

Bellis perennis [Lawn Daisy] 3 95.70% 0.30%

Bentgrass, Colonial [Agrostis capillaris] 9 37.10% 11.70%

Bentgrass, Velvet [Agrostis canina] 1 124% 0%

Berseem [Trifolium alexandrium] 1 41% 0%

Beta vulgaris [Common Beet] 24 79.50% 26%

Betula alleghaniensis [Yellow Birch] 15 34.30% 10.20%

Betula nana [Bog Birch] 1 0% 0%

Betula papyrifera [Paper Birch] 24 72.50% 15.70%

Betula pendula [European White Birch] 27 35.40% 5.40%

Betula platyphylla [Japanese White Birch] 4 15.30% 5%

Betula populifolia [Gray Birch] 4 19.80% 8.30%

Betula pubescens [Downy Birch] 4 25.50% 6.50%

Birch, Bog [Betula nana] 1 0% 0%

Birch, Downy [Betula pubescens] 4 25.50% 6.50%

Birch, European White [Betula pendula] 27 35.40% 5.40%

Birch, Gray [Betula populifolia] 4 19.80% 8.30%

Birch, Japanese White [Betula platyphylla] 4 15.30% 5%

Birch, Paper [Betula papyrifera] 24 72.50% 15.70%

Birch, Yellow [Betula alleghaniensis] 15 34.30% 10.20%

Bittercress, Hairy [Cardamine hirsuta] 2 -0.50% 3.90%

Black Cutch [Acacia catechu] 6 62.70% 8.50%

Blackberry [Rubus] 1 675% 0%

Black-eyed Susan [Rudbeckia hirta] 1 0% 0%

Blackgram [Vigna mungo] 2 87% 19.80%

Blackwood [Acacia melanoxylon] 1 164% 0%

Bluegrass, Alpine [Poa alpina] 2 79.50% 4.60%

Bluegrass, Annual [Poa annua] 10 20.20% 9.10%

Bluegrass, Kentucky [Poa pratensis] 9 113.90% 29.80%

Bluegrass, Rough [Poa trivialis] 1 3% 0% Bluegrass, Vlei [Andropogon appendiculatus] 6 50.50% 6.90%

Bluestem, Big [Andropogon gerardii] 12 20.30% 7.20%

Bluestem, Little [Schizachyrium scoparium] 9 18.20% 9% Bottlebrush Squirreltail [Elymus elymoides] 1 24% 0%

Bouteloua curtipendula [Sideoats Grama] 2 7% 22.60%

Bouteloua eriopoda [Black Grama] 1 21% 0%

Plant Name # of

Studies Arithmetic

Mean Standard

Error

Bouteloua gracilis [Blue Grama] 7 2.40% 11.10%

Brachypodium pinnatum [Heath Falsebrome] 1 0% 0%

Bracken [Pteridium aquilinum] 1 0% 0%

Brassica campestris 6 55.80% 8.50%

Brassica carinata [Abyssinian Mustard] 2 28% 1.40%

Brassica juncea [India Mustard] 2 28.50% 1.80%

Brassica kaber [Field Mustard] 1 29% 0%

Brassica napus [Oilseed Rape] 17 52.90% 8.90%

Brassica nigra [Black Mustard] 2 40.50% 10.30%

Brassica oleracea [Broccoli] 5 28.80% 8.50%

Brassica rapa [Mustard] 1 21% 0%

Bristlegrass, Green [Seteria viridis] 1 18% 0%

Bristlegrass, Japanese [Seteria faberi] 5 18.80% 6.70%

Broccoli [Brassica oleracea] 5 28.80% 8.50%

Brome, Compact [Bromus madritensis] 2 7% 14.10%

Brome, Erect [Bromus erectus] 7 34.60% 6.80%

Brome, Foxtail [Bromus rubens] 2 25% 7.80%

Brome, Poverty [Bromus sterilis] 1 0% 0%

Brome, Smooth [Bromus inermis] 1 -13% 0%

Brome, Soft [Bromus hordeaceus] 2 43% 9.90%

Brome, Soft [Bromus mollis] 2 53.50% 2.50%

Bromus erectus [Erect Brome] 7 34.60% 6.80%

Bromus hordeaceus [Soft Brome] 2 43% 9.90%

Bromus inermis [Smooth Brome] 1 -13% 0%

Bromus madritensis [Compact Brome] 2 7% 14.10%

Bromus mollis [Soft Brome] 2 53.50% 2.50%

Bromus rubens [Foxtail Brome] 2 25% 7.80%

Bromus sterilis [Poverty Brome] 1 0% 0%

Bromus tectorum [Cheatgrass] 1 36% 0%

Broomsedge [Andropogon virginicus] 2 0% 0%

Brown Saiwood [Acacia magium] 3 19% 6.90%

Buchloe dactyloides [Buffalo Grass] 1 -5% 0%

Buck Brush [Symphiocarpos orbiculatus] 2 98.50% 42.10% Buckwheat, Common [Fagopyrum esculentum] 3 17.30% 9.90%

Buffalo Grass [Buchloe dactyloides] 1 -5% 0%

Bunchgrass, Perennial [Oryzopsis hymenoides] 1 0% 0%

Burnet, Small [Sanguisorba minor] 6 81.20% 15.20%

Burr Medick [Medicago minima] 1 -6% 0%

Bushbean, Purple [Macroptilium atropurpureum] 1 43% 0%

Page 28: Human Health Effects - Granicus

 

 

Plant Name # of

Studies Arithmetic

Mean Standard

Error

Cabbage [Brassica oleracea] 5 28.80% 8.50%

Calamagrostis epigeios [Chee Reedgrass] 2 98.50% 0.40%

Calluna vulgaris [Heather] 9 17.10% 5.40%

Camphorweed [Heterotheca subaxillaris] 1 20% 0%

Canada Cockleburr [Xanthium strumarium] 7 30.60% 6.40%

Canary Grass [Phalaris arundinacea] 1 49% 0%

Cantaloupe [Cucumis melo] 3 4.70% 0.70%

Caragana intermedia [Deciduous Shrub of Semi-arid Northern China] 6 54.50% 4.50%

Cardamine hirsuta [Hairy Bittercress] 2 -0.50% 3.90%

Carex bigelowii [Bigelow's Sedge] 1 0% 0%

Carex flacca [Heath Sedge] 5 73.80% 18.20%

Carex rostrata [Beaked Sedge] 1 44% 0%

Carob [Ceratonia siliqua] 10 38.10% 9.70%

Carpinus betulus [European Hornbeam] 3 35.30% 26.40%

Carrizo Citrange [Citrus sinensis x Poncirus trifoliata] 2 40.50% 1.80%

Carrot [Daucus carota sativus] 5 77.80% 32.30%

Cassava [Manihot esculenta] 2 73.50% 29.30%

Cassia fasciculata [Sleepingplant] 2 17.50% 27.20%

Cassia nictitans [Partridge Pea] 1 22% 0%

Cassia obtusifolia [Coffeeweed] 2 31.50% 7.40%

Castanea sativa [Sweet Chesnut] 4 12.80% 2.20%

Cattail [Typha latifolia] 1 -2% 0%

Cenchrus ciliaris [Buffel Grass] 1 242% 0%

Cerastium fontanum [Chickweed] 1 51% 0%

Ceratonia siliqua [Carob] 10 38.10% 9.70%

Ceratophytum tetragonolobum 2 60% 42.40%

Chairmaker's Bulrush [Schoenoplectus americanus] 1 27% 0%

Chamaecrista nictitans [Partridge Pea] 1 0% 0% Chamelaucium uncinatum (Schauer) x Chamelaucium floriferum (MS) [Lady Stephanie] 3 20.70% 3.40%

Chamerion angustifolium 1 228% 0%

Cheatgrass [Bromus tectorum] 1 36% 0%

Chenopodium album [Lambsquarters] 12 31.30% 7.50%

Chenopodium bonus-henricus [Good King Henry] 1 21% 0%

Cherry, Black [Prunus serotina] 2 42% 1.40%

Cherry, Sweet [Prunus avium] 8 59.80% 7.80%

Chesnut, Sweet [Castanea sativa] 4 12.80% 2.20%

Chickweed [Cerastium fontanum] 1 51% 0%

Chlorella pyrenoidosa [Common Freshwater Microalga] 2 8% 0.70%

Cirsium arvense [Canadian Thistle] 3 83.30% 33.50%

Plant Name # of

Studies Arithmetic

Mean Standard

Error

Citrus aurantium [Sour Orange Tree] 3 61.30% 13.30%

Citrus reticulata [Mandarin Orange Tree] 2 29.50% 3.90%

Citrus sinensis [Sweet Orange Tree] 2 38.50% 4.60% Citrus sinensis x Poncirus trifoliata [Carrizo Citrange] 2 40.50% 1.80%

Clammy Cuphea [Cuphea viscosissima] 1 17% 0%

Clarkia rubicunda [Ruby Chalice Fairyfan] 1 35% 0% Climbing Nightshade [Solanum dulcamara] 10 46.50% 9.30%

Clover, Crimson [Trifolium incarnatum] 2 21.50% 0.40%

Clover, Japanese [Kummerowia striata] 1 26% 0%

Clover, Purple [Trifolium pratense] 5 16.80% 4.40%

Clover, Silky Prairie [Petalostemum villosum] 3 -9.30% 23.40%

Clover, White [Trifolium repens] 45 59.80% 16.80%

Coastal Scrub Wattle [Acacia minuta] 2 110% 22.60%

Codlins and Cream [Epilobium hirsutum] 1 9% 0%

Coffea arabusta [Coffee] 2 175.50% 76.70%

Coffee [Coffea arabusta] 2 175.50% 76.70%

Coffeeweed [Cassia obtusifolia] 2 31.50% 7.40%

Conium maculatum [Poison Hemlock] 1 21% 0% Coral Honeysuckle [Lonicera sempervirens] 1 30% 0%

Cordgrass, Common [Spartina anglica] 3 19% 25.10%

Cordgrass, Saltmeadow [Spartina patens] 9 9.70% 4.90%

Cordgrass, Smooth [Spartina alterniflora] 2 0% 0%

Corkscrew Vallisneria [Vallisneria tortifolia] 9 9.70% 4.90%

Corn [Zea mays] 20 21.30% 4.90%

Corncockle [Agrostemma githago] 1 21% 0%

Cornus florida [Eastern Flowering Dogwood] 2 121.50% 37.10%

Correa schlechtendalii 3 9.70% 0.30%

Cotton [Gossypium hirsutum] 32 64.10% 9.40%

Cottongrass, Tussock [Eriophorum vaginatum] 5 105% 71.60%

Cottonwood, Black [Populus trichocarpa] 5 124% 93.20%

Cottonwood, Eastern [Populus deltoides] 5 60.20% 15.80%

Crabgrass, Hairy [Digitaria sanguinalis] 2 39% 12.70%

Crabgrass, Natal [Digitaria natalensis] 6 13% 3.20%

Creosote Bush [Larrea tridentata] 4 105.50% 36.20%

Crested Dogstailgrass [Cynosurus cristatus] 1 30% 0%

Crotalaria juncea [Sunn Hemp] 2 45% 9.90%

Cucumber, Garden [Cucumis sativus] 7 53.10% 7.90%

Cucumis melo [Cantaloupe] 3 4.70% 0.70%

Cucumis sativus [Garden Cucumber] 7 53.10% 7.90%

Page 29: Human Health Effects - Granicus

 

 

Plant Name # of

Studies Arithmetic

Mean Standard

Error

Cudweed [Gnaphalium affine] 1 21% 0%

Cuphea viscosissima [Clammy Cuphea] 1 17% 0%

Cynosurus cristatus [Crested Dogstailgrass] 1 30% 0%

Cyperus esculentus [Yellow Nutsedge] 1 16% 0%

Cyperus rotundus [Purple Nutsedge] 1 38% 0%

Dactylis glomerata [Orchardgrass] 11 16.90% 4.60%

Daisy, Lawn [Bellis perennis] 3 95.70% 0.30%

Dalbergia latifolia [Indian Rosewood] 6 51.80% 8.20%

Dallas Grass [Paspalum dilatatum] 1 82% 0% Danthonia richardsonii Cashmore [Wallaby Grass] 9 25% 8.60%

Datura stramonium [Jimsonweed] 3 36.70% 15.80%

Daucus carota [Carrot] 5 77.80% 32.30%

Deschampsia flexuosa [Wavy Hairgrass] 1 19% 0%

Desmazeria rigida [Ferngrass] 1 26% 0%

Digitalis purpurea [Purple Foxglove] 2 17.50% 2.50%

Digitaria natalensis [Natal Crabgrass] 6 13% 3.20%

Digitaria sanguinalis [Hairy Crabgrass] 2 39% 12.70%

Dock, Bitter [Rumex obtusifolius] 6 18.70% 12.50% Dogwood, Eastern Flowering [Cornus florida] 2 121.50% 37.10%

Dropseed, Whorled [Sporobolus pyramidalis] 6 33.50% 21.70%

Duckweed, Swollen [Lemna gibba] 2 47% 11.30% Eastern Purple Coneflower [Echinacea purpurea] 4 191.50% 75.50%

Echinacea purpurea [Eastern Purple Coneflower] 4 191.50% 75.50%

Echinochloa crus-galli [Barnyard Grass] 15 72.10% 16.70%

Echium plantagineum [Salvation Jane] 4 15.80% 6.20%

Ecosystem, 10 Species of Tropical Forest Tree Seedlings 1 -5% 0%

Ecosystem, 12 Species 3 22.70% 5.50% Ecosystem, 12 Species From Fertile Permanent Grassland 15 67.50% 13.20%

Ecosystem, 7 Species 1 9% 0%

Ecosystem, Pasture 1 12% 0% Ecosystem, Understory Plants in a Spruce Model Ecosystem 3 33.70% 13.40%

Eelgrass, Common [Zostera marina] 1 24% 0%

Eggplant [Solanum melongena] 1 41% 0% Eichhornia crassipes [Common Water Hyacinth] 5 51% 19.30%

Eleusine indica [Indian Goosegrass] 6 34% 17.40%

Elm, Winged [Ulmus alata] 1 30% 0%

Elymus athericus 4 46.30% 20%

Elymus elymoides Botlebrush Squirreltail 1 24% 0%

Emblic [Phyllanthus emblica] 8 165% 16%

Plant Name # of

Studies Arithmetic

Mean Standard

Error Emiliania huxleyi [Marine Coccolithophores] 1 130% 0%

English Holly [Ilex aquifolium] 1 15% 0%

English Laurel [Prunus laurocerasus] 1 56% 0%

Epilobium hirsutum [Codlins and Cream] 1 9% 0%

Eragrostis curvula [Weeping Lovegrass] 6 42.20% 9.80%

Eragrostis orcuttiana [Annual Weed, C4] 1 462% 0% Eragrostis racemosa [Narrowheart Lovegrass] 6 11.70% 1.80%

Erica tetralix [Crossleaf Heath] 4 23.80% 10.50%

Eriophorum vaginatum [Tussock Cottongrass] 5 105% 71.60%

Eucalyptus cladocalyx [Sugargum] 2 87.50% 9.50%

Eucalyptus miniata [Darwin Woollybutt] 9 -2% 5.40%

Eucalyptus tetrodonta 9 132.80% 19.90%

Euphorbia lathyris [Myrtle Spurge] 2 36.50% 4.60%

European Hornbeam [Carpinus betulus] 3 35.30% 26.40%

European Larch [Larix decidua] 1 142% 0% Fagopyrum esculentum [Common Buckwheat] 3 17.30% 9.90%

Fagus grandifolia [American Beech] 1 88% 0%

Fagus sylvatica [European Beech] 12 30.90% 10.60% Fairyfan, Ruby Chalice [Clarkia rubicunda] 1 35% 0%

Falsebrome, Heath [Brachypodium pinnatum] 1 0% 0%

Fenugreek [Trigonella foenum-graecum] 2 91% 33.20%

Fern, Tropical [Pyrrosia piloselloides] 1 78% 0%

Fern, Water [Azolla pinnata var. pinnata] 4 54.30% 27%

Ferngrass [Desmazeria rigida] 1 26% 0% Ferocactus acanthodes [California Barrelcactus] 1 30% 0%

Fescue, Meadow [Festuca pratensis] 11 20.30% 10%

Fescue, Red [Festuca rubra] 3 30.70% 15.90%

Fescue, Sheep [Festuca ovina] 6 47.70% 16.60%

Fescue, Small [Vulpia microstachys] 2 -4.50% 8.10%

Fescue, Tall [Festuca arundinacea] 11 25.40% 7.20%

Fescue, Tall Meadow [Festuca elatior] 1 40% 0%

Festuca arundinacea [Tall Fescue] 11 25.40% 7.20%

Festuca elatior [Tall Meadow Fescue] 1 40% 0%

Festuca ovina [Sheep Fescue] 6 47.70% 16.60%

Festuca pratensis [Meadow Fescue] 11 20.30% 10%

Festuca rubra [Red Fescue] 3 30.70% 15.90%

Fir, Douglas [Pseudotsuga menziesii] 6 9.70% 3.90%

Fir, Minjiang [Abies faxoniana] 2 16.50% 1.10%

Fir, Silver [Abies alba] 5 33.20% 11.60%

Page 30: Human Health Effects - Granicus

 

 

Plant Name # of

Studies Arithmetic

Mean Standard

Error

Flaveria trinervia [Clustered Yellowtops] 1 46% 0%

Flax, Common [Linum usitatissimum] 2 68.50% 18.70%

Flax, Common [Linum usitatissimum] in mixed stands with Silene cretica 2 63.50% 15.90%

Foxglove, Purple [Digitalis purpurea] 2 17.50% 2.50%

Fragaria x ananassa [Hybrid Strawberry] 4 42.80% 13.10%

Fraxinus americana [White Ash] 4 33.80% 7.30%

Fraxinus excelsior [European Ash] 6 14.20% 6%

Fraxinus pennsylvanica [Green Ash] 1 32% 0%

Galactia elliottii [Elliott's Milkpea] 1 110% 0%

Gentian, Dwarf [Gentianella germanica] 1 54% 0%

Gentianella germanica [Dwarf Gentian] 1 54% 0%

Glycine max [Soybean] 162 47.60% 3.10%

Gnaphalium affine [Cudweed] 1 21% 0%

Goldenclub [Orontium aquaticum] 12 19.80% 3%

Goldenrod, Canadian [Solidago canadensis] 2 1750% 1237.40%

Goldenrod, Stiff [Solidago rigida] 1 27% 0%

Goldfields, California [Lasthenia californica] 2 27% 26.90%

Gonolobus cteniophorus 2 3.50% 12.40% Good King Henry [Chenopodium bonus-henricus] 1 21% 0%

Goosegrass, Indian [Eleusine indica] 6 34% 17.40%

Gossypium hirsutum [Cotton] 32 64.10% 9.40%

Grama, Black [Bouteloua eriopoda] 1 21% 0%

Grama, Blue [Bouteloua gracilis] 7 2.40% 11.10%

Grama, Sideoats [Bouteloua curtipendula] 2 7% 22.60%

Grass, Barnyard [Echinochloa crus-galli] 15 72.10% 16.70%

Grass, Buffel [Cenchrus ciliaris] 1 242% 0%

Grass, C3 [Agropyron repens] 1 41% 0%

Grass, C3 [Koeleria cristata] 3 32% 39.80%

Grass, Cockatoo [Alloteropsis semialata] 6 41.20% 3.70%

Grass, Harding [Phalaris aquatica] 13 24.60% 8.50%

Grass, Kangaroo [Themeda triandra] 8 61.80% 16.20%

Grass, Red Natal [Melinis repens] 6 25.80% 7%

Grass, Sudan [Sorghum sudanense] 1 14% 0%

Grass, Wallaby [Danthonia richardsonii] 9 25% 8.60%

Grassland Community 2 25% 4.20%

Grassland Community 2 19% 2.80%

Grassland Community, Irish Neutral 4 28.50% 6.80%

Grassland, Calcareous, (C3) 11 27.40% 2.80%

Grassland, Calcareous, dominated by Bromus erectus 3 28% 2.90%

Plant Name # of

Studies Arithmetic

Mean Standard

Error

Grassland, California Annual 2 20.50% 2.50%

Grassland, Species-poor on a peaty gley soil 1 50% 0%

Grassland, Species-rich on a brown earth soil over limestone 1 56% 0%

Gray Field Speedwell [Veronica didyma] 1 26% 0%

Groundsel, Common [Senecio vulgaris] 2 66% 25.50%

Guineagrass [Panicum maximum] 1 -2% 0%

Gum Arabic Tree [Acacia nilotica] 8 316.30% 54.10%

Gypsophila paniculata [Babysbreath Gypsophila] 1 23% 0%

Hairgrass, Wavy [Deschampsia flexuosa] 1 19% 0%

Hayfield Tarweed [Hemizonia congesta] 2 48.50% 10.30%

Heath, Crossleaf [Erica tetralix] 4 23.80% 10.50%

Heather [Calluna vulgaris] 9 17.10% 5.40%

Hedera helix [English Ivy] 3 66% 10.60%

Helianthemum nummularium [Sun Rose] 1 0% 0%

Helianthus annus [Sunflower] 11 37.50% 7.80%

Hellroot [Orobanche minor] 1 0% 0%

Hemizonia congesta [Hayfield Tarweed] 2 48.50% 10.30%

Hemlock, Eastern [Tsuga canadensis] 3 34% 4.50%

Hemlock, Poison [Conium maculatum] 1 21% 0%

Heterosigma akashiwo [A Marine Raphidophyte] 2 15% 2.10%

Heterotheca subaxillaris [Camphorweed] 1 20% 0%

Hilograss [Paspalum conjugatum] 1 18% 0%

Hiziki (Brown Seaweed) [Hizikia fusiforme] 1 45% 0%

Hizikia fusiforme [Hiziki (Brown Seaweed)] 1 45% 0%

Holcus lanatus [Common Velvetgrass] 11 38.50% 10.40%

Hordeum vulagare [Barley] 15 41.50% 5.70%

Hydrilla verticillata [Water Thyme] 7 21.90% 3.30%

Hymenocallis littoralis [Spider Lily] 2 52% 2.80%

Hyparrhenia rufa [Jaragua] 2 33.50% 1.80%

Hypericum perforatum [St. John's Wort] 1 72% 0%

Ilex aquifolium [English Holly] 1 15% 0%

Indian Grass, Yellow [Sorghastrum nutans] 3 9.70% 14.40%

Indian Rosewood [Dalbergia latifolia] 6 51.80% 8.20%

Ipomoea batatas [Sweet Potato] 6 33.70% 9.30%

Ipomoea hederacea [Ivyleaf Morningglory] 2 -21% 8.50%

Ipomoea lacunosa [Whitestar] 2 15% 14.80%

Ipomoea purpurea [Tall Morningglory] 2 -29.50% 1.80%

Ivy, English [Hedera helix] 3 66% 10.60%

Japanese Honeysuckle [Lonicera japonica] 4 312.80% 73.70%

Page 31: Human Health Effects - Granicus

 

 

Plant Name # of

Studies Arithmetic

Mean Standard

Error Japanese Knotweed [Polygonum cuspidatum] 3 48% 14.80%

Japanese Larch [Larix kaempferi] 4 26.80% 10.30%

Jaragua [Hyparrhenia rufa] 2 33.50% 1.80%

Jimsonweed [Datura stramonium] 3 36.70% 15.80%

Johnsongrass [Sorghum halepense] 3 -13% 14.30%

Joshua Tree [Yucca brevifolia] 1 65% 0%

Juncus effuses [Soft Rush] 1 -5% 0%

Junegrass, Prairie [Koeleria macrantha] 1 2% 0%

Kielmeyera coriacea [Tropical Savanna Tree] 3 88.70% 55.50% Knotweed, Curlytop [Polygonum lapathifolium] 5 19.40% 4.20%

Knotweed, Marshpepper [Polygonum hydropiper] 2 40.50% 15.90%

Koeleria cristata [C3 Grass] 3 32% 39.80%

Koeleria macrantha [Prairie Junegrass] 1 2% 0%

Krameria erecta [Littleleaf Ratany] 2 102.50% 1.10%

Kummerowia striata [Japanese Clover] 1 26% 0%

Lactuca sativa [Garden Lettuce] 2 18.50% 6% Lady Stephanie [Chamelaucium uncinatum (Schauer) x Chamelaucium floriferum] 3 20.70% 3.40%

Ladysthumb, Spotted [Polygonum persicaria] 2 38% 9.20%

Lambsquarters [Chenopodium album] 12 31.30% 7.50%

Lantana [Lantana camara] 2 82.50% 5.30%

Lantana camara [Lantana] 2 82.50% 5.30%

Larix decidua [European Larch] 1 142% 0%

Larix kaempferi [Japanese Larch] 4 26.80% 10.30%

Larix laricina [Tamarack] 1 56% 0%

Larrea tridentata [Creosote Bush] 4 105.50% 36.20%

Lasthenia californica [California Goldfields] 2 27% 26.90%

Layia platyglossa [Coastal Tidytips] 1 12% 0%

Leadplant [Amorpha canescens] 3 40.30% 63.30%

Leaf Succulent [Agave vilmoriniana] 2 14% 9.90%

Ledum palustre [Wild Rosemary] 1 0% 0%

Lemna gibba [Swollen Duckweed] 2 47% 11.30%

Lepidium latifolium [Pepperweed] 2 40% 7.10%

Lespedeza capitata [Roundhead Lespedeza] 3 333.70% 136.10% Lespedeza cuneata [Chinese Lespedeza] 1 0% 0%

Lespedeza, Roundhead [Lespedeza capitata] 3 333.70% 136.10%

Lettuce, Garden [Lactuca sativa] 2 18.50% 6%

Linum usitatissimum [Common Flax] 2 68.50% 18.70%

Linum usitatissimum [Common Flax] in mixed stands with Silene cretica 2 63.50% 15.90%

Liquidambar styraciflua [Sweetgum] 20 132.40% 23.50%

Plant Name # of

Studies Arithmetic

Mean Standard

Error

Liriodendron tulipifera [Yellow Poplar] 3 34% 4.70%

Littleleaf Ratany [Krameria erecta] 2 102.50% 1.10%

Loblolly Pine (Pinus taeda) 65 61.90% 7.90%

Locust, Black [Robinia pseudoacacia] 4 346% 242.10%

Lolium multiflorum [Italian Ryegrass] 6 11.50% 5.10%

Lolium perenne [Perennial Ryegrass] 74 35.10% 5.30%

Lolium temulentum [Darnel Ryegrass] 3 44.70% 29.20%

Lomentaria articulata [Seaweed] 1 269% 0%

Lonicera japonica [Japanese Honeysuckle] 4 312.80% 73.70% Lonicera sempervirens [Coral Honeysuckle] 1 30% 0%

Lotus corniculatus [Birdfoot Deer Vetch] 8 49.30% 12.90%

Lotus pedunculatus [Big Trefoil] 6 56% 26.50% Lovegrass, Narrowheart [Eragrostis racemosa] 6 11.70% 1.80%

Lovegrass, Weeping [Eragrostis curvula] 6 42.20% 9.80%

Lupine, European Yellow [Lupinus luteus] 1 21% 0% Lupine, Narrowleaf [Lupinus angustifolius] 3 38% 7%

Lupine, Sundial [Lupinus perennis] 11 56.40% 6.60%

Lupine, White [Lupinus albus] 4 10.30% 6.40%

Lupinus albus [White Lupine] 4 10.30% 6.40%

Lupinus angustifolius [Narrowleaf Lupine] 3 38% 7%

Lupinus luteus [European Yellow Lupine] 1 21% 0%

Lupinus perennis [Sundial Lupine] 11 56.40% 6.60%

Lycopersicon esculentum [Garden Tomato] 35 31.90% 5%

Lycopersicon lycopersicum [Tomato] 2 29.50% 5.30% Macroptilium atropurpureum[Purple Bushbean] 1 43% 0%

Manchurian Wildrice [Zizania latifolia] 1 -5% 0%

Mandarin Orange Tree [Citrus reticulata] 2 29.50% 3.90%

Mangifera indica [Mango] 1 36% 0%

Mango [Mangifera indica] 1 36% 0%

Mangrove, American [Rhizophora mangle] 3 39.30% 6.10%

Mangrove, Black [Avicennia germinans] 2 22.50% 5.30%

Manihot esculenta [Cassava] 2 73.50% 29.30%

Maple, Red [Acer rubrum] 13 44.20% 13.30%

Maple, Southern Sugar [Acer barbatum] 1 95% 0%

Maple, Striped [Acer pensylvanicum] 4 28.80% 8.40%

Maple, Sugar [Acer saccharum] 12 48.30% 13.10%

Maranthes corymbosa 3 69% 14.30%

Marine Coccolithophores [Emiliania huxleyi] 1 130% 0%

Medicago glomerata 1 17% 0%

Page 32: Human Health Effects - Granicus

 

 

Plant Name # of

Studies Arithmetic

Mean Standard

Error

Medicago lupulina [Black Medick] 1 68% 0%

Medicago minima [Burr Medick] 1 -6% 0%

Medicago sativa [Alfalfa] 68 33.20% 3.70%

Medicago truncatula [Barrelclover] 6 52.80% 9.60%

Medick, Black [Medicago lupulina] 1 68% 0%

Melinis minutiflora [Molassesgrass] 2 32% 8.50%

Melinis repens [Red Natal Grass] 6 25.80% 7%

Mentha x piperita [Peppermint] 1 29% 0%

Menzies' Baby Blue Eyes [Nemophila menziesii] 1 0% 0%

Mesquite, Honey [Prosopis glandulosa] 13 37.70% 5.20%

Microalga, Common Freshwater [Chlorella pyrenoidosa] 2 8% 0.70%

Microstegium vimineum [Nepalese Browntop] 3 -53.30% 15.60%

Milkpea Elliott's [Galactia elliottii] 1 110% 0%

Milkweed, Butterfly (Asclepias tuberosa) 1 108% 0%

Milkweed, Common [Asclepias syriaca] 1 69% 0%

Millet, Broomcorn [Panicum miliaceum] 1 -13% 0%

Miscanthus sacchariflorus [Amur Silvergrass] 1 -27% 0%

Molassesgrass [Melinis minutiflora] 2 32% 8.50%

Molinia caerulea [Purple Moorgrass] 9 36.60% 9.40%

Moorgrass, Purple [Molinia caerulea] 9 36.60% 9.40%

Morningglory, Ivyleaf [Ipomoea hederacea] 2 -21% 8.50%

Morningglory, Tall [Ipomoea purpurea] 2 -29.50% 1.80%

Mountain Ebony [Bauhinia variegata] 6 82.80% 9.70%

Mungbean [Vigna radiata] 2 31.50% 16.60%

Mustard [Brassica rapa] 1 21% 0%

Mustard, Abyssinian [Brassica carinata] 2 28% 1.40%

Mustard, Black [Brassica nigra] 2 40.50% 10.30%

Mustard, Field [Brassica kaber] 1 29% 0%

Mustard, India [Brassica juncea] 2 28.50% 1.80%

Mustard, Rape Seed [Brassica campestris] 6 55.80% 8.50%

Mustard, White [Sinapis alba] 4 21.30% 4.10%

Myrobalan [Terminalia chebula] 8 442.50% 52.50%

Myrtle Spurge [Euphorbia lathyris] 2 36.50% 4.60%

Nasturtium [Tropaeolum majus] 3 42.30% 10.80%

Nemophila menziesii [Menzies' Baby Blue Eyes] 1 0% 0%

Nepalese Browntop [Microstegium vimineum] 3 -53.30% 15.60%

Nettle, Stinging [Urtica dioica] 1 26% 0%

Nicotiana tabacum [Cultivated Tobacco] 6 60.50% 11%

Night-flowering Catchfly [Silene noctiflora] 6 60.50% 11%

Plant Name # of

Studies Arithmetic

Mean Standard

Error

Nutsedge, Purple [Cyperus rotundus] 1 38% 0%

Nutsedge, Yellow [Cyperus esculentus] 1 16% 0%

Nymphaea marliac [Water Lily] 2 162% 76.40%

Oak, Chapman's [Quercus chapmanii] 2 325% 123.70%

Oak, Cork [Quercus suber] 4 46.80% 13.70%

Oak, Durmast [Quercus petraea] 6 53.20% 18.70%

Oak, Holly [Quercus ilex] 4 38% 4.80%

Oak, Mongolian [Quercus mongolica] 6 54.30% 19.50%

Oak, Northern Red [Quercus rubra] 7 55.30% 25.20%

Oak, Pedunculate [Quercus robur] 8 30.60% 12.80%

Oak, Sand Live [Quercus geminata] 5 9.40% 5.40%

Oak, White [Quercus alba] 6 146.70% 30.10%

Oat, Red [Avena sativa] 10 23.80% 7.30%

Oat, Slender [Avena barbata] 6 22.80% 5.80%

Oat, Wild [Avena fatua] 8 32.90% 8.40%

Oatgrass, Tall [Arrhentherum elatius] 7 18.60% 9.60%

Okra [Abelmoschus esculentus] 1 8% 0%

Olea europaea [Olive Tree] 4 14.50% 9.40%

Olive Tree [Olea europaea] 4 14.50% 9.40%

Opuntia ficus-indica [Prickly Pear] 9 38.20% 13.30%

Orchardgrass [Dactylis glomerata] 11 16.90% 4.60%

Orobanche minor [Hellroot] 1 0% 0%

Orontium aquaticum [Goldenclub] 12 19.80% 3%

Oryza sativa [Rice] 137 34.30% 2.10% Oryzopsis hymenoides [Perennial Bunchgrass] 1 0% 0%

Panicgrass Blue [Panicum coloratum] 2 1% 15.60%

Panicgrass, Blue [Panicum antidotale] 4 15.50% 6.30% Panicgrass, Fall (Panicum dichotomiflorum) 1 24% 0%

Panicgrass, Lax [Panicum laxum] 4 30% 11%

Panicum antidotale [Blue Panicgrass] 4 15.50% 6.30%

Panicum coloratum [Blue Panicgrass] 2 1% 15.60%

Panicum dichotomiflorum (Fall Panicgrass) 1 24% 0%

Panicum laxum [Lax Panicgrass] 4 30% 11%

Panicum maximum [Guineagrass] 1 -2% 0%

Panicum miliaceum [Broomcorn Millet] 1 -13% 0%

Panicum virgatum [Switchgrass] 1 -1% 0%

Pansy [Viola x wittrockiana] 1 30% 0%

Papaver setigerum [Dwarf Breadseed Poppy] 1 390% 0%

Pascopyrum smithii [Western Wheatgrass] 4 73.50% 16.80%

Page 33: Human Health Effects - Granicus

 

 

Plant Name # of

Studies Arithmetic

Mean Standard

Error

Paspalum conjugatum [Hilograss] 1 18% 0%

Paspalum dilatatum [Dallas Grass] 1 82% 0%

Paspalum notatum [Bahiagrass] 3 10% 1.90% Paspalum plicatulum [Brownseed Paspalum] 1 9% 0%

Paspalum, Brownseed [Paspalum plicatulum] 1 9% 0%

Pasture 1 9% 0%

Pasture 2 24.50% 13.10% Pasture in Switzerland [Dactylis glomerata (Orchard Grass) and Trifolium pratense (Red Clover)] 12 29.10% 5.70%

Pea, Blackeyed [Vigna unguiculata] 3 83.70% 12.20%

Pea, Garden [Pisum sativum ] 11 33.30% 6.30%

Pea, Partridge [Cassia nictitans] 1 22% 0%

Pea, Partridge [Chamaecrista nictitans] 1 0% 0%

Peach Tree [Prunus persica] 4 27.80% 0.80%

Peanut [Arachis hypogaea] 24 84.20% 23.10%

Peanut, Florigraze [Arachis glabrata] 2 20.50% 1.10%

Peanut, Rhizoma 1 57% 0%

Pencilflower [Stylosanthes scabra] 2 72% 10.60%

Pepino [Solanum muricatum] 4 69.80% 20.50%

Peppermint [Mentha x piperita] 1 29% 0%

Pepperweed [Lepidium latifolium] 2 40% 7.10%

Peruvian Groundcherry [Physalis peruviana] 1 23% 0% Petalostemum villosum [Silky Prairie-Clover] 3 -9.30% 23.40%

Petunia [Petunia hybrida] 6 55% 9.80%

Petunia hybrida [Petunia] 6 55% 9.80%

Phaeocystis [Phytoplankton] 1 0% 0%

Phalaris aquatica [Harding Grass] 13 24.60% 8.50%

Phalaris arundinacea [Canary Grass] 1 49% 0%

Pharus latifolius [Broad Stalkgrass] 1 144% 0%

Phaseolus acutifolius [Tepary Bean] 2 70% 9.90%

Phaseolus vulgaris [Garden Bean] 17 64.30% 20.30%

Phleum pratense [Timothy] 18 12.20% 3.20%

Phragmites communis [Wetland Reed] 1 -8% 0%

Phragmites japonica [Wetland Reed] 1 -11% 0%

Phyllanthus emblica [Emblic] 8 165% 16%

Physalis peruviana [Peruvian Groundcherry] 1 23% 0%

Phytolacca americana [American Pokeweed] 8 -2.40% 13.80%

Picea abies [Norway Spruce] 11 35.90% 5.50%

Picea glauca [White Spruce] 2 82% 49.50%

Picea koraiensis [Spruce] 7 37.90% 8.70%

Plant Name # of

Studies Arithmetic

Mean Standard

Error

Picea mariana [Black Spruce] 14 22.80% 3%

Picea sitchensis [Sitka Spruce] 7 20.70% 5%

Pine, Black [Pinus nigra] 1 22% 0%

Pine, Eastern White [Pinus strobus] 3 31.70% 9%

Pine, Eldarica [Pinus eldarica] 1 153% 0%

Pine, Jack [Pinus banksiana] 3 18.30% 8.80%

Pine, Japanese Red [Pinus densiflora] 7 15.70% 7.60%

Pine, Korean [Pinus koraiensis] 2 27% 15.60%

Pine, Loblolly [Pinus taeda] 65 61.90% 7.90%

Pine, Longleaf [Pinus palustris] 8 19% 7.40%

Pine, Merkus [Pinus merkusii] 2 200% 43.10%

Pine, Monterey [Pinus radiata] 1 36% 0%

Pine, Mountain [Pinus uncinata] 1 0% 0%

Pine, Ponderosa [Pinus ponderosa] 46 64.20% 11.80%

Pine, Scots [Pinus sylvestris] 46 41% 5.50%

Pineapple [Ananas comosus] 2 5% 9.20%

Pinus banksiana [Jack Pine] 3 18.30% 8.80%

Pinus densiflora [Japanese Red Pine] 7 15.70% 7.60%

Pinus eldarica [Eldarica Pine] 1 153% 0%

Pinus koraiensis [Korean Pine] 2 27% 15.60%

Pinus merkusii [Merkus Pine] 2 200% 43.10%

Pinus nigra [Black Pine] 1 22% 0%

Pinus palustris [Longleaf Pine] 8 19% 7.40%

Pinus ponderosa [Ponderosa Pine] 46 64.20% 11.80%

Pinus radiata [Monterey Pine] 1 36% 0%

Pinus strobus [Eastern White Pine] 3 31.70% 9%

Pinus sylvestris [Scots Pine] 46 41% 5.50%

Pinus taeda [Loblolly Pine] 65 61.90% 7.90%

Pinus uncinata [Mountain Pine] 1 0% 0%

Pisum sativum [Garden Pea] 11 33.30% 6.30%

Plantago erecta [Dwarf Plantain] 2 4.50% 11.70%

Plantago lanceolata [Narrowleaf Plantain] 11 46.20% 15.20%

Plantago major [Common Plantain] 3 31.70% 4.60%

Plantago maritima [Sea Plantain] 3 101.70% 27.90%

Plantago media [Hoary Plantain] 2 26.50% 5.30%

Plantago virginica [Virginia Plantain] 1 45% 0%

Plantain, Common [Plantago major] 3 31.70% 4.60%

Plantain, Dwarf [Plantago erecta] 2 4.50% 11.70%

Plantain, Hoary [Plantago media] 2 26.50% 5.30%

Page 34: Human Health Effects - Granicus

 

 

Plant Name # of

Studies Arithmetic

Mean Standard

Error Plantain, Narrowleaf [Plantago lanceolata] 11 46.20% 15.20%

Plantain, Sea [Plantago maritima] 3 101.70% 27.90%

Plantain, Virginia [Plantago virginica] 1 45% 0%

Poa alpina [Alpine Bluegrass] 2 79.50% 4.60%

Poa annua [Annual Bluegrass] 10 20.20% 9.10%

Poa pratensis [Kentucky Bluegrass] 9 113.90% 29.80%

Poa trivialis [Rough Bluegrass] 1 3% 0%

Poison Ivy [Toxicodendron radicans] 7 75.70% 13.70%

Polygonum cuspidatum [Japanese Knotweed] 3 48% 14.80% Polygonum hydropiper [Marshpepper Knotweed] 2 40.50% 15.90%

Polygonum lapathifolium [Curlytop Knotweed] 5 19.40% 4.20%

Polygonum pensylvanicum [Pennsylvania Smartweed] 3 55.70% 1.80% Polygonum persicaria [Spotted Ladysthumb] 2 38% 9.20%

Poplar Clone, Robusta [Populus deltoides x Polulus nigra] 6 63.30% 13.70%

Poplar, Black [Populus nigra] 15 53.90% 12.20% Poplar, Hybrid [Populus trichocarpa x Populus deltoides] 7 76.70% 23.40%

Poplar, Robusta [Populus euramericana] 13 41.70% 8.80%

Poplar, White [Populus alba] 14 43.90% 4.70%

Poplar, Yellow [Liriodendron tulipifera] 3 34% 4.70%

Poppy, Dwarf Breadseed [Papaver setigerum] 1 390% 0%

Populus alba [White Poplar] 14 43.90% 4.70%

Populus deltoides [Eastern Cottonwood] 5 60.20% 15.80%

Populus deltoides x Polulus nigra [Robusta Poplar Clone] 6 63.30% 13.70%

Populus euramericana [Robusta Poplar] 13 41.70% 8.80%

Populus grandidentata [Bigtooth Aspen] 1 29% 0%

Populus nigra [Black Poplar] 15 53.90% 12.20%

Populus tremula x Populus tremuloides [Hybrid Aspen] 6 40.30% 18%

Populus tremuloides [Quaking Aspen] 32 60.60% 10%

Populus trichocarpa [Black Cottonwood] 5 124% 93.20%

Populus trichocarpa x Populus deltoides [Hybrid Poplar] 7 76.70% 23.40%

Potato, Sweet [Ipomoea batatas] 6 33.70% 9.30%

Potato, White [Solanum tuberosum] 33 29.50% 3.60%

Pothos [Scindapsus aureus] 1 39% 0%

Prairie, Native Tallgrass 3 62% 17.40%

Prairie, Native Tallgrass Dominated by Andropogon gerardii 2 13.50% 9.50%

Prickly Pear [Opuntia ficus-indica] 9 38.20% 13.30% Prorocentrum minimum [A Marine Dinoflagellate] 2 20% 3.50%

Prosopis flexuosa [Deciduous Tree] 1 42% 0%

Prosopis glandulosa [Honey Mesquite] 13 37.70% 5.20%

Plant Name # of

Studies Arithmetic

Mean Standard

Error

Prunella vulgaris [Selfheal] 2 78% 17.70%

Prunus avium [Sweet Cherry] 8 59.80% 7.80%

Prunus laurocerasus [English Laurel] 1 56% 0%

Prunus persica [Peach Tree] 4 27.80% 0.80%

Prunus serotina [Black Cherry] 2 42% 1.40%

Pseudotsuga menziesii [Douglas Fir] 6 9.70% 3.90%

Pteridium aquilinum [Bracken] 1 0% 0%

Puccinellia maritima [Seaside Alkaligrass] 4 61% 31%

Pueraria lobata (Leguminous Weed) 1 98% 0%

Purple Witchweed [Striga hermonthica] 1 -65% 0%

Pyrrosia piloselloides [Tropical Fern] 1 78% 0%

Quercus alba L. [White Oak] 6 146.70% 30.10%

Quercus cerrioides [Oak] 1 35% 0%

Quercus chapmanii Sargenti [Chapman's Oak] 2 325% 123.70%

Quercus geminata [Sand Live Oak] 5 9.40% 5.40%

Quercus ilex L. [Holly Oak] 4 38% 4.80%

Quercus margaretta [Sand Post Oak] 2 20.50% 14.50%

Quercus mongolica [Mongolian Oak] 6 54.30% 19.50%

Quercus myrtifolia Wild. [Myrtle Oak] 8 140.30% 63.20%

Quercus petraea (Mattuschka) Liebl. [Durmast Oak] 6 53.20% 18.70%

Quercus robur L. [Pedunculate Oak] 8 30.60% 12.80%

Quercus rubra L. [Northern Red Oak] 7 55.30% 25.20%

Quercus suber L. [Cork Oak] 4 46.80% 13.70%

Radish, Wild [Raphanus sativus x raphanistrum] 1 33% 0%

Radish, Wild [Raphanus sativus] 18 75.30% 14.30%

Ragweed, Annual [Ambrosia artemisiifolia] 13 28.80% 7%

Ragweed, Great [Ambrosia trifida] 3 26% 8.20%

Ragwort [Senecio jacobea] 1 21% 0%

Rape, Oilseed [Brassica napus] 17 52.90% 8.90%

Raphanus sativus [Wild Radish] 18 75.30% 14.30% Raphanus sativus x raphanistrum [Wild Radish] 1 33% 0%

Reedgrass, Chee [Calamagrostis epigeios] 2 98.50% 0.40%

Rhinanthus alectorolophus [European Yellowrattle] 2 75% 68.60%

Rhinanthus minor [Yellow Rattle] 1 50% 0%

Rhizophora mangle [American Mangrove] 3 39.30% 6.10%

Rice [Oryza sativa] 137 34.30% 2.10%

Ricinus communis [Castor Bean] 7 53.60% 16.30%

Robinia pseudoacacia [Black Locust] 4 346% 242.10%

Rosa hybrida [Rose] 4 26.50% 7.90%

Page 35: Human Health Effects - Granicus

 

 

Plant Name # of

Studies Arithmetic

Mean Standard

Error

Rose [Rosa hybrida] 4 26.50% 7.90%

Rose, Sun [Helianthemum nummularium] 1 0% 0%

Rosemary, Wild [Ledum palustre] 1 0% 0%

Rubus [Blackberry] 1 675% 0%

Rudbeckia hirta [Black-eyed Susan] 1 0% 0%

Rumex acetosella [Common Sheep Sorrel] 2 24% 2.10%

Rumex obtusifolius [Bitter Dock] 6 18.70% 12.50%

Ryegrass, Darnel [Lolium temulentum] 3 44.70% 29.20%

Ryegrass, Italian [Lolium multiflorum] 6 11.50% 5.10%

Ryegrass, Perennial [Lolium perenne] 74 35.10% 5.30%

Saccharina latissima [Sugar Kelp] 74 35.10% 5.30%

Saccharum officinarum [Sugarcane] 3 25.70% 8.10%

Sage, Pitcher [Salvia pitcheri] 2 25.50% 2.50%

Sagebrush, Big [Artemisia tridentata] 4 24.30% 6.10%

Salvation Jane [Echium plantagineum] 4 15.80% 6.20%

Salvia pitcheri [Pitcher Sage] 2 25.50% 2.50%

Sanguisorba minor [Small Burnet] 6 81.20% 15.20%

Schima superba[Subtropical Tree] 2 27.50% 11% Schizachyrium scoparium [Little Bluestem] 9 18.20% 9%

Schoenoplectus americanus [Chairmaker's Bulrush] 1 27% 0%

Scindapsus aureus [Pothos] 1 39% 0%

Scirpus lacustris [Softstem Bulrush] 1 -2% 0%

Scirpus olneyi [Salt Marsh Sedge] 10 17.40% 7.70%

Seaweed [Lomentaria articulata] 1 269% 0%

Sedge, Beaked [Carex rostrata] 1 44% 0%

Sedge, Bigelow's [Carex bigelowii] 1 0% 0%

Sedge, Heath [Carex flacca] 5 73.80% 18.20%

Sedge, Salt Marsh [Scirpus olneyi] 10 17.40% 7.70%

Selfheal [Prunella vulgaris] 2 78% 17.70%

Senecio jacobea [Ragwort] 1 21% 0%

Senecio vulgaris [Common Groundsel] 2 66% 25.50%

Sesbania vesicaria [Bagpod] 1 60% 0%

Setaria glauca [Yellow Bristle Grass] 1 16% 0%

Seteria faberi [Japanese Bristlegrass] 5 18.80% 6.70%

Seteria viridis [Green Bristlegrass] 1 18% 0%

Sheep Sorrel, Common [Rumex acetosella] 2 24% 2.10%

Shorea leprosula 2 38.50% 11%

Silene cretica in mixed stands with Linum usitatissimum [Common Flax] 2 98.50% 17.30%

Silene latifolia [White Campion] 6 43.50% 9%

Plant Name # of

Studies Arithmetic

Mean Standard

Error Silene noctiflora [Night-flowering Catchfly] 1 44% 0%

Sinapis alba [White Mustard] 4 21.30% 4.10%

Sleepingplant [Cassia fasciculata] 2 17.50% 27.20% Smartweed, Pennsylvania [Polygonum pensylvanicum] 3 55.70% 1.80%

Soft Rush [Juncus effuses] 1 -5% 0%

Softstem Bulrush [Scirpus lacustris] 1 -2% 0%

Solanum curtilobum [Shortlobe Solanum] 2 63% 5.70%

Solanum dulcamara [Climbing Nightshade] 10 46.50% 9.30%

Solanum lycopersicum [Tomato] 2 152.50% 23%

Solanum melongena [Eggplant] 1 41% 0%

Solanum muricatum [Pepino] 4 69.80% 20.50%

Solanum tuberosum [White Potato] 33 29.50% 3.60% Solanum, Shortlobe [Solanum curtilobum] 2 63% 5.70%

Solidago canadensis [Canadian Goldenrod] 2 1750% 1237.40%

Solidago rigida [Stiff Goldenrod] 1 27% 0% Sorghastrum nutans [Yellow Indian Grass] 3 9.70% 14.40%

Sorghum [Sorghum bicolor] 24 18.50% 3.60%

Sorghum bicolor [Sorghum] 24 18.50% 3.60%

Sorghum halepense [Johnsongrass] 3 -13% 14.30%

Sorghum sudanense [Sudan Grass] 1 14% 0%

Sour Orange Tree [Citrus aurantium] 3 61.30% 13.30%

Soybean [Glycine max] 162 47.60% 3.10%

Spartina alterniflora [Smooth Cordgrass] 2 0% 0%

Spartina anglica [Common Cordgrass] 3 19% 25.10%

Spartina patens [Saltmeadow Cordgrass] 9 9.70% 4.90%

Spergula arvensis [Corn Spurrey] 2 -20% 7.80%

Sphagnum cuspidatum [Toothed Sphagnum] 1 42% 0% Sphagnum magellanicum [Magellan's Sphagnum] 1 26% 0%

Sphagnum papillosum [Papillose Sphagnum] 2 57.50% 0.40%

Sphagnum recurvum [Recurved Sphagnum] 4 12.30% 7% Sphagnum, Magellan's [Sphagnum magellanicum] 1 26% 0%

Sphagnum, Papillose [Sphagnum papillosum] 2 57.50% 0.40%

Sphagnum, Recurved [Sphagnum recurvum] 4 12.30% 7% Sphagnum, Toothed [Sphagnum cuspidatum] 1 42% 0%

Spider Lily [Hymenocallis littoralis] 2 52% 2.80%

Spinach [Spinacia oleracea] 2 17.50% 1.80%

Spinacia oleracea [Spinach] 2 17.50% 1.80%

Sporobolus pyramidalis [Whorled Dropseed] 6 33.50% 21.70%

Spring Vetch [Vicia lathyroides] 1 114% 0%

Page 36: Human Health Effects - Granicus

 

 

Plant Name # of

Studies Arithmetic

Mean Standard

Error

Spruce [Picea koraiensis] 7 37.90% 8.70%

Spruce, Black [Picea mariana] 14 22.80% 3%

Spruce, Norway [Picea abies] 11 35.90% 5.50%

Spruce, Sitka [Picea sitchensis] 7 20.70% 5%

Spruce, White [Picea glauca] 2 82% 49.50%

Spurrey, Corn [Spergula arvensis] 2 -20% 7.80%

St. John's Wort [Hypericum perforatum] 1 72% 0%

Stalkgrass, Broad [Pharus latifolius] 1 144% 0%

Stipa thurberiana [Thurber Needlegrass] 1 11% 0%

Strawberry, Hybrid [Fragaria x ananassa] 4 42.80% 13.10%

Striga hermonthica [Purple Witchweed] 1 -65% 0%

Stylosanthes scabra [Pencilflower] 2 72% 10.60% Subterranean Clover [Trifolium subterraneum] 1 756% 0%

Sugarcane [Saccharum officinarum] 3 25.70% 8.10%

Sugargum [Eucalyptus cladocalyx] 2 87.50% 9.50%

Sunflower [Helianthus annus] 11 37.50% 7.80%

Sunn Hemp [Crotalaria juncea] 2 45% 9.90%

Sweet Orange Tree [Citrus sinensis] 2 38.50% 4.60% Sweet Vernal Grass [Anthoxanthum odoratum] 1 170% 0%

Sweetgum [Liquidambar styraciflua] 20 132.40% 23.50%

Switchgrass [Panicum virgatum] 1 -1% 0%

Sycamore [Acer pseudoplatanus] 3 34.30% 12.80%

Symphiocarpos orbiculatus [Buck Brush] 2 98.50% 42.10%

Tamarack [Larix Laricina] 1 56% 0%

Taxodium distichum [Bald Cypress] 5 28% 5.40%

Taxus baccata [English Yew] 5 28% 5.40%

Teak, Common [Tectona grandis] 6 54.20% 5.40%

Tectona grandis [Teak, Common] 6 54.20% 5.40%

Terminalia arjuna [Terminalia] 8 190.60% 35.10%

Terminalia chebula [Myrobalan] 8 442.50% 52.50%

Thale Cress [Arabidopsis thaliana] 10 219.70% 81.40%

Themeda triandra [Kangaroo Grass] 8 61.80% 16.20%

Thinouia tomocarpa Standley 2 94% 28.30%

Thistle, Canadian [Cirsium arvense] 3 83.30% 33.50%

Thrift Seapink Needlegrass [Armeria maritima] 1 -45% 0%

Thurber Needlegrass [Stipa thurberiana] 1 11% 0%

Thyme, Water [Hydrilla verticillata] 7 21.90% 3.30%

Tidytips, Coastal [Layia platyglossa] 1 12% 0%

Timothy [Phleum pratense] 18 12.20% 3.20%

Plant Name # of

Studies Arithmetic

Mean Standard

Error

Tobacco, Cultivated [Nicotiana tabacum] 6 60.50% 11%

Tomato [Lycopersicon lycopersicum] 2 29.50% 5.30%

Tomato [Solanum lycopersicum] 2 152.50% 23% Tomato, Garden [Lycopersicon esculentum] 35 31.90% 5%

Toxicodendron radicans [Poison Ivy] 7 75.70% 13.70%

Trachypogon plumosus [C4 South American Grass] 2 -28.50% 3.20% Tree, Tropical Savanna [Kielmeyera coriacea] 3 88.70% 55.50%

Trefoil, Big [Lotus pedunculatus] 6 56% 26.50%

Tridens flavus [Purpletop Tridens] 1 0% 0%

Tridens, Purpletop [Tridens flavus] 1 0% 0%

Trifolium alexandrium [Berseem] 1 41% 0%

Trifolium incarnatum [Crimson Clover] 2 21.50% 0.40%

Trifolium pratense [Purple Clover] 5 16.80% 4.40%

Trifolium repens [White Clover] 45 59.80% 16.80%

Trifolium subterraneum [Subterranean Clover] 1 756% 0%

Trigonella foenum-graecum [Fenugreek] 2 91% 33.20%

Triticum aestivum [Common Wheat] 214 33% 2%

Triticum turgidum [Rivet Wheat] 4 24.50% 2.50%

Tropaeolum majus [Nasturtium] 3 42.30% 10.80%

Tsuga canadensis [Eastern Hemlock] 3 34% 4.50%

Typha latifolia [Cattail] 1 -2% 0%

Ulmus alata [Winged Elm] 1 30% 0%

Understory Herb [Aechmea magdalenae] 1 30% 0%

Urtica dioica [Stinging Nettle] 1 26% 0%

Vaccinium myrtillus [Whortleberry] 6 60.70% 10%

Vallisneria tortifolia [Corkscrew Vallisneria] 2 14% 5.70%

Velvet Leaf [Abutilon theophrasti] 14 32.10% 13.70%

Velvetgrass, Common [Holcus lanatus] 11 38.50% 10.40%

Veronica didyma [Gray Field Speedwell] 1 26% 0%

Vetch, Bird [Vicia cracca] 1 47% 0%

Vetch, Birdfoot Deer [Lotus corniculatus] 8 49.30% 12.90%

Vetch, Common Kidney [Anthyllis vulneraria] 6 45.30% 17.50%

Vicia cracca [Bird Vetch] 1 47% 0%

Vicia faba [Faba Bean] 4 46.30% 13.50%

Vicia lathyroides [Spring Vetch] 1 114% 0%

Vigna angularis [Adsuki Bean] 4 60% 5.20%

Vigna mungo [Blackgram] 2 87% 19.80%

Vigna radiata [Mungbean] 2 31.50% 16.60%

Vigna unguiculata [Blackeyed Pea] 3 83.70% 12.20%

Page 37: Human Health Effects - Granicus

 

 

Plant Name # of

Studies Arithmetic

Mean Standard

Error

Viola x wittrockiana [Pansy] 1 30% 0%

Vulpia microstachys [Small Fescue] 2 -4.50% 8.10%

Wallaby Grass [Austrodanthonia caespitosa] 2 78% 4.20% Water Hyacinth, Common [Eichhornia crassipes] 5 51% 19.30%

Water Lily [Nymphaea marliac] 2 162% 76.40%

Wattle, Black [Acacia mearnsii] 1 48% 0%

Wattle, Orange [Acacia saligna] 1 55% 0%

Wattle, Silver [Acacia dealbata] 1 106% 0%

Wattle, Wiry [Acacia coriacea] 1 50% 0%

Weed, Annual, C4 [Eragrostis orcuttiana] 1 462% 0%

Weed, Leguminous [Pueraria lobata] 1 98% 0%

Weeds, Unspecified 2 0% 0%

Wheat, Common [Triticum aestivum] 214 33% 2%

Wheat, Rivet [Triticum turgidum] 4 24.50% 2.50%

Wheatgrass, Western [Agropyron smithii] 3 50.30% 42.20% Wheatgrass, Western [Pascopyrum smithii] 4 73.50% 16.80%

White Burrobush [Ambrosia dumosa] 2 164% 36.10%

Whitestar [Ipomoea lacunosa] 2 15% 14.80%

Whortleberry [Vaccinium myrtillus] 6 60.70% 10%

Woollybutt, Darwin [Eucalyptus miniata] 9 -2% 5.40%

Xanthium strumarium var. canadense [Canada Cockleburr] 7 30.60% 6.40%

Yarrow [Achillea millefolium] 3 24.70% 12.60%

Yellow Bristle Grass [Setaria glauca] 1 16% 0%

Yellow Rattle [Rhinanthus minor] 1 50% 0% Yellowrattle, European [Rhinanthus alectorolophus] 2 75% 68.60%

Yellowtops, Clustered [Flaveria trinervia] 1 46% 0%

Yucca brevifolia [Joshua Tree] 1 65% 0%

Yucca schidigera [Mojave Yucca] 1 86% 0%

Yucca whipplei [Chaparral Yucca] 1 13% 0%

Yucca, Chaparral [Yucca whipplei] 1 13% 0%

Yucca, Mojave [Yucca schidigera] 1 86% 0%

Zea mays [Corn] 20 21.30% 4.90%

Zizania latifolia [Manchurian Wildrice] 1 -5% 0%

Zostera marina [Eelgrass, Common] 1 24% 0%

Page 38: Human Health Effects - Granicus

726

[this page intentionally blank]

Page 39: Human Health Effects - Granicus

727

Appendix 3  

Table 7.1.2 – Plant Photosynthesis (Net CO2 Exchange Rate) Responses to Atmospheric CO2 Enrichment  

Table 7.1.2 reports the results of peer-reviewed scientific studies measuring the photosynthetic growth response of plants to a 300-ppm increase in atmospheric CO2 concentration. Plants are listed by both common and/or scientific names, followed by the number of experimental studies conducted on each plant, the mean photosynthetic response to a 300-ppm increase in the air’s CO2 content, and the standard error of that mean.Whenever the CO2 increase was not exactly 300 ppm, a linear adjustment was computed. For example, if the CO2 increase was 350 ppm and the growth response was a 60 percent enhancement, the adjusted 300-ppm CO2 growth response was calculated as (300/350) x 60% = 51%. The data in this table appear by permission of the Center for the Study of Carbon Dioxide and Global Change and were taken from its Plant Growth database as it existed on 23 March 2009. Additional data are added to the database at approximately weekly intervals and can be accessed free of charge at the Center’s website at http://www.co2science.org/data/plant_growth/dry/dry_subject.php. This online database also archives information pertaining to the experimental conditions under which each plant growth experiment was conducted, as well as the complete reference to the journal article from which the experimental results were obtained. The Center's online database also lists percent increases in plant photosynthetic rate for 600- and/or 900-ppm increases in the air’s CO2 concentration.

Plant Name # of

Studies Arithmetic

Mean Standard

Error [Tropical Tree] Pseudobombax septenatum 1 68% 0%

Abelmoschus esculentus [Okra] 1 27% 0%

Abies alba [Silver Fir] 2 37.50% 15.20%

Abutilon theophrasti [Velvet Leaf] 6 46.70% 10.30%

Acacia melanoxylon [Blackwood] 1 19% 0%

Acacia minuta [Coastal Scrub Wattle] 1 21% 0%

Acacia nilotica [Gum Arabic Tree] 2 131.50% 14.50%

Acer mono [Shantung Maple] 4 40.80% 15.10%

Acer rubrum [Red Maple] 17 94.80% 22.60%

Acer saccharinum [Silver Maple] 8 18.50% 7.80%

Acer saccharum [Sugar Maple] 3 64% 9%

Achillea millefolium [Yarrow] 3 45.30% 12.50%

Ackama rosaefolia [Small Bushy Tree] 1 -20% 0%

Actinidia deliciosa [Kiwifruit] 1 113% 0%

Agathis microstachya [Semi-Evergreen Rainforest Tree] 1 50% 0%

Plant Name # of

Studies Arithmetic

Mean Standard

Error

Agathis robusta [Queensland Kauri] 1 56% 0%

Agave deserti [Desert Agave] 2 34.50% 3.20%

Agave salmiana [Pulque Agave] 2 39.50% 6.70%

Agave vilmoriniana [Leaf Succulent] 2 37.50% 26.50%

Agave, Desert [Agave deserti] 2 34.50% 3.20%

Agave, Pulque [Agave salmiana] 2 39.50% 6.70%

Agropyron repens [Couch Grass] 1 33% 0%

Agropyron smithii [Western Wheatgrass] 2 -4.50% 6%

Agrostis canina [Velvet Bentgrass] 1 38% 0%

Agrostis capillaris [Colonial Bentgrass] 3 46.30% 20.20%

Albizia procera [Tall Albizia] 2 121% 19.10%

Albizia, Tall [Albizia procera] 2 121% 19.10%

Alder [Alnus firma] 4 83.50% 6.40%

Alder, Black [Alnus glutinosa] 3 51% 11.80%

Alder, Manchurian [Alnus hirsuta] 7 22.10% 17.80%

Page 40: Human Health Effects - Granicus

 

Plant Name # of

Studies Arithmetic

Mean Standard

Error

Alder, Red [Alnus rubra] 8 73.90% 10.60%

Alfalfa [Medicago sativa] 17 26.20% 4.10%

Alkaligrass, Seaside [Puccinellia maritima] 5 84% 17.80%

Alnus firma [Alder] 4 83.50% 6.40%

Alnus glutinosa [Black Alder] 3 51% 11.80%

Alnus hirsuta [Manchurian Alder] 7 22.10% 17.80%

Alnus rubra [Red Alder] 8 73.90% 10.60%

Alocasia macrorrhiza [Giant Taro] 2 79% 18.40%

Alpine grassland dominated by Carex curvula 2 66.50% 15.20%

Alternanthera crucis [West Indian Joyweed] 1 91% 0%

Amaranth, Grain [Amaranthus hypochondriacus] 1 9% 0%

Amaranth, Redroot [Amaranthus retroflexus] 4 10.80% 5.30%

Amaranth, Slim [Amaranthus hybridus] 2 2.50% 1.80%

Amaranthus hybridus [Slim Amaranth] 2 2.50% 1.80%

Amaranthus hypochondriacus [Grain Amaranth] 1 9% 0%

Amaranthus retroflexus [Redroot Amaranth] 4 10.80% 5.30%

Amate [Ficus obtusifolia] 1 76% 0%

Ambrosia artemisiifolia [Annual Ragweed] 3 37.70% 5.20%

Ambrosia cordifolia [Tuscon Burr Ragweed] 3 45.70% 3.80%

Ambrosia dumosa [White Burrobush] 4 85% 28%

American Pokeweed [Phytolacca americana] 1 56% 0%

Anacardium excelsum 1 19% 0%

Anagallis arvensis [Scarlet Pimpernel] 1 45% 0%

Ananas comosus [Pineapple] 3 168.30% 55.80%

Andropogon gerardii [Big Bluestem] 12 24.30% 6.60%

Andropogon glomeratus [Bushy Bluestem] 2 -1% 3.50%

Anemone [Anemone raddeana] 2 65% 24.70%

Anemone cylindrica [Candle Anemone] 1 100% 0%

Anemone raddeana [Anemone] 2 65% 24.70%

Anthoxanthum odoratum [Sweet Vernal Grass] 1 109% 0%

Anthyllis vulneraria [Common Kidney Vetch] 4 27.80% 10.30%

Antirrhoea trichantha 1 33% 0%

Apple 2 105.50% 18.70%

Apricot [Prusus armeniaca] 4 62.80% 4.20%

Arabidopsis thaliana [Mouse Ear Cress] 8 61.30% 18.30%

Arachis hypogaea [Peanut] 5 36% 7.40%

Arbutus unedo [Strawberry Tree] 4 91.30% 32.10%

Armeria maritima [Thrift Seapink] 1 46% 0%

Arrhenatherum elatius [Tall Oatgrass] 1 39% 0%

Artemisia tridentata [Big Sagebrush] 2 31% 12.70%

Plant Name # of

Studies Arithmetic

Mean Standard

Error

Ash, Green [Fraxinus lanceolata] 1 60% 0%

Ash, Green [Fraxinus pennsylvanica] 5 62.40% 12.90%

Asparagus officinalis [Garden Asparagus] 1 25% 0%

Asparagus, Garden [Asparagus officinalis] 1 25% 0%

Aspen, Bigtooth [Populus grandidentata] 3 181.70% 60.70%

Aspen, Hybrid [Populus tremula x Populus tremuloides] 3 28.70% 3.30%

Aspen, Quaking [Populus tremuloides] 32 59.40% 6.30%

Aster tripolium [Sea Aster] 5 21.40% 8.50%

Aster, Sea [Aster tripolium] 5 21.40% 8.50%

Avena barbata [Slender Oat] 2 52% 5.70%

Avena fatua [Wild Oat] 2 53% 11.30%

Avena sativa [Red Oat] 2 32.50% 3.90%

Avens [Geum reptans] 1 84% 0%

Azolla pinnata [Water Fern] 2 35% 24.70%

Bahiagrass [Paspalum notatum] 1 24% 0%

Bamboo [Fargesia denudata] 1 40% 0%

Barley [Hordeum vulagare] 13 55.20% 12.60%

Barrelcactus, California [Ferocactus acanthodes] 1 30% 0%

Bean, Castor [Ricinus communis] 2 34% 0%

Bean, Faba [Vicia faba] 7 52.30% 10.50%

Bean, Garden [Phaseolus vulgaris] 24 55.80% 10.30%

Beech, American [Fagus grandifolia] 1 96% 0%

Beech, European [Fagus sylvatica] 13 61.80% 9%

Beech, Japanese [Fagus crenata] 5 33.60% 5.20%

Beech, Myrtle [Nothofagus cunninghamii] 1 55% 0%

Beech, Red [Nothofagus fusca] 3 40% 1.70%

Beet, Common [Beta vulgaris] 7 44.70% 4.90%

Begonia [Begonia x hiemalis] 2 70% 21.20%

Begonia x hiemalis [Begonia] 2 70% 21.20%

Beilschmiedia pendula [Slugwood] 4 21.30% 7.70%

Bentgrass, Colonial [Agrostis capillaris] 3 46.30% 20.20%

Bentgrass, Velvet [Agrostis canina] 1 38% 0%

Beta vulgaris [Common Beet] 7 44.70% 4.90%

Blackwood [Acacia melanoxylon] 1 19% 0%

Bluegrass [Poa cookii] 1 55% 0%

Bluegrass, Annual [Poa annua] 6 62% 14%

Bluegrass, Kentucky [Poa pratensis] 2 103% 45.30%

Bluegrass, Rough [Poa trivialis] 1 41% 0%

Bluestem, Big [Andropogon gerardii] 12 24.30% 6.60%

Bluestem, Bushy [Andropogon glomeratus] 2 -1% 3.50%

Page 41: Human Health Effects - Granicus

 

Plant Name # of

Studies Arithmetic

Mean Standard

Error Bluestem, Caucasian [Bothriochloa caucasica] 2 15.50% 11%

Bluestem, Little [Schizachyrium scoparium] 3 72.30% 18.10%

Bothriochloa caucasica [Caucasian Bluestem] 2 15.50% 11%

Bottlebrush Squirreltail [Elymus elymoides] 1 21% 0%

Bouteloua curtipendula [Sideoats Grama] 2 18.50% 2.50%

Bouteloua gracilis [Blue Grama] 3 58.70% 28.90%

Brachychiton populneum [Whiteflower Kurrajong] 1 75% 0%

Brachyglottis repanda [Rangiora] 1 120% 0%

Brachypodium pinnatum [Heath Falsebrome] 1 59% 0%

Bracken [Pteridium aquilinum] 8 93.80% 7.30%

Brassica campestris [Rape Seed Mustard] 2 90.50% 37.10%

Brassica carinata [Abyssinian Mustard] 2 34.50% 10.30%

Brassica juncea [India Mustard] 2 50.50% 24.40%

Brassica napus [Canola] 12 63.50% 20.10%

Brassica nigra [Black Mustard] 2 39% 11.30%

Bristlegrass, Green [Setaria viridis] 1 13% 0%

Bristlegrass, Japanese [Setaria faberi] 4 15% 7.10%

Brittlebush, Button [Encelia frutescens] 1 30% 0%

Brome, Compact [Bromus madritensis] 1 12% 0%

Brome, Erect [Bromus erectus] 6 30.20% 9.50%

Brome, Poverty [Bromus sterilis] 1 45% 0%

Brome, Smooth [Bromus inermis] 2 29% 7.80%

Bromus erectus [Erect Brome] 6 30.20% 9.50%

Bromus inermis [Smooth Brome] 2 29% 7.80%

Bromus madritensis [Compact Brome] 1 12% 0%

Bromus sterilis [Poverty Brome] 1 45% 0%

Bromus tectorum [Cheatgrass] 1 56% 0%

Bryum pseudotriquetrum [Common Green Bryum Moss] 2 47.50% 10.30%

Bryum subrotundifolium 2 28.50% 8.10%

Buchloe dactyloides [Buchloe dactyloides] 1 27% 0%

Buck Brush [Symphiocarpos orbiculatus] 2 105% 43.80%

Buffalo Grass [Buchloe dactyloides] 1 27% 0%

Buffel Grass [Cenchrus ciliaris] 1 31% 0%

Bulrush, Seaside [Scirpus maritimus] 1 55% 0%

Bunchgrass, Perennial [Oryzopsis hymenoides] 1 47% 0%

Burnet, Small [Sanguisorba minor] 5 31.60% 4%

Burr Medick [Medicago minima] 1 0% 0%

Burrobush, White [Ambrosia dumosa] 4 85% 28%

Bush, Bellyache [Jatropha gossypiifolia] 1 73% 0%

Plant Name # of

Studies Arithmetic

Mean Standard

Error

Buttercup [Ranunculus] 1 47% 0%

Buttercup, Glacier [Ranunculus glacialis] 3 44% 8.90%

Buttercup, Tall [Ranunculus acris] 1 36% 0%

Cacao [Theobroma cacao] 1 32% 0%

Cactus, Tree [Stenocereus queretaroensis] 1 30% 0%

Cajanus cajan [Pigeonpea] 2 137.50% 26.50%

Calamagrostis epigeios [Chee Reedgrass] 1 27% 0%

Calamondin [Citrus madurensis] 2 195% 74.20%

Calcareous Grassland Community in the Swiss Jura Mountains 2 49.50% 3.20%

California Annual Grassland on Sandstone-Derived Soil 2 21% 3.50%

California Annual Grassland on Serpentine-Derived Soil 2 11% 0.70%

Calluna vulgaris [Heather] 2 49.50% 8.10%

Calophyllum longifolium [Tropical Tree] 1 -15% 0%

Caloplaxa trachyphylla [Lichen] 1 38% 0%

Camphorweed [Heterotheca subaxillaris] 1 17% 0%

Candle Anemone [Anemone cylindrica] 1 100% 0%

Canola [Brassica napus] 12 63.50% 20.10%

Cantaloupe [Cucumis melo] 4 56.80% 0.70%

Capsicum annuum [Bell Pepper] 3 41% 15.50%

Carex bigelowii [Bigelow's Sedge] 1 0% 0%

Carex curvula dominated alpine grassland 2 66.50% 15.20%

Carex flacca [Heath Sedge] 1 55% 0%

Carex paleacea [Chaffy Sedge] 1 34% 0%

Carob [Ceratonia siliqua] 6 40.50% 7.50%

Carpinus betulus [European Hornbeam] 4 14.80% 6.40%

Carrizo citrange [Citrus sinensis x Poncirus trifoliata] 2 76.50% 9.50%

Carya glabra Sweet [Pignut Hickory] 3 57.30% 22.80%

Carya ovata [Shagbark Hickory] 1 35% 0%

Cassava [Manihot esculenta Crantz] 1 56% 0%

Castanea sativa [Sweet Chesnut] 2 66.50% 37.80%

Cecropia longipes 1 17% 0%

Cenchrus ciliaris 1 31% 0%

Ceratonia siliqua [Carob] 6 40.50% 7.50%

Cercis canadensis [Eastern Redbud] 3 127.30% 48%

Chairmaker's Bulrush [Schoenoplectus americanus] 1 27% 0%

Chamaenerion angustifolium [Narrowleaved Fireweed] 1 96% 0%

Cheatgrass [Bromus tectorum] 1 56% 0%

Chenopodium album [Lambsquarters] 3 23.30% 3.40%

Cherry, Black [Prunus serotina] 3 63.70% 5.70%

Page 42: Human Health Effects - Granicus

 

Plant Name # of

Studies Arithmetic

Mean Standard

Error

Cherry, Sweet [Prunus avium] 1 38% 0%

Chesnut, Sweet [Castanea sativa] 2 66.50% 37.80%

Cinquefoil, Alpine [Potentilla crantzii] 1 25% 0%

Cirsium arvense [Canadian Thistle] 4 56.50% 8%

Cistus [Cistus salviifolius] 1 53% 0%

Cistus salviifolius [Cistus] 1 53% 0%

Citrus aurantium [Sour Orange] 12 111.60% 15.30%

Citrus madurensis [Calamondin] 2 195% 74.20% Citrus paradisi Macfad. budded to Citrus reticulata Blanco (Cleopatra mandarin) rootstock [Marsh Grapefruit] 2 60% 4.90% Citrus paradisi Macfad. budded to Poncirus trifoliata (L.) Raf. rootstock [Marsh Grapefruit] 2 70% 14.10%

Citrus reticulata [Mandarin Orange] 2 45.50% 8.80% Citrus sinensis (L.) Osbeck budded to Citrus reticulata Blanco (Cleopatra manderin) rootstock [Washington Naval Orange] 2 52.50% 10.30% Citrus sinensis (L.) Osbeck budded to Poncirus trifoliata (L.) Raf. rootstock [Washington Naval Orange] 2 43.50% 8.10% Citrus sinensis (L.) Osbeck x Citrus reticulata Blanco (Cleoplatra manderin) [Valencia Orange] 2 42.50% 15.90%

Citrus sinensis (L.) Osbeck x Poncirus trifoliata (L.) Raf. [Valencia Orange] 2 54.50% 5.30%

Citrus sinensis [Sweet Orange] 2 57% 4.90%

Citrus sinensis x Poncirus trifoliata [Carrizo Citrange] 2 76.50% 9.50%

Cladonia rangiferina (L.) Wigg. [Fruticose Lichen] 1 31% 0%

Claoxylon sandwicense [Po'ola] 3 100% 12.50%

Climbing Nightshade [Solanum dulcamara] 6 28.80% 3.10%

Clover, Subterranean [Trifolium subterraneum] 1 19% 0%

Clover, White [Trifolium repens] 22 49.40% 7.40%

Coastal Scrub Wattle [Acacia minuta] 1 21% 0%

Cocklebur, Rough [Xanthium strumarium] 4 30.80% 12.90%

Codlins and Cream [Epilobium hirsutum] 1 62% 0%

Coffea arabusta [Coffee] 2 271% 65.10%

Coffee [Coffea arabusta] 2 271% 65.10%

Collema furfuraceum [Jelly Lichen] 1 42% 0%

Conebush, Dune [Leucadendron coniferum 2 38% 14.10%

Conebush, Golden [Leucadendron laureolum] 2 28.50% 5.30%

Conebush, Limestone [Leucadendron meridianum] 2 18% 10.60%

Conebush, Sickle-leaf [Leucadendron xanthoconus 2 59% 9.90%

Coolibah Tree [Eucalyptus microtheca 1 57% 0%

Cordgrass, Common [Spartina anglica] 1 33% 0%

Cordgrass, Saltmeadow [Spartina patens] 5 12.80% 5.10%

Cordgrass, Smooth [Spartina alterniflora] 1 19% 0%

Cordia alliodora [Spanish Elm] 1 41% 0%

Corn [Zea mays] 21 28.50% 11.50%

Plant Name # of

Studies Arithmetic

Mean Standard

Error

Corynocarpus laevigatus [Karaka Nut] 1 79% 0%

Cotton [Gossypium hirsutum] 18 46.40% 5.50%

Cottonwood, Eastern [Populus deltoides] 5 39.20% 9%

Cottonwood, Fremont's [Populus fremontii] 3 30.70% 15.90%

Couch Grass [Agropyron repens] 1 33% 0%

Couch Grass [Elymus repens] 1 176% 0%

Crabgrass, Hairy [Digitaria sanguinalis] 3 75.30% 32.70%

Creosote Bush [Larrea tridentata] 10 103.60% 24.40%

Cress, Mouse Ear [Arabidopsis thaliana] 8 61.30% 18.30%

Cucumber, Garden [Cucumis sativus] 3 155% 107.40%

Cucumis melo [Cantaloupe] 4 56.80% 0.70%

Cucumis sativus [Garden Cucumber] 3 155% 107.40%

Cyperus esculentus [Yellow Nutsedge] 1 -26% 0%

Cyperus rotundus [Purple Nutsedge] 1 6% 0%

Cyprus, Bald [Taxodium distichum] 5 88.60% 14.40%

Dactylis glomerata [Orchardgrass] 11 34.70% 6.20%

Daucus carota [Carrot] 8 105.30% 38%

Dendrosenecio brassica [Afro-alpine Giant Rosette Plant] 1 65% 0%

Dendrosenecio keniodendron [Afro-alpine Giant Rosette Plant] 1 52% 0%

Desert Eveningprimrose [Oenothera primiveris] 1 23% 0%

Digitalis purpurea [Purple Foxglove] 1 78% 0%

Digitaria sanguinalis [Hairy Crabgrass] 3 75.30% 32.70%

Dodonaea viscosa [Florida Hopbush] 1 42% 0%

Dropwort [Filipendula vulgaris] 2 218% 101.80%

Duckweed, Swollen [Lemna gibba] 2 55.50% 3.90%

Echinochloa crus-galli [Barnyard Grass] 7 24.90% 5%

Ecosystem, Ten Species of Tropical Forest Tree Seedlings 1 10% 0%

Ecosystem, Understory Plants in a Spruce Model Ecosystem 2 53% 9.90%

Elatostema repens [Tropical Rain Forest Herb] 1 68% 0%

Eleusine indica [Indian Goosegrass] 1 72% 0%

Elymus elymoides [Bottlebrush Squirreltail] 1 21% 0%

Elymus repens [Couch Grass] 1 176% 0%

Emblic [Phyllanthus emblica] 2 71% 21.90%

Emiliania huxleyi [Marine Coccolithophorid] 5 47.80% 13.10%

Encelia frutescens [Button Brittlebush] 1 30% 0%

Entandrophragma angolense [West African Mahogany] 3 63.30% 7.20%

Epilobium hirsutum [Codlins and Cream] 1 62% 0%

Eragrostis orcuttiana [Annual Weed, C4] 1 -44% 0%

Eriogonum inflatum [Native American Pipeweed] 2 42.50% 15.90%

Eucalyptus and Acacia [Forest Canopy in Lysimeter] 1 53% 0%

Page 43: Human Health Effects - Granicus

 

Plant Name # of

Studies Arithmetic

Mean Standard

Error

Eucalyptus cladocalyx [Sugargum] 2 47.50% 27.20%

Eucalyptus microtheca [Coolibah Tree] 1 57% 0%

Eucalyptus polyanthemus [Silver Dollar Gum] 1 75% 0%

Eucalyptus tetrodonta 3 26.30% 8.40%

EUROFACE Poplar Plantation 1 82% 0%

European Hornbeam [Carpinus betulus] 4 14.80% 6.40%

European Larch [Larix decidua] 3 62.70% 4.80%

Evernia mesomorpha [Ring Lichen] 1 60% 0%

Fagus crenata [Japanese Beech] 5 33.60% 5.20%

Fagus grandifolia [American Beech] 1 96% 0%

Fagus sylvatica [European Beech] 13 61.80% 9%

Falsebrome, Heath [Brachypodium pinnatum] 1 59% 0%

Fargesia denudata [Bamboo] 1 40% 0%

Feijoa sellowiana [Pineapple Guava] 1 55% 0%

Fern, Tropical [Pyrrosia piloselloides] 1 19% 0%

Fern, Water [Azolla pinnata] 2 35% 24.70%

Ferocactus acanthodes [California Barrelcactus] 1 30% 0%

Fescue [Festuca rupicola] 2 112.50% 54.10%

Fescue, Meadow [Festuca pratensis] 2 34.50% 1.80%

Fescue, Small [Vulpia microstachys] 1 125% 0%

Fescue, Tall [Festuca arundinacea] 2 46.50% 2.50%

Festuca arundinacea [Tall Fescue] 2 46.50% 2.50%

Festuca pratensis [Meadow Fescue] 2 34.50% 1.80%

Festuca rupicola [Fescue] 2 112.50% 54.10%

Ficus insipida 1 47% 0%

Ficus obtusifolia [Amate] 1 76% 0%

Figwort, Desert [Scrophularia desertorum] 3 50% 21%

Filipendula vulgaris [Dropwort] 2 218% 101.80%

Fir, Douglas [Pseudotsuga menziesii] 17 32% 5.30%

Fir, Silver [Abies alba] 2 37.50% 15.20%

Fireweed, Narrowleaved [Chamaenerion angustifolium] 1 96% 0%

Fivespot, Desert [Malvastrum rotundifolium] 3 33% 5.70%

Flaveria floridana [Florida Yellowtops] 1 25% 0%

Flaveria pringlei [Yellowtops] 1 33% 0%

Flaveria trinervia [Clustered Yellowtops] 3 9% 3.70%

Florida Hopbush [Dodonaea viscosa] 1 42% 0%

Fontinalis antipyretica [Antifever Fontinalis Moss] 2 235% 166.20%

Forest Canopy in Lysimeter [Eucalyptus spp. and Acacia spp.] 1 53% 0%

Foxglove, Purple [Digitalis purpurea] 1 78% 0%

Plant Name # of

Studies Arithmetic

Mean Standard

Error

Fragaria x ananassa [Hybrid Strawberry] 14 72.60% 12.50%

Fraxinus lanceolata [Green Ash] 1 60% 0%

Fraxinus pennsylvanica [Green Ash] 5 62.40% 12.90%

Geum reptans [Avens] 1 84% 0%

Geum rivale [Water Avens] 1 31% 0%

Ginkgo biloba [Maidenhair Tree] 4 57.50% 7.60%

Gloria de la Manana [Ipomoea carnea] 1 62% 0%

Glycine max [Soybean] 75 56.20% 9.40%

Goldenclub [Orontium aquaticum] 7 72.10% 9.30%

Goldfields, California [Lasthenia californica] 1 47% 0%

Goosegrass, Indian [Eleusine indica] 1 72% 0%

Gossypium hirsutum [Cotton] 18 46.40% 5.50%

Grama, Blue [Bouteloua gracilis] 3 58.70% 28.90%

Grama, Sideoats [Bouteloua curtipendula] 2 18.50% 2.50%

Grape, California Wild [Vitis californica] 1 57% 0% Grapefruit, Marsh (Citrus paradisi Macfad. budded to Poncirus trifoliata L. Raf. rootstock) 2 70% 14.10% Grapefruit, Marsh [Citrus paradisi Macfad. budded to Citrus reticulata Blanco (Cleopatra mandarin) rootstock] 2 60% 4.90%

Grass, Barnyard [Echinochloa crus-galli] 7 24.90% 5%

Grass, C3 [Koeleria cristata] 3 317.30% 237.90%

Grass, Dallas [Paspalum dilatatum] 4 80.80% 18.40%

Grass, Harding [Phalaris aquatica] 2 39.50% 17.30%

Grassland Community, Annual 4 57.30% 22.40%

Grassland dominated by Carex curvula 2 66.50% 15.20%

Guineagrass [Panicum maximum] 2 16% 3.50%

Gum Arabic Tree [Acacia nilotica] 2 131.50% 14.50%

Heather [Calluna vulgaris] 2 49.50% 8.10%

Helianthus annuus [Sunflower] 13 41.50% 6.10%

Helianthus petiolaris [Prairie Sunflower] 2 20% 0%

Herb, Tropical Rain Forest [Elatostema repens] 1 68% 0%

Heterotheca subaxillaris [Camphorweed] 1 17% 0%

Hevea brasiliensis [Rubber Tree] 8 85.90% 3.90%

Hickory, Pignut [Carya glabra] 3 57.30% 22.80%

Hickory, Shagbark [Carya ovata] 1 35% 0%

Holcus lanatus [Common Velvetgrass] 1 85% 0%

Holly-Leaved Daisybush [Olearia ilicifolia] 1 79% 0%

Honduras Mahogany [Swietenia macrophylla] 1 26% 0%

Hordeum vulagare [Barley] 13 55.20% 12.60%

Hylocomium splendens [Splendid Feather Moss] 1 100% 0%

Hymenaea courbaril [Stinkingtoe] 1 70% 0%

Page 44: Human Health Effects - Granicus

 

Plant Name # of

Studies Arithmetic

Mean Standard

Error

Hyparrhenia rufa [Jaragua] 1 70% 0%

Indian Grass [Sorghastrum nutans] 1 19% 0%

Indian Hawthorn [Rhaphiolepsis indica] 1 79% 0%

Ipomoea batatas [Sweet Potato] 5 39.40% 10.80%

Ipomoea carnea [Gloria de la Manana] 1 62% 0%

Japanese Knotweed [Polygonum cuspidatum] 3 32.70% 3.50%

Japanese Larch [Larix kaempferi] 4 38.80% 16.80%

Jaragua [Hyparrhenia rufa] 2 5% 0%

Jatropha gossypiifolia [Bellyache Bush] 1 73% 0%

Johnsongrass [Sorghum halapense] 1 12% 0%

Joyweed, West Indian [Alternanthera crucis] 1 91% 0%

Juglans nigra [Black Walnut] 1 24% 0%

Kalankoe blossfeldiana 1 47% 0%

Karaka Nut [Corynocarpus laevigatus] 1 79% 0%

Kauri, Queensland [Agathis robusta] 1 56% 0%

Kiwifruit [Actinidia deliciosa] 1 113% 0%

Knotweed, Giant [Polygonum sachalinense] 2 43% 2.10%

Koeleria cristata [C3 Grass] 3 317.30% 237.90%

Krameria erecta[Littleleaf Ratany] 4 115.80% 28.60%

Lactuca serriola [Prickly Lettuce] 1 60% 0%

Lambsquarters [Chenopodium album] 3 23.30% 3.40%

Larix decidua [European Larch] 3 62.70% 4.80%

Larix kaempferi [Japanese Larch] 4 38.80% 16.80%

Larix Laricina [Tamarack] 1 47% 0%

Larrea tridentata [Creosote Bush] 10 103.60% 24.40%

Lasthenia californica [California Goldfields] 1 47% 0%

Leaf Succulent [Agave vilmoriniana] 2 37.50% 26.50%

Lecanora muralis [An Epilithic Lichen] 1 42% 0%

Ledum palustre [Wild Rosemary] 1 0% 0%

Lemna gibba [Swollen Duckweed] 2 55.50% 3.90%

Lettuce, Prickly [Lactuca serriola] 1 60% 0%

Leucadendron coniferum [Dune Conebush] 2 38% 14.10%

Leucadendron laureolum [Golden Conebush] 2 28.50% 5.30%

Leucadendron meridianum [Limestone Conebush] 2 18% 10.60%

Leucadendron xanthoconus [Sickle-leaf Conebush] 2 59% 9.90%

Lichen [Caloplaxa trachyphylla] 1 38% 0%

Lichen, Epilithic [Lecanora muralis] 1 42% 0%

Lichen, Felt [Peltigera canina] 1 24% 0%

Lichen, Felt [Peltigera rufescens] 1 24% 0%

Lichen, Flavopunctelia [Parmelia praesignis] 1 60% 0%

Plant Name # of

Studies Arithmetic

Mean Standard

Error

Lichen, Foliose [Parmelia caperata] 1 16% 0%

Lichen, Foliose [Parmelia kurokawae] 1 30% 0%

Lichen, Foliose [Peltigera polydactyla] 1 30% 0%

Lichen, Fruticose [Cladonia rangiferina] 1 31% 0%

Lichen, Jelly [Collema furfuraceum] 1 42% 0%

Lichen, Membraneous Felt [Peltigera membranacea] 1 83% 0%

Lichen, Menzies' Cartilage [Ramalina menziesii] 1 20% 0%

Lichen, Netted Rimelia [Parmelia reticulata] 1 63% 0%

Lichen, Ring [Evernia mesomorpha] 1 60% 0%

Liquidambar styraciflua [Sweetgum] 18 105.10% 21.80%

Liriodendron tulipifera [Yellow Poplar] 13 64.40% 12.40%

Lobelia telekii [Afro-alpine Giant Rosette Plant] 1 52% 0%

Lolium perenne [Perennial Ryegrass] 28 42.40% 3.80%

Lolium temulentum [Darnel Ryegrass] 2 23.50% 1.80%

Luehea seemannii 2 20% 2.10%

Lupine, Arizona [Lupinus arizonicus] 3 15.70% 6.50%

Lupine, Sundial [Lupinus perennis] 3 71.30% 32.10%

Lupinus arizonicus [Arizona Lupine] 3 15.70% 6.50%

Lupinus perennis [Sundial Lupine] 3 71.30% 32.10%

Lycopersicon esculentum [Garden Tomato] 13 22.60% 5%

Lyonia mariana [Piedmont Staggerbush] 1 27% 0%

Mahogany, West African [Entandrophragma angolense] 3 63.30% 7.20%

Maidenhair Tree [Ginkgo biloba] 4 57.50% 7.60%

Malvastrum rotundifolium [Desert Fivespot] 3 33% 5.70%

Mandarin Orange [Citrus reticulata] 2 45.50% 8.80%

Mangrove, American [Rhizophora mangle] 2 11.50% 0.40%

Manihot esculenta [Cassava] 1 56% 0%

Maple, Red [Acer rubrum] 17 94.80% 22.60%

Maple, Shantung [Acer mono] 4 40.80% 15.10%

Maple, Silver [Acer saccharinum] 8 18.50% 7.80%

Marine Coccolithophorid [Emiliania huxleyi] 5 47.80% 13.10%

Medicago glomerata 1 16% 0%

Medicago minima [Burr Medick] 1 0% 0%

Medicago sativa [Alfalfa] 17 26.20% 4.10%

Melinis minutiflora [Molassesgrass] 2 7.50% 12.40%

Metasequoia glyptostroboides [Dawn Redwood] 1 13% 0%

Millet, Broomcorn [Panicum miliaceum] 2 12% 2.10%

Molassesgrass [Melinis minutiflora] 2 7.50% 12.40%

Moss, Antifever Fontinalis [Fontinalis antipyretica] 2 235% 166.20%

Moss, Rough Goose Neck [Rhytidiadelphus triquetrus] 1 66% 0%

Page 45: Human Health Effects - Granicus

 

Plant Name # of

Studies Arithmetic

Mean Standard

Error Moss, Splendid Feather [Hylocomium splendens] 1 100% 0%

Mungbean [Vigna radiata] 2 178% 18.40%

Mustard, Abyssinian [Brassica carinata] 2 34.50% 10.30%

Mustard, Black [Brassica nigra] 2 39% 11.30%

Mustard, India [Brassica juncea] 2 50.50% 24.40%

Mustard, Rape Seed [Brassica campestris] 2 90.50% 37.10%

Myrobalan [Terminalia chebula] 2 147.50% 37.10%

Nauclea diderrichii [Pioneer Tropical Tree] 3 69.70% 2.20%

Nettle, Stinging [Urtica dioica] 1 126% 0%

New Zealand Privet [Griselinia littoralis] 1 96% 0%

Nicotiana sylvestris [South American Tobacco] 1 55% 0%

Nicotiana tabacum [Cultivated Tobacco] 7 83% 14.90%

Night-flowering Catchfly [Silene noctiflora] 1 42% 0%

Nostoc commune 1 5% 0%

Nothofagus cunninghamii [Myrtle Beech] 1 55% 0%

Nothofagus fusca [Red Beech] 3 40% 1.70%

Nutsedge, Purple [Cyperus rotundus] 1 6% 0%

Nutsedge, Yellow [Cyperus esculentus] 1 -26% 0%

Nymphaea marliac [Water Lily] 3 39.70% 12.40%

Oak, Chapman's [Quercus chapmanii] 4 53% 4.10%

Oak, Cork [Quercus suber] 3 28.70% 16.90%

Oak, Downy [Quercus pubescens] 5 136.80% 58.50%

Oak, Durmast [Quercus petraea] 2 23.50% 0.40%

Oak, Holly [Quercus ilex] 11 91.40% 30.10%

Oak, Mongolian [Quercus crispula] 2 19% 3.50%

Oak, Mongolian [Quercus mongolica] 2 19% 3.50%

Oak, Myrtle [Quercus myrtifolia] 9 60.60% 7.70%

Oak, Northern Red [Quercus rubra] 14 65.50% 11.70%

Oak, Pedunculate [Quercus robur] 9 35.80% 6.20%

Oak, Sand Live [Quercus geminata] 6 15.70% 5.90%

Oak, White [Quercus alba] 3 142% 38.30%

Oat, Red [Avena sativa] 2 32.50% 3.90%

Oat, Slender [Avena barbata] 2 52% 5.70%

Oat, Wild [Avena fatua] 2 53% 11.30%

Oatgrass, Tall [Arrhenatherum elatius] 1 39% 0%

Oenothera primiveris [Desert Eveningprimrose] 1 23% 0%

Okra [Abelmoschus esculentus] 1 27% 0%

Olea europaea [Olive] 10 50.20% 12.60%

Olearia ilicifolia [Holly-Leaved Daisybush] 1 79% 0%

Plant Name # of

Studies Arithmetic

Mean Standard

Error

Olive [Olea europaea] 10 50.20% 12.60%

Opuntia ficus-indica [Prickly Pear] 6 22.70% 2.60%

Orange, Sour [Citrus aurantium] 12 111.60% 15.30%

Orange, Sweet, Ridge Pineapple [Citrus sinensis] 2 57% 4.90% Orange, Valencia [Citrus sinensis (L.) Osbeck x Citrus reticulata Blanco (Cleoplatra manderin)] 2 42.50% 15.90%

Orange, Valencia [Citrus sinensis (L.) Osbeck x Poncirus trifoliata (L.) Raf.] 2 54.50% 5.30% Orange, Washington Naval [Citrus sinensis (L.) Osbeck budded to Citrus reticulata Blanco (Cleopatra manderin) rootstock] 2 52.50% 10.30% Orange, Washington Naval [Citrus sinensis (L.) Osbeck budded to Poncirus trifoliata (L.) Raf. rootstock] 2 43.50% 8.10%

Orchardgrass [Dactylis glomerata] 11 34.70% 6.20%

Orontium aquaticum [Goldenclub] 7 72.10% 9.30%

Oryza sativa [Rice] 64 49.70% 5.70%

Oryzopsis hymenoides [Perennial Bunchgrass] 1 47% 0%

Pachysandra terminalis [Japanese Spurge] 1 70% 0%

Panicgrass, Blue [Panicum antidotale] 2 -2.50% 4.60%

Panicgrass, Fall [Panicum dichotomiflorum] 1 18% 0%

Panicgrass, Lax [Panicum laxum] 2 8.50% 5.30%

Panicum antidotale [Blue Panicgrass] 2 -2.50% 4.60%

Panicum dichotomiflorum [Fall Panicgrass] 1 18% 0%

Panicum laxum [Lax Panicgrass] 2 8.50% 5.30%

Panicum maximum [Guineagrass] 2 16% 3.50%

Panicum miliaceum [Broomcorn Millet] 2 12% 2.10%

Panicum virgatum [Switchgrass] 1 64% 0%

Parmelia caperata [Foliose Lichen] 1 16% 0%

Parmelia kurokawae [Foliose Lichen] 1 30% 0%

Parmelia praesignis [Flavopunctelia Lichen] 1 60% 0%

Parmelia reticulata [Netted Rimelia Lichen] 1 63% 0%

Pascopyrum smithii [Western Wheatgrass] 5 57.40% 17.30%

Paspalum dilatatum [Dallas Grass] 4 80.80% 18.40%

Paspalum notatum [Bahiagrass] 1 24% 0%

Pasture 1 29% 0%

Pea, Blackeyed [Vigna unguiculata] 4 67.80% 18.50%

Pea, Garden [Pisum sativum] 4 37.80% 5%

Peach [Prunus persica] 4 37.50% 8.70%

Peanut [Arachis hypogaea] 5 36% 7.40%

Peanut, Rhizoma 1 40% 0%

Peltigera canina [Felt Lichen] 1 24% 0%

Peltigera membranacea [Membraneous Felt Lichen] 1 83% 0%

Peltigera polydactyla [Foliose Lichen] 1 83% 0%

Page 46: Human Health Effects - Granicus

 

Plant Name # of

Studies Arithmetic

Mean Standard

Error

Peltigera rufescens [Felt Lichen] 1 83% 0%

Pepino [Solanum muricatum] 2 74% 7.10%

Pepper, Bell [Capsicum annuum] 3 41% 15.50%

Pepper, Jamaican [Piper hispidum] 2 77.50% 15.90%

Pepper, Vera Cruz [Piper auritum] 2 67.50% 5.30%

Phalaris aquatica [Harding Grass] 2 39.50% 17.30%

Phaseolus vulgaris [Garden Bean] 24 55.80% 10.30%

Phleum pratense [Timothy] 3 30.30% 3.20%

Phyllanthus emblica [Emblic] 2 71% 21.90%

Phytolacca americana [American Pokeweed] 1 56% 0%

Phytoplankton Communities of the Nutrient-Poor Central Atlantic Ocean 2 10.50% 1.10%

Phytoplankton Community of a Fjord in Southern Norway 1 23% 0%

Picea abies [Norway Spruce] 9 48.60% 8.40%

Picea koraiensis [Spruce] 1 73% 0%

Picea mariana [Black Spruce] 5 33.60% 9.20%

Picea sitchensis [Sitka Spruce] 2 23% 4.20%

Pigeonpea [Cajanus cajan] 2 137.50% 26.50%

Pimpernel, Scarlet [Anagallis arvensis] 1 45% 0%

Pine, Eldarica [Pinus eldarica] 2 133% 0%

Pine, Jack [Pinus baksiana] 4 34.80% 6.20%

Pine, Japonese Red [Pinus densiflora] 5 26.40% 8%

Pine, Korean [Pinus koraiensis] 1 53% 0%

Pine, Loblolly [Pinus taeda] 41 96% 10.80%

Pine, Longleaf 1 41% 0%

Pine, Merkus [Pinus merkusii] 2 44.50% 3.20%

Pine, Mexican Yellow [Pinus patula] 1 47% 0%

Pine, Monterey [Pinus radiata] 13 40.20% 3.80%

Pine, Mountain [Pinus uncinata] 2 44% 7.10%

Pine, Ponderosa [Pinus ponderosa] 10 45.90% 8.80%

Pine, Scots [Pinus sylvestris] 16 77.40% 34.40%

Pineapple [Ananas comosus] 3 168.30% 55.80%

Pineapple Guava [Feijoas sellowiana] 1 55% 0%

Pinus banksiana [Pine, Jack] 4 34.80% 6.20%

Pinus densiflora [Pine, Japonese Red] 5 26.40% 8%

Pinus eldarica [Pine, Eldarica] 2 133% 0%

Pinus koraiensis [Pine, Korean] 1 53% 0%

Pinus merkusii [Pine, Merkus] 2 44.50% 3.20%

Pinus patula [Mexican Yellow Pine] 1 47% 0%

Pinus ponderosa [Ponderosa Pine] 10 45.90% 8.80%

Pinus radiata [Monterey Pine] 13 40.20% 3.80%

Plant Name # of

Studies Arithmetic

Mean Standard

Error

Pinus sylvestris [Scots Pine] 16 77.40% 34.40%

Pinus taeda [Loblolly Pine] 41 96% 10.80%

Pinus uncinata [Mountain Pine] 2 44% 7.10%

Pioneer Tropical Tree [Nauclea diderrichii] 3 69.70% 2.20%

Piper auritum [Vera Cruz Pepper] 2 67.50% 5.30%

Piper hispidum [Jamaican Pepper] 2 77.50% 15.90%

Pipeweed, Native American [Eriogonum inflatum] 2 42.50% 15.90%

Pisum sativum [Garden Pea] 4 37.80% 5%

Plantago asiatica [Plantago Asiatica] 1 45% 0%

Plantago erecta [Dwarf Plantain] 1 43% 0%

Plantago lanceolata [Narrowleaf Plantain] 6 72.50% 24.20%

Plantago maritima [Sea Plantain] 1 -30% 0%

Plantain, Dwarf [Plantago erecta] 1 43% 0%

Plantain, Narrowleaf [Plantago lanceolata] 6 72.50% 24.20%

Plantain, Sea [Plantago maritima] 1 -30% 0%

Platanus occidentalis [American Sycamore] 1 60% 0%

Poa annua [Annual Bluegrass] 6 62% 14%

Poa cookii [Bluegrass] 1 55% 0%

Poa pratensis [Kentucky Bluegrass] 2 103% 45.30%

Poa trivialis [Rough Bluegrass] 1 41% 0%

Poison Ivy [Toxicodendron radicans] 1 116% 0%

Polygonum cuspidatum [Japanese Knotweed] 3 32.70% 3.50%

Polygonum sachalinense [Giant Knotweed] 2 43% 2.10%

Po'ola [Claoxylon sandwicense] 3 100% 12.50%

Poplar, Black [Populus nigra] 6 73.20% 18.30%

Poplar, Hybrid [Populus trichocarpa x Populus deltoides] 2 37.50% 8.80%

Poplar, Robusta [Populus euramericana] 24 79.20% 15.20%

Poplar, White [Populus alba] 6 79.80% 16.40%

Poplar, Yellow [Liriodendron tulipifera] 13 64.40% 12.40%

Populus alba [White Poplar] 6 79.80% 16.40%

Populus cathayanna [Poplar] 1 45% 0%

Populus deltoides [Eastern Cottonwood] 5 39.20% 9%

Populus euramericana [Robusta Poplar] 24 79.20% 15.20%

Populus fremontii [Fremont's Cottonwood] 3 30.70% 15.90%

Populus grandidentata [Bigtooth Aspen] 3 181.70% 60.70%

Populus nigra [Black Poplar] 6 73.20% 18.30%

Populus tremula x Populus tremuloides [Hybrid Aspen] 3 28.70% 3.30%

Populus tremuloides [Quaking Aspen] 32 59.40% 6.30%

Populus trichocarpa x Populus deltoides [Hybrid Poplar] 2 37.50% 8.80%

Potato, Sweet [Ipomoea batatas] 5 39.40% 10.80%

Page 47: Human Health Effects - Granicus

 

Plant Name # of

Studies Arithmetic

Mean Standard

Error

Potato, White [Solanum tuberosum] 15 33.20% 5.50%

Potentilla crantzii [Alpine Cinquefoil] 1 25% 0%

Prickly Pear [Opuntia ficus-indica] 6 22.70% 2.60%

Prochlorococcus [Marine Picocyanobacterium] 2 5.50% 2.50%

Prunus armeniaca [Apricot] 4 62.80% 4.20%

Prunus avium [Sweet Cherry] 1 38% 0%

Prunus persica [Peach] 4 37.50% 8.70%

Prunus serotina [Black Cherry] 3 63.70% 5.70%

Pseudobombax septenatum [Tropical Tree] 1 68% 0%

Pseudopanax arboreus [Puahou] 1 69% 0%

Pseudotsuga menziesii [Douglas Fir] 17 32% 5.30%

Psychotria limonensis [Forest Shrub] 1 65% 0%

Pteridium aquilinum [Bracken] 8 93.80% 7.30%

Puahou [Pseudopanax arboreus] 1 69% 0%

Puccinellia maritima [Seaside Alkaligrass] 5 84% 17.80%

Pyrrosia piloselloides [Tropical Fern] 1 19% 0%

Quercus alba [White Oak] 3 142% 38.30%

Quercus chapmanii [Chapman's Oak] 4 53% 4.10%

Quercus crispula [Mongolian Oak] 2 19% 3.50%

Quercus geminata [Sand Live Oak] 6 15.70% 5.90%

Quercus ilex [Holly Oak] 11 91.40% 30.10%

Quercus mongolica [Mongolian Oak] 22 74.40% 14.70%

Quercus myrtifolia [Myrtle Oak] 9 60.60% 7.70%

Quercus petraea [Durmast Oak] 2 23.50% 0.40%

Quercus pubescens [Downy Oak] 5 136.80% 58.50%

Quercus robur [Pedunculate Oak] 9 35.80% 6.20%

Quercus rubra [Northern Red Oak] 14 65.50% 11.70%

Quercus suber [Cork Oak] 3 28.70% 16.90%

Radish, Wild [Raphanus raphanistrum] 2 32% 7.10%

Radish, Wild [Raphanus sativus x raphanistrum] 1 109% 0%

Radish, Wild [Raphanus sativus] 8 30.40% 7%

Ragweed, Annual [Ambrosia artemisiifolia] 3 37.70% 5.20%

Ragweed, Tuscon Burr [Ambrosia cordifolia] 3 45.70% 3.80%

Rainforest Tree, Semi-Evergreen [Agathis microstachya] 1 50% 0%

Ramalina menziesii [Menzies' Cartilage Lichen] 1 20% 0%

Rangiora [Brachyglottis repanda] 1 120% 0%

Ranunculus [Buttercup] 1 47% 0%

Ranunculus acris [Tall Buttercup] 1 36% 0%

Ranunculus glacialis [Glacier Buttercup] 3 44% 8.90%

Plant Name # of

Studies Arithmetic

Mean Standard

Error

Raphanus raphanistrum [Wild Radish] 2 32% 7.10%

Raphanus sativus [Wild Radish] 8 30.40% 7%

Raphanus sativus x raphanistrum [Wild Radish] 1 109% 0%

Ratany, Littleleaf [Krameria erecta] 4 115.80% 28.60%

Redbud Tree, Eastern [Cercis canadensis] 3 127.30% 48%

Redwood, Coastal [Sequoia sempervirens] 1 31% 0%

Redwood, Dawn [Metasequoia glyptostroboides] 1 13% 0%

Reedgrass, Chee [Calamagrostis epigeios] 1 27% 0%

Rhaphiolepsis indica [Indian Hawthorn] 1 79% 0%

Rhizophora mangle [American Mangrove] 2 11.50% 0.40%

Rhytidiadelphus triquetrus [Rough Goose Neck Moss] 1 66% 0%

Rice [Oryza sativa] 64 49.70% 5.70%

Ricinus communis [Castor Bean] 2 34% 0%

Rosa hybrida [Rose] 1 35% 0%

Rose [Rosa hybrida] 1 35% 0%

Rosemary, Wild [Ledum palustre] 1 0% 0%

Rosette Plant, Giant Afro-alpine [Dendrosenecio brassica] 1 65% 0%

Rosette Plant, Giant Afro-alpine [Dendrosenecio keniodendron] 1 52% 0%

Rosette Plant, Giant Afro-alpine [Lobelia telekii] 1 52% 0%

Ryegrass, Darnel [Lolium temulentum] 2 23.50% 1.80%

Ryegrass, Perennial [Lolium perenne] 28 42.40% 3.80%

Saccharum officinarum [Sugarcane] 6 11% 3.40%

Sage, Pitcher [Salvia pitcheri] 2 26.50% 1.80%

Sage,Introduced [Salvia pratensis] 1 47% 0%

Sagebrush, Big [Artemisia tridentata] 2 31% 12.70%

Salt Marsh Sedge [Scirpus olneyi] 7 61.40% 11.80%

Salvia nemorosa [Woodland Sage] 2 277.50% 136.10%

Salvia pitcheri [Pitcher Sage] 2 26.50% 1.80%

Salvia pratensis [Introduced Sage] 1 47% 0%

Sandspurry, Media [Spergularia maritima] 1 81% 0%

Sanguisorba minor [Small Burnet] 5 31.60% 4%

Schima superba [Sub-tropical Tree] 2 26% 6.40%

Schizachyrium scoparium [Little Bluestem] 3 72.30% 18.10%

Schoenoplectus americanus [Chairmaker's Bulrush] 1 27% 0%

Scirpus maritimus [Seaside Bulrush] 1 55% 0%

Scirpus olneyi [Salt Marsh Sedge] 7 61.40% 11.80%

Scirpus robustus [Sedge] 2 60% 10.60%

Scrophularia desertorum [Desert Figwort] 3 50% 21%

Scrub-Oak Ecosystem 2 98.50% 39.20%

Page 48: Human Health Effects - Granicus

 

Plant Name # of

Studies Arithmetic

Mean Standard

Error

Sedge [Scirpus robustus] 2 60% 10.60%

Sedge, Bigelow's [Carex bigelowii] 1 0% 0%

Sedge, Chaffy [Carex paleacea] 1 34% 0%

Sedge, Heath [Carex flacca] 1 55% 0%

Sequoia sempervirens [Coastal Redwood] 1 31% 0%

Setaria faberi [Japanese Bristlegrass] 4 15% 7.10%

Setaria viridis [Green Bristlegrass] 1 13% 0%

Shorea leprosula 2 57% 1.40%

Shrub, Forest [Psychotria limonensis] 1 65% 0%

Silene noctiflora [Night-flowering Catchfly] 1 42% 0%

Silver Dollar Gum [Eucalyptus polyanthemus] 1 75% 0%

Six Hardwood Tree Species 2 58% 4.90%

Solanum curtilobum [Shortlobe Solanum] 1 46% 0%

Solanum dulcamara [Climbing Nightshade] 6 28.80% 3.10%

Solanum muricatum [Pepino] 2 74% 7.10%

Solanum tuberosum [White Potato] 15 33.20% 5.50%

Solanum, Shortlobe [Solanum curtilobum] 1 46% 0%

Solidago rigida [Stiff Goldenrod] 1 7% 0%

Sorghastrum nutans [Indian Grass] 1 19% 0%

Sorghum [Sorghum bicolor] 9 26.80% 5.20%

Sorghum bicolor [Sorghum] 9 26.80% 5.20%

Sorghum halapense [Johnsongrass] 1 12% 0%

Southern California Chaparral Ecosystem 3 246.70% 13.40%

Soybean [Glycine max] 75 56.20% 9.40%

Spanish Elm [Cordia alliodora] 1 41% 0%

Spartina alterniflora [Smooth Cordgrass 1 19% 0%

Spartina anglica [Common Cordgrass 1 33% 0%

Spartina patens [Saltmeadow Cordgrass] 5 12.80% 5.10%

Spergularia maritima [Media Sandspurry] 1 81% 0%

Sphagnum [Sphagnum fuscum] 3 89.30% 6.60%

Sphagnum fuscum [Sphagnum] 3 89.30% 6.60%

Spinach [Spinacia oleracea] 4 37% 9%

Spinacia oleracea [Spinach] 4 37% 9%

Spruce, Black [Picea mariana] 5 33.60% 9.20%

Spruce, Norway [Picea abies] 9 48.60% 8.40%

Spruce, Sitka [Picea sitchensis] 2 23% 4.20%

Spurge, Japanese [Pachysandra terminalis] 1 70% 0%

Staggerbush, Piedmont [Lyonia mariana] 1 27% 0%

Stenocereus queretaroensis [Tree Cactus] 1 30% 0%

Stiff Goldenrod [Solidago rigida] 1 7% 0%

Plant Name # of

Studies Arithmetic

Mean Standard

Error

Stinkingtoe [Hymenaea courbaril] 1 70% 0%

Stipa thurberiana [Thurber needlegrass] 1 56% 0%

Strawberry Tree [Arbutus unedo] 4 91.30% 32.10%

Strawberry, Hybrid [Fragaria x ananassa] 14 72.60% 12.50%

Sugar Maple [Acer saccharum] 3 64% 9%

Sugarcane [Saccharum officinarum] 6 11% 3.40%

Sugargum [Eucalyptus cladocalyx] 2 47.50% 27.20%

Sunflower [Helianthus annuus] 13 41.50% 6.10%

Sunflower, Prairie [Helainthus petiolaris] 2 20% 0%

Sweetgum [Liquidambar styraciflua] 18 105.10% 21.80%

Swietenia macrophylla [Honduras Mahogany] 1 26% 0%

Swiss Lowland Deciduous Forest 1 100% 0%

Switchgrass [Panicum virgatum] 1 64% 0%

Sycamore, American [Platanus occidentalis] 1 60% 0%

Symphiocarpos orbiculatus [Buch Brush] 2 105% 43.80%

Synechococcus [Unicellular Marine Picocyanobacterium] 1 48% 0%

Talinum triangulare 1 357% 0%

Tamarack [Larix laricina] 1 47% 0%

Taro, Giant [Alocasia macrorrhiza] 2 79% 18.40%

Taxodium distichum [Cyprus, Bald] 5 88.60% 14.40%

Teak [Tectona grandis] 1 37% 0%

Tectona grandis [Teak] 1 37% 0%

Ten Species of Tropical Forest Tree Seedlings 1 10% 0%

Terminalia arjuna [Terminalia] 2 194.50% 3.90%

Terminalia chebula [Myrobalan] 2 147.50% 37.10%

Tetragastris panamensis [Tropical Tree] 1 14% 0%

Themeda triandra [C4 grass] 2 19% 3.50%

Theobroma cacao [Cacao] 1 32% 0%

Thistle, Canadian [Cirsium arvense] 4 56.50% 8%

Thrift Seapink [Armeria maritima] 1 46% 0%

Thurber needlegrass [Stipa thurberiana] 1 56% 0%

Timothy [Phleum pratense] 3 30.30% 3.20%

Tobacco, Cultivated [Nicotiana tabacum] 7 83% 14.90%

Tobacco, South American [Nicotiana sylvestris] 1 55% 0%

Tomato, Garden [Lycopersicon esculentum] 13 22.60% 5%

Toxicodendron radicans [Poison Ivy] 1 116% 0%

Trifolium repens [White Clover] 22 49.40% 7.40%

Trifolium subterraneum [Subterranean Clover] 1 19% 0%

Triticum aestivum [Common Wheat] 83 64.90% 10.20%

Tussock Tundra 2 237.50% 19.40%

Page 49: Human Health Effects - Granicus

 

Plant Name # of

Studies Arithmetic

Mean Standard

Error Understory Deciduous Trees in a Pinus taeda L. Plantation 1 70% 0%

Understory Plants in a Spruce Model Ecosystem 2 53% 9.90%

Urtica dioica L. [Stinging Nettle] 1 126% 0%

Vaccinium myrtillus [Whortleberry] 2 47% 9.20%

Velvet Leaf [Abutilon theophrasti] 6 46.70% 10.30%

Velvetgrass, Common [Holcus lanatus] 1 85% 0%

Vernal Grass, Sweet [Anthoxanthum odoratum] 1 109% 0%

Vetch, Common Kidney [Anthyllis vulneraria] 4 27.80% 10.30%

Viburnum marisii [Flowering Shrub] 1 63% 0%

Vicia faba [Faba Bean] 7 52.30% 10.50%

Vigna radiata [Mungbean] 2 178% 18.40%

Vigna unguiculata [Blackeyed Pea] 4 67.80% 18.50%

Virola surinamensis [Tropical Tree] 1 31% 0%

Vitis californica [California Wild Grape] 1 57% 0%

Vulpia microstachys [Small Fescue] 1 125% 0%

Walnut, Black [Juglans nigra] 1 24% 0%

Water Lily [Nymphaea marliac] 3 39.70% 12.40%

Weed, Annual, C4 [Eragrostis orcuttiana] 1 -44% 0%

Wheat, Common [Triticum aestivum] 83 64.90% 10.20%

Wheatgrass, Western [Agropyron smithii] 2 -4.50% 6%

Wheatgrass, Western [Pascopyrum smithii] 5 57.40% 17.30%

Whiteflower Kurrajong [Brachychiton populneum] 1 75% 0%

Whortleberry [Vaccinium myrtillus] 2 47% 9.20%

Woodland Sage [Salvia nemorosa] 2 277.50% 136.10%

Xanthium strumarium L. [Rough Cocklebur] 4 30.80% 12.90%

Yarrow [Achillea millefolium L.] 4 30.80% 12.90%

Yellowtops [Flaveria pringlei Gandoger] 4 30.80% 12.90%

Yellowtops, Clustered [Flaveria trinervia (Spreng.) C. Mohr] 4 30.80% 12.90%

Yellowtops, Florida [Flaveria floridana J.R. Johnston] 4 30.80% 12.90%

Zea mays L. [Corn] 21 28.50% 11.50%

Page 50: Human Health Effects - Granicus

738

[this page intentionally blank]

Page 51: Human Health Effects - Granicus

 739

 

Appendix 4  

The Petition Project  

Appendix 4. The Petition Project 1.1. About the Petition 1.2. Qualifications of Signers 1.3. Frequently Asked Questions 1.4. Directory of Signers 1.5. Summary of Peer-Reviewed Research

1.1. About the Petition The petition pictured above has been signed by 31,478 Americans with university degrees in science, including 9,029 with Ph.D.s. The petition reads in part: “There is no convincing scientific evidence that human release of carbon dioxide, methane, or other greenhouse gases is causing or will, in the foreseeable future, cause catastrophic heating of the Earth’s atmosphere and disruption of of the Earth’s climate. Moreover, there is substantial scientific evidence that

increases in atmospheric carbon dioxide produce many beneficial effects upon the natural plant and animal environments of the Earth.” A copy of one actual signed petition appears on this page. The majority of the current listed signatories signed or re-signed the petition after October 2007.

The purpose of the Petition Project is to demonstrate that the claim of “settled science” and an overwhelming “consensus” in favor of the hypothesis of human-caused global warming and consequent climatological damage is wrong. No such consensus

Page 52: Human Health Effects - Granicus

Climate Change Reconsidered  

 740

or settled science exists. As indicated by the petition text and signatory list, a very large number of American scientists reject this hypothesis.

From the clear and strong petition statement that they have signed, it is evident that these 31,478 American scientists are not “skeptics.” These scientists are instead convinced that the human-caused global warming hypothesis is without scientific validity and that government action on the basis of this hypothesis would unnecessarily and counterproductively damage both human prosperity and the natural environment of the Earth.

This petition is primarily circulated by U.S. Postal Service mailings to scientists. Included in the mailings are the petition card, a letter from Frederick Seitz (reproduced on the following page), a scientific review article (reproduced on the pages following the directory of petition signers), and a return envelope. If a scientist wishes to sign, he or she completes the petition and mails it to the project by first-class mail. Additionally, many petition signers obtain petition cards from their colleagues, who request these cards from the project. A scientist can also obtain a copy of the petition from www.PetitionProject.org, sign, and mail it. Fewer than 5 percent of the current signatories obtained their petition in this way.

The letter on the following page, from Professor Frederick Seitz, is circulated with the petition. Dr. Seitz, a physicist, was president of the U.S. National Academy of Sciences and of Rockefeller University. He received the National Medal of Science, the Compton Award, the Franklin Medal, and numerous other awards, including honorary doctorates from 32 universities around the world. In August 2007, Dr. Seitz reviewed and approved the article by Dr. Arthur B. Robinson, Dr. Noah E. Robinson, and Dr. Willie Soon that is circulated with the petition and gave his enthusiastic approval to the continuation of the Petition Project. A vigorous supporter of the Petition Project since its inception in 1998, Professor Seitz died on March 2, 2008.

1.2. Qualifications of Signers Petition project volunteers evaluate each signer’s credentials, verify signer identities, and, if appropriate, add the signer’s name to the petition list. Signatories are approved for inclusion in the Petition Project list if they have obtained formal educational degrees at the level of Bachelor of Science or higher

in appropriate scientific fields. The petition has been circulated only in the United States.

The current list of petition signers includes 9,029 persons who hold Ph.D.s, 7,153 who hold an MS, 2,585 who hold MDs or DVMs, and 12,711 who hold a BS or equivalent academic degrees. Most of the MD and DVM signers also have underlying degrees in basic science.

All of the listed signers have formal educations in fields of specialization that suitably qualify them to evaluate the research data related to the petition statement. Many of the signers currently work in climatological, meteorological, atmospheric, environmental, geophysical, astronomical, and biological fields directly involved in the climate change controversy. The Petition Project classifies petition signers on the basis of their formal academic training, as summarized below. Scientists often pursue specialized fields of endeavor that are different from their formal education, but their underlying training can be applied to any scientific field in which they become interested.

Outlined below are the numbers of Petition Project signatories, subdivided by educational specialties. These have been combined, as indicated, into seven categories.

1. Atmospheric, environmental, and Earth sciences includes 3,803 scientists trained in specialties directly related to the physical environment of the Earth and the past and current phenomena that affect that environment.

2. Computer and mathematical sciences includes 935 scientists trained in computer and mathematical methods. Since the human-caused global warming hypothesis rests entirely upon mathematical computer projections and not upon experimental observations, these sciences are especially important in evaluating this hypothesis.

3. Physics and aerospace sciences include 5,810 scientists trained in the fundamental physical and molecular properties of gases, liquids, and solids, which are essential to understanding the physical properties of the atmosphere and Earth.

4. Chemistry includes 4,818 scientists trained in the molecular interactions and behaviors of the substances of which the atmosphere and Earth are composed.

5. Biology and agriculture includes 2,964 scientists trained in the functional and environmental requirements of living things on the Earth.

Page 53: Human Health Effects - Granicus

Appendix 4: The Petition Project  

 741

6. Medicine includes 3,046 scientists trained in the functional and environmental requirements of human beings on the Earth.

7. Engineering and general science includes 10,102 scientists trained primarily in the many engineering specialties required to maintain modern

civilization and the prosperity required for all human actions, including environmental programs.

The outline below gives a more detailed analysis of the signers’ educations.

Page 54: Human Health Effects - Granicus

Climate Change Reconsidered  

 742

Qualifications of Petition Signers Atmosphere, Earth, and Environment (3,803)

1. Atmosphere (578) a) Atmospheric Science (113) b) Climatology (39) c) Meteorology (341) d) Astronomy (59) e) Astrophysics (26)

2. Earth (2,240) a) Earth Science (94) b) Geochemistry (63) c) Geology (1,684) d) Geophysics (341) e) Geoscience (36) f) Hydrology (22)

3. Environment (985) a) Environmental Engineering (486) b) Environmental Science (253) c) Forestry (163) d) Oceanography (83)

Computers and Math (935)

1. Computer Science (242)

2. Math (693) a) Mathematics (581) b) Statistics (112)

Physics and Aerospace (5,810)

1. Physics (5,223) a) Physics (2,365) b) Nuclear Engineering (223) c) Mechanical Engineering (2,635)

2. Aerospace Engineering (587)

Chemistry (4,818)

1. Chemistry (3,126)

2. Chemical Engineering (1,692)

Biochemistry, Biology, and Agriculture (2,964)

1. Biochemistry (744) a) Biochemistry (676) b) Biophysics (68)

2. Biology (1,437) a) Biology (1,048) b) Ecology (76) c) Entomology (59) d) Zoology (149) e) Animal Science (105)

3. Agriculture (783) a) Agricultural Science (296) b) Agricultural Engineering (114) c) Plant Science (292) d) Food Science (81)

Medicine (3,046)

1. Medical Science (719)

2. Medicine (2,327)

General Engineering and General Science (10,102)

1. General Engineering (9,833)

a) Engineering (7,280) b) Electrical Engineering (2,169) c) Metallurgy (384)

2. General Science (269)

Page 55: Human Health Effects - Granicus

Appendix 4: The Petition Project  

 743

1.3. Frequently Asked Questions 1. Is the Petition Project fulfilling the expectations of its organizers? Yes. In Ph.D. scientist signers alone, the project already includes 15 times more scientists than are seriously involved in the United Nations’ IPCC process. The very large number of petition signers demonstrates that, if there is a consensus among American scientists, it is in opposition to the human-caused global warming hypothesis rather than in favor of it. Moreover, the current totals of 31,478 signers, including 9,029 PhDs, are limited only by Petition Project resources. With more funds for printing and postage, those numbers would be much higher. 2. Has the petition project helped to diminish the threat of energy and technology rationing? The accomplishments of science and engineering have transformed the world. They have markedly increased the quality, quantity, and length of human life and have enabled human beings to make many improvements in the natural environment of the Earth.

Today, scientists are seeing the accomplishments of science demonized and one of the three most important molecular substances that make life possible—atmospheric carbon dioxide (the other two being oxygen and water)—denigrated as an atmospheric “pollutant” in a widely circulated movie. Scientists who have carefully examined the facts know this movie contains numerous falsehoods. This and many other similar misguided propaganda efforts in the media naturally repel men and women who know the truth. The search for truth is the essence of science. When science is misrepresented, scientists are naturally incensed.

There is, therefore, a rapidly growing backlash of opposition among American scientists to this egregious misuse of the reputation and procedures of science. The Petition Project is helping to demonstrate this opposition and, therefore, to reduce the chances of misguided political reductions in science-based technology.

3. Who organized the Petition Project? The Petition Project was organized by a group of physicists and physical chemists who conduct scientific research at several American scientific institutions. The petition statement and the signatures of its 31,478 signers, however, speak for themselves. The primary relevant role of the organizers is that they are among the 9,029 PhD signers of the petition.

4. Who pays for the Petition Project? The Petition Project is financed by non-tax deductible donations to the Petition Project from private individuals, many of whom are signers of the petition. The project has no financing whatever from industrial sources. No funds or resources of the Oregon Institute of Science and Medicine are used for the Petition Project. The Oregon Institute of Science and Medicine has never received funds or resources from energy industries, and none of the scientists at the Institute have any funding whatever from corporations or institutions involved in hydrocarbon technology or energy production. Donations to the project are primarily used for printing and postage. Most of the labor for the project has been provided by scientist volunteers. 5. Does the petition list contain names other than those of scientist signers? Opponents of the Petition Project sometimes submit forged signatures in efforts to discredit the project. Usually, these efforts are eliminated by our verification procedures. On one occasion, a forged signature appeared briefly on the signatory list. It was removed as soon as discovered.

In a group of more than 30,000 people, there are many individuals with names similar or identical to other signatories, or to non-signatories—real or fictional. Opponents of the petition project sometimes use this statistical fact in efforts to discredit the project. For example, Perry Mason and Michael Fox are real scientists who have signed the petition and happen also to have names identical to fictional or real non-scientists. 6. Does the petition project list contain duplicate names? Thousands of scientists have signed the petition more than once. These duplicates have been carefully removed from the petition list. The list contains many instances of scientists with closely similar and sometimes identical names, as is statistically expected in a list of this size, but these signers are different people, who live at different addresses, and usually have different fields of specialization. Primarily as a result of name and address variants, occasional duplicate names are found in the list. These are immediately removed. 7. Are any of the listed signers dead? In a group of more than 30,000 people, deaths are a frequent occurrence. The Petition Project has no comprehensive method by which it is notified about

Page 56: Human Health Effects - Granicus

Climate Change Reconsidered  

 744

deaths of signatories. When we do learn of a death, an “*” is placed beside the name of the signatory. For examples, Edward Teller, Arnold Beckman, Philip Abelson, William Nierenberg, and Martin Kamen are American scientists who signed the Petition and are now deceased. 8. Why is this effort called “Petition Project?” Signatories to the petition have signed just the petition—which speaks for itself. The organizers—themselves scientists located at several scientific institutions–have designed the project to emphasize this single fact. The use of a post office box mailing address, a generic name– Petition Project—and other institutionally neutral aspects of the project are intended to avoid the impression that the signatories have endorsed the agenda or actions of any institution, group, or other activity. They are simply signers of this petition to the government of the United States. 9. Why was the review article published in the Journal of American Physicians and Surgeons? The authors chose to submit this article for peer-review and publication to the Journal of American Physicians and Surgeons because that journal was willing to waive its copyright and permit extensive reproduction and distribution of the article by the Petition Project. 10. Why is the Petition Project necessary? In December 1997, then U.S. Vice-President Al Gore participated in a meeting in Kyoto, Japan during which he signed a treaty to ration world energy production based upon fear of human-caused global warming. This treaty was not, however, presented to the United States Senate for ratification.

Since before that Kyoto meeting and continuing to the present day, Mr. Gore and his supporters at the United Nations and elsewhere have claimed that the “science is settled” – that an overwhelming “consensus” of scientists agrees with the hypothesis of human-caused global warming, with only a handful of skeptical scientists in disagreement. These

proponents of world energy rationing have consistently argued that, in view of this claimed scientific “consensus,” no further discussion of the science involved in this issue is warranted before legislative action is taken to heavily tax, regulate, and ration hydrocarbon energy.

Realizing, from discussions with their scientific colleagues, that this claimed “consensus” does not exist, a group of scientists initiated the Petition Project in early 1998. Thousands of signatures were gathered in a campaign during 1998-1999. Between 1999 and 2007, the list of petition signatories grew gradually, without a special campaign. Between October 2007 and March 2008, a new campaign for signatures was initiated. The majority of the current listed signatories signed or re-signed the petition after October 2007. The original review article that accompanied the petition effort in 1998-1999 was replaced in October 2007 with a new review incorporating the research literature up to that date.

The renewed petition campaign in 2007 was prompted by an escalation of the claims of “consensus,” release of the movie An Inconvenient Truth by Al Gore, and related events. The campaign to severely ration hydrocarbon energy technology has been markedly expanded, and many scientifically invalid claims about impending climate emergencies are being made. Simultaneously, proposed political actions to sharply reduce hydrocarbon use now threaten the prosperity of Americans and the very existence of hundreds of millions of people in poorer countries.

As Professor Seitz states in his Petition Project letter, which speaks of this impending threat to all humanity, “It is especially important for America to hear from its citizens who have the training necessary to evaluate the relevant data and offer sound advice.”

The Petition Project is a means by which those citizens are offering that advice. The Petition Project P.O. Box 1925 La Jolla, CA 92038 www.PetitionProject.org

Page 57: Human Health Effects - Granicus

Appendix 4: The Petition Project  

 745

1.4. Petition Signers

Alabama H. William Ahrenholz Oscar Richard Ainsworth, PhD John Hvan Aken Michael L. Alexander Robert K. Allen Ronald C. Allison Barry M. Amyx* Bernard Jeffrey Anderson, PhD David W. Anderson John C. Anderson, PhD Russell S. Andrews, PhD Bobby M. Armistead Ann Askew Larry N. Atkinson Alan C. Bailey Brooks H. Baker, III Robert Baker John Wayland Bales, PhD James Y. Baltar Ted B. Banner Robert F. Barfield, PhD Richard Barnes Samuel A. Barr Kenneth A. Barrett Franklin E. Bates Ronald G. Baxley Sidney D. Beckett, PhD Arthur B. Beindorff, PhD Victor Bell Aleksandr A. Belotserkovskiy, PhD Fred Bender, PhD William R. Bentley Reginald H. Benton M. Bersch, PhD Raymond E. Bishop Donald H. Blackwell Benjie Blair, PhD Edward S. Blair Kevin M. Blake Richard Lee Blanchard, PhD Anton C. Bogaty, Jr. Jonathan D. Boland Desmond H. Bond James H. Bonds Terry Bonds Robert R. Boothe, Jr. Dale L. Borths Jerome Boutwell James L. Box William D. Boyer, PhD William C. Bradford Andrew E. Bradley Michael W. Bradshaw Jerome J. Brainerd, PhD Bradley A. Brasfield John F. Brass Claude E. Breed Thomas H. Brigham Doyle G. Briscoe Alfred L. Brown James Melton Brown, PhD Robert Alan Brown, PhD Dushan S. Bukvic Donald F. Burchfield, PhD Walter W. Burdin John E. Burkhalter, PhD Marshall Burns, PhD

Richard C. Burnside Eddie C. Burt, PhD Michael A. Butts Thomas L. Cain Arnold E. Carden, PhD Jason Cassibry, PhD Darrell W. Chambers Kenneth E. Chandler James D. Chesnut, Jr. Charles Richard Christensen, PhD Chad P. Christian Otis M. Clarke Stan G. Clayton William Madison Clement, PhD Barbara B. Clements James H. Clements, Jr. David N. Clum W. Frank Cobb, Jr. W. A. Cochran, Jr. Ernst M. Cohn Robert M. Conry Robert Bigham Cook, PhD Franklyn K. Coombs Kenneth R. Copeland Clifton E. Couey Robert W. Coughlin Sylvere Coussement Clifton E. Covey George M. Cox Justin H. Crain George S. Crispin Delton G. Crosier Delmar N. Crowe, Jr. Harry Cullinan, PhD Joseph A. Cunningham J. F. Cuttino, PhD Thomas P. Czepiel, PhD Robert S. Dahlin, PhD Madge C. Daniel Thomas W. Daniel, Sr. Joe S. Darden Julian Davidson, PhD Allen S. Davis Donald Echard Davis, PhD Gene Davis Wilfred J. Davis Michael J. Day, PhD Charles W. Dean David Lee Dean, PhD Edward E. Deason William M. Decker James J. Denson Debra Depiano Myron G. Deshazo, Jr. Jerome R. Dickey Warren D. Dickinson Wouter W. Dieperink Allen C. Dittenhoefer, PhD Wenju Dong, PhD Francis M. Donovan, PhD Thomas P. Dooley, PhD Gilbert F. Douglas, Jr. James L. Dubard, PhD Scott A. Dunham John R. Durant Paul G. Durr Z'Bigniew W'Ladyslaw Dybczak, PhD George Robert Edlin, PhD

Gabriel A. Elgavish, PhD Rotem Elgavish Tricia Elgavish Rush E. Elkins, PhD Jesse G. Ellard Howard Clyde Elliott, PhD Arthur F. Ellis David A. Elrod, PhD David J. Elton, PhD Leonard E. Ensminger, PhD George Epps Robert D. Erhardt, Jr. Edwin C. Ethridge, PhD Clyde Edsel Evans, PhD Ken Fann William S. Farneman Rodney G. Ferguson Mason D. Field Fred H. Fihe G. L. Fish Don E. Fitts Julius D. Fleming William F. Foreman William M. Forman William R. Forrester John Foshee, Jr Philip C. Foster Mark Fowler Robert Dorl Francis, PhD Richard M. Franke Larry D. Franks Gerald R. Freeman, PhD Herbert J. Furman Bob S. Galloway Bobby R. Ganus Ronald Gene Garmon, PhD Henry B. Garrett, Jr. Norman A. Garrison, PhD David J. Garvey, PhD William F. Garvin Nancy K. Gautier, PhD W. Welman Gebhart Gerard Geppert Thomas A. Gibson Chris Gilbert, PhD Ronald E. Giuntini, PhD Marvin R. Glass, Jr. John J. Gleysteen Alexander C. Goforth Roger L. Golden Bruce William Gray, PhD James D. Gregory Ralph B. Groome A. M. Guarino, PhD Wallace K. Gunnells Leslie A. Gunter Freddie G. Gwin Ronald L. Haaland, PhD Walter Haeussermann, PhD Leroy M. Hair Benjamin F. Hajek, PhD Justin Charles Hamer, PhD W. Allen Hammack James W. Handley Reid R. Hanson, PhD Richard A. Harkins Daniel K. Harris, PhD Gregory A. Harris Joseph G. Harrison, PhD

John J. Harrity, Jr. Douglas G. Hayes, PhD James L. Hayes Charles D. Haynes, PhD James Eugene Heath Paul S. Heck Bobby Helms Ron Helms Robert L. Henderson John B. Hendricks, PhD William Henry, Jr. William D. Herrin Jerry P. Hethcoat Mitch Higginbotham David Higgins, Jr. Hermon H. Hight David T. Hill, PhD Brendall Hinton, PhD Jerry M. Hobbie Vincent L. Hodges Joseph A. Holifield William A. Hollerman Frank S. Hollis David Hood Joseph E. Hossley Stephen K. Howard Keith G. Howell James F. Howison James W. Huff, PhD Dale L. Huffman, PhD John C. Huggins Joseph P. Huie Chih-Cheng Hung, PhD Hassel E. Hunter Herbert E. Hunter, PhD Ray Hunter Donald J. Ifshin Victor D. Irby, PhD Steven K. Irvin John David Irwin, PhD Lyman D. Jackson Holger M. Jaenisch, PhD Homer C. Jamison, PhD Donald J. Janes Kenneth Jarrell William W. Jemison, Jr. Penelope Jester Donald R. Johns Frank Junior Johnson Frederic Allan Johnson, PhD Monroe H. Johnson Joseph F. Judkins, PhD Carl D. Jumper David A. Kallin James M. Kampfer Robert Keenum Lawrence C. Keller Arthur G. Kelly Russell R. Kerl James E. Kingsbury Earl T. Kinzer, Jr., PhD Harold A. Kirkland William Klein Dorothea A. Klip, PhD James Knight William J. Knox Charles Marion Krutchen, PhD David E. Labo Joseph E. Lammon

Page 58: Human Health Effects - Granicus

Climate Change Reconsidered  

 746

Philip Elmer Lamoreaux* John H. Lary Lloyd H. Lauerman, PhD Thomas H. Ledford, PhD William K. Lee John D. Leffler Foy K. Lewis George R. Lewis Baw-Lin Liu, PhD Allen Long James M. Long Joyce M. Long John F. Lozowski Linda C. Lucas, PhD William R. Lucas, PhD Brian Luckianow Randal W. Lycans Michael A. Macfarlane George J. Mackinaw Robert A. Macrae Frank L. Madarasz, PhD John F. Maddox Carl Maltese I. R. Manasco Baldev Singh Mangat, PhD Frank C. Mann Sven Pit Mannsfeld, PhD Milton Mantler Matthew Mariano, PhD Gordon D. Marsh David C. Marshal Arvle E. Marshall, PhD Paul R. Matthews Charles R. Mauldin David Mays, PhD Van Alfon McAuley Theresa O. McBride Mark S. McColl W. H. McCraney Geroge M. McCullars, PhD Phillip I. McCullough Randall E. McDaniel Joe A. McEachern William Baldwin McKnight, PhD Curtis J. McMinn Thomas E. McNider Jasper Lewis McPhail B. McSpadden Solomon O. Mester Joseph P. Michalski J. G. Micklow, PhD Arthur J. Milligan Randall A. Mills Benjamin K. Miree Larry S. Monroe, PhD Dwight L. Moody Rickie D. Moon Meg O. Moore Robert A. Moore, PhD Wellington Moore, PhD George S. Morefield Stephen J. Morisani, PhD Perry Morton, PhD Herman A. Nebrig, Jr. Gary Nelson Floyd Neth, PhD Robert W. Neuschaeffer James Nhool, PhD Grady B. Nichols, PhD Billy G. Nippert Nathan O. Okia, PhD Byron L. Oliver

J. F. Olivier Jerry M. Palmer Edward James Parish, PhD Michell S. Pate Roderick J. Patefield George D. Pattillo W. Quinn Paulk David M. Pearsall Dom Perrotta Nelson A. Perry Kenneth F. Persin Mark R. Pettitt Tom Pfitzer John G. Pfrimmer Kenneth G. Pickett Sean Piecuch Donald S. Pierre, Jr. Charles Thomas Pike James R. Pike Peter P. Pincura Michael Piznar Morris C. Place Melvin Price, PhD Charles W. Prince, PhD Thaddeus H. Pruett Jodi Purser Danny P. Raines Joseph Lindsay Randall, PhD Marvin L. Rawls Michelle B. Ray Harold M. Raynor Greg Reardon Jerry Reaves Mark Redden Michael A. Remillard Robert Ware Reynolds, PhD Richard G. Rhoades, PhD William Eugene Ribelin, PhD Dennis Rich Martin B. Richardson, PhD George Richmond Logan R. Ritchie, Jr. Alfred Ritter, PhD Ronnie Rivers, PhD Hill E. Roberts Harold Vernon Rodgriguez, PhD Richard B. Rogers, PhD Thaddeus A. Roppel, PhD John W. Rouse, PhD Eladio Ruiz-De-Molina Leon Y. Sadler, III, PhD Adel Sakla, PhD Andreas Salemann, PhD James Sanford Ted L. Sartain D. Satterwhite Mark Saunders Carl Schauble, PhD Bernard Scheiner, PhD Jason R. Schenk, PhD Peter Schwartz, PhD Edmund P. Segner, PhD William G. Setser Raymond F. Sewell, PhD Raymond Lee Shepherd, PhD Charles H. Shivers, PhD Don A. Sibley, PhD Gary D. Sides, PhD Stephen T. Simpson Wiliam F. Sims Norman Frank Six, Jr., PhD Harold Walter Skalka

Daniel E. Skinner Peter John Slater, PhD Donald W. Smaha Roger J. Smeenge David A. Smith Obie Smith Belton Craig Snyder Michael Sosebee Jon J. Spano D. Paul Sparks, Jr. Michael P. Spector, PhD Philip Speir John T. Spraggins, Jr. Lethenual Stanfield Jarel P. Starling Alfred D. Stevens Benjamin C. Stevens Dale M. Stevens Mike Stewart J. Stone, PhD John W. Sumrall Marvin Laverne Swearingin, PhD J. M. Tagg Thomas F. Talbot, PhD Bruce J. Tatarchuk, PhD Oscar D. Taunton Newton L. Taylor Tommy L. Thompson Zack Thompson Eugene Delbert Tidwell Edward R. Tietel Timothy C. Tuggle Charles Tugwell Ted W. Tyson James P. Vacik, PhD James T. Varner Otha H. Vaughan, Jr. Phillip G. Vaughan William W. Vaughan, PhD Frank L. Vaughn Thomas Mabry Veazey, PhD William S. Viall William Voigt James E. Waite Ron C. Waites William Waldrum Walker, PhD John Wallace Edward Hilson Ward, PhD Wyley D. Ward Adrian O. Watson Raymond C. Watson, Jr., PhD Henry B. Weaver, Jr. Donald C. Wehner Lawrence P. Weinberger, PhD Talmadge P. Weldon William B. Wells, Jr. Hans-Helmut Werner, PhD Francis C. Wessling, PhD Steven L. Whitfield Rayburn Harlen Whorton Leon Otto Wilken, PhD Charles D. Wilkins Michael Ledell Williams, PhD Houston Williamson Jay C. Willis Harold J. Wilson Leighton C. Wilson Walter W. Wilson Gregory Scott Windham Stanley B. Winslow Edmund W. Winston Harvey B. Wright

Randy Wynn Lewis S. Young Kirk R. Zimmer Alaska Ronald Godshall Alderfer, PhD Donald Ford Amend, PhD David Anderson Donald Anderson, PhD Patrick J. Archey Randall L. Bachman Roger L. Baer Tina L. Baker Earl R. Barnard Alex Baskous Don Bassler John M. Beitia Eugene N. Bjornstad John K. Boarman William M. Bohon James F. Boltz Steven C. Borell Caroline Bradshaw Terry T. Brady Dean C. Brinkman Mike Briscoe Jack A. Brockman Robert Brown Carrel R. Bryant Roger C. Burggraf Duane E. Carson Glen D. Chambers Bartly Coiley Lowell R. Crane Michael D. Croft Brent Crowder Bruce E. Davison Jonathan Dehn, PhD Steve Denton Dave R. Dobberpuhl Edward M. Dokoozian, PhD Kathleen Douglas Robert G. Dragnich James Drew, PhD Richard A. Dusenbery, PhD William E. Eberhardt Jeffrey D. Eckstein John Egenholf, PhD Robert L. Engelbach William James Ferrell, PhD Jeffrey Y. Foley Monique M. Garbowicz Jon M. Girard Will E. Godbey Edward R. Goldmann Daniel C. Graham Lawrence G. Griffin Lenhart T. Grothe William F. Gunderson Brian T. Harten David B. Harvey Charles C. Hawley, PhD Tommy G. Heinrich James R. Hendershot Steven C. Henslee Naomi R. Hobbs Julie K. Holayter Kurt Hulteen Lyndon C. Ibele Steven K. Jones

Page 59: Human Health Effects - Granicus

Appendix 4: The Petition Project  

 747

William W. Kakel Donald D. Keill Edward R. Kiddle Joseph M. Killon Ted R. Kinney Christopher C. Klein George F. Klemmick Thomas H. Kuckertz, PhD David W. Lappi James F. Lebiedz Harold D. Lee Harry R. Lee Erwin L. Long William E. Long, PhD Barrie B. Lowe Everett L. Mabry Monte D. Mabry Robert F. Malouf T. R. Marshall, Jr. Donald H. Martins, PhD Jerzy Maselko, PhD Bruce H. Mattson Tom E. Maunder Justin T. Meyring Jeff R. Michels J. V. Miesse William W. Mitchell, PhD Harold R. Moeser Jesse R. Mohrbacher Boyd Morgenthaler John Mulligan Erik A. Opstad Marvin C. Papenfuss, PhD Pedro E. Perez Robert A. Perkins, PhD Greg Peters, PhD Richard A. Peters Walter T. Phillips Kenneth J. Pinard Bruce Porter Tom Reed Richard H. Reiley Rydell J. Reints Kermit Dale Reppond Peter M. Ricca, PhD Donald R. Rogers Jimmie C. Rosenbruch Allan A. Ross Joe L. Russell Mortin B. Schierhorn Lynn W. Schnell Albert B. Schoffmann Jeffery M. Scott Edward M. Sessions Glenn E. Shaw, PhD Ernst Siemoneit Todd A. Sneesby David K. Soderlund Damien F. Stella Michael J. Storer James W. Styler Richard C. Swainbank, PhD Robert C. Tedrick Tim Terry Kevin Tomera Michael D. Travis Joseph E. Usibelli, Jr. Duane H. Vaagen Dominique L. Van Nostrand Angela C. Vassar Ross L. Waner Brenton Watkins, PhD

Jean S. Weingarten Robert P. Wessels Michael W. Wheatall Warrack Willson, PhD Theron C. Wilson Frank W. Wince Marion Yapuncich, PhD Patrick J. Zettler Arizona Richard E. Ackermann Brook W. Adams Stanley D. Adams Stanley P. Aetrewicz Larry Delmar Agenbroad, PhD Aida M. Aguirre Richard Ahern Edward Ahrens Lloyd Alaback Leland C. Albertson Lee Amoroso, PhD A. Amr, PhD Sal A. Anazalone Anita Teter Anderson Arthur G. Anderson, PhD James M. Andrew John Allen Anthes, PhD Bruce W. Apland Ara Arabyan, PhD Frank G. Arcella, PhD William W. Archer Joe R. Arechavaleta Lew Armer Mike Assad David C. Atkins Jerry C. Atwell D. Austin Dirk Den Baars, PhD A. Terry Bahill, PhD David A. Bailey J. Baker, PhD Jonathan A. Balasa Roy Jean Barker, PhD John E. Barkley, PhD Ross C. Barkley David A. Barnard Benny B. Barnes R. C. Barnett Charles John Baroczy Lawrence Dale Barr Kenneth A. Bartal John W. Bass Charles Carpenter Bates, PhD Roger A. Baumann Steve Baumann Frank L. Bazzanella Randall D. Beck James R. Beene W. G. Benjamin John Bentley Charles M. Bentzen Arne K. Bergh, PhD James Wesley Berry, PhD Stanley Beus, PhD Peter F. Bianchetta William S. Bickel, PhD Alex F. Bissett James R. Black E. Allan Blair, PhD Marlene Bluestein

Charles W. Boak Paul L. Boettcher Bruce Bollermann Kelsey L. Boltz Emil J. Bovich Wendell Bowers Michael Boxer Patrick Boyle John D. Brack John J. Bradley W. Newman Bradshaw, PhD Todd R. Bremner Harold Brennan Edward J. Breyere, PhD Paul Brierley Fred E. Brinker James A. Briscoe Albert Lyle Broadfoot, PhD Beth M. Brookhouse Fred B. Brost John K. Brough Lansing E. Brown Raymond F. Brown Richard E. Brown S. Kent Brown Stephen E. Brown Stephen R. Brown Will K. Brown Gerald R. Brunskill John A. Brunsman Bruce Bryan Thomas L. Bryant Theodore Eugene Bunch, PhD Laurie B. Burdeaux Joe Byrne Ken M. Byrne Ralph E. Cadger Roger Cahill J. B. Caird Anthony E. Camilli John D. Camp Robert J. Campana John S. Campbell Robert E. Campbell M. Durwood Canham Joe W. Cannon Bryan J. Carder Edward H. Carey Richard B. Carley E. N. Carlier Jesus V. Carreon Charles A. Carroll Bruce W. Cavender Robert T. Chapman Gerald M. Chicoine Lincoln Chin, PhD Larry J. Chockie James R. Civis Maurice F. Clapp James G. Clark, PhD James W. Clark John Wesley Clayton, PhD Robert L. Clayton LaVar Clegg Jeffrey G. Clevenger Raymond Otto Clinton, PhD Elmer Lendell Cockrum, PhD Theodore L. Cogut Donald Coleman Joel E. Colley Allan W. Collins Joanne V. Collins*

Ernest W. Colwell Thomas J. Comi, PhD Bill J. Conovaloff Paul Consroe, PhD Daniel M. Conway George W. Cook Glenn C. Cook Russell M. Corn Don Corona, Jr. Roy E. Coulson Brian Cox Garland D. Cox Peter J. Crescenzo Anne E. Cress, PhD Richard E. Cribbs Donald E. Crowell Gabriel Tibor Csanady, PhD David C. Cunningham William H. Curd, PhD Joseph A. Cusack William J. Daffron Charles H. Daggs, Jr. James F. Dancho Jerry Danni Robert Darveaux, PhD Dan A. Davidson Lester W. Davis Francisco Homero De La Moneda, PhD JoAnn Deakin Stuart Deakin Tom E. Deakin James D. Deatherage Dirk Den-Baars, PhD Lemoine J. Derrick Jack L. Detrick William Devereux Michael J. DeWeert, PhD Jerome P. Dorlac Harold J. Downey Gregory J. Dozer Jean B. Draper William Dresher, PhD Patricia Dueck Gene E. Dufoe Marie Dugan Raymond J. Dugandzic Jonathan DuHamel J. Durham Sher M. Durrani Robert W. Durrenberger, PhD Ted Earle John T. Eastlick Charles N. Emerson Philip Anthony Emery Glen B. Engle T. Enloe Lawson P. Entwhistle A. Gordon Everett, PhD Ted H. Eyde Steve Fanto Robert H. Fariss, PhD Stanley D. Farlin, PhD Robert P. Farrell William F. Fathauer Larry D. Fellows, PhD John B. Fenger Chester G. Ferguson Sam Field James B. Fink, PhD Rex G. Finley William G. Fisher, PhD

Page 60: Human Health Effects - Granicus

Climate Change Reconsidered  

 748

Robert T. Fitzgerald Leon Walter Florschuet, PhD Branka P. Ford, PhD Ron Francken Arnold C. Frautnick George M. Fritz Charlotte Frola F. Ronald Frola Arthur Atwater Frost, PhD Nelson M. Funkhouser Robert Howard Furman Donald Alan Gall, PhD Clyde H. Garman Paddy R. Garver Roy Lee Gealer, PhD Robert P. Gervais James Giles, PhD Donald K. Gill Paul C. Gilmour, PhD Fred Gioglio Roy L. Givens Stephen Glacy William Glass June Glavin Robert L. Glick, PhD Randy Golding, PhD E. J. Gouvier Alphonse Peter Granatek Harold Greenfield, PhD William M. Greenslade George Alexander Gries, PhD Ray Griswold Joseph F. Gross, PhD Charles W. Gullikson, PhD Gordon E. Gumble Earl S. Gurley David B. Hackman, PhD Anton F. Haffer Ronald J. Hager, Jr. William R. Hahman Cathryn E. Hahn Francis A. Hale Richard C. Hall Charles Hallas Christy N. Hallien Donald F. Hammer Raymond E. Hammond Jerry T. Hanks Richard W. Hanks, PhD Joann Brown Hansen, PhD Deverle Porter Harris, PhD Ellen Harris Elmer Otto Hartig, PhD Scott E. Hartwig W. L. Harvey Charles M. Havlik John W. Hawley Robert W. Hazlett, PhD M. W. Heath, Jr. Lowell H. Heaton John M. Heermans Albert K. Heitzmann Patricia A. Helvenston, PhD Robert S. Hendricks Lester E. Hendrickson, PhD Edward P. Herman Roy A. Herrington Tom Hessler Robin J. Hickson Douglas W. Hilchie, PhD Donald C. Hilgers, PhD Jeffrey H. Hill, PhD

Norman E. Hill Robert D. Hill Steven W. Hill Bruce Hilpert Daniel L. Hirsch J. Brent Hiskey, PhD Corolla K. Hoag Alfred Joseph Hoehn, PhD Stuart Alfred Hoenig, PhD R. N. Holme G. Edward Holmes Michael Holtfrerich Kevin C. Horstman, PhD Ashley G. House David C. Howe William Bogel Hubbard, PhD Richard O. Huch Davin L. Huck Richard R. Huebschman Robert P. Hughes Raymond P. Hull Robert B. Humphrey Kenneth L. Hunt, Jr. Charles L. Hunter Peter P. Hydrean, PhD Sherwood B. Idso, PhD Lawrence L. Ingram G. W. Irvin Daniel L. Isbell Kenneth K. Issacson Teodore F. Izzo K. A. Jackson, PhD William A. Jacobs Marek Jakubowski, PhD Douglas E. James Thomas Jancic Kevin L. Jardine John H. Jarvis James Edward Jaskie, PhD David E. Jeal Andreas V. Jensen Harry E. Jensen Robert M. Jensen Ralph O. Jewett David C. Johnson David Johnston Billy J. Joplin Richard Charles Jordan, PhD Thomas L. T. Jossem Jim Joyce George F. Jude Eric Jungermann, PhD Richard Spalding Juvet, PhD Richard J. Kalvaitis Ronald R. Kamyniski Justin M. Kapla Francis Warren Karasek, PhD Peter P. Kay Keith M. Keating Kenneth Lee Keating, PhD Niles William Keeran James L. Kelly* Keith L. Kendall Shawn B. Kendall Robert Kendrick William A. Kennedy, PhD Kevin M. Kenney William J. Kerwin, PhD Harold D. Kessler Clement Joseph Kevane, PhD Paul M. Keyser Paul E. Kienow

William R. Kilpatrick W. David Kingery, PhD Dan Kirby Clayton Ward Kischer, PhD Roy C. Kiser R. Jay Kline William Robert Kneebone, PhD Vincent E. Knittel Gregory Dean Knowlton, PhD Paul Koblas, PhD Leonard John Koch Karl F. Kohlhoff Frederick H. Kohloss Rudolf Kolaja Robert R. Koons William P. Kopp Melvin J. Kornblatt Jeff K. Kracht Henry G. Kreis Ken James Krolik Gerald E. Kron, PhD Edwin H. Krug David J. Krus, PhD David L. Kuck John G. Kuhn W. R. Kulutachek Ihor A. Kunasz, PhD Joseph D. Kutschka Gary W. Lachappelle Willard C. Lacy, PhD Lorin G. Lafoe Charles F. Lagergren James L. Lake Lynn Lalko, PhD Lionel C. Lancaster Wayne A. Lattin Michael J. Lechner Steven B. Leeland Randolph S. Lehn Richard B. Leisure Tom C. Lepley Ron L. Levin, PhD David W. Levinson, PhD Seymour H. Levy Ruth L. Leyse, PhD Hang Ming Liaw, PhD John M. Liebetreu, PhD Urban Joseph Linehan, PhD William G. Lipke, PhD Ligia B. Lluria Mark Logan James D. Loghry Edward M. Lohman Armand “A.J.” Lombard David Lorenz Robert F. Lorenzen Robert B. Ludden Roger J. Ludlam Mark Ludwig, PhD Ronald J. Lukas, PhD Robert F. Lundin, PhD James H. Lundy, Jr. Donald E. Lynd Clarence Roger Lynds, PhD Robert P. Ma, PhD Richard L. Malafa Tom Maloney G. S. Mander Paul Allen Manera, PhD James K W Mardian, PhD Timothy Martin Marsh, PhD William Michael Marsh

Bijan R. Mashouf Billy F. Mathews Thomas W. Mathewson Donald E. Matlick Harrison E. Matson Ralph W. Maughan J. A. McAllister* Terry McArthur Carol Don McBiles Ron McCallister, PhD John W. McCracken Paul McElligott, PhD Norman E. McFate, PhD James E. McGaha Andrew J. McGill Geogory E. McKelvey Bruce A. McKinstry R. L. McPherson Lorin Post McRae, PhD John E. McVaugh, Jr. Wellington Meier, PhD Arend Meijer, PhD Norman Anthony Meinhardt, PhD Gary L. Melvin Ken Melybe Charles R. Merigold Richard E. Merrill Robert A. Metz Robert J. Meyers, Jr. Robert J. Meyers Harvey D. Michael Marcus A. Middleton Donald G. Miller Glenn Harry Miller, PhD Kenton D. Miller Mark A. Miller Frank R. Milliken James A. Moeller Alan R. Mollenkopf Robert P. Montague Roger L. Moody Donald Moon Jack W. Moore Ramon A. Morano Syver W. More Pamela A. Morford Phineas K. Morrill John Ross Mosley, PhD Robert Zeno Muggli, PhD Michael C. Mulbarger Gerald E. Munier Earl Wesley Murbach, PhD Fendi R. Murdock, PhD Robert E. Nabours, PhD Paula Nadell Raymond Naumann John Neff George E. Nelms, PhD Frank Nelson David R. Nielsen Ronald A. Nielsen Nyal L. Niemuth Aundra G. Nix Robert O. Nixon, PhD Charles C. Nolan Eric A. Nordhausen James J. Novak Edward A. Nowatzki, PhD David O. Oakeson Kevin M. O'Brien, PhD Ernest L. Ohle, PhD Francis Oliver

Page 61: Human Health Effects - Granicus

Appendix 4: The Petition Project  

 749

John D. Opalka Stephen A. Orcutt Jane M. Orient Herbert Osborn, PhD Stephen S. Osder Charles Lamar Osterberg, PhD Bernie Ott Karl J. Palmberg Paul F. Panebianco Lloyd M. Parks, PhD Harvey G. Patterson Doug S. Pease E. Howard Pepper Mike Peralta, PhD Donald M. Percy Darlene A. Periconi-Balling Thomas W. Phillips S. Pietrewicz Anthony Pietsch Fred R. Pitman Anthony Pitucco, PhD John A. Plaisted Wallace Platt Alan P. Ploesser James R. Plummer Gary Pollock Kent L. Pomeroy Fernando Ponce, PhD H. K. Poole William E. Poole Jonathan D. Posner, PhD George J. Potter Roderick B. Potter James A. Powell Arnold Warburton Pratt Robert F. Prest Burchard S. Pruett Robert Putnam Thomas Pyzdek Walter J. Quinlan David D. Rabb Kenneth D. Rachocki, PhD Donal M. Ragan, PhD Steven L. Rauzi Kyle Rawlings, PhD Paul R. Reay K. Redig Terry A. Reeves Thomas R. Rehm, PhD Roger A. Reich John E. Reichenbach, Jr. Kenneth G. Renard, PhD Robert J. Reuss C. H. Reynolds Robert R. Reynolds Harvey H. Rhodes Terry L. Rice Warren Rice, PhD Ralph M. Richard, PhD James L. Riedl Timothy R. Robbins Steve A. Roberts Timothy Roberts Chris Robertson Douglas L. Robinson, PhD Thomas C. Roche, Jr. Michael V. Rock Ralph A. Rockow John H. Rohrbaugh, PhD Dwayne A. Rohweder, PhD Garret K. Ross Richard H. Rowe

Verald K. Rowe David Daniel Rubis, PhD Thomas Rudy John A. Rupley, PhD George E. Ryberg William R. Salzman, PhD Robert E. Samuelson, PhD Katherine Sanchez John B. Sawyer Thomas E. Scartaccini Harvey C. Schau, PhD William G. Scheck Joseph M. Scherzer Justin Orvel Schmidt, PhD Conrad Schneiker Melvin Herman Schonhorst, PhD George K. Schuler Michael H. Schweinsberg Theodore Thomas Scolman, PhD Chuck See Hal Sefton Mark N. Seidel, PhD Harner Selvidge, PhD Robert Shantz, PhD Steven M. Shaw, PhD Peter Sherry Jack L. Shilling Kirk W. Shubert Thomas K. Simacek, PhD William L. Simmermon James D. Simpson, PhD Alan M. Sinclair Mark R. Sinclair, PhD Ernesto Sirvas Edward Skibo, PhD Bruce E. Skippar W. Roy Slaunwhite, PhD Bennett Sloan Thomas L. Sluga Alice Smith Delmont K. Smith, PhD Donald Snyder John A. Soscia David M. Spatz, PhD Earl L. Spieles John W. Stafford Daniel Stamps Royal William Stark, PhD Travis C. Steele Frank A. Stephenson, PhD Lester H. Steward, PhD Vern S. Strubeck Robert J. Stuart Dennis L. Stuhr Frederick E. Suhm David Sultana Soren J. Suver Paul E. Swain Gordon Alfred Swann, PhD John M. Sweet Moute N. Swetnam Richard Switzer Michael Talbot Charles M. Tarr Michael Teodori Marvin W. Teutsch C. Brent Theurer, PhD Russell W. Thiele H. Stephens Thomas Jess F. Thomas Glenn Thompson, PhD David H. Thornton

John R. Thorson Dennis L. Thrasher Jacob Timmers Spencer R. Titley, PhD George E. Travis Vernon L. Trimble Eric Tuch Roy A. Tucker Lee A. Tune, Jr. George C. Tyler John L. Uhrie, PhD Bobby Lee Ulich, PhD Noel W. Urban Regino B. Urgena Emmett Van Reed Willard VanAsdall, PhD C. Kenneth Vance Richard V. VanRiper Edward F. Veverka Antonio R. Villanueva, PhD Edward Vizzini, PhD James W. Vogler, PhD Peter Vokac David E. Wahl, Jr., PhD Robert C. Walish, Jr. Joe A. Walker Woodville J. Walker* Wayne Wallace Kevin Walsh Steven I. Walsh Meredith F. Warner Steven D. Washburn Roger L. Waterman Lee R. Watkins W. L. Wearly, PhD Orrin John Webster, PhD Gene H. Wegner, PhD Patrick L. Weidner Jack D. Weiss Homer William Welch, PhD William T. Welchert Herbert C. Wendes Greg Wenzel Donald C. White Clifford K. Whiting Sue Whitworth W. Gordon Wieduwilt John B. Wilburn George Wilkinson, Jr. Brandon C. Williams Steven Kenneth Williams, PhD Clifford Leon Willis, PhD Robert E. Willow Jeff Wilmer Donald W. Wine David Wing, PhD Bruce M. Winn John B. Winters James C. Withers, PhD George K. Wittenberg, PhD Gerald Woehick George A. Wolfe Richard H. Wolters Gerald L. Wood David J. Woods George A. Woods Will W. Worthington Glenn Wright, PhD James A. Yanez James R. Yingst Garth L. Young Robert A. Young, PhD

Itzak Z. Zamir Roy V. Zeagler, Jr. Charles Zglenicki Paul W. Zimmer Werner G. Zinn Arkansas Billy R. Achmbaugh Alan J. Anderson James R. Arce Jerry L. Baber Harry R. Baker Phillip A. Barros Lonnie G. Bassett Ralph Sherman Becker, PhD Randolph Armin Becker Ford Benham Maximilian Hilmar Bergendahl, PhD John J. Berky, PhD C. Dudley Blancke Robert E. Blanz, PhD David Bowlin Robert Edward Bowling, PhD Delton L. Brown, Jr. Bryan Burnett Gordon L. Burr Stephen Cain James P. Caldwell Raymond Cammack, PhD Samuel Z. Chamberlin Frank Chimenti, PhD Thomas Clark Jeffrey M. Collar Frederick Clinton Collins, PhD John D. Commerford, PhD Reggie A. Corbitt Kenneth C. Corkum, PhD Stanley R. Curtis James Ed Davis Steven E. Dobbs, PhD Kenneth L. Duck James A. Dunlop Don H. Edington James E. Erskine Ronald Everett, PhD Timsey L. Everett William Russell Everett, PhD G. Ferrer, PhD Karen Ferrer, PhD Richard Hamilton Forsythe, PhD Kenneth W. French, PhD Roland E. Garlinghouse Walter Thomas Gloor, PhD William E. Gran Francis A. Grillot, Jr. John Louis Hartman, PhD Roger M. Hawk, PhD Larry D. Heisserer Orma L. Henders Francis M. Henderson Chester W. Hesselbein Lewis W. Hirschy Ed Hiserodt Edwin J. Hockaday Charles J. Hoke Erne Hume Johnny R. Isbell Mary E. Jenkins Charles Jones, PhD Edward T. Jones

Page 62: Human Health Effects - Granicus

Climate Change Reconsidered  

 750

Matti Kaarnakari Earnest Kavanaugh Bill W. Keaton David Wayne Kellogg, PhD M. K. Kemp Edward J. Kersey Donald R. Keys John W. King, PhD Tommy C. Kinnaird David L. Kreider, PhD Barry Kurth Sterling S. Lacy William E. Lanyon Noel A. Lawson Wei Li Dennis D. Longhorn Gary L. Low M. David Luneau Terry L. Macalady Phillip A. Marak Mary K. Marks-Wood Lloyd D. Martin Richard Harvey Martin Kenneth L. Mazander Clark William McCarty, PhD Hal E. McCloud, PhD Patrick McGuire Harlan L. McMillan, PhD Thomas H. McWilliams David G. Meador Allan J. Mesko Gerald R. Metty Paul Mixon, PhD Jeanne Murphy, PhD X. J. Musacchia, PhD Bobbie G. Musson Danny Naegle Charles A. Nelson, PhD Lowell Edwin Netherton, PhD Kelly Hoyet Oliver, PhD* Vernon L. Pate John E. Pauly, PhD Raymond E. Peeples John D. Pike Joseph C. Plunkett, PhD Larry T. Polk Jack L. Reddin Douglas A. Rees-Evans Allan Stanley Rehm, PhD Al W. Renfroe Tom E. Richards J. Herbert Riley Albert Robinson, PhD S. Maurice Robinson Gary W. Russell William Marion Sandefur, PhD Boris M. Schein, PhD Paul H. Schellenberg Bruce E. Schratz Mark Shalkowski B. Sherrill David E. Sibert Alfred Silano, PhD Carroll Ward Smith, PhD Wayne Smith Jason Stewart C. Storm Mike Robert Strub, PhD G. Russell Sutherland John B. Talpas Aubrey W. Tennille, PhD Don M. Thomas

Joseph R. Togami George Toombs William Walker Trigg, PhD Daniel L. Turnbow Alan C. Varner Patrick D. Walker Curtis Q. Warner J. R. Weaver Melvin Bruce Welch, PhD Tressa White Stephen W. Wilson Mary Wood James L. Word California Earl M. Aagaard, PhD Charles W. Aami Ursula K. Abbott, PhD Janis I. Abele Robert C. Abrams Ahmed E. Aburahmah, PhD Ava V. Ackerman Lee Actor Humberto M. Acuna, Jr. George Baker Adams, PhD Lewis R. Adams William John Adams William H. Addington Barnet R. Adelman John H. Adrain Jack G. Agan Sven Agerbek Edward J. Ahmann John J. Aiello Arthur W. Akers Gary L. Akerstrom Wayne Henry Akeson John S. Akiyama Philip R. Akre G. James Alaback John A. Alai Daniel C. Albers Edward G. Albert John C. Alden, PhD Alex F. Alessandrini Fred Alexander Ira H. Alexander Rodolfo Q. Alfonso R. Allahyari, PhD Louis John Allamandola, PhD Levi D. Allen Robert C. Allen William Edward Alley, PhD Charles E. Allman John J. Allport, PhD Ronaldo A. Almero David Altman, PhD Herbert N. Altneu Antonio R. Alvarez Raymond Angelo Alvarez, Jr., PhD Zaynab Al-Yassin, PhD Farouk Amanatullah Carmelo J. Amato Marvin Earl Ament Melvin M. Anchell Torben B. Andersen, PhD Wilford Hoyt Andersen, PhD Chris Anderson Conrad E. Anderson James Anderson

Jane E. Anderson Joy R. Anderson, PhD Orson Lamar Anderson, PhD Robert E. Anderson Roscoe B. Anderson Ross S. Anderson, PhD Thomas P. Anderson Warren Ronald Anderson Karen Andersonnoeck Lois Andros Walter S. Andrus Claude B. Anger Gregory W. Antal Achilles P. Anton Rolando A. Antonio Arturo Q. Arabe, PhD John Arcadi Philip Archibald Robert L. Archibald Gary Arithson Richard W. Armentrout, PhD Baxter H. Armstrong, PhD Robert Emile Arnal, PhD Charles Arney George V. Aros Chilingarian, PhD George J. Asanovich Edward V. Ashburn Holt Ashley, PhD Don O. Asquith, PhD Everett L. Astleford Greg J. Aten Robert D. Athey, Jr., PhD Leonardo D. Attorre Jerry Y. Au Mike August W. David Augustine Thomas E. Aumock Henry Spiese Aurand Kenny Ausmus Roger J. Austin, PhD Philip J. Avery Kenneth Avicola Luis A. Avila Theodore C. Awartkruis, PhD T. G. Ayres Wesley P. Ayres, PhD William J. Babalis Ray M. Bacchi Gordon R. Bachlund William E. Backes Adrian Donald Baer, PhD Henry P. Baier Benton B. Bailey Edmund J. Bailey Liam P. Bailey Ronald M. Bailey Donald W. Baisch Don Robert Baker, PhD Mary Ann Baker, PhD Norman F. Baker, PhD Roland E. Baker W. J. Baker John A. Balboni Orville Balcom Barrett S. Baldwin, PhD David P. Baldwin Ransom Leland Baldwin, PhD George Balella Donald L. Ball George Ball Glenn A. Ballard Martin Balow

John S. Baltutis John LeRoy Balzer, PhD Cris C. Banaban Herman William Bandel, PhD Richard M. Banister Ronald E. Banuk Neil J. Barabas George Baral Ronald Barany, PhD James W. Barcikowski Norman E. Barclay Brian S. Barcus Randolph P. Bardini Morrie Jay Barembaum Grigory Isaakovich Barenblatt, PhD Francis J. Barker Horace A. Barker, PhD Richard K. Barksdale Mary J. Barlow Albert R. Barnes Burton B. Barnes Paul R. Barnes Russell H. Barnes James Robert Barnum, PhD James P. Barrie Bruce M. Barron Robert H. Barron Gary D. Barry Bruce C. Bartels Don A. Bartick Bob W. Bartlett, PhD Janeth Marie Bartlett, PhD Sarah H. Bartling William A. Bartling W. Clyde Barton, Jr. Don Bartz Cecil O. Basenberg John E. Basinski, PhD H. Smith Bass Samuel Burbridge Batdorf, PhD Barbara Batterson Edward C. Bauer, PhD Kurt Baum, PhD Frank J. Baumann Hans Peter Bausch E. Beaton David Beaucage, PhD Robert A. Beaudet, PhD Christine Beavcage, PhD Horst Huttenhain Bechtel Robert F. Bechtold Donald J. Beck Niels John Beck, PhD Roy T. Beck Tom G. Beck Milton Becker, PhD William H. Beckley Arnold Orville Beckman, PhD* Toni Lynn Beckman, PhD Gary S. Beckstrom James P. Beecher Donald W. Beegle Mark Beget Nicholas Anthony Begovich, PhD Jean E. Beland, PhD Ralph Belcher, PhD Charles Vester Bell, PhD John Bell Barbara Belli, PhD Thomas J. Bellon, Jr. Robert K. Bellue Francis J. Belmonte

Page 63: Human Health Effects - Granicus

Appendix 4: The Petition Project  

 751

John F. Below, PhD John W. Ben David J. Benard, PhD Robert D. Benbow Paul F. Bene Barry P. Benight Kurt A. Benirschke John Benjamin, PhD Istvan S. Benko William G. Benko Kenneth W. Benner, PhD Harold E. Bennett, PhD Sidney A. Bensen, PhD Andrew A. Benson, PhD Herbert H. Benson John D. Benson Roger Benson* Sidney W. Benson, PhD Margaret W. Benton Philip H. Benton John A. Bentsen John A. Berberet, PhD Louis Bergdahl Augustus B. Berger Lev I. Berger, PhD Otto Berger Leo H. Berk Ami E. Berkowitz, PhD William I. Berks Ted Gibbs Berlincourt, PhD Baruch Berman Louis Bernath, PhD Dave Berrier Lester P. Berriman Carl E. Berry Edwin X. Berry, PhD David J. Berryman Richard G. Berryman Georgw J. Bertuccelli Thomas E. Berty Bruce A. Berwager James A. Bethke John C. Bettinger Ernest Beutler Vladislav A. Bevc, PhD Dimitri Beve, PhD John H. Beyer, PhD Ashok K. Bhatnagar Fred V. Biagini Carl J. Bianchini George A. Bicher Michael D. Bick, PhD Donald B. Bickler Donald G. Bickmore Lauren K. Bieg Gregory A. Bierbaum Richard V. Bierman Jerry C. Billings Kenneth William Billman, PhD Charles J. Billwiller Paul A. Bilunos R. L. Binsley Norman Birch Kenneth Bird, PhD James Louden Bischoff, PhD Clifford R. Bishop John William Bishop, PhD Kim Bishop, PhD Linman O. Bjerken Lars L. Bjorkman Paul A. Blacharski Melvin L. Black

Charles M. Blair, PhD Francis Louis Blanc Dean M. Blanchard Leroy E. Blanchard Donald W. Blancher Hiram W. Blanken, Jr. Michael S. Blankinship, Jr. Joseph S. Blanton Dean A. Blatchford Karl T. Blaufuss John Blethen, PhD Zegmund O. Bleviss, PhD Max R. Blodgett C. James Blom, PhD David L. Blomquist Leonard C. Blomquist John Bloom, PhD G. Bluzas Warren P. Boardman Carl Bobkoski Gene Bock Keith R. Bock Richard M. Bockhorst Gene E. Bockmier William E. Boettger Harold Bogin Lawrence P. Bogle Dale V. Bohnenberger Eugene Bollay Ellen D. Bolotin, PhD Donald H. Boltz Charles M. Bolus Joseph C. Bonadiman, PhD Stephen Alan Book, PhD E. S. Boorneson Iris Borg, PhD W. K. Borgsmiller Manfred D. Borks, PhD William R. Bornhorst Gerald F. Borrmann Anthony G. Borschneck Robert B. Bosler, Jr. Harold O. Boss Keith A. Bostian, PhD Danil Botoshanksky Gerald W. Bottrell Michel Boudart, PhD Robert L. Boulware Kenneth P. Bourke Robert H. Bourke, PhD Douglas A. Bourne Paul K. Bouz George I. Bovadiieff Peter F. Bowen David Bower Warren H. Bower John Bowers William M. Bowers Doug R. Bowles Jan Bowman C. Stuart Bowyer, PhD Wilson E. Boyce* Willis Boyd, Sr. Delbert D. Boyer William F. Bozich, PhD Jerry A. Bradshaw Derek Bradstreet F. P. Brady, PhD Matthew E. Brady William B. Brady Walton K. Brainerd J. C. Brakensiek

John W. Bramhall Francis A. Brandt Albert Wade Brant, PhD Thomas E. Braun Wesley J. Braun Ben G. Bray, PhD Warren D. Brayton James C. Breeding James D. Brehove Robert L. Breidenbaugh Ted Breitmayer C. H. Breittenfelder A. C. Breller Walter B. Brewer Theodore C. Brice Alan G. Bridge, PhD Stephen G. Bridge Robert M. Bridges* James E. Briggs, PhD Robert Briggs Allan K. Briney Donald F. Brink, PhD Tyler Brinker Francis Everett Broadbent, PhD Sue Broadston J. R. Brock Ivor Brodie, PhD Woody Brofman, PhD Ronald J. Bromenschenk Chistopher Bronny Charles E. Bronson Lionel H. Brooks, PhD Ronald D. Brost Robert John Brotherton, PhD David Brown Hal W. Brown Howard J. Brown James R. Brown, PhD Kenneth Taylor Brown, PhD Linton A. Brown Raymond E. Brown Terrill E. Brown D. Brownell Don Brownfield Peter Brubaker David Bruce Gene Bruce Carl Bruice Harvey F. Brush Donald L. Brust A. Bryan Glenn H. Bryner Michael J. Buchan Steven M. Buchanan John H. Buchholz, PhD Smil Buchman Carl J. Buczek, PhD Donald R. Buechel Ronald M. Buehler Fred W. Bueker Walter R. Buerger Robert R. Buettell Oscar T. Buffalow Sterling Lowe Bugg Robert J. Bugiada Victor E. Buhrke, PhD Brian J. Bukala William Murray Bullis, PhD Ronald Elvin Bullock Eric Buonassisi Jacob Burckhard Harvey Worth Burden, PhD

Herbert S. Burden, Jr. Willard Burge Milton N. Burgess Billy F. Burke Gary Burke James E. Burke, PhD Richard Lerda Burke, PhD Walter L. Burke Lawrence H. Burks James R. Burnett, PhD Thomas K. Burnham Leslie L. Burns, PhD Victor W. Burns, PhD Roger L. Burtner, PhD Kittridge R. Burton Douglas D. Busch Francis R. Busch Rick Buschini Edwin F. Bushman Mark M. Butier David V. Butler Thomas Austin Butterworth, PhD Sidney Eugene Buttrill, PhD Gary S. Buxton Richard G. Byrd Algyte R. Cabak Trish Cabral William P. Cade Ben Cagle William M. Cahill David Stephen Cahn, PhD Delver R. Cain Larry Caisuin Richard E. Cale* Fred L. Calkins Gary N. Callihan Chris Calvert, PhD Fred D. Campbell Henry W. Campbell Malcolm D. Campbell Nick Campion Marsha A. Canales George D. Candella Robert E. Caniglia Thomas F. Canning Arlen E. Cannon Garry W. Cannon Peter Cannon, PhD Harvey L. Canter Ronald J. Cantoni Manfred Cantow, PhD Charles A. Capp Spindt, PhD Albert J. Cardosa William Thomas Cardwell Audrey M. Carlan Carl E. Carlson George A. Carlson, PhD Lloyd G. Carnahan, PhD Scott Carpenter Edward Mark Carr Lester E. Carr, III, PhD Richard Carr Gilbert C. Carroll Jeffery L. Carroll Walter R. Carrothers Mary E. Carsten, PhD David Carta, PhD Jim Carter Willie J. Carter, PhD John G. Carver, PhD Tony K. Casagranda Ronald F. Cass

Page 64: Human Health Effects - Granicus

Climate Change Reconsidered  

 752

George Cassady Anthony A. Cassens Valen E. Castellano James B. Castles Kenneth B. Castleton, Jr. Rick Cataldo Henry P. Cate, Jr. Russel K. Catterlin W. L. Caudry Thomas Kirk Caughey, PhD Jerry Caulder, PhD James E. Cavallin James A. Cavanah Chuck J. Cavanaugh Neal C. Caya Lee B. Cecil Carl N. Cederstrand, PhD Leland H. Celestre Thomas U. Chace Pamela Chaffee Rowand R. Chaffee, PhD Carlton Chamberlain Dilworth Woolley Chamberlain, PhD John S. Chambers Oliver V. Chamness Scott O. Chamness Arthur D. Chan Sham-Yuen Chan, PhD Sunney L. Chan, PhD Steven Chandler Berken Chang, PhD Charles S. Chang Freddy Wilfred L. Chang, PhD Nicholas D. Change Mien T. Chao George Frederick Chapline, Jr., PhD Ross T. Charest Bruce R. Charlton Frank D. Charron Joseph H. Chasko E. Cheatham Boris A. Chechelnitsky Alwin C. Chen Donald Chen Fred Y. Chen Kun Hua Chen, PhD Ming K. Chen Robin S. Chen Wade Cheng, PhD J. C. Chernicky Dallas L. Childress George V. Chilingar, PhD Hong Chin, PhD Jerry L. Chodera Shary Chotai Tai-Low Chow, PhD Emmet H. Christensen Howard L. Christensen John D. Christensen Kent T. Christensen Steven L. Christenson George B. Christianson Kent B. Christianson Allison L. Christopher Donald O. Christy, PhD John E. Chrysler Daryl Chrzan, PhD Andy C. Chu Constantino Chua Craig P. Chupek Stanford Church Steven Ralph Church, PhD

Paul Ciotti Joseph A. Cipolla Fernando F. Cisneros Lawrence P. Clapham Javier F. Claramunt Charles R. Clark, PhD Harold A. Clark Norman B. Clark Richard W. Clark Sharron A. Clark John Francis Clauser, PhD Gordon Claycomb Robert R. Claypool Bruce Clegg Carmine Domenic Clemente, PhD William R. Clevenger Arnie L. Cliffgard Watson S. Clifford H. B. Clingempeel Mansfield Clinnick Thomas L. Cloer, Jr. Joseph F. Cloidt Ronald E. Clundt Harold E. Clyde Paul Jerry Coder Allen C. Codiroli C. Robert Coffey Karl Paley Cohen, PhD Norman S. Cohen Sam Cohen Anthony W. Colacchia Stefan Colban Kenneth R. Cole Miles L. Coleman Robert G. Coleman, PhD Joseph D. Coletta Donald Colgan John H. Collier Thomas F. Collier Dennis R. Collins, PhD Irene B. Collins Carlos Adolfo Colmenares, PhD William B. Colson, PhD Andre Coltrin Robert Neil Colwell, PhD William Tracy Colwell, PhD Brian Comaskey, PhD Stephen A. Comfort, PhD David R. Comish Jacob C. Compton Wayne M. Compton Harry M. Conger John T. Conlan Stephen W. Conn Robert H. Conner Claud C. Conners Mahlon C. Connett Bob A. Conway Patrick J. Conway Victoria O. Conway Brandt Cook Charles C. Cook Frank R. Cook, PhD Karl Cook Thomas B. Cook, Jr., PhD James Barry Cooke James W. Cooksley Clarence G. Cooper Martin Cooper Robert C. Cooper, PhD Thomas Cooper, PhD John D. Copley

Claude Coray Reed S. Coray, PhD Stephen F. Corcoran Bruce M. Cordell, PhD Chris D. Core John A. Corella John L. Corl Joe D. Corless Roy S. Cornwell, PhD Nicholas J. Corolis Wayne T. Corso Humberto S. Corzo George J. Cosmides, PhD Antonio Costa Harry Cotrill James R. Coughlin Danny R. Counihan George D. Couris Arnold Court, PhD Robert E. Covey William G. Cowdin Carrol B. Cox Daniel L. Cox Kenneth Robert Coyne Daniel J. Cragin Kenneth B. Craib James E. Craig, PhD Richard F. Craig Donald James Cram, PhD Eugene N. Cramer Leroy L. Crandall Walter E. Crandall, PhD Chris L. Craney, PhD Greg T. Cranham John D. Craven Thomas V. Cravy Dean Crawford Myron N. Crawford Dale Creasey Justin A. Creel, PhD C. Raymond Cress, PhD James Creswell Tom Creswell Cecil Crews Phillip O. Crews, PhD Robert W. Cribbs Dennis M. Crinnion Richard G. Crippen Alipio B. Criste Luanne S. Crockett James H. Cronander Gaines M. Crook, Sr. James G. Crose, PhD Kevin P. Cross Deane L. Crow Herbert E. Crowhurst Frank R. Crua Richard Cruce Duane Crum, PhD Jacquelyn Cubre William K. Culbreth Arthur G. Cullati, PhD Donald M. Culler Floyd Leroy Culler Peter A. Culley Murl F. Culp David Cummings, PhD* John Cummings Richard A. Cundiff A. Cunningham Edwin L. Currier Damon R. Curtis

Detlef K. Curtis Walter E. Curtis Steven M. Cushman Kenneth H. Cusick Donald F. Cuskelly John M. Cuthbert Leonard Samuel Cutler, PhD Robert C. Cutone Allen F. Dageforde Himatlal B. Dagli Daniel P. Dague Gregory A. Dahlen Dennis J. Daleiden Richard Daley, PhD Lloyd R. Dalton Robert L. Daly Philip G. Damask Marvin V. Damm, PhD William E. Daniel Warren Daniels Raisfeld I. Danse Moh Daoud Henry T. Darlington Gary L. Darnsteadt Alan D. Dartnell Renato O. Dato Clarence Theodore Daub, PhD Phillip D. Dauben Arthur A. Daush Lynn Blair Davidson, PhD William Davies Bruce W. Davis, PhD* H. Turia Davis James P. Davis Larry Alan Davis, PhD Lawrence W. Davis W. Kenneth Davis* Don F. Dawson Paul J. de Fries Angelo De Min H. A. De Mirjian David A. G. Deacon, PhD John M. Deacon Willett C. Deady Douglas L. Dean Donald Deardorff, PhD Gerald A. Debeau Daniel B. DeBra, PhD Ronald J. Debruin Robert Joseph Debs, PhD Paul R. Decker Curtis Kenneth Deckert Kent Dedrick, PhD J. M. Delano, Jr. Cheryl K. Dell, PhD Marc Dell'Erba Charles C. DeMaria Harold D. Demirjian Howard D. Denbo Warren W. Denner, PhD William J. Denney Ronald W. Dennison Wesley M. Densmore Andrew Denysiak, PhD Ralph T. Depalma Joseph George Depp, PhD Ronny H. Derammelaere Robert K. Deremer, PhD Todd C. Derenne Charles L. Des Brisay Riccardo DeSalvo, PhD Don Desborough

Page 65: Human Health Effects - Granicus

Appendix 4: The Petition Project  

 753

Brian J. Deschaine Harold Desilets Christopher R. Desley Alvin M Arden Despain, PhD Steven A. DeStefano Robert E. Detrich Donald P. Detrick James Edson Devay, PhD Howard P. Devol Robert V. Devore, PhD Edmond M. Devroey, PhD Thomas Gerry Dewees Howard F. Dey Parivash P. Dezham Arthur S. Diamond Marian C. Diamond, PhD Francis P. Diani James D. Dibdin Wade Dickinson Otto W. Dieffenbach Rodney L. Diehl Eugene L. Diepholz Paul A. Diffendaffer Joseph Brun Digiorgio, PhD Russell A. Dilley Ben E. Dillon John W. Dini Judy Dirbas David G. Dirckx Ray Dirling, Jr. Kenneth J. Discenza Byron F. Disselhorst Kent Diveley Steven J. Dodds, PhD Marvin Dodge, PhD Richard A. Dodge, PhD Ernest E. Dohner Roy Hiroshi Doi, PhD Geoffrey Emerson Dolbear, PhD Renan G. Dominguez Chuck Donaldson Igor Don-Doncon Armen M. Donian T. Donnelly, PhD Kerry L. Donovan, PhD Brendan P. Dooher, PhD Robert F. Doolittle, PhD Timothy B. D'Orazio, PhD David C. Doreo Kelly A. Doria Lowell C. Dorius Bernhardt L. Dorman, PhD Ronald J. Dorovi Weldon B. Dorris William R. Dotson Richard L. Double Steven G. Doulames Hanania Dover Douglas B. Dow Steven Dow Henry R. Downey Alexandria Dragan, PhD Titus H. Drake William R. Drennen Daniel D. Drobnis Richard A. Drossler Edward A. Drury Stanley A. Drury Richard S. Dryden C. F. Duane C. Ducoing Richard D. Dudley

Thomas Dudziak William T. Duffy, PhD Paul N. Duggan Peter Paul Dukes, PhD William J. Dulude Arnold N. Dunham John G. Dunlap James R. Dunn Leo P. Dunne John Ray Dunning, PhD Thomas G. Dunning Robin K. Durkee Gordon B. Durnbaugh Mark R. Dusbabek Sophie A. Dutch John A. Dutton A. J. Duvall James G. Duvall, III, PhD James R. Duvall Jack Dvorkin, PhD Paul Dwyer Denzel Leroy Dyer, PhD George O. Dyer J. T. Eagen Donald G. Eagling Edwin Toby Earl Francis J. Eason Eric G. Easterling Leslie P. Eastman A. T. Easton Kenneth K. Ebel Richard Eck Paul R. Edris Dennis Dean Edwall David F. Edwards, PhD Eugene H. Edwards, PhD J. Gordon Edwards, PhD* Robert L. Edwards William R. Edwards Wilson R. Edwards Maurice R. Egan, PhD John P. Ehlen Kenneth Warren Ehlers, PhD Walter Eich Robert E. Eichblatt Robert Leslie Eichelberger, PhD Herbert H. Eichhorn, PhD Donald I. Eidemiller, PhD David Eitman Dennis Eland Wm C. Elhoff Cindy Eliahu, PhD Shalom K. Eliahu Uri Eliahu Thomas G. Elias Bert V. Elkins James C. Elkins William J. Ellenberger Jules K. Ellingboe M. Edmund Ellion, PhD Robert D. Elliott Jim E. Ellison Hugh Ellsaesser, PhD Ismat E. El-Souki Gerard W. Elvernum Cedric B. Emery Frank E. Emery, PhD Norman Harry Enenstein, PhD Rodger K. Engebrethson Franz Engelmann, PhD Douglas M. Engh Harold M. Engle

Richard E. Engle Grant A. Engstrom James E. Enstrom, PhD Bruce Enyeart Dennis A. Erdman Wallace J. Erichsen Alfred A. Erickson Myriam R. Eriksson Christine Erkkila F. H. Ernst, Jr. Rodney L. Eson John J. Etchart Robert H. Eustis, PhD Charles Andrew Evans, PhD Charles B. Evans George W. Evans Marjorie W. Evans, PhD Dale Everett Ray Exley David S. Fafarman Robert S. Fagerness Jack J. Fahey John C. Fair, PhD Raymond M. Fairfield Clay E. Falkner Steven L. Fallon Mark W. Fantozzi Earl L. Farabaugh W. D. Fargo Jim O. Farley Clayton C. Farlow Emory W. Farr Gregory L. Farr James P. Fast Charles Raymond Faulders, PhD John R. Favorite Raymond J. Fazzio Juergen A. Fehr John D. Feichtner, PhD Eugene P. Feist Betty B. Feldman W. O. Felsman David Clarke Fenimore, PhD John R. Fennell Paul Roderick Fenske, PhD Robert B. Fenwick, PhD Richard K. Fergin, PhD David B. Ferguson, PhD Kenneth Edmund Ferguson, PhD Linn D. Ferguson Richard L. Ferm, PhD Louis R. Fermelia Walter Fetsch John A. Feyk William J. Fields Dale H. Fietz Donald L. Fife William Gutierrez Figueroa Alexandra T. Filer Mark Filowitz, PhD Reinald Guy Finke, PhD Frederick T. Finnigan William Louis Firestone, PhD Bryant C. Fischback Dwayne F. Fischer, PhD Raymond F. Fish Donald Fisher George H. Fisher Kathleen Mary Flynn Fisher, PhD Russell L. Fisher William M. Fishman, PhD Lanny Fisk, PhD

Jeremy W. Fitch Richard A. Fitch Thomas P. Fitzmaurice James L. Fitzpatrick William J. Fitzpatrick, PhD Richard H. Fixler Loren W. Fizzard Klaus Werner Flach, PhD Robert F. Flagg, PhD Horacio S. Fleischman Alison A. Fleming, PhD Donald H. Flowers Paul H. Floyd Edward Gotthard Foehr, PhD Eldon Leroy Foltz Robert Young Foos* Michael J. Foote Irvin H. Forbing Samuel W. Fordyce Paul L. Forester Charles J. Forquer Robert R. Forsberg John A. Foster Robert John Foster, PhD Henry E. Fourcade Douglas J. Fouts, PhD Elliott J. Fowkes, PhD Brian D. Fox Wade Hampton Foy, PhD Donald W. Frames Dorothea Frames Dale M. Franchak Clifford Frank Robert Frank Maynard K. Franklin Randy E. Frazier Reese L. Freeland Matt J. Freeman Reola L. Freeman Walter J. Freeman H. Friedemann Serena M. Friedman Belmont Frisbee Tom Frisbee Earl E. Fritcher Herman F. Froeb David Fromson, PhD Roger J. Froslie Charles W. Frost Charles M. Fruey Si Frumkin Wilton B. Fryer George Fryzelka Frederick A. Fuhrman, PhD Robert Alexander Fuhrman Ed D. Fuller Willard P. Fuller, Jr. Lawrence W. Funkhouser Rene G. Fuog David William Furnas Ron Gabel John W. Gabelman, PhD Jerry D. Gabriel Michael T. Gabrik, Jr. Richard A. Gaebel John Gagliano Lorenzo A. Gaglio Gilbert O. Gaines Russell A. Gaj John R. Galat Robert G. Galazin Darrell L. Gallop, PhD

Page 66: Human Health Effects - Granicus

Climate Change Reconsidered  

 754

Yakob V. Galperin, PhD Kurt Gamara, PhD Harold D. Gambill Kurt E. Gamnra, PhD Luis A. Ganaja Perry S. Ganas, PhD Shirish M. Gandhi Clark W. Gant Tony S. Gaoiran Carl W. Garbe Allen J. Garber Richard Hammerle Garber, PhD Alejandro Garcia, PhD Wayne Scott Gardner, PhD Walter Garey, PhD Jack Garfinkel Joseph F. Garibotti, PhD Jay M. Garner Thomas M. Garrett, PhD William H. Garrison Thomas D. Gartin Justine Spring Garvey, PhD Jerrie W. Gasch Nicholas D. Gaspar Robert W. Gassin Barry Gassner Robert H. Gassner Charles F. Gates Frederick Gates George L. Gates Gerald Otis Gates, PhD Thomas C. Gates G. R. Gathers, PhD Phillips L. Gausewitz Steven D. Gavazza, PhD Richard L. Gay, PhD Joseph Gaynor, PhD Bill A. Gearhart Colvin V. Gegg, PhD Dennis Gehri, PhD Paul Jerome Geiger, PhD Paul J. Gelger, PhD Mike Gemmell Michael S. Genewick Edward J. George, Sr. Michael L. Gerber Renee T. Gerry Melvin L. Gerst Paul R. Gerst Edward C. Gessert Alex Gezzy John W. Gibbs Joseph P. Gibbs A. Reed Gibby, PhD Ronald C. Gibson Warren C. Gibson, PhD Houghton Gifford Dominick R. Giglini Larry L. Gilbert Lyman F. Gilbert, Sr. Paul T. Gilbert Susan Gillen Wm. R. Gillen Paul A. Gillespie William N. Gillespie Benjamin A. Gillette Bruce B. Gillies Robert J. Gilliland Sherwyn R. Gilliland Mike Gilmore Dale P. Gilson Dezdemona M. Ginosian

William F. Girouard, PhD Silvio A. Giusti Dain S. Glad Dan L. Glasgow Jerome E. Glass Stephen M. Glatt Thomas Glaze John P. Gleiter John H. Glenn Renee V. Glennan John D. Glesmann John B. Glode Vladimir M. Glozman, PhD Aric Gnesa Robert W. Goddard Robert O. Godwin Susan Godwin Ludwig Edward Godycki, PhD Robert W. Goedjen David Jonathan Goerz James A. Goethel Edward Allan Goforth David J. Goggin, PhD Alfred Goldberg, PhD Brian J. Golden Alan Goldfien Steven D. Goldfien Kenneth J. Goldkamp Bruce Goldman John Paul Goldsborough, PhD Norman E. Goldstein, PhD Vladimir Golovchinsky, PhD Michel Gondouin, PhD Dionicio Gonzales Esteban G. Gonzales Alexander E. Gonzalez Ronald Keith Goodman Roy G. Goodman Byron Goodrich James D. Goodridge James W. Goodspeed Mikel P. Goodwin James K. Goodwine, Jr., PhD Gary E. Gordon Milton J. Gordon Rex B. Gordon Robert Gordon, PhD William H. Gordon Nelson G. Gordy Donald B. Gorshing Keith E. Gosling John Ray Goss Quentin L. Goss Wilbur Hummon Goss, PhD* Martin S. Gottlieb Robert George Gould Robert D. Gourlay Darrell Gourley Lawrence I. Grable Harald Grabowsky Ben G. Grady, PhD Richard W. Graeme Leroy D. Graff Kerry M. Gragg Dee McDonald Graham, PhD Gary C. Graham, PhD Alex T. Granik, PhD Jerry Grant Edward L. Grau Walter L. Graves Clifton H. Gray, Jr. Lauren H. Grayson

Hue T. Green Joseph M. Green, PhD Leon Green, Jr., PhD Russell H. Green, Jr. Charles R. Greene, PhD Eugene Willis Greenfield, PhD Charles August Greenhall, PhD Edward C. Greenhood John Edward Greenleaf, PhD Jeffrey S. Greenspoon Peter Gregg David Tony Gregorich, PhD Thomas J. Gregory Gennady H. Grek Kurt G. Greske David R. Gress Donald N. Griffin Roger D. Griffin Travis Barton Griffin, PhD Roy S. Griffiths, PhD Thomas J. Grifka Donald Wilburn Grimes, PhD Leclair Roger Grimes Charles Groff Alan B. Gross Morton Grosser, PhD James Grote, PhD Eric Gruenler Raymond H. Gruetert Mike A. Grundvig Mike Gruntman, PhD Ross R. Grunwald, PhD Louis E. Grzesiek Michael R. Guarino, Sr. Richard Austin Gudmundsen, PhD Jacques P. Guertin, PhD Gareth E. Guest, PhD John O. Guido Darryl E. Gunderson Richard R. Gundry Robert Charles Gunness, PhD Riji R. Guo Dwight F. Gustafson Kermit M. Gustafson Eugene V. Gustavson Daniel A. Gutknecht Steven L. Gutsche Michael D. Gutterres John V. Guy-Bray, PhD Michael A. Guz Geza Leslie Gyorey, PhD Bjorn N. Haaberg Glenn Alfred Hackwell, PhD D. Haderli Brian L. Hadley Arno K. Hagenlocher, PhD Chuck R. Haggett Hashem Haghani Richard B. Hagle Robert A. Hagn Pierre Vahe Haig Samir N. Haji, PhD Marlund E. Hale, PhD Paul F. Halfpenny Kenneth Lynn Hall, PhD Robert J. Hall Sylvia C. Hall Daniel P. Haller Albert A. Halls, PhD Herbert H. Halperin Martin B. Halpern, PhD Lee Edward Ham

Frank C. Hamann Ronald O. Hamburger Edward E. Hamel, PhD Matt J. Hamilton Bruce Dupree Hammock, PhD Stephen Hampton Anthony James Hance, PhD Taylor Hancock Cadet Hand, PhD* David A. Hand John W. Hanes Peter Hangarter Dale L. Hankins Gerald M. Hanley Dean A. Hanquist Allan G. Hanretta Ethlyn A. Hansen L. J. Hansen Peder M. Hansen, PhD Robert Clinton Hansen, PhD Warren K. Hansen Rowland Curtis Hansford James C. Hanson Lloyd K. Hanson Richard Hanson John Warvelle Harbaugh, PhD Ralph Harder John A. Hardgrove Edgar Erwin Hardy, PhD Vernon E. Hardy Kenneth A. Harkewicz, PhD Roger N. Harmon Terry W. Harmon, PhD John D. Harper, Jr. John Harper Kevin J. Harper Alfred Harral, III William E. Harries, PhD David Harriman Bryan J. Harrington Kent Harris Rita D. Harris Robert O. Harris S. P. Harris, PhD Tyler Harris Burton Harrison John David Harrison, PhD Marvin Eugene Harrison Robin Harrison Jim Harrower Philip T. Harsha, PhD James B. Hart Darrell W. Hartman Maurice G. Hartman George L. Hartmann William L. Hartrick Meredith P. Harvan Jack L. Harvey Ted F. Harvey, PhD Dieter F. Haschke Darr Hashempour, PhD Hashaliza M. Hashim Jiri Haskovec, PhD Robert D. Hass Steven J. Hassett George Hathaway, PhD Mark Hatzilambrou Warren Hauck John C. Haugen Kenneth E. Haughton, PhD Donald G. Hauser John E. Hauser

Page 67: Human Health Effects - Granicus

Appendix 4: The Petition Project  

 755

Arthur Herbert Hausman Alfred H. Hausrath, PhD Warrnen M. Haussler Walter B. Havekorst, PhD Anton J. Havlik, PhD George E. Hawes Michael D. Hawkins Brice C. Hawley Dale R. Hayden, Sr. Bill J. Hayes Robert M. Hayhurst Carl H. Hayn, PhD Beth Haynes William E. Haynes Gerald Hays Paul E. Hazelman R. Nichols Hazelwood, PhD Dean Head David L. Heald, PhD Albert Heaney, PhD Stephen D. Heath George E. Heddy, III Solomon R. Hedges Larry E. Hedrick Lee Opert Heflinger, PhD Frank C. Heggli Bettina Heinz, PhD Richard L. Heinze William D. Heise Ralph A. Heising William B. Heitzman George W. Heller Denise M. Helm Carl N. Helmick, Jr. William F. Helmick John W. Helphrey Raymond G. Hemann F. R. Hemeon John E. Hench, PhD Kenneth P. Henderson Curtis E. Hendrick Jonathan P. Hendrix Joseph E. Henn Carol E. Henneman Joseph Hennessey Gary L. Hennings Donald M. Henrikson R. R. Heppe John A. Herb, PhD Charles A. Herbert Noel Martin Herbst, PhD Bruce J. Herdrich Don D. Herigstad Elvin Eugene Herman Ronald C. Herman, PhD Robert W. Hermsen, PhD Charles L. Hern Brian K. Herndon Leo J. Herrerra, Jr. James L. Herrick* David I. Herrington Christian Herrmann, Jr. Roger R. Herrscher John William Baker Hersey, PhD Robert T. Herzog, PhD Chris A. Hesse David A. Hessinger, PhD Norman E. Hester, PhD Paul G. Hewitt Robert E. Heyden Acle V. Hicks William B. Hight

Barry J. Hildebrand Warren W. Hildebrandt Mahlon M.S. Hile, PhD Alan T. Hill John H. Hill Larry Hill Robert Hill, PhD David Hillaker John R. Hilsabeck E. B. Hilton Hubert L. Himes Carl Hinners Kenneth A. Hitt Charles A. Hjerpe James R. Hoagland L. C. Hobbs Peter B. Hobsbawn Robert A. Hochman John R. Hoddy Lee N. Hodge David Hodgkins Elizabeth M. Hodgkins Paul T. Hodiak Robert S. Hoekstra William B. Hoenig, Jr. Robert G. Hoey C. Hoff Phil Hoff, PhD Howard Torrens Hoffman, PhD Marvin Hoffman, PhD Carl E. Hoffmeier Jeffrey E. Hofmann Roger C. Hofstad Clarence Lester Hogan, PhD Roy W. Hogue Doug Hoiles Arnold H. Hoines Franklin K. Holbrook David Holcberg Joy R. Holdeman George R. Holden Richard Holden Robert E. Holder C. H. Holladay, Jr. Dennis R. Hollars, PhD Charles L. Hollenbeck Delbert C. Hollinger Brent E. Hollingworth David F. Holman William H. Holmes Harold T. Holtom, Jr. Vincent H. Homer, Jr. Andrew L. Hon Richard Churchill Honey, PhD John D. Honeycutt, PhD Aaron Hong, PhD James F. Hood, Jr. Ronald M. Hopkins, PhD Gary H. Hoppe James C. Hoppe Donald F. Hopps Thomas G. Horgan John R. Horn Lee W. Horn Erwin William Hornung, PhD Grant A. Hosack, PhD Fred L. Hotes Dale Hotten David L. Houghton Leland Richmond House Loren J. Hov Max M. Hovaten

Conrad Howan George O. Howard S. Dale Howard Stanley G. Howard Walter Egner Howard, PhD George F. Howe, PhD John P. Howe, PhD Ward W. Howland Eric S. Hoy, PhD C. Hoyt Chien H. Hsiao, PhD Hani F. Hskander Cynthia Hsu Henry H. Hsu J. Hsu, PhD Robert Y. Hsu, PhD Limin Hsueh, PhD Kuang J. Huang, PhD Harmon William Hubbard, PhD Jason P. Hubbard Wheeler L. Hubbell Cyril E. Huber David Huchital, PhD Stephen A. Hudson David E. Hueseman Hermann F. Huettemeyer Peter Huetter, III Jim D. Huff Thomas J. Huggett Reginald C. Huggins Robert A. Huggins Michael D. Hugh Larry C. Hughes Melville P. Hughes Roxanne C. Hughes Paul Hull Charles R. Hulquist Joseph W. Hultberg Eric A. Hulteen Brian Humphrey John Humphrey William E. Humphrey, PhD Steven J. Hunn George C. Hunt John P. Hunt, PhD William J. Hunter James R. Hurd Edward T. Hurley Randy Hurst Michael C. Husinko Glen E. Huskey, PhD Andrew Huszczuk, PhD Lee Hutchins Bruce T. Hutchinson E. S. Hutchison Alan W. Hyatt, PhD Eric R. Hyatt, PhD Charles Hyde Ralph Hylinski Umberto C. Iacuaniello Samuel J. Iarg Gerald B. Iba Harold B. Igdaloff Ronald A. Iltis, PhD Kenneth T. Ingham Rodney H. Ingraham, PhD Donald J. Inman William Beveridge Innes, PhD Kaoru Inouye Dodge Irwin Donald G. Iselin Don L. Isenberg, PhD

Robert Isensee, PhD Byron M. Ishkanian George Ismael Farouk T. Ismail, PhD Guindy Mahmoud Ismail El, PhD Larry Israel Olga Ivanilova, PhD King H. Ives Lindsay C. Ives Claude A. Jackman Dale S. Jacknow Bruce Jackson Bruce Jackson Kingbury Jackson Robert A. Jackson Warren B. Jackson, PhD Sharon Jacobs John E. Jacobsen Albert H. Jacobson, Jr., PhD Fred J. Jacobson Leslie J. Jacobson Michael E. Jacobson Kenneth D. Jacoby Syed I. Jafri H. S. James William L. James Everett Williams Jameson, Jr., PhD Robert W. Jamplis Kenneth S. Jancaitis, PhD Larry Jang, PhD Norman C. Janke, PhD John C. Jaquess Robert Jastrow, PhD* Fred J. Jeffers, PhD George W. Jeffs David E. Jenkins Jack D. Jenkins Sean Jenkins Richard G. Jenness David Jennings Edwin B. Jennings Frederick A. Jennings Pete D. Jennings Gerard M. Jensen, PhD Paul E. Jensen Denzel Jenson, PhD Norman E. Jentz Herbert C. Jessen James W. Jeter, Jr., PhD Nicolai A. Jigalin Robert M. Jirgal Zoenek Vaclav Jizba, PhD Laurie A. Johansen Craig A. Johanson Niles W. Johanson Karl Richard Johansson, PhD Bertram G. Johnson Bryce W. Johnson, PhD Duane Johnson, PhD Erik Johnson, PhD G. E. Johnson Gerald W. Johnson, PhD H. A. Johnson, PhD Horace Richard Johnson, PhD Jim Johnson Mark A. Johnson Michael B. Johnson P. Johnson Raymond E. Johnson Richard R. Johnson Steven M. Johnson Theodore R. Johnson

Page 68: Human Health Effects - Granicus

Climate Change Reconsidered  

 756

Walter F. Johnson William P. Johnson William R. Johnson, PhD George M. Johnston Viliam Jonec, PhD Rajinder S. Joneja Alan B. Jones Christopher H. Jones Claris Eugene Jones, Jr., PhD Edgar J. Jones Egerton G. Jones Jeff Jones Kyle B. Jones Merrill Jones, PhD Paul D. Jones Robert E. Jones Taylor B. Jones, PhD Pete Jonghbloed Peter E. Jonker Charles Jordan, PhD L. Jordan Peter D. Joseph, PhD Lyman C. Josephs, III Richard L. Joslin Ronald F. Joyce Macario G. Juanola Robert H. Julian Bruce B. Junor George A. Jutila Charles E. Kaempen, PhD Robert W. Kafka, PhD Ron M. Kagan, PhD Richard L. Kahler Calvin D. Kalbach David Kalil Loren D. Kaller, PhD Lisa V. Kalman, PhD Martin D. Kamen, PhD* Ivan J. Kamezis Andrew J. Kampe Sarath C. Kanekal, PhD Thomas Motomi Kaneko, PhD Ho H. Kang, PhD Thomas A. Kanneman, PhD Paul Thomas Kantz, PhD Mark S. Kapelke Alvin A. Kaplan Hillel R. Kaplan Eugene J. Karandy Sid Karin, PhD Arthur Karp, PhD Victor N. Karpenko Ronald A. Kasberger Brian L. Kash Daniel E. Kass Carl J. Kassabian Jack T. Kassel William S. Kather Stanley L. Katten Fred E. Kattuah George Bernard Kauffman, PhD Thomas Kauffman Alvin Beryl Kaufman Andrew J. Kay David W. Kay, PhD Robert Eugene Kay, PhD Myron Kayton, PhD Richard H. Keagy John R. Keber Patrick A. Keddington James Richard Keddy Ross C. Keeling, Jr.

Walter F. Kelber William T. Kellermann, Sr. Charles Thomas Kelley, PhD Dennis Kelley Kevin D. Kelley Patrick R. Kelly Leroy J. Kemp Robert E. Kendall Martin William Kendig, PhD Peter H. Kendrick Tom A. Kenfield Michael T. Kennedy John M. Kennel, PhD Brian M. Kennelly, PhD Clifford Eugene Kent Kathleen M. Kenyon Josef Kercso Clifford Dalton Kern, PhD Quentin A. Kerns Anna M. Kerrins Andrew C. Ketchum Jesse F. Keville John D. Keye, Jr. Tejbir S. Khanna Simon A. Kheir Kathleen Kido-Savino Karl E. Kienow David C. Kilborn Kent B. Killian Jerry Killingstad David E. Kim Lawrence K. Kim D. Kimball Amon Kimeldorf William C. Kimpel Kim S. Kinderman Chester L. King Hartley Hugh King, PhD Joseph E. King William S. King William L. Kingston James W. Kinker John J. R. Kinney Gerald Lee Kinnison, PhD John Kinzell, PhD E. K. Kirchner, PhD Tom P. Kirk Carl S. Kirkconnell, PhD Richard D. Kirkham Harry H. Kishineff Ernest Kiss Terence M. Kite, PhD Michael T. Kizer Kit R. Kjelstrom Lorentz A. Kjoss Nicholas Paul Klaas, PhD Eugene G. Klein Joseph Klein Thomas Klein Aurel Kleinerman, PhD Robert E. Klenck Walter Mark Kliewer, PhD Steve J. Klimowski Sidney Kline Thomas J. Kling Edwin E. Klingman Gilbert E. Klingman William Klint Fred L. Kloepper Edwin E. Klugman, PhD Richard M. Klussman James W. Knapp

Penelope K. Knapp Richard Hubert Knipe, PhD Charles R. Knowles Devin Knowles Larry P. Knowles Floyd Marion Knowlton Stephen A. Kobayashi Robert D. Kochsiek Bertram S. Koel Hans Koellner Gina L. Koenig Fred Koester Robert Cy Koh, PhD Joe B. Kohen George O. Kohler, PhD R. J. Kolodziej Kazimierz Kolwalski, PhD Fred W. Koning B. E. Kopaski Rudolph William Kopf John Kordosh N. Korens Harrison J. Kornfield John L. Kortenhoeven Bart Kosko, PhD Charles C. Kosky Mark J. Koslicki Edward Garrison Kost, PhD Allen T. Koster Nagy Hanna Kovacs, PhD Sankar N. Koyal, PhD Mitchell M. Kozinski William R. Krafft Peter W. Krag, PhD Jerry Kraim Roman J. Kramarsic, PhD Gordon Kramer Norbert E. Kramer, PhD William H. Krebs Ruth E. Kreiss William T. Kreiss, PhD Richard M. Kremer, PhD William B. Krenz Jeffrey B. Kress Karl Kretzinger Joseph Z. Krezandski, PhD E. Kriva John Led Kropp, PhD Loren L. Krueger* Steven T. Krueger Gai Krupenkin E. C. Krupp, PhD Harvey A. Krygier Mitsuru Kubota, PhD Alexander Kucher Don R. Kuehn, PhD Frank I. Kuklinski Eugene M. Kulesza Kenneth W. Kummerfeld Joseph Kunc, PhD Guy Kuncir Willard D. Kunz Peter Kurtz, PhD Alan J. Kushnir, PhD Paul Kutler, PhD Leon J. Kutner, PhD Timothy La Farge, PhD James La Fleur Mitchell J. LaBuda, PhD Leonard L. Lacaze Kurt D. Ladendorf Franklin Laemmlen, PhD

Eugene C. Laford, PhD Bruce Lagasse Thomas W. LaGrelius Milton Laikin Charles L. Laird, III Cleve Watrous Laird, PhD John W. Lake Albert L. Lamarre Michael A. Lambert, PhD Ron R. Lambert Edward W. Lambing, Jr. Robert A. Lame H. D. Landahl, PhD Richard Leon Lander, PhD William K. Lander Tom F. Landers William Charles Landgraf, PhD Frank L. Landon Charles S. Landram, PhD Archie Landry William G. Landry F. Lane Darrell W. Lang Gregory A. Langan Thomas H. Lange, PhD Rolf H. Langland, PhD Philip G. Langley, PhD Ward J. Lantier George R. LaPerle Gary G. Lapid Kurt A. Larcher Lisa W. Larios Norbert D. Larky David F. Larochelle Bruce E. Larock, PhD Henry Larrucea David L. Larsen William E. Larsen Harry T. Larson Larry J. Larson Russell C. Larson Roderick M. Lashelle Bill Lee Lasley, PhD Jason Lau James Bishop Laudenslager, PhD Garry E. Laughlin James W. Laughlin James H. Laughon Jim Lauria Archibald M. Laurie Michael J. Lavallee Thomas E. Lavenda Charles E. Law Bill Lawler John John Lawless, Jr., PhD William H. Lawrence Edward B. Lawson Bill R. Lawver Charles E. Layne Grant H. Layton Thomas W. Layton, PhD Gerry V. Lazzareschi Julie Leahy William F. Leahy, PhD David F. Leake William D. Leake James B. Lear Joseph P. Leaser Paul Matthew Leavy Joseph E. Ledbetter, PhD Robert S. Ledendecker Bryan D. Lee

Page 69: Human Health Effects - Granicus

Appendix 4: The Petition Project  

 757

Bum S. Lee, PhD Kai Y. Lee Keun W. Lee Long Chi Lee, PhD Min L. Lee, PhD Paul S. Lee, PhD Philip R. Lee Carl B. Leedy Marjorie B. Leerabhandh, PhD Robert H. Leerhoff Franklin E. Lees Harry A. Leffingwell Victor E. Leftwich Walter Lehman William C. Lehman James N. Lehmann Robert F. Lehnen Edward T. Leidigh Al G. Leiga, PhD Jerry S. Leininger Robert B. Leinster Larry G. Leiske George W. Leisz Ronald J. Lejman Dan LeMay Vernon L. Leming Eric Lemke Don H. Lenker John Lenora, PhD Billy K. Lenser Robert C. Lentzner Richard D. Leonard Peter C. LePort Robert L. Lessley James L. Lessman Max M. Lester, Jr. Robert W. Lester Thuston C. LeVay Lamberto A. Leveriza Walter Frederick Leverton, PhD Robert Ernest Le Levier, PhD Howard Bernard Levine, PhD Jeff E. Levinger Roger E. Levoy J. V. Levy, PhD Hal Lewis, PhD William P. Lewis, PhD Huilin Li, PhD Shing T. Li, PhD Thomas T. Liao Frank Licha Donald K. Lidster Kap Lieu Michael L. Lightstone, PhD Wayne P. Lill, Jr. Ray O. Linaweaver Wilton Howard Lind Kim R. Lindbery Robert O. Lindblom, PhD Charles Alexander Lindley, PhD Robert R. Lindner Peter F. Lindquist, PhD Laurence Lindsay Robert Lindstrom Leo C. Linesch John J. Linker Paul H. Linstrom Darrell Linthacum, PhD Jerome L. Lipin Arthur L. Lippman Arthur C. Litheredge W. M. Liu, PhD

Josep G. Llaurado Verl B. Lobb Fred P. Lobban Timothy A. Lockwood, PhD Donald O. Lohr Lewis S. Lohr Gabriel G. Lombardi, PhD Robert Ahlberg Loney, PhD Howard F. Long James D. Long Neville S. Long Paul Alan Longwell, PhD Clay A. Loomis Hendricus G. Loos, PhD David A. Lorenzen Robert S. Lorusso Brad M. Losey Frank H. Lott Stuart Loucks Michael E. Lovejoy C. James Lovelace, PhD Judith K. Lowe Alvin Lowi, Jr., PhD John Kuew Hsiung Lu, PhD Paul S. Lu Michael D. Lubin, PhD Anthony G. Lubowe, PhD Raymond K. Luci Samuel R. Lucia Denise G. Luckhurst H. Ludwig Raymond J. Lukens, PhD William Watt Lumsden, PhD* Walter F. Lundin Jorgen V. Lunding Theodore R. Lundquist, PhD Pamela G. Lung Owen Raynal Lunt, PhD Harold Richard Luxenberg, PhD Warren M. Lydecker Dennis Lynch Laura M. Lynne Kevin G. Lyons Richard G. Lyons Robert S. Lyss Robert S. MacAlister Mike S. Macartney Howard Maccabee, PhD Alexander Daniel MacDonald, PhD David V. MacDonald John W. Mace Mario A. Machicao John D. Mack Donald S. Macko, PhD John C. Maclay Lee M. Maclean Edward H. Macomber Duane E. Maddux Joseph T. Maddux A. Madison Akhilesh Maewal, PhD Frank Maga John L. Magee* Michael W. Magee Hans F. Mager Edward Thomas Maggio, PhD Tom Alan Magness, PhD Robert A. Maier Walter P. Maiersperger* Douglas J. Malewicki Michael A. Malgeri Jim G. Malik, PhD

Calvin Malinka William Robert Mallett, PhD Joseph D. Malley, PhD Albert J. Mallinckrodt, PhD Kenneth Long Maloney, PhD George E. Maloof Neil A. Malpiede Enrico R. Manaay Nikola A. Manchev Isaak Mandelbaum Nelson L. Mandley Kent M. Mangold Anna M. Manley C. David Mann George L. Mann Nancy Robbins Mann, PhD Philip Mannes Scheana Mannes Robert W. Mannon, PhD William H. Mannon James Mansdorfer Greayer Mansfield-Jones, PhD A. Marasco Herbert D. Marbach, PhD George Raymond Marcellino, PhD Michael Marchese Stephen C. Marciniec William C. Marconi Carol Silber Marcus, PhD A. J. Mardinly, PhD Alan Mare Elwin Marg, PhD Brian Maridon Mike J. Marienthal Michael J. Marinak William P. Markling Jack Marling, PhD Wilbur Joseph Marner, PhD Patrick M. Maroney Don Marquis Marilyn A. Marquis, PhD Vee L. Marron Henry L. Marschall Sullivan Samuel Marsden, PhD David E. Marshburn Lorenzo I. Marte Richard G. Martella Emil L. Martin Lincoln A. Martin Ralph F. Martin Rebecca Denise Martin Richard E. Martin Rodney J. Martin Stanley Buel Martin Vurden T. Martin Ernest A. Martinelli, PhD Joseph Maserjian, PhD Arthur J. Mason George D. Mason Paul S. Masser, PhD Alberto G. Masso, PhD Edgar A. Mastin, PhD Herbert Franz Matare, PhD Vincent A. Matera Charles R. Mathews Eckart Mathias Harold C. Mathis Ronald F. Mathis, PhD Gene L. Matranga Kyoko Matsuda, PhD Jacob P. Matthews Bill B. May, PhD

Edward H. Mayer German R. Mayer David F. Maynard, PhD G. Mazis Stephen Albert Mazza Richard L. McArthy David M. McCann William J. McCarter Edward W. McCauley, PhD Jon McChesney, PhD Chester McCloskey, PhD David L. McClure R. J. McClure William Owen McClure, PhD John M. McCluskey John V. McColligan Billy Murray McCormac, PhD Philip Thomas McCormick, PhD Thomas E. McCown Herbert I. McCoy Ray S. McCoy Louis Ralph McCreight Thomas G. McCreless, PhD James B. McCrumb Sandra L. McDougald Barry R. McElmurry William C. McFadden Malcolm M. McGawn William H. McGlasson Jack F. McGouldrick Richard J. McGovern Thomas McGuinness John P. McGuire Lawrence McHargue, PhD Vernon J. McKale Roger E. McKarus Charles G. McKay William Dean McKee, PhD Donald J. McKenzie Joe A. McKenzie William K. McKim Jerry McKnight Stephen M. McKown Charles A. McLean Steven McLean Debra McMahan John D. McMahon Lester R. McNall, PhD Gregory R. McNeil Michael J. McNutt, PhD Daniel McPherson, Jr. L. D. McQueen, PhD Cyril M. McRae Edgar R. McRae Gerard J. McVicker Homer N. Mead Joseph Meade Robert C. Meaders Beverly Meador Richard A. Meador Herbert J. Meany M. G. Mefferd Merlin Meisner Stanley Meizel, PhD Michael A. Melanson Gloria Melara, PhD Robert Frederick Meldav Rodney Melgard Stanley C. Mellin Alex S. Meloy Marvin E. Melton Bobby J. Melvin

Page 70: Human Health Effects - Granicus

Climate Change Reconsidered  

 758

Anthony S. Memeo Xian-Qin Meng Steven M. Menkus William F. Menta Alan C. Merchant Leo Mercy Paul M. Merifield, PhD Vincent C. Merlin John Lafayette Merriam Marshal F. Merriam, PhD George B. Merrick Ronald E. Merrill, PhD William R. Merrill Seymour Merrin, PhD Ross A. Merritt Arthur L. Messinger Robert Meyearis Harold F. Meyer Jewell L. Meyer Matthew D. Meyer Rudolf X. Meyer, PhD Steven J. Meyerhofer Charles J. Meyers, Jr. Richard E. Meyers Gerald James Miatech, PhD E. Don Michael Robert C. Michael Lawrence A. Michel Lloyd R. Michels, PhD Michael A. Michelson Scott J. Mighell Daniel F. Mika Nagib T. Mikhael, PhD Duane Soren Mikkelsen, PhD Paul G. Mikolaj, PhD Gerald A. Miles Melvin H. Miles, PhD Ralph Franley Miles, PhD John B. Millard, PhD Jose B. Millares Alan D. Miller, PhD Allan S. Miller, PhD C. Miller Cecil Miller, PhD Daryl D. Miller Dick Miller, PhD George Miller H. L. Miller James Avery Miller, PhD John S. Miller Kenneth J. Miller Lawrence S. Miller Robert L. Miller Sol Miller, PhD Stanley Leo Miller Timothy Miller Wilson N. Miller Le Edward Millet, PhD Charles E. Millett Robert C. Mills George P. Milton Thomas Mincer, PhD Robert E. Minear Ronald L. Miner Susie M. Ming David R. Minor Tom L. Mintun John M. Mintz, PhD Srecko Mirko Mircetich, PhD Harold Mirels, PhD Arjang K. Miremadi Mohammad R. Mirseyedi

Theodore C. Mitchell Arup P. Mitra Edward Mittleman K. L. Moazed, PhD Julie A. Mobley Ken L. Moeckel Randy A. Moehnke Allen A. Moff John K. Moffitt John George Mohler Daniel E. Mohn Faramarz Mohtadi George E. Mohun Niculae T. Moisidis, PhD Rogelio A. Molina Albert James Moll, PhD John L. Moll, PhD Terrence V. Molloy John P. Monahan Robert E. Moncrieff Carl L. Monismith Loren Monroe, Jr. Myles P. Monroe Ernesto M. Monteiro Theodore Ashton Montgomery Nelson Montoya Henry L. Moody Dale W. Mooney Eugene R. Moore, PhD Rodney R. Moore Michael Morcos William B. Moreland Richard Leo Moretti, PhD Dean R. Morford Robert W. Morford Donald Earle Morgan, PhD Leon Frank Morgan Lucian L. Morgan Thomas Kenneth Morgan, PhD Victor G. Morgen Michael Moroso Philip J. Morrill Paul E. Morris Jeffrey A. Morrish Allen D. Morrison Richard J. Morrissey Dan Morrow Frances Morse George A. Morse Dennis B. Morton John Robert Morton, PhD Paul K. Morton Ray S. Morton H. David Mosier Malcolm Mossman Ronald J. Mosso Gail F. Moulton, Jr. Paul Mount, II Richard C. Much Jerome Robert Mueller William L. Mueller Sig Muessig, PhD Debasish Mukherjee, PhD Butch Mulcahey Fred R. Mulker Kenneth I. Mullen L. Frederic Muller John F. Mulligan Kary B. Mullis, PhD Mark B. Mullonbach T. Munasinge, PhD David V. Mungcal

Albert G. Munson, PhD Emil M. Murad Alexander James Murphy, PhD Emmett J. Murphy Gary L. Murphy Sean Murphy, PhD William J. Murphy, PhD Bruce Murray Frank Murray, PhD Richard L. Murray Albert F. Myers Dale D. Myers Willard G. Myers, PhD Donald L. Mykkanen, PhD Harry E. Nagle Kenneth A. Nagy, PhD Yervant M. Nahabedian Yathi Naidu, PhD Takuro S. Nakae Glenn M. Nakaguchi Dennis B. Nakamoto M. Nance A. Naselow, PhD J. Greg Nash, PhD Merlin Neff, Jr. Thomas C. Nehrbas Donald G. Nelson Lorin M. Nelson Richard Douglas Nelson, PhD Robert L. Nelson Victor Nelson Bijan Nemati, PhD Bruce H. Nesbit Harold Neufeld John B. Neuman Sylvia M. Neumann Temple W. Neumann Donald E. Neuschwander Frank M. Nevarez James Ryan Neville, PhD Richard E. Newell Stanley D. Newell John M. Newey Phil W. Newman Bernard D. Newsom, PhD H. Newsom, PhD Kerwin Ng Thuan V. Nguyen, PhD D. Paul Nibarger Edward S. Nicholls Jack C. Nichols Mark E. Nichols Richard A. Nichols, PhD Richard E. Nicholson Peter A. Nick Mathew L. Nickels Marvin L. Nicola Albert H. Niden Tom F. Niedzialek R. Nieffenegger Gilbert O. Nielsen Kurt E. Nielsen Mark Niemiec Rodulfo C. Niere William A. Nierenberg, PhD* Joseph A. Nieroski Edwawrd A. Nieto Danta L. Nieva James E. Nightingale Jim B. Nile George Niles Soottid Nimitsilpa

Donald A. Nirschl Kazunori Nishioka Gilbert A. Nixon Michael L. Noel James C. Nofziger, PhD Richard Nolthenius, PhD Eugene L. Nooker Jack D. Norberg Richard E. Nordan H. A. Noring Brent C. Norman John L. Norris Tharold E. Northup Ferdinard J. Nowak Wesley Raymond Nowell, PhD Stanley J. Nowicki Leonard James Nugent, PhD Maurice Joseph Nugent, Jr., PhD Erwin R. Null Robert B. Nungester James K. Nunn Amos M. Nur, PhD Joseph A. Nussbaum George A. Nyamekye, PhD Hubert J. Nyser Michael Nystrom Harry Alvin Oberhelman Theodore M. Oberlander, PhD Rafael H. Obregon Dale O'Brien Fabrizio Oddone Arlo L. Oden* Dominick Odorizzi Michal Odyniec, PhD John D. Oeltman Jacob J. Offenberger Naomi Neil Ogimachi, PhD H. M. Ogle J. Ogren, PhD Joon C. Oh Franklin T. Ohgi Kurt N. Ohlinger, PhD Kent A. Ohlson William Ohm Arthur F. Okuno Fred B. Oldham Arnold N. Oldre Edward A. Oleata Edward Eugene Oliphant, PhD Donald B. Oliver, PhD Roy R. Oliver E. Jerry Oliveras Kenneth L. Olivier, PhD Bernard J. O'Loughlin, PhD Sterling B. Olsen Carl Olson Jan B. Olson Larry Olson Kevin D. Olwell, PhD Rosalie Omahony, PhD Willard D. Ommert Ryan D. O'Neal Donald E. O'Neill Anatoli Onopchenko, PhD Lee B. Opatowsky, PhD Philip H. Oppenheim William L. Oppenheim John J. Oram, PhD Rolf O. Orchard Fernando Ore, PhD David R. Orfant Mahmoud M. Oriqat

Page 71: Human Health Effects - Granicus

Appendix 4: The Petition Project  

 759

Cornel G. Ormsby Harold A. Orndorff Hans I. Orup Emil A. Osberg James Osborn M. Osborn Bert Osen James E. Oslund James R. Oster Al B. Osterhues Theodore O. Osucha Douglas K. Osugi Arnold Otchin Michael A. Otnisky Gary M. Otremba Wayne Robert Ott, PhD William M. Otto Oswald L. Ottolia John W. Overall, Jr. Dennis Owen Scott A. Owen Thomas W. Owens Kazimiera J L Paciorek, PhD Lorenzo M. Padilla Jeffry Padin, PhD Seaver T. Page Coburn Robbins Painter Thomas Palmer Patrick E. Pandolfi Daniel W. Pangburn Sergio R. Panunzio, PhD Robert C. Paoluccio Charles Herach Papas, PhD Michael L. Pappas Shashikant V. Parikh Edward Parilis, PhD Calvin Alfred Parker, PhD David W. Parker Dennis L. Parker Kenneth D. Parker Norman F. Parker, PhD Theodore C. Parker Robert M. Parkhurst Malcolm F. Parkman Merton B. Parlier Lowell Carr Parode Christopher M. Parry, PhD Michael L. Parsons, PhD Chester R. Partridge Stan P. Parvanian Angelo A. Pastorino James M. Paterson, PhD Charles M. Patsch Everett R. Patten Gaylord Penrod Patten, PhD Alec M. Patterson Brenda J. Patterson Richard M. Patton James W. Paul Raymond L. Paulson Ferene F. Pavlics Eleftherios B. Pavlis Hagai Payes Dalian V. Payne James Payne, PhD Andy Peabody David N. Peacock, PhD Robert T. Peacock Gerald F. Pearce John Pearson Gerald Pease Robert A. Pease

Deborah Kerwin Peck Douglas P. Pedersen Richard A. Pedersen Louis E. Pelfini David Gerard Pelka, PhD W. S. Penn, Jr., PhD Paul H. Pennypacker Richard S. Penska Jeffery Penta Allen P. Penton Linda H. Pequegnat, PhD Thomas M. Perch Irma T. Pereira Robert V. Peringer Arthur S. Perkins James Jerome Perrcault Gerald M. Perry George Persky, PhD Alois Peter, Jr. Marvin Arthur Peters, PhD Ralph H. Peters Norman W. Petersen Patricia J. Petersen Arthur W. Peterson Donald J. Peterson Gary Lee Peterson, PhD Glenn R. Peterson Jack E. Peterson, PhD James D. Peterson Victor Lowell Peterson Thomas G. Petrulas Ray H. Pettit, PhD Ronald W. Petzoldt, PhD Bernard L. Pfefer R. Fred Pfost, PhD Robert F. Phalen, PhD Debra Phelps Lloyd Lewis Philipson, PhD John P. Phillips Ronald T. Piccirillo Benjamin M. Picetti William Pickett John H. Pickrell Bill D. Pierce, PhD Matthew Lee Pierce, PhD Terence M. Pierce Vincent Joseph Pileggi, PhD Laurence Oscar Pilgeram, PhD Kurt F. Pilgram Irwin J. Pincus Edmund Pinney, PhD Raymond G. Pinson Robert G. Piper Bernard Wallace Pipkin, PhD Jesse E. Pipkin Janet C. Piskor Earl L. Pitkin Raluca M. Pitts Michael A. Plakosh Robert V. Plank Stephen L. Plett Joseph S. Plunkett Gregory E. Polito Myron Pollycove Glen D. Polzin Robert L. Pons James B. Ponzo Richard J. Porazynski David Dixon Porter Fred C. Porter Robert Potosnak Charle E. Pound

Robert D. Pounds M. L. Powell James P. Power Jack Pratt Gerald O. Priebe Robert Clay Prim, III, PhD George B. Primbs Robert K. Prince David Prinzing Lewis W. Pritchett Winston H. Probert Richard James Proctor Thomas Proctor J. Proffitt John R. Prosek Brian S. Prosser Thomas Prossima, Jr. Jerry A. Pruett Vernon L. Pruett Fernand H. Prussing Kenneth E. Pruzinsky Teodor C. Przymusinski, PhD Timothy G. Psomas Laurie D. Publicover Leamon T. Pulley, PhD Bruce H. Purcell Everett W. Purcell Robert G. Purington Jennifer D. Pursley Thankamama J. Puthiaparampil Ramon S. Quesada Florentino V. Quiaot John M. Quiel Louis C. Raburn Donald Rado Robert W. Ragen, Jr. Peter A. Ragusa James K. Rainforth James W. Raitt James A. Ramenofsky Apolinar Z. Ramiro Simon Ramo, PhD Roy E. Ramseier Lawrence Dewey Ramspott, PhD Shahida I. Rana James Rancourt, PhD Greenfield A. Randall P. Randall Thomas J. Rankin Henry Rapoport, PhD Daren H. Raskin Miriam Rasky Ned S. Rasor, PhD Howard E. Rast, Jr., PhD Tom C. Rath Egan J. Rattin Michael S. Ratway Stephen Rawlinson Monte E. Ray Everett L. Raymond Leonard A. Rea Robert G. Read Richard L. Reason Douglas W. Reavie George J. Rebane, PhD Jose G. Rebaya Andreas Buchwald Rechnitzer, PhD John G. Reddan, III Damoder P. Reddy, PhD Allan G. Redeker Barry Reder David A. Reed, Jr.

Lester R. Reekers Harold G. Reeser Donald F. Reeves Richard G. Reeves Steven A. Regis Charles J. Reich Kenneth Brooks Reid, PhD Kyrk D. Reid Jeff Reimche Richard D. Rein Fred W. Reinhart Mark B. Reinhold, PhD Marlin E. Remley, PhD Charles R. Rendall Daniel F. Renke Nicholas A. Renzetti, PhD Josef W. Repsch Robert Walter Rex, PhD Arthur A. Reyes, PhD Diana C. Reyes Armond G. Rheault Dennis A. Rhyne Gary R. Rice Richard Rice, PhD Neal A. Richardson, PhD Ispoone Richlin, PhD Hannes H. Richter Harry G. Richter Philip J. Richter Corwin Lloyd Rickard, PhD Joan D. Rickard Douglas W. Ricks, PhD R. J. Riddell, PhD Richard R. Riddell Michael Riddiford Fred M. Riddle John L. Ridell Adolphus A. Riewe James W. Riggs, PhD George P. Rigsby, PhD G. N. Riley Gary T. Riley Lyrad Riley John A. Rinek Thomas A. Ring Robert Ringering Keith Riordan Richard L. Ripley David Ririe, PhD Martin W. Ritchie, PhD Arnold P. Ritter Jack B. Ritter Robert Brown Ritter Manuel S. Rivas R. A. Rivas James E. Robbins Roy L. Roberson Stephen F. Roberts Donad B. Robertson Jim D. Robertson Karen S. Robinson Richard C. Robinson Robert B. Roche Adam Rocke Leon H. Rockwell, PhD James W. Rodde Jonathan P. Rode, PhD Fredrich H. Rodenbaugh Bertram J. Rodgers, Jr. Glenard W. Rodgers Anthony F. Rodrigues D. R. Rogers

Page 72: Human Health Effects - Granicus

Climate Change Reconsidered  

 760

Dan V. Rogers Carl A. Rohde Gerhard Rohringer, PhD Jack W. Rolston Ephraim Romesberg Wendell Hofma Rooks Steven D. Root Eugene John Rosa, PhD Allan B. Rose Dennis G. Rose Eric C. Roseen Alan Rosen, PhD Dan Yale Rosenberg Steven Loren Rosenberg, PhD Donald Edwin Rosenheim Jack W. Rosenthal Kermit E. Rosenthal Rollie D. Rosete Jonathan P. Rosman Stephen Ross Suzi Ross Ted E. Ross, Jr. William E. Ross Mario E. Rossi A. David Rossin, PhD Bryant William Rossiter, PhD Thomas J. Rosten J. Paul Roston Adolph Peter Roszkowski, PhD Ariel A. Roth, PhD Gerald S. Rothman Stan A. Rothwell William Stanley Rothwell, PhD Nicholas Rott, PhD Jerome A. Rotter James E. Roulstone James M. Rowe, PhD William R. Rowe Leroy H. Rowley George M. Roy David C. Royer G. Roysdon John Rozenbergs, PhD Balazs F. Rozsnyai, PhD Leonard Rubenstein Allen G. Rubin Benjamin D. Rubin Efim S. Rudin Gerard Rudisin John V. Rudy Thomas P. Rudy, PhD W. Ruehle Edward Rugel Daniel Ruhkala Howell Irwin Runion, PhD Richard A. Runkel, PhD Jack E. Runnels Robert C. Rupert B. Rush, PhD Andrew Russell Edmund L. Russell Lewis B. Russell Claude Rust, PhD Paul G. Ruud, PhD Ed J. Ruzak Alan S. Ryall, PhD Philip L. Ryall Bill Chatten Ryan, PhD Daberath Ryan Joe Ryan, PhD Kevin M. Ryan Patrick Ryan

Elliott Ryder, PhD Kathleen Rygiel Patrick Saatzer, PhD Frank L. Sabatino Joseph D. Sabella William W. Sable Frank C. Sacco Marvin H. Sachse Edgar Albert Sack, PhD B. Sadri Frederick M. Sagabiel Richard A. Sager William F. Sager Majid Saghafi, PhD Kanwar V. Sain Nirmal S. Sajjan Roy T. Sakamoto Eugene Salamin Robert E. Salfi, PhD Mikal Endre Saltveit, PhD Paul K. Salzman, PhD Larry Sample Grobert D. Sanborn William C. Sanborn Jay C. Sandberg Ray O. Sandberg Richard P. Sandell Thomas L. Sanders, Jr. Burton B. Sandiford James K. Sandin Steven D. Sandkohl Marvin M. Sando James S. Sands Enrique Sanqui George T. Santamaria Henry E. Santana Tom Santillan Kenneth W. Sapp A. M. Sam Sarem, PhD Greg Sarkisian Raymond Edmund Sarwinski, PhD Melvin W. Sasse J. Satko Richard S. Satkowski Hugh M. Satterlee, PhD Tim Saunders Walt Saunders Robert E. Saute, PhD Basil V. Savoy Austin R. Sawvell Frederick George Sawyer, PhD Charles W. Sayles, PhD Charles R. Saylor James Scala, PhD Carolyn A. Scarbrough Michael P. Scarbrough Michael P. Scardera Lido Scardigli Lawrence A. Schaal Jeffrey Schaffer Richard C. Schappert Edward M. Schaschl John F. Schatz, PhD George E. Schauf Donald E. Scheer David H. Scheffey Paul Otto Scheibe, PhD Thomas J. Scheil Perry Arron Scheinok, PhD Michael W. Schell Deborah S. Schenberger, PhD Don Van Schenck

Clifton S. Schermerhorn Don Ralph Scheuch, PhD Paul G. Scheuerman Stanley J. Scheurman Mark Schiller Ted M. Schiller Guenter Martin Schindler, PhD Rudolf A. Schindler Richard H. Schippers Hassel C. Schjelderup, PhD Wilbert H. Schlimmeyer Evert Irving Schlinger, PhD Erika M. Schlueter, PhD John H. Schmedel Francis R. Schmid Rudi Schmid, PhD Alfred C. Schmidt John W. Schmidt Kurt C. Schmidt Richard L. Schmittel Henry A. Schneider George L. Schofield, Jr., PhD Kurt A. Scholz Martin R. Schotzberger Robert Schrader Klaus G. Schroeder, PhD Ed J. Schryver Donald A. Schuder Adolph T. Schulbach Daniel Herman Schulte, PhD Robert K. Schultz, PhD Theodore C. Schultze Roger W. Schumacher Joseph F. Schuman Peter T. Schuyler Samuel G. Schwab Benny R. Schwach Steven C. Schwacofer Alan B. Schwartz Gary W. Schwede, PhD Raymond L. Schwinn Donald R. Scifres, PhD Kevin M. Scoggin Richard A. Scollay Deborah J. Scott, PhD Elizabeth Scott Franklin Robert Scott, PhD Harrison S. Scott John F. Scott Paul Scribner D. G. Scruggs Jeffrey Scudder Christopher L. Seaman, PhD W. H. Seaman Paul A. Sease Robert L. Seat Bruce E. Seaton Randall J. Seaver Leslie I. Sechler Donald B. Sedgley Lidia A. Seebeck Michael Seebeck Michael L. Seely, PhD Erwin Seibel, PhD Edward W. Seigmund Glenn A. Sels John R. Selvage N. T. Selvey Jospeh Semak Frederick D. Sena George W. Sening James C. Senn

Oscar W. Sepp Alexander Sesonske, PhD John D. Severns Bradley E. Severson Ordean G. Severud Archie F. Sexton James W. Shaffer Patricia Marie Shaffer, PhD Jayendra A. Shah Arsen A. Shahnazarian Lloyd Stowell Shapley, PhD Gary Duane Sharp, PhD Clifford A. Sharpe Roland L. Sharpe Clay Marcus Sharts, PhD Black Shaw Ian Shaw Reece F. Shaw Warren D. Shaw I. D. Shaylor-Billings Dennis Shea Richard Shearer George F. Sheets Zubair A. Sheikh Kent L. Shepherd John L. Sheport David A. Sheppard Russell Sherman Dalton E. Sherwood N. Thomas Sherwood, PhD Wilbert Lee Shevel, PhD George L. Shillinger Kaz K. Shintaku Calvin Shipbaugh, PhD Michael L. Shira Ralph E. Shirley Walter W. Shirley Arthur W. Shively Gary Shoemaker, PhD Robert S. Shoemaker Oliver B. Sholders John J. Shore, III Michael A. Short, PhD Christopher R. Shubeck Rex Hawkins Shudde, PhD Patrick James Shuler, PhD Dinah O. Shumway Douglas C. Shumway Sidney G. Shutt Raymond E. Sickler Kurt Sickles John P. Siegel Joseph A. Siegel William Siegfried Steven M. Siegwein Brent C. Siemer Hans R. Sifrig James Ernest Siggins, PhD Paul L. Sigwart Michael Silbergh Henry W. Silk Robert T. Silliman Armando B. Silva Daniel D. Silva Gregory P. Silver Herbert Philip Silverman, PhD Jacob Silverman, PhD Herschel W. Silverstone Craig A. Silvey William J. Simek P. John Simic Michael N. Simidjian

Page 73: Human Health Effects - Granicus

Appendix 4: The Petition Project  

 761

Javid J. Siminou E. Lee Simmons Ira B. Simmons Keith Simmons William W. Simmons, PhD Edgar Simons William H. Simons Jack Simonton Donald C. Simpson Gordon G. Sinclair John P. Sinek, PhD Alfredo Hua Sing, PhD Iqbal Singh Vernon Leroy Singleton, PhD Juscelino M. Siongco Harold T. Sipe William D. Siuru, PhD Stanley L. Sizeler Fritiof S. Sjostrand, PhD Paul S. Skager Sidney E. Skarin, PhD Arlie D. Skelton Robert E. Skelton, PhD George I. Skoda Todd Patrick Slavik Bernard G. Slavin, PhD Marina Slepak, PhD Mikhail E. Slepak, PhD Richard Slocum, PhD Robert Gordon Smalley, PhD Gary Smart Ronald T. Smedberg Helen M. Smedbery Rick G. Smelser Charlee Smith Dana L. Smith Donald A. Smith Donald C. Smith Donald R. Smith, PhD Donna E. Smith Eric Smith Gary Smith Geoffrey R. Smith James R.E. Smith Jeff Smith John R. Smith, PhD M. R. Smith, PhD Michael J. Smith, PhD S. Clarke Smith Walter J. Smith Eileen Smithers Peter Smits Neil R. Smoots Walter L. Snell John P. Snook William Rossenbrook Snow, PhD Donald Philip Snowden, PhD Donald R. Snyder Stephen J. Snyder Richard C. Soderholm James R. Soderman R. T. Soledberg Bertram C. Solomon Ronald C. Sommerfield John R. Sondeno Harold S. Song Loren R. Sorensen Frank S. Sorrentino Marco J. Sortillon Everett R. Southam, PhD Charles L. Spaegel Michael E. Spaeth, PhD

William L. Sparks Russell T. Spears Aaron B. Speirs Lawrence C. Spencer Pierrepont E. Sperry, Jr. Arlo J. Spiess Robert Joseph Spinrad, PhD John Robert Spreiter, PhD Rodger W. Spriggs George S. Springer, PhD Gerard J. Sprokel, PhD James P. Srebro Pierre St. Amand, PhD David St. Armand Harold Keith Stager Kenneth E. Stager, PhD Kim W. Stahnke Mark A. Stalzer, PhD Anthony C. Stancik Clarence H. Stanley Rosemarie Stanton Scott R. Stanton Timothy N. Stanton Chauncey Starr, PhD Darrel W. Starr Edward R. Starr Mike Starzer Raymond Stata, PhD Harrison L. Staub John F. Steel Arnold Edward Steele Thomas C. Steele Albert J. Stefan Edward M. Steffani Richard J. Stegemeier Michael Steger Howard Steinberg, PhD Morris Albert Steinberg, PhD Richard L. Stennes Jan Stepek Ralph L. Stephens Stuart Stephens, PhD David A. Stepp Edward E. Sterling John A. Stern Sidney Sternberg Alvin R. Stetson David L. Stetzel Milan R. Steube Frank Stevens Lewis A. Stevens Albert E. Stevenson Robert E. Stevenson, PhD Robert Lovell Stevenson, PhD Gordon Ervin Stewart, PhD Homer J. Stewart, PhD* Kathleen M. Stewart Wayne L. Stewart Chris Stier Gerald G. Still, PhD Howard A. Stine Daniel P. Stites Richard P. Stock Norman Stockdale Norman D. Stockwell, PhD Larry J. Stoehr Donald G. Stoffey, PhD David Stone Tabby L. Stone, PhD W. Ross Stone, PhD Donald E. Stout Jay C. Stovall

David J. Stowell Erwin Otto Strahl, PhD Robert L. Strand Edward D. Strassman Paul M. Straub Joe M. Straus, PhD James R. Strawn Herbert D. Strong, Jr. Allen Strother, PhD Wilfred Stroud Kenneth A. Stroup Mark W. Strovink, PhD Harold K. Strunk, PhD John H. Struthers Allen Stubberud, PhD Perry L. Studt, PhD Justin Stull Gunther L. Sturm M. Subramanian, PhD Marek A. Suchenek, PhD Mark A. Suden James Carr Suits, PhD John F. Sullivan Joseph H. Sullivan Robert J. Sultan Andrew D. Sun Sally S. Sun Vane E. Suter Mark E. Sutherlin John Svalbe Curtis Edward Swain, PhD Daniel Swain, PhD Robert J. Swain David Swan Alan A. Swanson Linda S. Swanson Robert Nols Swanson William Alan Sweeney, PhD Peter Swerling, PhD Chauncey Melvin Swinney, PhD Leif Syrstad George B. Szabo Walter S. Szczepanski Andrew Y. Szeto, PhD Edwin E. Szymanski, PhD Leonard Tachner Spencer L. Tacke Charles E. Tackels David Dakin Taft, PhD Bill H. Taggart Steve J. Taggart Samuel Isaac Taimuty, PhD Girdhari S. Taksali David B. Talcott Donald D. Talley Ralph G. Tamm Harry H. Tan, PhD Y. Tang, PhD James B. Tapp Waino A. Tapple Anthony Tate Rick Tavores, PhD Richard L. Taw Donald E. Taylor Edward Taylor George F. Taylor John J. Taylor Michael K. Taylor Neil L. Taylor William G. Taylor Frank C. Tecca Edward A. Tellefsen

Edward Teller, PhD* Orlando V. Telles Robert Templeton John T. Tengdin Jacob Y. Terner Richard D. Terry, PhD Steven R. Terwilliger Henry J. Tevelde Richard W. Tew, PhD Edward Teyssier Michael G. Thalhamer Joshua M. Tharp, Jr. Conley S. Thatcher Gordon H. Theilen Jerold Howard Theis, PhD James D. Thissell Roderick W. Thoits Charles A. Thomas, Jr., PhD Dean Thomas Garfield J. Thomas Gerald A. Thomas, PhD James Thomas Kevin L. Thomas Russ H. Thomas Michel A. Thomet, PhD Dennis P. Thompson Ken Thompson William J. Thornhill Lewis Throop, PhD Henrik C. Thurfjell John P. Tibbas Gerald F. Tice Karen M. Tierney William Arthur Tiller, PhD Edward K. Tipler Arthur Robert Tobey, PhD Joseph D. Tobiason, PhD Brent Tolend Gerald V. Toler David C. Toller Maher B. Toma Crisanto R. Tomongin John C. Toomay Wilfred Earl Toreson, PhD Eric D. Torguson Felipe N. Torres John P. Toth Charles H. Touton David C. Tower Jeffrey G. Towle, PhD Edward L. Townsend Norton R. Townsley Donald Frederick Towse, PhD Rosalyn Tran Elbert W. Trantow Timothy L. Trapp Mitchell Trauring William Brailsford Travers, PhD Frank C. Trayer B. V. Traynor Raymond Treder John D. Trelford William H. Trent, PhD Richard L. Trimble Patrick A. Tripe Curtis W. Tritchka Glenn C. Troman Craig J. Trombly Tony Troutman Bretton E. Trowbridge Eddy S. Tsao A. N. Tschaeche

Page 74: Human Health Effects - Granicus

Climate Change Reconsidered  

 762

Tai Po Tschang Manuel Tsiang, PhD Theodore Yao Tsu Wu, PhD Dean B. Tuft, PhD Raymond Tulkki Bryan Tullis Richard Eugene Tullis, PhD B. R. Tunai Andy Tung Willis E. Tunnell Richard E. Turk Robert L. Turk Robert E. Turner, PhD Ted H. Tuschka, PhD Henry A. Tuttle Robert Tuttobene Ross W. Tye, PhD Glenn A. Tyler, PhD Vincent H. Uhlenkott Harold B. Uhlig Joseph J. Unger Erik Unthank Robert R. Upp, PhD James L. Uptegrove Donadl C. Urfer Eldon L. Uverne Knuth, PhD Richard J. Vacherot Frank H. Vacio J. O. Vadeboncoeur John A. Vaillancourt J. Peter Vajk, PhD A. Valdos-Meneses Richard M. Valeriote Bernard A. Vallerga Jacob E. Valstar Job van der Bliek James R. Van Hise, PhD Paul M. Van Loenen Naola Van Orden, PhD* William W. Van Vorst, PhD John H. VanAmringe Peter Vanblarigan, PhD Mark Vande Pol Arthur VanDeBrake Willem Vander Bijl, PhD Chris J. Vandermaas Gary J. Vandermolen Garret N. Vanderplaats, PhD Larry E. Vanhorn Walker S. Vaning Ruth A. vanKnapp Barry M. Vann Vito August Vanoni, PhD Vagarshak V. Vardanyan, PhD Larry Vardiman, PhD Perry H. Vartanian, Jr., PhD Bangalore Seshachalam Vasu, PhD T. D. Vaughan Arlie D. Vaughn King F. Vaughn Steven W. Vawter Kenneth S. Vecchio, PhD Alejandro T. Vega Edward E. Velarde Margarita B. Velarde Daniel W. Velasquez Wencel J. Velicer Louis Veltese Theodore E. Veltfort Anthony J. Verbiscar, PhD* Robert J. Verderber Jared Verner, PhD

Dmitry Vernik, PhD Daniel J. Vesely Peter Vessella Thomas H. Vestal Louis Vettese Charles L. Vice Joan Vickery Andrew S. Vidikan Susan L. Vigars Carlos F. Villalpando Roberto Villaverde, PhD Norbert F. Vinatieri Edgar L. Vincent Jonathan R. Vinci R. C. Visser Richard K. Vitek Petro Vlahos Roger Frederick Vogel Randy L. Vogelgesang Kevin G. Vogelsang Edward J. Vollrath Richard L. Volpe Robert M. Volpe Karl Vonderlinden, PhD Suresh H. Vora Frederick H. Vorhis Earl H. Vossenkemper Frederick C. Vote Henry P. Voznick Daniel L. Vrable, PhD William R. Wachtler, PhD Don Wade Glen Wade, PhD Robert Harold Wade, PhD William Howard Wade, PhD Donald Wadsworth, PhD James K. Wagner Kenneth E. Wagner Mark A. Wagner Lewis D. Wagoner David P. Wahl Dennis L. Wahl Howard W. Wahl Scott G. Wahl Richard I. Waite, Jr. George Wakayama R. Stephen Waldeck Jason S. Waldrop Richard T. Wales Dennis Kendon Walker, PhD Jay H. Walker John C. Walker Patrick M. Walker Raymond W. Walker Verbon P. Walker Milton B. Walkup Edward M. Wall Edwin Garfield Wallace, PhD Tom S. Wallace Eleanor A. Wallen Henry A. Waller John E. Wallis Joel D. Walls, PhD Darrel N. Walter Herbert G. Walter Gregg D. Walters Austin G. Walther Donald M. Waltz Bohdan I. Wandzura Qingqi Wang T. Wang, PhD Zhi Jing Wang, PhD

Dennis Wangsness Casidy A. Ward Dale Ward James J. Ward Jay L. Ward Paul H. Ward Charlene L. Wardlow Ronald S. Wardrop Richard V. Warnock Jack S. Warren Richard Warriner John P. Waschak Halbert S. Washburn Harry L. Washburn Robert M. Washburn Claude Guy Wasterlain, PhD Glenn L. Wasz Milton N. Watanabe Dean A. Watkins, PhD Charlie E. Watson Gary W. Watson Guy E. Watson William W. Watson R. E. Watts Walter L. Way Todd Weatherford, PhD Robert A. Weatherup David L. Weaver Robert D. Weaver Albert Dinsmoor Webb, PhD Creighton A. Webb Jack W. Webb William P. Webb, PhD Harry V. Webber Bruce Warren Webbon, PhD Barrett H. Weber Erich C. Weber William P. Weber, PhD David Webster Mark B. Webster D. J. Wechsler Saul Wechter William J. Wechter, PhD Lloyd Weese William H. Weese Robert L. Wehrli Rudolph W. Weibel Glen F. Weien, II Hans Weil-Malherbe, PhD Carl Martin Weinbaum, PhD William M. Weinstein Daniel G. Weis, PhD Russell J. Weis Max T. Weiss, PhD Frank Joseph Welch, PhD Robin Ivor Welch, PhD Hugh E. Wells Lee O. Welter Gunnar Wennerberg R. C. Wentworth, PhD Robert P. Wenzell Victor H. Werlhof Robert H. Wertheim Donald A. Wesley, PhD A. Wessman Clinton L. West Jack H. West Robert E. West Rod D. Westfall Travie J. Westlund Kenneth Harry Westmacott, PhD Henry Griggs Weston, Jr., PhD

Duane Westover Robert J. Wetherall Mike A. Whatley Carlos Wheeler Joseph G. Whelan Vernon T. Whitaker David J. White Gerry W. White Joel E. White Richard L. White Robert Lee White, PhD Sterling F. White William R. White Kenneth E. Whitehead Kent G. Whitham Stephen A. Whitlock David V. Whitmore Dennis B. Whitney Robert C. Whitten, PhD R. Whitting Derek A. Whitworth, PhD Eyvind H. Wichmann, PhD John G. Wichmann Dave E. Wick George J. Widly Arthur F. Widtfeldt Mark J. Wiechmann, PhD Daniel W. Wiedman Francis P. Wiegand Robert L. Wiegel Doug Wiens Don A. Wiggins John Henry Wiggins, PhD John S. Wiggins, PhD* David W. Wilbur, PhD Corbet E. Wilcox Michael R. Wilcox Orland W. Wilcox Carroll Orville Wilde, PhD James W. Wilder Fred R. Wiley Wilbur F. Wilhelm Donald W. Wilke Charles L. Wilkins Harold E. Wilkins Ross C. Wilkinson Bennington J. Willardson Austin M. Williams Edgar P. Williams Forrest R. Williams Wayne S. Williams David W. Wilson, PhD Donald E. Wilson Garth H. Wilson, PhD Jack Wilson Jerome M. Wilson Linda W. Wilson Maurice L. Wilson Melvin N. Wilson Michael A. Wilson Royce D. Wilson William E. Wilson George D. Wiltchik Edward J. Wimmer Jack A. Winchell Ernest O. Winkler Robert Winslow Roger G. Winslow Guy W. Winston Harry Winterlin Wray Laverne Winterlin Bruce A. Winters

Page 75: Human Health Effects - Granicus

Appendix 4: The Petition Project  

 763

Philip Rex Winters Donald F. Winterstein, PhD Guy W. Winton, Jr W. T. Wipke, PhD Wesley L. Wisdom Edward Witczak Eric V. Witt Kenneth A. Witte, PhD Robert F. Witters Lawrence R. Wlezien James K. Wobser Virgil O. Wodicka, PhD Milo M. Wolff, PhD Paul M. Wolff, PhD John H. Wolthausen Fred W. Womble Ka-Chun Wong Otto Wong, PhD Sun Y. Wong Bruce Wood David L. Wood Don E. Wood James M. Wood, II Jason N. Wood Kevin G. Wood Walter H. Wood Willis Avery Wood, PhD Michael L. Woodard Michael D. Woods Richard C. Woodward Robert J. Woodward Gene A. Worscheck Edward P. Wosika Margaret Skillman Woyski, PhD David G. Wright Harold V. Wright Keith A. Wright Melville T. Wright Michael E. Wright William W. Wright Chris J. Wrigley, Jr. Jack G. Wulff Charles R. Wunderlich Richard A. Wunderlich Stephen Walker Wunderly, PhD David E. Wyatt Jeff Wyatt Philip J. Wyatt, PhD Bruce M. Wyckoff Robert A. Wyckoff Thomas S. Wyman Leslie K. Wynston, PhD William Xenakis Y. Xie, PhD Albert R. Yackle Bohdan M. Yacyshyn Paul F. Yaggy Richard N. Yale Walter M. Yamada, PhD Jack A. Yamauchi John S. Yankey, III John Lee Yarnall, PhD Anthony Yarosky Francis Eugene Yates John L. Yates Melvin B. Yates Robert W. Yates Scott Raymond Yates, PhD Thomas C. Yaughn John C. Yeakley Carlton S. Yee, PhD Kuo-Tay P. Yeh

Paul Pao Yeh, PhD Michael W. Yeoman Ki Jeong Yi Sherwin D. Yoelin Denison W. York G. Young Jackson Young Richard Young Robert D. Young Stephen G. Young Wei Young, PhD Dennis E. Youngdahl John C. Youngdahl Mohamad A. Yousef, PhD Mary Alice Yund, PhD D. Yundt Sulhi H. Yungul, PhD Kirk A. Zabel David R. Zachary Michael N. Zaharias Kamen N. Zakov Carlos A. Zamano Alex Zapassoff J. Edward Zawatson Jason D. Zeda Yuan Chung Zee, PhD Howard C. Zehetner Ken R. Zeier Sanford S. Zeller Kerry Zemp Robert H. Zettlemoyer Yi Zhad, PhD Sigi Zierling, PhD David L. Zimmerman Elmer LeRoy Zimmerman, PhD* Douglas A. Ziprick Harold Zirin, PhD Keith Zondervan, PhD Louis M. Zucker Yury Zundelevich, PhD Joe Zupan Soloman Zwerdling, PhD Colorado Wilbur A. Aanes David M. Abbott, Jr. Joseph M. Abell Paul Achmidt Steven W. Adams Wayne F. Addy T. Adkins Jacques J.P. Adnet John Aguilar Alfred Ainsworth Gary L. Allison Kevin R. Allison Bruce W. Allred Victor Dean Allred, PhD Robert C. Alson Greg A. Altberg Ashton Altieri Anthony B. Alvarado Kenneth S. Ammons Adolph L. Amundson David Anderson, PhD Glenn L. Anderson James P. Anderson Tom Anderson Walton O. Anderson David J. Andes

Mark J. Andorka George Andreiev Russell A. Andrews Stephen P. Antony James K. Applegate, PhD Steven B. Aragon Sidney O. Arola Charles E. Atchison William J. Attwooll Mark Atwood, PhD James K. August Kurt L. Austad Michael N. Austin Steven G. Axen Jessica Ayers Lee R. Bagby William F. Bagby Steve G. Bagley Dana Kavanaugh Bailey R. V. Bailey Jack R. Baird, PhD Daniel Bakker Alfred Hudson Balch, PhD Brund Balke Leslie Ball G. Arthur Barber Gerald L. Barbieri Stephen W. Barnes Ralph M. Barnett Charles J. Baroch, PhD Lance R. Barron William E. Barton, PhD Richard L. Bate Albert Batten, PhD Bertrand J. Bauer Martin A. Bauer Ralph B. Baumer Eric Paul Baumgartner David Paul Baumhefner Robert L. Bayless, Jr. William H. Bayliff George W. Bayne Shelby R. Bear Dennis E. Beaver Gayle D. Bechtold Douglas Beck, PhD Kenneth A. Beegles Wayne R. Beeks Wallace G. Bell, PhD Donald P. Bellum Cade L. Benson Edgar L. Berg Rodney H. Bergholm Leonard Bertagnolli Cornelius E. Berthold Gregory W. Bertram Howard H. Bess Carl E. Beutler Robert G. Beverly Wallace J. Bierman Doug N. Biewitt D. G. Bills, PhD Edward R. Binglam Daniel Bisque Matthew L. Bisque Ramon E. Bisque, PhD John P. Biswurm Christopher R. Black Thomas E. Blackman Barry L. Blair Robert B. Blakestad James C. Blankenship

William D. Blankenship Thomas L. Blanton, PhD Ronald K. Blatchley Victor V. Bliden Duane N. Bloom, PhD Donald R. Bocast Jane Haskett Bock, PhD Bernard L. Bogema Cody B. Bohall Richard A. Bohling Mike Boland Duane W. Bolling Robert L. Bolmer Dudley Bolyard Lee J. Bongirno Charles S. Bonnery Jack N. Boone, PhD Travis J. Boone Lawrence Boucher Larry Q. Bowers Jean A. Bowles, PhD Steven C. Boyce, PhD Lester L. Boyer, Jr., PhD Brian J. Boyle Carl F. Branson Jeff D. Braun John E. Brehm, Sr. Michael B. Brewer Corale Louise Brierley, PhD James A. Brierley, PhD Mont J. Bright, Jr. Michael W. Brinkmeyer Michael Brittan, PhD George William Brock Lawrence R. Brockman Dean C. Brooks James R. Brooks Ben D. Brown John M. Brown, PhD Larry F. Brown, PhD Lynne A. Brown Charles Robert Bruce, PhD Thomas J. Bruno, PhD John L. Brust Kenton J. Bruxvoort Donald G. Bryant, PhD Nathan B. Bryant Joel W. Buck James S. Bucks, PhD Perry Buda David J. Bufalo C. James Bulla, Jr. Stephen D. Bundy Michael A. Burgess Leonard F. Burkart, PhD Dean S. Burkett Robert H. Bushnell, PhD Frank J. Buturla Fredrick G. Calhoun Mathhew D. Calkins Terry J. Cammon H. D. Campbell Rayford R. Canada John Canaday John A. Canning, PhD Andrew J. Capra Curtis D. Carey Charles E. Carlson, III William A. Carlson Robert Carpenter Thomas M. Carroll Mason Carlton Carter, PhD

Page 76: Human Health Effects - Granicus

Climate Change Reconsidered  

 764

Lew Casbon Joseph Cascarelli Dennis C. Casto Eugene N. Catalano P. Ceriani, PhD Paul D. Chamberlin Donald R. Chapman William L. Chenoweth Robert H. Chesson Hsien-Hsiang Chiang, PhD Milton O. Childers, PhD Sarah J. Chilton Chris Chisholm Wiley R. Chitwood Odin D. Christensen, PhD Richard L. Christiansen, PhD Robert Milton Christiansen, PhD J. W. Christoff Catherine A. Clark Ivan L. Clark Marion D. Clark, PhD John F. Clarke, Jr. James S. Classen J. Clema Curtis S. Clifton Peter R. Clute Leighton Scott Cochran, PhD William T. Cohan Lawrence E. Coldren David R. Cole Lee Arthur Cole, PhD Gary W. Collins Nina T. Collum, PhD Arthur F. Colombo, PhD Richard F. Conard Martin E. Coniglio Chris M. Conley Michael S. Connelly Joe Conway David F. Coolbaugh, PhD Harvey L. Coonts Robert J. Coppin David Corbin David B. Corman Arlen C. Cornett Garryd D. Cornish Rodney H. Cornish, PhD Charles E. Corry, PhD George E. Cort Benjamin Costello Charles K. Cothem Arthur W. Courtney Thomas P. Courtney Thomas R. Couzens Louis Cox, Jr., PhD Cecil J. Craft Bruce D. Craig, PhD Dexter Hildreth Craig Don J. Craig Rex C. Cramer William Pau Crisler, PhD David L. Crouse Alfred John Crowle, PhD Wolney C. Cunha Robert L. Curruthers, Jr. Michael S. Cuskelly Aaron T. Cvar Steve D. Dahmer Carl W. Dalrymple Kevin M. Daly Valeria Damiao, PhD Henry W. Danley

William M. Danley Eugene A. Darrow Donald Davidson, PhD Edward J. Davies, PhD Charles D. Davis Daryl W. Davis James L. Davis John A. Davis, Jr., PhD Michael Davison William Daywitt John W. Deberard Peter George Debrunner, PhD Jeff L. Deeney Steven L. DeFeyter Gerald H. Degler Susan M. Deines B. J. Delap Richard A. Denton William Davis Derbyshire, PhD Lawrence E. Dernabach Jeffrey H. Desautels W. R. Dettmer John L. Devitt Rudolph John Dichtl Douglas Dillon, PhD Jerry R. Divine Robert Clyde Dixon Gene P. Dodd Lee A. Dodgion Thomas C. Doe Eugene Johnson Doering David J. Doig Erin R. Dokken Richard D. Dolecek Inez G. Dominguez Michael W. Donley, PhD Arthur F. Donoho David R. Donohue Kiernan O. Donovan Gerald R. Dooher Robert A. Doornbos, Jr. Robert J. Doubek Edward C. Dowling, Jr., PhD Mancourt Downing, PhD William Fredrich Downs, PhD John E. Dreier, PhD Jerry D. Droppleman, PhD Emerson K. Droullard Murray Dryer, PhD Harold R. Duke, PhD Thomas J. Dumull Joel G. Duncan, PhD Paul M. Duncan Harry E. Duprey Benny R. Dusenbery William T. Dusterdick Donald R. East Dennis M. Eben William G. Ebersohl Donald P. Ebright Anita Eccles Dana A. Echter Steven T. Eckmann, PhD Paul F. Eckstein Ronald K. Edquist Thomas Edward Julie A. Edwards Thomas B. Egan Linda L. Ehrlich William H. Eichelberger Keith W. Eilers H. Richard Eisenbeis, PhD

Robert L. Elder James Eley, PhD Richard C. Enoch Alexander Erickson Christopher Erskine Thomas M. Erwin Rudolph Eskra Ronald L. Estes Donald Lough Everhart, PhD Joseph P. Fagan, Jr. Thomas G. Fails Frank Farnham Duane D. Fehringer Stuart R. Felde John L. Fennelly Arthur Thomas Fernald, PhD Clinton S. Ferris, Jr., PhD James W. Ferry Dale A. Fester Charles J. Fette Thaddeus C. Fial Thomas G. Field, PhD Dennis C. Finn Carl V. Finocchiaro Harlan Irwin Firminger Roland C. Fischer Werner E. Flacke Clarence W. Fleming Peter A. Fleming Jay E. Foley Jon R. Ford Deon T. Fowles Glenn M. Frank Andrew P. Franks Ronald D. Franks Margo Frantz Harry D. Frasher James E. Frazier Richard J. Frechette Ryan D. Frederick William E. Freeman Tim F. Friday H. Howard Frisinger, PhD William R. Fritsch Norm Froman L. W. Frowbridge, PhD Suzanne M. Fujita Stephen L. Funk Connie Gabel, PhD Richard A. Gabel, PhD Joseph Galeb, PhD Donald L. Gallaher Anthony J. Galterio Patrick S. Galuska Charles L. Gandy Paul W. Gard, Jr. Edward E. Gardner, PhD Homer J. Gardner Andrew J. Garner Thomas R. Gatliffe Jeffery L. Gay William M. Gemmell Milo P. Gerber Andre A. Gerner Cynthia A. Gerow, PhD Douglas O. Gibbs Elizabeth L. Gibbs Henry Lee Giclas, PhD Delbert V. Giddings Paul N. Gidlund John M. Giesey Walter Charles Giffin, PhD

Brian W. Gilbert Alan D. Gillan Leland E. Gillan Rick J. Gillan Jack D. Gillespie James R. Gilman John Gishpert Dan G. Gleason Hartley C. Gleason Earl T. Glenwright Christine Gloeckler Robert A. Glover George G. Goble, PhD Ronald B. Goldfarb, PhD Scott L. Gomer David V. Gonshor John M. Goodrich Jeff P. Goodwin Alfred F. Gort Mark H. Gosselin John W. Goth Donald F. Gottron Walter Carl Gottschall, PhD Gary L. Gough Gordon Gould, PhD Ronald J. Gould Thomas L. Gould, PhD Robert J. Governski Robert E. Gramera, PhD Lee B. Grant, Jr. Lewis O. Grant Kenneth Donald Granzow Robert C. Gray Steven R. Gray William M. Gray, PhD Deborah C. Greenwall Alfred Griebling James K. Griffin Paul K. Grogger, PhD Alfred W. Grohe Stephen J. Grooters Michael P. Gross Eugene L. Grossman Paul M. Gruzensky, PhD Ross L. Gubka Lyle A. Gust Ronald G. Gutru Richard Haack, PhD Donald Haas Lawrence N. Hadley, PhD* Richard Frederick Hadley Frank A. Hadsell, PhD Gregory A. Hahn Michael J. Hall Timothy J. Halopoff Saheed Hamid Don D. Hamilton, PhD Stanley K. Hamilton, PhD Jack C. Hamm John R. Hamner Marvin A. Hamstead, PhD Joe John Hanan, PhD Howard W. Hanawalt Ray A. Hancock John W. Hand, Sr. Donald L. Hanlon, Jr. Barry J. Hansen Chris E. Hansen Lowell H. Hansen Carl D. Hanson Sergius N. Hanson Elwood Hardman

Page 77: Human Health Effects - Granicus

Appendix 4: The Petition Project  

 765

W. Henry Harelson Mark F. Harjes Stephen T. Harpham Kevin D. Harrison Elbert Nelson Harshman, PhD Arden J. Hartzler Donald D. Hass Charles N. Hatcher Rav P. Hattenbach Christpher N. Hatton Niels B. Haubold Consuelo M. Hauser Ray L. Hauser, PhD Michael E. Hayes Eugene D. Haynie Eugene C. Head, Jr. Jenifer Heath, PhD Robert Bruce Heath Dale Heermann, PhD Leonard Heiny Leslie V. Hekkers Marvin W. Heller, PhD Roger A. Heller William D. Helton Courtney C. Hemenway Frank Heming, PhD Daniel F. Henderson Phil W. Henderson Ralph L. Henderson Raymond L. Henderson Charles J. Hendricks Charles S. Henkel, PhD Raymond P. Henkel, PhD Ann Henning Stephen J. Henning Thomas W. Henry, PhD Gary A. Herbert Jeff Herrle Martin Hertzberg, PhD Phillip E. Hewlett Edward D. Hice Ronald Higgins Charles L. Hill Margaret A. Hill Bill L. Hiltscher William J. Hine Lee D. Hinman John Hinton John S. Hird Brian G. Hoal, PhD Farrel D. Hobbs Noel Hobbs Marcus D. Hodges Marty Hodges Roy A. Hodson Arthur P. Hoeft Harald Hoegberg Robert J. Hoehn John Raleigh Hoffman, PhD Stephen A. Hoffman, PhD Christopher J. Hogan, PhD Ronnie E. Hogan David Clarence Hogg, PhD Douglas G. Hoisington Erik Holck Frank J. Holliday Victor T. Holm David A. Holmes Richard D. Holstad James C. Holzwarth Russell M. Honea, PhD John Hoorer

William E. Hopkinds Andrea S. Horan Joseph M. Hornback, PhD Kim Horsley, PhD Richard F. Horsnail, PhD William W. Hoskins Douglas L. House James O. Houseweart Larry B. Howard, PhD Dennis M. Howe, PhD Craig A. Howell Earl L. Huff Julie Huffman, PhD Ronald W. Huffman Timothy J. Hughes Travis Hughes, PhD Frederick O. Humke William R. Humphrey Gary Hunt Mack W. Hunt Leland L. Hurst Jerome Gerhardt Hust Robert E. Husted Robert B. Huston Eric J. Hutchens John G. Hutchens Gary L. Hutchinson R. W. Hutchinson, PhD Jay D. Huttenhow Francis Hutto, PhD Norman L. Hyndman Kenneth D. Ibsen Mark D. Ibsen Eugene Ignelzi Duane Imhoff Robert J. Irish Larry A. Irons Scott R. Irvine William W. Irving James A. Ives John B. Ivey Manly L. Jackson Stewart A. Jackson, PhD M. L. Jacobs, PhD Jay M. Jacobsmeyer Jimmy Joe Jacobson, PhD Bahram A. Jafari, PhD John A. James Chet H. Jameson, Jr. Frederick J. Janger Duane A. Jansen George J. Jansen Gustav Richard Jansen, PhD Karen F. Jass Seymour Jaye William F. Jebb Joe A. Jehn Eivind B. Jensen James D. Jessup Thomas J. Jobin Carl T. A. Johnk, PhD Abe W. Johnson Blane L. Johnson, PhD Clinton B. Johnson Curtis L. Johnson Donal Dabell Johnson, PhD Michael S. Johnson Robert Britten Johnson, PhD Robert C. Johnson Thomas L. Johnson Walter E. Johnson Steve D. Jolly, PhD

G. R. Jones Paul C. Jones Robert S. Joy Ray L. Jukkola Rodger A. Jump James E. Junkin Walter F. Kailey, PhD Dale C. Kaiser F. Kamsler Raymond C. Kane, Jr. Joe Kaplen Gretchen A. Kasameyer Todd R. Kaul Alvin Kaumeyer Michael J. Keables, PhD Philip D. Kearney, PhD Cresson H. Kearny Richard A. Keen, PhD Kenneth L. Keil Stephen R. Keith Frederick A. Keller, PhD Sean P. Kelly Walter O. Kelm Graham Elmore Kemp Robert C. Kendall* William R. Kendall Larry Kennedy Charles L. Kerr Ronald L. Ketchum D. F. Kidd Michael L. Kiefer Richard E. Kiel Scott M. Kimble Thomas G. Kimble Barry A. King Thomas A. Kingdom Monty C. Kingsley, PhD John Kirkpatrick Peter H. Kirwin Hugh M. Kissell Donald N. Kitchen, PhD W. Kitdean, PhD Sharon J. Klipping Thomas Mathew Kloppel, PhD Norman C. Knapp Martin E. Knauss Duane Van Kniebes Lisa M. Knobel John K. Knop Kirvin L. Knox, PhD Kenneth Wayne Knutson, PhD Chuck Koch Nicholas F. Koch Donald E. Koenneman Wilbur L. Koger, Jr. David L. Kohlman, PhD William A. Koldwyn, PhD Arvin L. Kolz Kenneth D. Kopke Nicholas C. Kortekaas Thaddeus S. Kowalik Jan Krason Wayne P. Kraus, PhD George Krauss, PhD Lee E. Krauth Robert E. Kribal, PhD Douglas H. Krohn Fred J. Kroll William R. Kroskob Keith Krugh Dennis W. Kuhlmann Ed J. Kurowski

John W. Labadie, PhD Conrad M. Ladd John P. Lafollette Michael A. Laird Allen B. Lamb Bruce Landreth George L. Lane Alan Lange Arthur L. Lange Stephen S. Lange Carl G. Langner, PhD Robert K. Lantz, PhD David D. Larison Greg A. Larsen Larry L. Larsen Byron W. Larson Roy E. Larson Thomas A. Larson Kenneth M. Laura Linda E. Lautenbach Leroy D. Lawson Daryl E. Layne Jozef Lebiedzik, PhD Kennon M. Lebsack Bob L. Lederer Arthur C. Lee Robert Allen Lefever, PhD Gail Legate William Lehmanu Michael G. Leidich Richard W. Lemke Robert Lentz Jim Leslie Barbara B. Lewis Charles George Liddle Fred H. Lightner Richard B. Liming Peter K. Link, PhD Kurt O. Linn, PhD Jeffrey D. Linville Richard E. Lippoth Jay Lipson Donald L. Little Daniel W. Litwhiler, PhD George A. Livingston Thomas O. Livingston Willem Lodder, PhD Eric Lodewijk George O. Lof, PhD Dave Lofe Leonard V. Lombardi, PhD W. Warren Longley, PhD Jose M. Lopez Harlie M. Love Robert W. Lovelace Delwyn J. Low T. D. Luckey, PhD Frank L. Ludeman Ralph Edward Luebs, PhD Lilburn H. Lueck Susan J. Luenser Kenneth Luff Forest V. Luke Larry Lukens, PhD Robert A. Lunceford Larry D. Lund Carl Lyday Gerald J. Lyons Robert D. Macdonald W. Macintyre, PhD Jerry MacLoughlin, PhD Logan T. MacMillan

Page 78: Human Health Effects - Granicus

Climate Change Reconsidered  

 766

James A. Macrill M. David Madonna Kent I. Mahan, PhD Michael W. Mahoney Thomas P. Mahoney M. Maish A. Hassan Makarechian Michael A. Malcolm, PhD George Joseph Maler Richard Maley Anthony L. Malgieri James Leighton Maller, PhD Michael L. Mallo James D. Mallorey Keith N. Malmedal David E. Malmquist Jerome J. Malone, Jr. Leo J. Maloney Richard H. Mandel, Jr. Peter A. Mandics, PhD Robert A. Manhart, PhD Jay A. Manning Edward D. Manring Sam W. Maphis, II Samuel P. March George J. Marcoux Jay G. Marks, PhD William E. Marlatt, PhD Anthony D. Marques Charles F. Marshall L. K. Marshall Jack E. Martin, PhD Randall K. Martin T. Scott Martin James A. Martinez Neal R. Martinez John B. Maruin Fredrick J. Marvel Richard Frederick Marvin Charles B. Masters Terry J. Mather, PhD Michael R. Matheson J. Paul Mathias Donald A. Mathison Bruno A. Mattedi Weston K. Mauz Donald E. May Edwarde R. May John D. Mayhoffer James E. Mayrath, PhD Joseph F. McAleer Howard S. McAlister Stewart S. McAlister Eddie W. McArthur Lon A. McCaley John S. McCallie Shawn W. McCarter Robert P. McCarthy Calvin H. McClellan Tim D. McConnell Joe M. McCord, PhD Douglas E. McCormac Jerry N. McCowan Dirk W. McDermott Robert E. McDonald Larry G. McDonough Marion Edward McDowell James D. McFall Frank E. McGinley Linda M. McGowan Stuart D. McGregor Norman L. McIver, PhD

William J. McKelvey Quentin McKenna Floyd McKinnerney Brenda K. McMillan Richard B. McMullen Charles S. McNeil William McNeill, PhD Kenneth R. Meisinger, PhD Eric W. Mende Keith P. Mendenhall Michael Mendes Alan E. Menhennett Jack M. Merritts Warren H. Mesloh James T. Metcalf James R. Van Meter Ken Metzer Harvey J. Meyer, PhD Troy L. Meyer Walter D. Meyer, PhD Ralph Meyertons Leonard V. Micek Eugene J. Michal, PhD Michael C. Mickley, PhD Theodore W. Middaugh Matthew J. Mikulich, PhD William J. Miles, PhD David T. Miller George Miller Glenn E. Miller Harold W. Miller Leo J. Miller, PhD Lisa Marie Miller Robert J. Miller, PhD Paul R. Millet Stephen L. Milller James H. Mims Michael J. Minkel Gregory Minton Jessalynn Misken Paul Miskowicz Bruce S. Mitchell Gary C. Mitchell Robert K. Mock Carroll J. Moench P. Michael Moffett* Gunter B. Moldzio, PhD Frank P. Molli James R. Mondt Kenneth W. Monington, PhD Christopher Monroe, PhD David Coit Moody, PhD Richard T. Moolick Frank D. Moore Jay P. Moore John F. Moore Jonathan C. Moore Lawrence Y. Moore, PhD Allan J. Mord, PhD Duane E. Moredock Robert C. Morehead Kenneth O. Morey W. Lowell Morgan, PhD Timothy P. Morgen Jill Moring, PhD Lawrence C. Morley, PhD Bruce E. Morrell Richard L. Morris Dick Morroni Jerome Gilbert Morse, PhD John Jacob Mortvedt, PhD Vladimir K. Moskver

Larry R. Moyer Bill L. Mueller James R. Muhm James W. Mulholland, PhD Thomas U. Mullen, Jr. Kelly J. Murphy James R. Musick, PhD Randall L. Musselman, PhD Jan Mycielski, PhD Burt S. Myers Misac Nabighian, PhD Yoshio Nago James Nagode Gene O. Naugle John D. Nebel Richard L. Negvesky Al L. Nelson David L. Nelson John Nelson, PhD Larry K. Nelson Loren D. Nelson, PhD Thomas E. Nelson Toby S. Nelson Wayne W. Nesbitt Valmer H. Ness Michael R. Neumann Roger C. Neuscheler Richard E. Newell Roger Newell, PhD John B. Newkirk John Newman Thomas Newman James M. Newton W. W. Newton* Preston L. Nielsen Richard L. Nielson, PhD Gordon Dean Niswender, PhD James Nolan Cliff Nolte Matt R. Nord Gary Nordlander C. L. Nordstrom John D. Norgard, PhD Stephen N. Norris Gary Nydegger Chris M. Nyikos David Claude O'Bryant Robert Odien, PhD Robert T. O'Donnell Walter G. Oehlkers Elvert E. Oest, PhD Eldon L. Ohlen Ralph L. Ohlmeier George Ojdrovich Richard C. Oliver, PhD Brent Olsen Daniel Olsen, PhD Norval E. Olson James Oltmans, II Victor C. Oltrogge Michael T. Orsillo Joseph T. Osmanski James R. Ottomans, II Willard G. Owens Thomas D. Oxley Ralph S. Pacini Michael L. Page Louis A. Panek, PhD Arthur J. Pansze, Jr., PhD Ben H. Parker, Jr., PhD John M. Parker Pierce D. Parker, PhD

Neil F. Parrett Clark D. Parroit Richard S. Passamaneck, PhD H. Richard Pate Gary M. Patton James Winton Patton, PhD Thomas R. Paul Kenneth R. Paulsen John J. Paulus Louis A. Pavek, PhD Mark A. Payne Mike J. Peacock Galen L. Pearson S. Ivar Pearson John D. Peebles Michael R. Peelish M. J. Pellillo Robert W. Pennak, PhD* Emo Pentermann David Peontek David M. Perkins Luke A. Perkins Eric Perry Michael S. Perry Reagan J. Perry Douglas C. Peters Max S. Peters, PhD Joseph Claine Petersen, PhD Alan Herbert Peterson, PhD George C. Pfaff, Jr. Ryan A. Phifer John Phillips Paul H. Pickard John J. Pittinger Byron L. Plumley Henry Pohs Charles B. Pollock Larry Pontaski George J. Popovich, Jr. Robert Popovich Lynn K. Porter, PhD Bruce D. Portz Madison J. Post, Sr., PhD Richard Postma, PhD Stephan N. Pott Kathleen M. Power Kenneth L. Presley Donald R. Primer Ronald W. Pritchett Dick A. Prosence Russell J. Qualls, PhD Patrick D. Quinney Terence Thomas Quirke, PhD Edward L. Rademacher, Jr. John G. Raftopoulos C. Edward Raines Ted Rains John Ruel Rairden, III John M. Rakowski William Ramer Owen L. Randall Donald E. Ranta, PhD Alan M. Rapaport David E. Rapley Keith R. Raschke Alvin L. Rasmussen Donald O. Rausch, PhD Shea B. Rawe Michael Rawley David Thomas Read, PhD James G. Reavis, PhD David N. Rebol

Page 79: Human Health Effects - Granicus

Appendix 4: The Petition Project  

 767

James A. Reddington Jack Redmond, PhD Thomas Binnington Reed, PhD Bruce B. Reeder Robert G. Refvem Scott J. Reiman Elmar Rudolf Reiter, PhD Keith A. Rensberger John J. Reschl, Sr. Melvin Rettig Gordon F. Revey John R. Reynolds J. J. Richard James W. Richards Everett V. Richardson, PhD Paul Richardson John Riddle, PhD Kenton Riggs Cody Riley Dan H. Rimmer David B. Roberts James L. Robertson, PhD John Robertson, Jr. Charles S. Robinson, PhD Raymond S. Robinson, PhD Dale W. Rodolff Brian D. Rodriguez Scott G. Roen Raylan H. Roetman William L. Rogers John A. Rohr Charles T. Rombough, PhD Albert J. Rosa, PhD John G. Roscoe Lawrence J. Rose Sam Rosenblum Charlie Rossman Lewis C. Rossman Ora H. Rostad David L. Roter George Rouse, PhD Raymond L. Ruehle Donald Demar Runnells, PhD Susan S. Rupp William J. Ruppert Michael T. Rusesky Cynthia B. Russell Michael J. Ryan Barbara Rychlik Wojciech Rychlik, PhD Michael A. Rynearson Burns Roy Sabey, PhD Harry A. Sabin Julius Jay Sabo Alberto Sadun, PhD Eugene Saghi, PhD Kenneth C. Saindon Edward A. Samberson Justin Sandifer Mark K. Sarto Frank Satterlee Eldon P. Savage, PhD Larry T. Savard Robert B. Sawyer Carl H. Schaftenaar Karl G. Schakel John A. Schallenkamp Michael R. Schardt Randolph E. Scheffel Erwin T. Scherich Jonathan D. Scherschligt William D. Scheuerman

Andre H. Schlappe Gerald J. Schlegel Robert F. Schmal Gregory S. Schmid Douglas R. Schmidt Paul G. Schmidt Henry J. Schmitt Robert W. Schrier, PhD Donald E. Schroeder, Jr. Russell Schucker Myron R. Schultz Steven R. Schurman Ronald G. Schuyler J. O. Scott Richard T. Scott Samuel A. Scott Terry A. Scott Linda M. Searcy Robert Seklemian Albert P. Selph D. W. Sencenbaugh William H. Sens Randolph L. Seward George H. Sewell, Jr. Alan William Sexton, PhD Steven R. Shadow Clarence Q. Sharp Kenneth Sharp Alan Dean Shauers Roy W. Shawcroft, PhD Daniel R. Shawe, PhD Eugene M. Shearer Grant L. Shelton William M. Sheriff George M. Sherritt Kenneth Shonk William A. Shrode, PhD Craig E. Shuler, PhD Edward F. Shumaker Curtis A. Shuman, PhD Russell W. Shurts Jim A. Siano Herb W. Siddle Kenneth E. Siegenthaler, PhD Eugene Glen Siemer, PhD Nancy Jane Simon, PhD Brian E. Simpson Kenneth J. Simpson Erwin L. Single Ray L. Sisson Gary W. Sjolander, PhD Andrew D. Sleeper, PhD Darryl Eugene Smika, PhD Francis J. Smit Clarence Lavett Smith, PhD Darryl E. Smith, PhD Duane H. Smith Earl W. Smith, PhD Glenn S. Smith John Ehrans Smith, PhD Loren E. Smith Merritt E. Smith Robert M. Smith Scotty A. Smith Tim L. Smith Wallace A. Sneddon Gary D. Snell James J. Snodgrass Geoffrey G. Snow, PhD William H. Snyer Laurence R. Soderberg John E. Soma

Ronald W. Southard Antonio Spagna, PhD Robert L. Speckman James W. Spellman Charles Spencer John Spezia Daniel S. Spicer, PhD Andrew Spiessbach, PhD Charles W. Spieth Brian B. Spillane Derik Spiller Ralph U. Spinuzzi Melvin Spira William J. Spitz Charles L. Spooner Douglas S. Sprague Kirk A. Sprague Roy D. Sprague Robert L. Sprinkel, Jr. Edwin H. Spuhler Robert P. Spurck, PhD Douglas S. Stack Harold W. Stack Michael Keith Stahl Joel R. Stahn Gregory E. Stanbro, Jr. Robert I. Starr, PhD Jennifer M. Staszel Jack B. Stauffer Robert A. Stears Karl H. Stefan Michael H. Steffens Keith M. Stehman Walter E. Steige William D. Steigers, PhD Richard A. Steineck Frank A. Stephens Frank M. Stephens, Jr., PhD Lou Stephens Mary Stevenson Gordon K. Stewart Richard E. Stiefler Harold Stienmeier* Richard Stienmier Fred B. Stifel, PhD Julie A. Stiff Cheryl A. Stiles Gustav Stolz, Jr. Brad W. Stone Bill A. Stormes Vladimir Straskraba Bruce A. Straughan Jimmie J. Straughan Lawrence V. Strauss Theron L. Strickland Arthur W. Struempler, PhD Howard F. Stup Ravi Subramanian Steve J. Sullivan Wayne Summons Sherman Archie Sundet, PhD Joseph D. Sundquist Harry Surkald Edward J. Suski Mark D. Swan Kevin Swanson Vernon F. Swanson Christopher L. Sweeney Vincent P. Sweeney, Jr. Jerry L. Sweet, PhD Henry C. Szymanski Ronald Dwight Tabler, PhD

George C. Tackels Kenneth G. Tallman Joseph U. Tamburini Charles R. Tate David A. TenEyck Ted L. Terrel, PhD Kendell V. Tholstrom John P. Thomas M. Ray Thomasson, PhD Gerald E. Thompson Michael B. Thomsen Curtis G. Thomson Jack Threet Gaylen A. Thurston, PhD Bruce Tiemann, PhD K. Laus D. Ieter Timmerhaus, PhD Fred S. D. Toole Brenndan P. Torres Terrence J. Toy, PhD Thomas M. Tracey Zung Tran, PhD James M. Treat John R. Troka Leslie Walter Trowbridge, PhD Wade Dakes Troxell, PhD Harry A. Trueblood, Jr. Paul A. Tungesvick Kenneth D. Turnbull Alistair R. Turner Alfred H. Uhalt, Jr. E. H. Ulrich David J. Ulsh George M. Upton Julio E. Valera, PhD Phillip D. Van Law James R. Van Meter Martha Van Seckle Tim J. Van Wyngarden Tracy L. Vandaveer David D. Vanderhoofven Alwyn J. Vandermerwe, PhD Gordon H. Vansickle Kenneth D. Vanzanten James Vavrina Roy G. Vawter Delton E. Veatch Chris J. Veesaert Richard Veghte Roger N. Venables Stan F. Versaw Steven G. Vick Lilly Vigil Boris L. Vilner James David Vine Richard J. Vonbernuth Tim J. Vrudny Robert L. Wade Jerome A. Waegli David A. Wagie, PhD Charles F. Wagner Joseph P. Walker Cherster A. Wallace, PhD Wyeth Chad Wallace Denny M. Wallisch Kent D. Walpole W. A. Walther, Jr. Douglas L. Walton George G. Walton Frederick Field Wangaard, PhD Keith K. Wanklyn Jeffrey V. Ware John F. Ware

Page 80: Human Health Effects - Granicus

Climate Change Reconsidered  

 768

Edward M. Warner Darrell R. Warren Simon P. Waters Donald K. Wathke Tim Watson, PhD Shaunna J. Watterson Dale Watts Frank B. Watts William J. Way John F. Weaver Leo Weaver Rodney L. Weber Douglas H. Wegener James A. Wehinger Irving Weiss, PhD Kirk R. Weiss Joseph Leonard Weitz, PhD John C. Welch Thomas Wellborn Lawrence D. Wells Philip B. Wells Donald A. Welsh Robert H. Welton Harold C. Welz Anthony J. Wernnan Lee F. Werth, PhD Cecil B. Westfall Ann L. White Richard L. White Christopher P. Whitham Robert W. Whitt Claude Allan Wiatrowski, PhD Peter L. Wiebe Albert H. Wieder Loren Elwood Wiesner, PhD Hugh M. Wilbanks Charles G. Wilber, PhD Donald Wilde John D. Wilkes, PhD Wayne E. Wilkins Jewel E. Willborn Ted F. Wille Ronald M. Willhite Glen Williams Richard E. Williamson Alvin C. Wilson Laurence M. Wilson Michael D. Wilson, PhD Wilmer W. Wilson Denis J. Winder Robert C. Winn, PhD Jack E. Winter David Wire David Wirth David J. Wirtz Floyd A. Wise Robert L. Wiswell Franklin P. Witte, PhD James D. Wolf Adrian L. Wolfe, PhD Bruce R. Wolfe Laird S. Wolfe, PhD Charles V. Wolfers Steven A. Wolpert Cyrus F. Wood Robert P. Woodby Steven Woodcock Tyler Woolley, PhD Birl W. Worley Richard F. Worley Christopher Wright Jim M. Wroblewski

Harrison C. Wroton Richard V. Wyman, PhD Robert B. Wyman Dan A. Yaeger Randy R. Yeager David R. Yedo, PhD Gene Yoder Douglas W. York Jay L. York, PhD Masami Yoshimura, PhD Thomas J. Young William Yurth William W. Yust Stephen G. Zahony Gerald W. Zander James G. Zapert Duane Zavadil Timothy Dean Ziebarth, PhD Milton A. Ziegelmeier Robert Zimmerman Sally G. Zinke Connecticut Robert K. Adair, PhD Robert P. Aillery Philip D. Allmendinger James L. Amarel David B. Anderson Janis W. Anderson Thomas F. Anderson, PhD Manuel Andrade Steven M. Andreucci Angela N. Archon Philip T. Ashton James R. Barrante, PhD Paul Bauer, PhD Jack W. Beal, PhD Edward J. Beauchaine, Jr. Paul D. Bemis Robert Beringer, PhD Eugene Berman, PhD Charles D. Bizilj R. G. Blain Alan L. Blake Steven Allan Boggs, PhD Karl R. Boldt Laszlo J. Bollyky, PhD Walter A. Bork Harvey B. Boutwell Norman E. Bowne Robert S. Bradley Randolph Henry Bretton David Allan Bromley, PhD Andrew B. Burns Dennis H. Burr William Patrick Cadogan, PhD Leonard J. Calbo, PhD William T. Caldwell Donald A. Cameron Zoe N. Canellakis, PhD Joseph H. Cermola Robert M. Christman Boa-Teh Chu, PhD William H. Church, PhD Eric P. Cizek Greg P. Clark Steven K. Clark J. David Coakley Ronald C. Coddington Henry B. Cole

James N. Colebrook George F. Collins William F. Condon, PhD Ralph D. Conlon Eugene Anthony Conrad, PhD Robert Joseph Cornell, PhD Robert W. Cornell, PhD Cynthia Coron, PhD Paul J. Cortesi William Allen Cowan, PhD Alan L. Coykendall Ernest L. Crandall Edward D. Crosby Zoltan Csukonyi Charles C. Cullari Dwight Hills Damon, PhD* Rocco N. Dangelo Michael J. Darre, PhD Lee Losee Davenport, PhD Joseph J. De Bartolo Kenneth A. Decarolis Eddie Del Valle Frank Deluca Anthony J. Dennis, PhD Hans R. Depold Raymond J. Dicamillo J. F. Dinivier Edward W. Diskavich Charles H. Doersan, Jr. Barbara B. Doonan, PhD Frederick Drasch Valerie B. Duffy, PhD K. H. Dufrane Eliot Knights Easterbrook, PhD Edwin George Eigel, Jr., PhD Henry J. Ellenbast, Jr. Richard A. Eppler, PhD Paul McKillop Erlandson, PhD Daniel J. Evans Jason P. Farren Robert Feingold Steve Ferraro William M. Foley, PhD Herman J. Fonteyne John C. Forster George E. Fournier G. Sidney Fox Henry E. Fredericks Arnold E. Fredericksen Charles Richard Frink, PhD* George P. Fulton Joseph T. Furey Wayne R. Gahwiller Louis M. Galie Ernest B. Gardow, PhD M. R. Gedge Albert L. Geetter Robert Charles Geitz, PhD Mark Gerstein, PhD Roger R. Giler Charles M. Gilman John W. Glomb, PhD Efim I. Golub, PhD Robert Boyd Gordon, PhD Mario Grippi Fred J. Gross Gottfried Haacke, PhD Robert E. Haag Sigvard Hallgren Robert D. Halverstadt Arthur L. Handman John Haney

Caryl P. Harkins, PhD Michael Hawley, PhD Howard Hayden, PhD David L. Hedberg James Heidenreich David E. Henderson, PhD William B. Henry Jack L. Herz, PhD Donald M. Higgins Kenneth A. Hiller Clyde D. Hinman Jonathan Hoadley Douglas C. Hoagland John A. Hofbauer George Robert Holzman, PhD John Hoover Art Hornberger Donald M. Husted James C. Hutton Alfred Ingulli Gideon E. Isaac Harry A. Jackson Eva Vavrousek Jakuba, PhD Stan Jakuba Jesse C. Jameson W. W. Jarowey Elliot E. Jessen John William Johnstone, Jr. Morton R. Kagan, PhD Frank P. Kalberer David W. Keefe Marvin Jerry Kenig, PhD Dan T. Kinard Ravi Kiron, PhD Paul Gustav Klemens, PhD Bruce G. Koe Anthony P. Konopka William M. Kruple Donald Kuehl Harold Russell Kunz, PhD Edward P. Kurdziel Jai L. Lai, PhD Robert Carl Lange, PhD* Robert A. Lapuk John Larson John W. Leavitt S. Benedict Levin, PhD James J. Licari, PhD John Liutkus, PhD Robert W. Loomis Bernard W. Lovell, PhD Alvin Higgins Lybeck Tso-Ping Ma, PhD James J. Macci James M. Macdonald, Jr. Thomas Magee David J. Mailhot Harold J. Malone Richard G. Mansfield Jack J. Marcinek William C. Martz Ceslovas Masaitis Paul G. Mayer Robert J. J. Mayerjak, PhD Donald Mayo, PhD William Markham McCardell William Ray McConnell, PhD J. W. McFarland, PhD Hugh McKenna James P. Memery Robert B. Meny Miles A. Millbach

Page 81: Human Health Effects - Granicus

Appendix 4: The Petition Project  

 769

Dean and Lois D. Miller John Milne Jeffrey N. Mobed David S. Moelling Michael Monce, PhD Richard Moravsik Timothy A. Morck, PhD John P. Moschello Saeid Moslehpour, PhD Francis Joseph Murray, PhD Ronald Fenner Myers, PhD Norman A. Nadel Peter Nalle John Nasser Edward S. Ness, PhD Charles Henry Nightingale, PhD Brian O'Brien Robert L. O'Brien Ronald R. Oneto Raymond L. Osborne, Jr. John Harold Ostrom, PhD Joseph R. Pagnozzi Laurine J. Papa David Frank Paskausky, PhD Mark R. Pastore Alfred N. Paul Zoran Pazameta, PhD Raul T. Perez Al Peterson Ronald Piccoli Daniel Joseph Pisano, PhD Thomas Plante Inge Pope Robert W. Powitz, PhD John B. Presti B. Prokai, PhD Michael J. Pryor, PhD Ken J. Pudeler John A. Raabe, PhD Arthur L. Rasmussen John A. Reffner, PhD Harold Bernard Reisman, PhD Hans Heinrich Rennhard, PhD Anna V. Resnansky William C. Ridgway, III, PhD Francis J. Riley Charles A. Rinaldi Felice P. Rizzo Frank Roberts, Jr. Donald Wallace Robinson J. David Robords Fred L. Robson, PhD Robert Henry Roth, PhD William R. Rotherforth Robert A. Rubega, PhD George R. Rumney, PhD John P. Sachs, PhD Robert Howell Sammis Reinhard Sarges, PhD Jeffrey Satinover, PhD Emilio A. Savinelli, PhD John R. Schafer L. McD. Schetky, PhD Ronald G. Schlegel Howard E. Schwiebert Clive R. Scorey, PhD Andrew E. Scoville Thomas Seery, PhD Ronald Sekellick Chester J. Sergey, Jr. Harry Sewell, PhD Richard C. Sharp

Mark Shlyankevich, PhD Linton Simeri, PhD Linton Earl Simerl, PhD Jaime Simkovitz E. L. Sinclair Bolesh Joseph Skutnik, PhD George N. Smilas Elwin E. Smith Bruce Sobol Lon E. Solomita Andrzej Stachowiak Bernard A. Stankevich William R. Stanley Steven C. Stanton Joseph Sternberg, PhD Charles Lysander Storrs, PhD Joseph R. Stramondo Charles J. Szyszko John Tanaka, PhD Robert G. Tedeschi C. Sheldon Thompson, PhD Robert H. Thompson, PhD Frederick G. Thumm Sargent N. Tower Robert L. Trapasso Richard F. Tucker Marvin Roy Turnipseed, PhD Alan K. Vanags George Veronis, PhD Daniel Vesa John S. Wagner Terramce J. Walsh Robert G. Weeles Edward B. Wenners Richard Wildermuth Roger F. Williams Daniel A. Wisner, Jr., PhD George C. Wiswell, Jr. Steven E. Yates John E. Yocom Robert L. Yocum Edward A. Zane Claude Zeller, PhD William Arthur Ziegler Delaware Earl Arthur Abrahamson, PhD Albert W. Alsop, PhD Giacomo Armand, PhD Joseph Bartholomew Arots, PhD Charles Hammond Arrington, PhD Andrejs Baidins, PhD Lewis Clinton Bancroft Theo C. Baumeister Paul Becher, PhD Scott K. Beegle Oswald R. Bergmann, PhD Robert Paul Bigliano William A. Bizjak William L. Blackwell Charles G. Boncelet, PhD Frank R. Borger Ernest R. Bosetti John Harland Boughton, PhD Charles J. Brown, Jr., PhD Thomas S. Buchanan, PhD Bruce M. Buker Charles B. Buonassisi Donovan C. Carbaugh, PhD Louise M. Carter

William B. Carter Leonard B. Chandler, PhD Robert John Chorvat, PhD Emil E. Christofano Alexander Cisar Ian Clark George Rolland Cole, PhD Albert Z. Conner Nancy H. Conner Harry Norma Cripps, PhD R. D. Crooks William H. Day, PhD Daniel M. Dayton Lawrence De Heer Pamela J. Delaney William E. Delaney, III, PhD Dennis O. Dever Seshasayi Dharmavaram, PhD Walter Domorod Roland G. Downing, PhD Francis J. Doyle Arthur Edwin Drake, PhD C. M. Drummund Eric James Evain, PhD Elizabeth W. Fahl, PhD Stephen R. Fahnestock, PhD Eric R. Fahnoe Enrico Thomas Federighi, PhD Thomas Aven Ford, PhD John Frederick Gates Clark, PhD William J. Geimeier Joseph Edmund Gervay, PhD Wayne Gibbons, PhD Roderick J. Gillespie, Jr. David A. Glenn William H. Godshall John E. Greer, Jr. Alfred A. Gruber Lachhman D. Gupta Earl T. Hackett, Jr. R. M. Hagen, PhD Thomas K. Haldas Charles W. Hall Thomas W. Harding, PhD Charles R. Hartzell, PhD James R. Hodges Winfried Thomas Holfeld, PhD Anthony R. Hollet Roger L. Hoyt Chin-Pao Huang, PhD Robert G. Hunsperger, PhD Mir Nazrul Islam, PhD Harold Leonard Jackson, PhD Vladislav J. Jandasek Paul R. Jann George K. Janney Charles S. Joanedis John Eric Jolley, PhD Louise Hinrichsen Jones, PhD Robert John Kallal, PhD Robert James Kassal, PhD John T. Kephart Charles A. Kettner, PhD Charles O. King, PhD Joseph Jack Kirkland, PhD Henry Kobsa, PhD Theodore Augur Koch, PhD Robert F. Kock Bruce David Korant, PhD Carl George Krespan, PhD Palaniappa Krishnan, PhD Wo Kong Kwok, PhD

Douglas R. Leach, PhD Bernard Albert Link, PhD Royce Zeno Lockart, PhD Francis M. Logullo, PhD H. Y. Loken, PhD Rosario Joseph Lombardo, PhD Ruskin Longworth, PhD Carl Andrew Lukach, PhD Jeffrey B. Malick, PhD Creighton Paul Malone, PhD Philip Manos, PhD Charle Eugene Mason, PhD W. McCormack, PhD Margaret A. Minkwitz, PhD Donald M. Mitchell Edward Francis Moran, PhD William E. Morris Calvin Lyle Moyer, PhD Marcus A. Naylor, Jr., PhD Howard E. Newcomb Edmund Luke Niedzielski, PhD Michael Nollet Lilburn Lafayette Norton, PhD Louis P. Olivere Robert D. Osborne Alfred Horton Pagano, PhD Albert A. Pavlic, PhD Rowan P. Perkins Michael E. Pilcher Raymond S. Pusey Ann Rave, PhD Richard L. Raymond Charles Francis Reinhardt, PhD John Reitsma Robert D. Ricker, PhD Louis H. Rombach, PhD Leonard Rosenbaum Richard A. Rowe, PhD Mark H. Russell, PhD David Frank Ryder, PhD Bryan B. Sauer, PhD Robert Andrew Scala, PhD Jerome C. Sekerke, Sr. James A. Sinex, III Robert Smiley, PhD Jack Austin Snyder, PhD Frank E. South, PhD Harold F. Staunton, PhD Evan R. Steinberger Douglas C. Stewart Xavier Stewart, PhD James W. Stingel George Joseph Stockburger, PhD Richard W. Stout Milton Arthur Taves, PhD William Russell Thickstun, PhD James R. Thomen, PhD Eric J. Trinkle Siva V. Vallabhaneni Tina K. Vandyk J. G. Vermeychuk, PhD Vernon G. Vernier Owen W. Webster, PhD John T. Wellener Thomas Whisenand, PhD Arthur Whittemore Joseph S. Woodhead

Page 82: Human Health Effects - Granicus

Climate Change Reconsidered  

 770

District of Columbia Philip H. Abelson, PhD* Nicholas A. Alten Todd Barbosa James Z. Bedford Marlet H. Benedick Donna F. Bethell John D. Bultman, PhD Adrian Ramond Chamberlain, PhD Ronald E. Cohen, PhD Marguerite Wilton Coomes, PhD Walter R. Dyer, PhD Howard L. Egan, PhD Paul Herman Ernst Meijer, PhD John B. Fallon Martin Finerty, Jr. Donna Fitzpatrick Bruce Flanders, PhD Nancy Flournoy, PhD Edmund H. Fording, Jr. Robert F. Fudali, PhD Marjorie A. Garvey Clarence Joseph Gibbs, PhD Paul F. Giordano David John Goodenough, PhD Kenneth P. Green, PhD John Carl Harshbarger, Jr., PhD Niki Hatzilambrou, PhD Robert L. Hirsch, PhD John Thomas Holloway, PhD William S. Hughes Charles J. Kim, PhD Thomas Adren Kitchens, PhD John Cian Knight, PhD Richard L. Lawson Frank X. Lee, PhD Donald R. Lehman, PhD Devra C. Marcus Gerald Noah McEwen, PhD Charles J. Montrose, PhD F. Ksh Mostofi Stanley Nesheim Errol C. Noel, PhD Frederick J. Pearce, PhD James S. Potts Thomas Leonard Reinecke, PhD Alexander F. Robertson, PhD Malcolm Ross, PhD Mark A. Ross Mark A. Rubin Joaquin A. Saavedra Jeffery D. Sabloff Frank Shalvey Santamour, PhD Walter Schimmerling, PhD Nina Scribanu Frank Senftle, PhD Anatole Shapiro, PhD Thomas Elijah Smith, PhD Thomas R. Stauffer, PhD* Marjorie R. Townsend Kyriake V. Valassi, PhD James D. Watkins Carl W. Werntz, PhD Frank Clifford Whitmore, PhD William Phillips Winter, PhD William S. Yamamoto Daniel V. Young Tomohiro Yuki Lorenz Eugene Zimmerman

Florida M. Robert Aaron Frank D. Abbott Jose L. Abreu, Jr. Austin R. Ace John Adams Jorge T. Aguinaldo Tom J. Albert Evelyn A. Alcantara, PhD Thomas Alderson, PhD Samuel Roy Aldrich, PhD Luis A. Algarra Mark J. Alkire Eric R. Allen, PhD George L. Allgoever Richard E. Almy Ramon J. Alonso, PhD Virgilio E. Alvarez Raymond J. Anater Barry D. Anderson Louis Weston Anderson Vincent Angelo, PhD Herbert D. Anton Henry W. Apfelbach W. H. Appich, Jr. Orlando A. Arana R. Kent Arblaster Antonio E. Arce William Bryant Ard, PhD Vittorio K. Argento, PhD Ross Harold Arnett, PhD Jack N. Arnold James T. Arocho Rhea T. Van Arsdall Charles R. Ashford Victor Asirvatham, PhD Robert C. Asmus Lynn A. Atkinson Robert C. Atwood Kathi A. Aultman Alfred Ells Austin, PhD Andrew B. Avalon Mark Averett Donald Avery Bonnie Jean Wilson Bachman, PhD Ed Bailey Travis Bainbridge Earl W. Baker, PhD Joseph H. Baker Theodore Paul Baker William M. Baldwin Ferdi M. Baler Ronald C. Ballard Lloyd Harold Banning Peter R. Bannister Donald E. Barber Paul D. Barbieri Andrew M. Bardos Walter E. Barker, Jr. Ellis O. Barnes Kenneth J. Barr J. H. Barten Homer E. Bartlett Niles Bashaw Mark J. Bassett, PhD Michael A. Bassford Sam P. Battista, PhD Max G. Battle, Sr. Don J. Bauer Arthur Nicholas Baumann Lisa L. Baumbach, PhD

Timothy H. Beacham James M. Beall Elroy W. Beans, PhD James H. Beardall Mhamdy H. Bechir, PhD Theodore Wiseman Beiler, PhD Alfred J. Beljan Dee J. Bell Edward Bell Leonard W. Bell Randy Bell Robert J. Bellino Armando L. Benavides Deodatta V. Bendre Carroll H. Bennett Clayton A. Bennett Rudy J. Beres John W. Bergacker Robert D. Berkebile Donald C. Berkey Elliot Berman, PhD Oran L. Bertsch Arthur F. Betchart Ervin F. Bickley, Jr. David A. Bigler Robert W. Birckhead Alfred F. Bischoff Burt James Bittner James K. Blaircom Joel J. Blatt, PhD Ralph C. Bledsoe Ernest L. Bliss Robert R. Blume Wayne Dean Bock, PhD Peter Boer, PhD Colleen H. Boggs Harry Joseph Boll, PhD Sam Bolognia Nicholas H. Booth, PhD Robert M. Borg Walter S. Bortko Joseph F. Boston, PhD Leroy V. Bovey Clifford R. Bowers Gale Clark Boxill, PhD Joseph C. Bozik George B. Bradshaw, Jr. Jerry A. Brady Walter F. Brander Richard H. Braunlich Thomas N. Braxtan Lloyd J. Bresley Peter R. Brett Joe E. Brewer Greg A. Bridenstine Michael S. Briesch Edwin C. Brinker Anne M. Briscoe, PhD Joe P. Brittain Wayne Brittian Hampton Ralph Brooker, PhD John Brooks N. P. Brooks Bahngrell W. Brown, PhD Fredrick G. Brown Gary L. Brown Kenneth B. Bruckart Bernard O. Brunegraff Gerald W. Bruner Ronald L. Brunk Richard L. Brutus Bobby F. Bryan

Frederick T. Bryan, PhD Gary L. Buckwalter, PhD David A. Buff Mark A. Bukhbinder, PhD Ervin Trowbridge Bullard, PhD Edward J. Buonopane Paul Philip Burbutis, PhD Stanley Burg, PhD James H. Burkhalter, PhD Charles Burns Philip J. Burnstein Thomas R. Busard Clair E. Butler Philip Alan Butler, PhD John J. Byrnes Barry M. Bywalec Charles R. Cabiac Mary M. Cadieux Robert Cadieux Marilee Whitney Caldwell, PhD Patrick E. Callaghan Allan B. Callender, PhD Jeffrey D. Caltrider James B. Camden, PhD John R. Cameron, PhD Clifford A. Campbell Joseph Campbell, PhD Jose A. Campoamor Carlos A. Camps Jorge A. Camps Paul Canevaro Margaret S. Cangro Hugh N. Cannon Julian E. Cannon Daniel James Cantliffe, PhD John V. Carlson William J. Carson Arthur L. Carter Fred S. Carter Harvey P. Carter William J. Caseber, Jr. Judson A. Cauthen Wiley M. Cauthen Robert Cavalleri, PhD Tito Cavallo Steven Chabottle Howard E. Chana William M. Chandler Donald G. Chaplin Gregory W. Chapman M. J. Charles Augustus Charos Fernando G. Chaumont Robert S. Chauvin, PhD Mary E. Chavez Craig F. Cheng Genady Cherepanov, PhD Paul A. Chervenick Roger B. Chewning Sen Chiao, PhD R. Chiarenzelli Henry D. Childs Craig Chismarick David Chleck Mandj B. Chopra, PhD Wen L. Chow, PhD Bent Aksel Christensen, PhD James R. Clapp Richard Allen Claridge James R. Clarke James T. Clay James D. Cline

Page 83: Human Health Effects - Granicus

Appendix 4: The Petition Project  

 771

Paul L. Clough Clarence Leroy Coates, PhD Keith H. Coats, PhD Leroy M. Coffman C. Eugene Coke, PhD Gregory Cole Samuel Oran Colgate, PhD Paul G. Colman Benjamin H. Colmery, PhD Glenn E. Colvin Franklin J. Cona James T. Conklin Fountain E. Conner Walter Edmund Conrad, PhD Alberto Convers James J. Conway, PhD Anne M. Cooney Denise R. Cooper, PhD Emmett M. Cooper Ernest B. Cooper George P. Cooper Mark S. Cooper Raymond David Cooper, PhD Dawson M. Copeland Eugene Francis Corcoran, PhD Graydon F. Corn Richard J. Coston Leon Worthington Couch, II, PhD Richard J. Councill Robert O. Covington John Cowden Vincent Frederick Cowling, PhD Francis M. Coy Warren S. Craven James F. Crawford Buford Creech G. Kingman Crosby David G. Cross William C. Cross Tom L. Crossman David Crowe David L. Crowson Jose R. Cuarta, Jr. Matteo A. Cucchiara Donald A. Cuervo Carlos J. Cuevas William M. Cullen Russell E. Cummings Gene L. Curen Peter J. Curry Fred W. Curtis, Jr. Rosario E. Cushera Ron Cusson, PhD Walter J. Czagas Donald W. Czubiak George Clement Dacey, PhD John A. Dady Fritz Damveld Bao D. Dang Andrew W. Dangelo Jean H. Darling Albert N. Darlington Charlie R. Davenport Thomas L. Davenport, PhD Duane M. Davis, PhD Janice R. Davis David M. Dawson Noorbibi K. Day, PhD Duke Dayton James W. De Ruiter Nathan W. Dean, PhD Stanley Deans, PhD

Wayne Deckert, PhD Bradford Deflin Albert M. DeGaeta James A. deGanahl Quentin C. Dehaan Robert T. Dehoff, PhD Glenn A. DeJong Gary J. Dellerson Harold Anderson Denmark Kenneth Derick Gary D. Dernlan Edward Augustine Desloge, PhD Ronald P. Destefano, PhD Lawrence E. Deusch Martha S. Deweese Charles S. Dexter Charles M. Dick Philip A. Dick John A. Dickerson James C. Diefenderfer John R. Dieterman, II Julie Y. Dieu, PhD Norman G. Dillman, PhD Richard H. Dimarco Robert L. Dimmick Howard Livingstone Dinsmore, PhD Roy H. Dippy James P. Diskin William L. Dixon N. Djeu, PhD Gerald D. Dobie Jerry L. Dobrovolny, PhD Robert W. Dobson Michael Dodane David A. Dodge John E. Dolan William R. Dolbier, PhD Eugene E. Dolecki L. Guy Donaruma, PhD John R. Doner, PhD Joseph F. Donini Frederick G. Doran Daniel A. Doty Keith L. Doty, PhD Spencer Douglass W. Campbell Douglass Larry J. Doyle, PhD* Frank J. Dragoun Edward F. Drass Neil I. Dreizen David M. Drenan F. J. Driggers Vojtech A. Drlicka Roger W. Dubble Joseph E. Duchateau Loring R. Duff Edward T. Dugan, PhD James M. Dunford Russell F. Dunn, PhD James L. Dunnie N. Richard Dunteman Steven Jon Duranceau, PhD Fred P. Dwight Julian Jonathan Dwornik, PhD Joseph Jackson Eachus, PhD James B. Earle Amy E. Eason Hamel B. Eason James J. Edmier Dean Stockett Edmonds, Jr., PhD Thomas A. Edwards Warren R. Ehrhardt

Howard George Ehrlich, PhD Paul Ewing Ehrlich, PhD Esther B. Eisenstein Luis R. Elias, PhD David F. Elliott John O. Elliott Scott Ellis Lamont Eltinge, PhD Frederick H. Elwell William A. Engel John M. England Jack L. Engleman John Enns, PhD Frederick B. Epstein, PhD Larry R. Erickson Samuel E. Eubank Ralph L. Evans James Legrand Everett Norm R. Every John M. Evjen, PhD Martin Fackler Atir Fadhli, PhD Larry E. Fairbrother, III Peter M. Fallon Scott D. Farash Robert L. Farnsworth Robert C. Faro, PhD Donald D. Farshing, PhD Donald Featherman Henry A. Feddern, PhD Louis Feinstein, PhD Donald Fenton, PhD Emmett B. Ferguson Patrick J. Ferland Eugene M. Fetner Henry T. Fielding Carl E. Fielland Joshua A. Fierer* Norton E. Fincher Robert D. Finfrock Ronald L. Finger Barney W. Finkel Charles W. Finkl, Jr., PhD Gerald R. Fishe Charles H. Fisher George H. Fisher, PhD John C. Fisher William J. Flick William H. Flowers, PhD John C. Floyd Leo J. Flynn Timothy A. Focht Peter John Fogg, PhD James H. Fogleman Paul D. Folse Candido F. Font Anderson M. Foote Marion Edwin Forsman, PhD Irving S. Foster, PhD Norman G. Foster Robert G. Foster Don Fournier James M. Fowler, Jr. Gerald Fox Russell E. Frame Allan J. Frank Sidney Frank Anthony D. Frawley, PhD Stephen Earl Frazier, PhD Andrew W. Frech Ronald Harold Freeman, PhD Doug Freemyer

Thomas V. Freiley Raymond Friedman, PhD Dan C. Frodge Higinio J. Fuentes Clark W. Furlong Kenneth E. Fusch Ronald M. Fussell George Gabanski John C. Galen Robert M. Gallen Boris Galperin, PhD Joseph E. Gannon William Lee Garbrecht, PhD* Harry E. Gardner, Jr. Richard Garnache Carl C. Garner Charles J. Garrett Don L. Garrison Jose R. Garrote Geoffrey W. Gartner, Jr. John J. Gaughan Eugene R. Gaughran, PhD John F. Gaver Douglas M. Gebbie Steve Geci Anthony F. Gee James E. Geiger John Geiger Paul G. Geiss Karl R. Geitner Edmund A. Geller George T. Genneken Lawrence D. Gent, Jr. Larry Gerahiau Eugene Jordan Gerberg, PhD Walter M. Gerhold Umberto Ferdinando Gianola, PhD Kurt R. Gies Fred Giflow Peter Gilbert Edward R. Gillie June Gillin William C. Gilmore, Jr. George A. Gimber David N. Girard W. E. Girton Johanna M. Glacy-Araos Richard E. Gladziszewski Thomas Alexander Gleeson, PhD Anatol A. Glen Ronald Gluck Richard H. Gnaedinger, PhD C. J. Gober Louis D. Gold, PhD Alan S. Goldfarb, PhD Lionel Solomon Goldring, PhD Gary J. Goldsberry Yitzhak Goldstein Ely Gonick, PhD Ed E. Gonzalez Lewis F. Good, Jr. Brett P. Goodman John A. Goolsby Robert Stouffer Gordee, PhD Theodore B. Gortemoller, Jr. David Gossett Henry Gotsch Charles F. Gottlieb, PhD Gerald Geza Gould Karl Gould Hans C. Graber, PhD Howard E. Graham

Page 84: Human Health Effects - Granicus

Climate Change Reconsidered  

 772

F. R. Grant Frank Grate M. R. Grate Chester W. Graves Wayne C. Graves George F. Green, PhD Willie H. Green William Greene Charles W. Gregg Donald J. Gregg Frank E. Gregor Bert L. Grenville Donald K. Grierson R. Howard Griffen Gordon E. Grimes Chester F. Grimsley William B. Grinter Gerry Gruber, PhD Ivan Grymov Ernest A. Gudath Cnelson Guerriere Robert O. Guhl Joseph W. Guida Jean R. Gullahorn Michael E. Gunger Phillip W. Gutmann Thomas J. Gyorog Mutaz Habal, PhD James A. Hagans, PhD Jeffrey S. Haggard Donald R. Hagge James T. Haggerty Theodore W. Hahn Warren A. Hahn Oussama Halabi Douglas K. Hales John F. Hallahan Harry Hamburger Brenton M. Hamil, PhD Darryl J. Hamilton Mona S. Hamilton Douglas K. Hammann Thomas G. Hammond, Jr. Larry D. Hamner M. Hancock Robert William Hanks, PhD Donald C. Hanto Kevin G. Harbin Jeffrey L. Harmon, PhD Eric Harms Joseph J. Harper Gary G. Harrison Robert Hartley William H. Hartmann Ronald F. Hartung Eldert Hartwig, Jr. Ed Harwell Alden G. Haskins Elvira F. Hasty, PhD James H. Hasty, PhD Charles L. Hattaway Arthur J. Haug, PhD Ralph E. Hayden John A. Hayes Michael E. Hayes, PhD Ralph L. Hayes Jordan M. Haywood John F. Hazen Ronald Alan Head, PhD Robert S. Hearon George M. Hebbard Boyd R. Hedrick, Jr.

Roy W. Heffner Brian E. Heinfeld David F. Heinrich Cecil Helfgott, PhD James F. Helle Richard B. Hellstrom Robert L. Helmling James Brooke Henderson, PhD Jim Hennessy Carl H. Henriksen Jonathan Henry, PhD James F. Hentges, PhD Alberto Hernandez Alvin C. Hernandez, Jr. Irwin Herman Herskowitz, PhD David E. Hertel Richard L. Hester Richard P. Heuschele Richard Hevia Thomas B. Hewton David K. Hickle Kathryn Hickman, PhD Gregory D. Hicks Thomas M. Hicks Alberto F. Hidalgo, PhD Clarence Edward Hieserman Eric V. Hill, PhD Richard F. Hill Robert E. Hillis, PhD Helmuth E. Hinderer, PhD Carla J. Hinds George T. Hinkle, PhD George M. Hinson Daniel J. Hirnikel Thomas James Hirt, PhD Robert Warren Hisey, PhD H. Ray Hockaday John T. Hocker Edward Hoffmann James P. Hogan, PhD Lawrence E. Hoisington, PhD Wayne Holbrook David G. Holifield, PhD Allen B. Hollett Richard A. Hollmann Eugene H. Holly Michael D. Holm Donald A. Holmer, PhD H. Duane Holsapple Larry H. Hooper E. Erskine Hopkins Lewis Milton Horger, PhD Evelio N. Horta, PhD Paul A. Horton, PhD Hamid Hosseini John H. Hotaling William B. Houghton Charles M. House Larry D. Housel Gordon P. Houston Louis R. Hovater James Howze Sung Lan Hsia, PhD Robert J. Hudek George R. Hudson Russell Henry Huebner, Sr., PhD Gaylord Huenefeld Margaret J. M. Huey Arvel Hatch Hunter, PhD Jamie Hunter Ronald L. Hurt Scotty M. Hutto

Kenneth Hyatt Carly H. Hyland Terrence L. Ibbs Phillip M. Iloff, Jr., PhD Paul E. Ina William L. Ingle David Irvin Robert M. Ivey Bruce G. Jackson J. G. Jackson, III* Wes S. Jacobs Jerald O. Jacobson Michael T. Jaekels Paul C. Jakob Clifford H. James John C. Janus Samuel E. Jaquinta Karen C. Jaroch Adrian Jelenszky Hanley F. Jenkins Paul A. Jennings, PhD Clayton Everett Jensen, PhD Anthony E. Jernigan Howard R. Jeter Eileen D. Johann, PhD Virgil Ivancich Johannes, PhD Anthony Johnson Charles W. Johnson David A. Johnson Gerald B. Johnson H. C. Johnson J. William Johnson James Robert Johnson, PhD Leland B. Johnson T. Johnson Frederick W. Johnston, Jr. Harold E. Johnstone Barbara C. Jones Claude D. Jones Marcia Jones R. H. Jones, PhD Roy Carl Jones, PhD Joseph G. Jordan Edward Joseph Edwin A. Joyce, Jr. Patrick A. Joyce Hiram Paul Julien, PhD Brian J. Just, PhD Martin J. Kaiser Bernard J. Kane Kenneth C. Kanige, PhD Ramanuja Chara Kannan Robert Karasik William J. Kardash, Sr. Delmar W. Karger Robert R. Karpp, PhD Jeffery J. Karsonovich Kenneth Stephen Karsten, PhD A. J. Kassab, PhD Michael J. Kaufman, PhD Michael E. Kazunas Kar M. Keil Carroll R. Keim Richard K. Keimig Daniel C. Kelley Whitemore B. Kelley, Jr. John E. Kemp Francis J. Kendrick, PhD Dallas C. Kennedy, II, PhD Robert W. Kennedy James A. Kennelley, PhD Charles W. Kennison

R. D. Kent James G. Keramas, PhD Robert Kergai John E. Kerr Keith M. Kersch John M. Kessinger Ronald J. Kessner Charles R. Keyser Suresh K. Khator, PhD Roosey Khawly Jennifer L. Kibiger Richard L. Kiddey David E. Kiepke Robert R. Kilgo Dennis K. Killinger, PhD Hueston C. King McLeroy King Randy L. King Stan A. Kinmouth Dalton L. Kinsella James R. Kircher Henry W. Kirchner Michael K. Kirwan Wendell G. Kish Abbott Theodore Kissen, PhD Eva B. Kisvarsanyi Geza Kisvarsanyi, PhD Waldemar Klassen, PhD Steven K. Klecka Willard R. Kleckner, PhD Karl M. Klein, Jr. Karl G. Klinges, PhD Benny Leroy Klock, PhD Glenn S. Kloiber Daniel E. Kludt Ian G. Koblick Lee E. Koepke Lawrence K. Koering William Francis Kohland, PhD Paul A. Kohlhepp Donald H. Komito George J. Kondelin, Jr. George E. Konold Richard J. Kossman Thomas W. Kotowski Sidney Kovner Stanley Krainin Donald R. Kramer John Krc, Jr. Istvan M. Krisko, PhD John M. Krouse Walter Hillis Kruschwitz, PhD Dennis J. Kulonda, PhD Frank Turner Kurzweg Bogdan Ognjan Kuzmanovic, PhD Tung-Sing Kwong Edward G. Kyle R. G. Lacallade J. G. Ladesic, PhD Charles Lager Henry J. Lamb Donald H. Lambing Stephen Lamer, PhD Michael C. Lamure Albert L. Land B. Edward Lane Paul J. Langford JoAnne Larsen, PhD Reginald Einar Larson Edwin D. Lasseter Thomas S. Lastrapes Mark T. Lautenschlager

Page 85: Human Health Effects - Granicus

Appendix 4: The Petition Project  

 773

Donnie B. Law David Lawler Peter K. Lazdins, PhD Frank W. Leach George R. Lebo, PhD John p. Leedy Irving Leibson, PhD Gordon F. Leitner Carl Lentz Kenneth Allen Leon, PhD Philip B. Leon Donald E. Lepic Michael A. Leuck Samuel Levin Stanley S. Levy, PhD Thomas F. Lewicki Thomas Lick, PhD Jon L. Liljequist Bruce A. Lindblom Bruce G. Lindsey, PhD Raul A. Llerena Vern Lloyd Salvadore J. Locascio, PhD Emil P. Loch Richard F. Lockey Bruce A. Loeppke Ernest E. Loft R. Loftfield Crispino E. Lombardi James A. Long R. W. Long, PhD Alfredo M. Lopez, PhD Don D. Lorenc Robert A. Loscher Julio G. Loureiro Richard G. Loverne Gordon Lovestrand Robert W. Loyd Steven A. Lubinski John W. Luce Richard R. Ludlam Bobby R. Ludlum S. J. Ludwig Henry C. Luke Ronald A. Lukert Arthur Lyall Victoria S. Lyon Paul Macchi Theodore S. Macleod Robert K. Macmillan Orville E. Macomber Guy R. Madden Robert L. Magann James G. Magazino James Mahannah Raymond C. Mairson Edmund R. Malinowski, PhD Paul A. Mallas Edmund M. Malone Joe H. Maltby Eugene H. Man, PhD Jesse R. Manalo Robert J. Mandel Anthony P. Mann Walter Manning Joseph Robert Mannino, PhD W. E. Manry, Jr.* Robert S. Mansell, PhD Juliano Maran Vladimir K. Markoski Gerardo L. Marquez Homer L. Marquit

John J. Marra A. E. Marshall, Jr. Roger W. Marsters, PhD Paul R. Martel Jose L. Martin, PhD Ralph Harding Martin Robert W. Martin William W. Martin Mason E. Marvel, PhD Harry L. Mason Wayne A. Mather Robb R. Mathias Harry M. Mathis, PhD Maria B. Matinchev Guy C. Mattson, PhD James W. Maurer Florentin Maurrasse, PhD John G. Mavroides, PhD Vincent E. Mayberry Marion S. Mayer, PhD George T. McAllister Joseph James McBride, PhD Clarence H. McCall Edward E. McCallum Carolyn A. McCann Ron L. McCartney R. McCarty G. J. McCaul Walter H. McCluskey W. Phil McConaghey Daniel F. McConaghy Daniel G. McCormick Donald S. McCorquodale, PhD Scott A. McCoy Stephen C. McCranie Robert L. McCroskey, PhD Victor McDaniel, PhD Lee Russell McDowell, PhD Stuart E. McGahee Anthony McGoron, PhD David F. McIntosh Darrell W. McKinley Michael McKinney, PhD John McKisson George Hoagland McLafferty Charles D. McLelland Malcolm E. McLouth Harold R. McMichael Donald W. McMillan Donald F. McNeil, PhD Clyde W. McNew Edwin R. McNutt Glenn L. McNutt Marion L. Meadows Tonya S. Mellen Henry Paul Meloche, PhD Darrell E. Melton Robert William Menefee, PhD Gunter Richard Meng Jerry Merckel, PhD Daniel N. Mergens Andrew H. Merritt, PhD Duane R. Merritt Henry Neyron Merritt, PhD Lawrence E. Mertens, PhD James H. Messer Aldo J. Messulam, PhD Alexandru Mezincescu, PhD Oskar Michejda, PhD Harold S. Mickley, PhD Judith A. Milcarsky Sylvester S. Milewski

John F. Milko Kenneth J. Miller Richard H. Miller, PhD William Knight Miller, PhD Scott Milroy, PhD Robert Mitchell Milton, PhD Malcolm G. Minchin R. Edward Minchin, Jr., PhD N. Misconi, PhD Patricia Mitchell John B. Mix, PhD Jeffrey N. Mock Stanley S. Moles, PhD Ralph Moradiellos Christopher A. Morgan, PhD Robert A. Morrell Harold N. Morris James H. Moss Lee W. Mozes, PhD Charles L. Mraz Rosa M. C. Muchovej, PhD John T. Muller Robert C. Mumby Gary L. Murphy John F. Murphy, PhD William Parry Murphy Frank A. Musto Jay Muza, PhD Leslie A. Myers, PhD Mark T. Myers Daniel A. Myerson Harry E. Myles Don R. Myrick Roger P. Natzke, PhD Donald K. Nelson Hugo D. Neubauer, Jr. James E. Neustaedter George F. Nevin Waldo Newcomesz Jesse R. Newell McFadden A. Newell Richard W. Newell Arthur W. Newett Carl S. Newman William A. Newsome Bill H. Nicholls David S. Nichols Kenneth W. Nickerson Paula W. Nicola Edward Niespodziany, PhD Herbert Nicholas Nigg, PhD Margaret M. Niklas Edward G. Nisbett John C. Nobel Michael J. Noesen Michael J. Nolan William G. Norrie Ronelle C. Norris Peggy A. Northrop Albert Notary Carlos G. Nugent Robert L. Oatley Chad J. Oatman James J. O'Brien, PhD Thomas W. O'Brien, PhD T. F. Ochab Frederic C. Oder, PhD Norbert W. Ohara, PhD Daniel J. O'Hara, PhD J. W. O'Hara, PhD Kenneth R. Olen, PhD Oluf E. Olsen

Ronald V. Olsen Lewis E. Olson Robert J. Olson Ray Andrew Olsson Robert Milton Oman, PhD Adrain P. O'Neal Albert E. O'Neall Gene F. Opdyke James F. Orofino Donald Orr David A. Orser William Albert Orth, PhD Harold Osborn Matthew J. Ossi Wendall K. Osteen, PhD John P. Osterberg Robert Franklin Overmyer Jerry M. Owen Terence Cunliffe Owen, PhD Henry Yoshio Ozaki, PhD Glenda B. Pace Thomas J. Padden, PhD Fred Paetofe Edward C. Page Edward Palkovic Jay W. Palmer, PhD Ralph Lee Palmer Gyan Shanker Pande, PhD Patrick J. Di Paolo Charles J. Papuchis Georges Pardo, PhD Marie J. Parenteau Charles L. Park Cyril Parkanyi, PhD Anthony T. Parker David H. Parsons Richard L. Pase Garland D. Patterson Ben W. Patz, PhD Gary W. Pauley Charles H. Paxton Robert M. Peart, PhD Robert Pease Richard Stark Peckham, PhD Edward A. Pela Winston Kent Pendleton, PhD Robert E. Peppers Horacio F. Perez Stanley E. Permowicz Thomas E. Perrin James B. Perry Edward R. Pershe, PhD Irvin Leslie Peterson Fred Petito Wallace M. Philips Jim M. Phillips Wayne A. Pickard Brett H. Pielstick Frank A. Pierce James J. Pierotti Robert F. Pineiro, PhD Victor J. Piorun Bruce D. Pisani R. Clinton Pittman Ronald Plakke, PhD Charles D. Plavcan David A. Pocengal Frederick J. Pocock Robert C. Pollard Richard G. Pollina Alan Y. Pope Hugh Popenoe, PhD

Page 86: Human Health Effects - Granicus

Climate Change Reconsidered  

 774

Dorian J. Popescu Richard R. Popham Ronald R. Porter Mary B. Portofe Bonnie W. Posma Denzil Poston, PhD Priscilla J. Potter, PhD Lee A. Powell P. Mark Powell Sandra S. Powers Faustino L. Prado Kenneth L. Pratt Steve L. Precourt Betty Peters Preece Henri Pregaldin Irwin M. Prescott R. Preston Katherine L. Price Claude C. Priest Kermit L. Prime, Jr. Thomas P. Propert Lumir C. Proshek Charles B. Pults Michael Punicki Charles W. Putnam John Ward Putt Bodo E. Pyko, PhD Ma Qin H. Paul Quicksall Robert H. Quig Jesus F. Quiles Donald Joseph Radomski James A. Ralph Andrea L. Ramudo Patricia Ramudo Charles Addison Randall, PhD Carlisle Baxter Rathburn, PhD Gregory K. Ratter Morgan G. Ray, Sr. John M. Reardon Walter T. Rector William M. Redding Immo Redeker John W. Redelfs Sherman Kennedy Reed, PhD Gerhard Reethof, PhD James A. Reger George Kell Reid, PhD David E. Reiff Gerald R. Reiter Bruce G. Reynolds, PhD Ernest J. Rice Bruce A. Richards William Joseph Richards, PhD Carl B. Richardson Richard Wilson Ricker, PhD Robert R. Righter Gene A. Rinderknecht Franklin G. Rinker Harold L. Riser George Ritter James J. Roark George W. Robbins George A. Roberts Kenneth Roberts Robert S. Roberts Donald K. Robertson F. Herbert Robertson Roger L. Robertson Gary J. Robinson Charles L. Robson Michael W. Rochowiak, PhD

James C. Roden Billy R. Rodgers, PhD Jorge A. Rodriguez Felix Rodriguez-Trelles, PhD Walter H. Rogers, Jr. Winston Rogers Francis C. Rogerson Richard C. Ronzi Isaac F. Rooks William S. Roorda Peter P. Rosa Mary C. Roslonowski, PhD Lenard H. Ross Jack Rossman Ronald P. Rowand Robert Seaman Rowe, PhD Bob R. Rowland Joseph A. Roy Ronald A. Rudolph Paul W. Runge Devon S. Rushnell A. Yvonne Russell, PhD David E. Russell Roger L. Russell Joseph C. Russello Byron E. Ruth, PhD Ralph R. Ruyle Terrell B. Ryan Frank Sabo Alfred Saffer, PhD Alexander A. Sakhnovsky Israel Salaberrios Fernando M. Salazar Richard J. Salk Arthur S. Salkin Donald S. Sammis Ronald E. Samples Daniel C. Samson Thomas H. Samter Oscar A. Sanchez Kenneth L. Sanders William E. Sanders Miguel A. Santos Herbert P. Sarett, PhD Philbrook F. Sargent Noray Sarkisian Joachim Sasse, PhD Edward A. Saunders, PhD Samuel O. Sawyer, III Eugene D. Schaltenbrand David O. Scharr Jay R. Schauer Zbigniew I. Scheller Frederick W. Schelm Richard A. Scheuing, PhD Blair H. Schlender Fabiola B. Schlessinger, PhD Donald J. Schluender Robert Schmeck Hubert F. Schmidt Richard A. Schmidtke, PhD Karl H. Schmitz Peter Schroeder, PhD Robert Schroeder, PhD Charles Schroeter John K. Schueller, PhD Larry E. Schuerman Robert P. Schuh John H. Schumertmann, PhD David J. Schuster, PhD Eunice C. Schuytema, PhD Albert Z. Schwartz

John Warner Scott, PhD Scott E. Scrupski Walter Tredwell Scudder, PhD John W. Seabury Richard A. See Christopher Seelig Barry D. Segal Harvey N. Seiger, PhD John O. Selby Luther R. Setzer Earl William Seugling, PhD Kenneth N. Sharitz J. B. Sharp* M. L. Sharrah, PhD Bob Sheldon Preston F. Shelton Donald M. Shepherd Walter L. Sherman Gregory C. Shinn Aleksey Shipillo Valentin Shipillo, PhD John W. Shipley, PhD Neil Shmunes Dennis Shoener James Edward Shottafer, PhD Eric S. Shroyer Orren B. Shumaker John M. Siergiej Carl Signorelli Ernest S. Silcox Paul W. Silver Fred G. Simmen Joel M. Simonds Harry S. Sitren, PhD Andrew Sivak, PhD Arthur C. Skinner, Jr. E. F. Skoczen Robert P. Skribiski Dave Skusa Philip Earl Slade, PhD William Donald Smart Jery Smieinski William H. Smiley Alexander G. Smith, PhD Augustine Smith Bob A. Smith Bruce W. Smith Cedric M. Smith Clifton R. Smith Dale A. Smith Diana F. Smith Lebrun N. Smith Michael D. Smith Paul Vergon Smith, PhD Rudolph C. Smith, II Samuel W. Smith Scott H. Smith Silke G. Smith T. J Lee Smith, Jr. Theodore A. Smith Robert C. Smythe John T. Snell James M. Snook George Snyder, PhD Warren S. Snyder Marc P. Sokolay James E. Solomon Omelio J. R. Sosa, Jr., PhD Parks Souther Donald E. Spade James A. Spagnola Richard M. Speer

C. R. Spencer Richard Jon Sperley, PhD Norman P. Spofford Michael D. Sprague Robert Carl Springborn, PhD Robert H. Springer, PhD Donald Platte Squier, PhD Mark A. Stahmann, PhD John P. Stancin, PhD Gregory F. Stanley Cecil R. Stapleton Harvey J. Stapleton, PhD Walter L. Starkey, PhD Jan D. Steber Theodore M. Stefanik Thomas M. Steinert Osmar P. Steinwald John E. Stelzer Russell A. Stenzel Jesse Jerald Stephens, PhD Robert D. Stephens Alan G. Stephenson Edgar K. Stewart Ivan Stewart, PhD John Stewart William W. Stewart Werner K. Stiefel Irvin G. Stiglitz, PhD Donald Stilwell Paul R. Stodola Timothy D. Stoker Joseph B. Stokes, Jr. Kenneth J. Stokes Leonard Stoloff P. Stransky Thomas P. Strider Kelly C. Stroupe Randy P. Stroupe Duane H. Strunk Eugene Curtis Stump, PhD Frank Milton Sturtevant, PhD Jacob W. Stutzman, PhD Spiridon N. Suciu, PhD Edward J. Sullivan Chades F. Summer, Jr. Frederick C. Sumner John C. Sundermeyer Peter R. Sushinsky Howard Kazuro Suzuki, PhD Laurie A. Swanson Ronald Lancelot Sweet, PhD Alan M. Swiercz Burton L. Sylvern Walter Symons James Imre Szabo Michael Szeliga John F. Takacs Gabor J. Tamasy J. P. Tanner Robert Tanner William Francis Tanner, PhD Donald E. Tannery Frederick Drach Tappert, PhD Armen Charles Tarjan, PhD Amy T. Tatum Philip Teitelbaum, PhD Aaron J. Teller, PhD Jeffrey Tennant, PhD Harold Aldon Tenney David S. Teperson Edward B. Thayer David T. Therrien

Page 87: Human Health Effects - Granicus

Appendix 4: The Petition Project  

 775

Thomas J. Thiel Lovic P. Thomas Richard William Thomas, PhD David Morton Thomason, PhD Neal P. Thompson, PhD Julian C. Thomson, PhD Bill H. Thrasher, PhD Lee F. Thurner Pat T. Tidwell Jennifer L. Tillman Andrew D. Tilton William E. Tipton Dean H. Tisch Victor J. Tofany Robert S. Tolmach Manolis M. Tomadakis, PhD Gene T. Tonn Eric D. Torres James A. Treadwell Joseph Trivisonno, Jr., PhD Byron C. Troutman Charles H. True Duane J. Truitt Steven K. Trusty Walter Rheinhardt Tschi, PhD Geoff W. Tucker R. C. Tucker, Jr., PhD Stela Tudoran Leroy L. Turja Thomas K. Turner Ralph J. Tursi Donna Utley, PhD Tom W. Utley, PhD Raj B. Uttamchandani, PhD Augustus Ceniza Uvano, PhD David P. Vachon Robert L. Valliere Harold H. Van Horn, PhD Raymond Van Pelt Maria Ventura William Vernetson, PhD Daniel F. Vernon Raymond A. Verville Shane Vervoort Fernando Villabona Mark Villoria, PhD Thomas R. Visser Ronald S. Vogelsong, PhD James Vollmer, PhD Dale L. Voss John C. Vredenburgh William N. Waggener Laurence F. Wagner, PhD Nnaette P. Wagner, PhD Arthur C. Waite Donald J. Wakely Stephen D. Waldman J. David Walker Harold Dean Wallace, PhD Joseph M. Walsh S. Norman Wand James Wanliss, PhD Diane Ward Ralph E. Warmack, PhD Bertram S. Warshaw Lawrence K. Wartell Gerald R. Wartenberg L. W. Warzecha Alex C. Waters Charles Henry Watkins, PhD Britt Watson C. Paul Watson

John W. Wayne Howard W. Webb Lloyd T. Webb George W. Webster Robert D. Webster David Stover Weddell, PhD John D. Weesner Peter J. Weggeman Stephen L. Wehrmann John H. Weiler Mitchell A. Weiner George A. Weinman David Weintraub, PhD Steven Weise Aaron W. Welch, Jr., PhD Thomas B. Welch Buford E. Wells Daniel R. Wells, PhD Steven P. Wells Douglas F. Welpton Jim C. Welsh Patrick T. Welsh, PhD Robert J. Werner Ronald R. Wesorick Lewis H. West Richard S. Westberry Donald H. Westermann Edwin F. Weyrauch George F. Whalen, Jr. Frank Carlisle Wheeler, PhD William R. Whidden Albert C. White Jacquelyn A. White John I. White, PhD George T. Whittle Alfred A. Wick Marvin L. Wicker David Wickham Donald J. Wickwire Joseph R. Wiebush, PhD Kurt L. Wiese James W. Wiggin Richard L. Wiker Dale S. Wiley Harvey Bradford Willard, PhD Charles T. Williams David Williams George E. Williams Jonathan Williams Ralph C. Williams Tom Vare Williams, PhD Norman L. Williamson, PhD Warren P. Williamson, III Robert Elwood Wilson, PhD Tun Win Frank R. Winders James D. Winefordner, PhD Lesley Winston Raymond L. Winterhalter Hugh E. Wise, Jr., PhD Robert S. Wiseman, PhD James T. Wittig Howard G. Womack Irwin Boyden Wood, PhD Richard P. Woodard, PhD David P. Woodhouse Roderick F. Woodhouse Christopher L. Woofter Douglas Albert Woolley James A. Woolley William C. Woolverton James G. Worth

Donald J. Worthington David H. Wozab Dane C. Wren Floyd D. Wright William E. Wright Tien-Shuenn Wu, PhD C.F. Wynn, PhD Anton M. Wypych Theodore E. Yaeger, IV Chris Yakymyshyn, PhD David E. Yarrow Charles Yeh Wilbur Yellin, PhD John V. Yelvington Frank Yi Richard R. Yindra Ted S. Yoho Guy P. York, PhD Richard A. Yost, PhD Cindy M. Young Frank Young, PhD Douglas J. Yovaish Terry Zamor David Aaron Zaukelies, PhD Fred G. Zauner Ernest E. Zellmer Donald M. Zelman Melanie P. Ziemba Richard A. Ziemba Jay Zimmer Peter H. Zipfel, PhD Parvin A. Zisman John Zoltek, PhD Eli Zonana Harry David Zook, PhD Robert M. Zuccaro Georgia William G. Adair, Jr. William P. Adams L. A. Adkins Frank Jerrel Akin, PhD Robert H. Allgood Mike E. Alligood Bruce Martin Anderson, Jr. Byron J. Arceneaux Robert Arnold, Jr. Doyle Allen Ashley, PhD R. Lee Aston, PhD James Atchison Keith H. Aufderheide, PhD C. Mark. Aulick, PhD Paul E. Austin Dany Ayseur Charles L. Bachman Robert Leroy Bailey, PhD James A. Bain, PhD George C. Baird Dana L. Baites Bill Barks Larry K. Barnard Ralph M. Barnes Gary Bartley Frank A. Bastidas Thomas L. Batke George L. Batten, PhD Joseph E. Baughman, PhD Joseph H. Baum, PhD William Pearson Bebbington, PhD Gordon Edward Becker, PhD

Wilbur E. Becker Terrence M. Bedell James E. Bell Robert Bell William A. Bellisle Steve J. Bennet Denicke Bennor Jack C. Bentley James M. Berge Gary C. Berliner Christopher K. Bern Ray A. Bernard, PhD Vicky L. Bevilacqua, PhD Thomas A. Beyerl Don Black Mike Blair, PhD M. Donald Blue, PhD Barry Bohannon Jim R. Bone Arthur S. Booth, Jr. Charles D. Booth Edward M. Boothe Richard E. Boozer Sorin M. Bota Spencer R. Bowen James Ellis Box, PhD Harry R. Boyd Paul R. Bradley George B. Bradshaw Edward L. Bragg, Sr. Elizabeth Braham Greg R. Brandon J. Allen Brent, PhD William M. Bretherton, Jr. Robert N. Brey, PhD F. S. Broerman Jerome Bromkowski Paul C. Broun Robert E. Brown Bill D. Browning William Bruenner Paul J. Bruner Sibley Bryan Richard W. Bunnell William C. Burnett, PhD James Lee Butler, PhD Hubert J. Byrd, III Sabrina R. Calhoun Ronnie Wayne Camp Thomas M. Campbell James Cecil Cantrell, PhD Patricia D. Carden, PhD John L. Carr, III Laura H. Carreira, PhD Peter J. Carrillo Wendell W. Carter Marshall F. Cartledge Robert E. Carver, PhD Billy R. Catherwood Michael P. Cavanaugh Matilde N. Chaille John Champion Kevin L. Champion Jack H. Chandler, Jr. Chung Jan Chang, PhD Edmund L. Chapman, Jr. Chellu S. Chetty, PhD Ken Chiavone Raghaven M. Chidambaram George Andrew Christenberry, PhD Alfred E. Ciarlone, PhD James A. Claffey, PhD

Page 88: Human Health Effects - Granicus

Climate Change Reconsidered  

 776

Mark A. Clements, PhD Arthur E. Cocco, PhD Harland E. Cofer, PhD Charles Erwin Cohn, PhD Gene Louis Colborn, PhD James C. Coleman, Jr. Francis E. Coles, III P. Jack Collipp Clair Ivan Colvin, PhD Leon L. Combs, PhD Henry P. Conn David Constans James H. Cook Allen Costoff, PhD Marion Cotton, PhD Francis E. Courtney Jack D. Cox Joe B. Cox Howard Ross Cramer, PhD John A. Cramer, PhD Harry B. Cundiff Robert A. Cuneo Randall W. Cunico Thomas Curin, PhD Alan G. Czarkowski Geoffrey Z. Damewood Ernest F. Daniel Anne F. Daniels Charlie E. Daniels Jagdish C. Das Shelley C. Davis, PhD James F. Dawe Harry F. Dawson Reuben Alexander Day, PhD* Juan C. De Cardenas B. D. Debaryshe Richard E. Dedels Johnny T. Deen, PhD Robert E. Deloach, Jr. Viral Desai G. E. Dever, PhD David Walter Dibb, PhD John I. Dickinson John W. Diebold Herbert V. Dietrich, Jr. Charles J. Dixon Hugh F. Dobbins Harry Donald Dobbs, PhD Thomas P. Dodson Clive Wellington Donoho, Jr., PhD John Dorsey, PhD Douglas P. Dozier Thomas E. Driver Dennis P. Drobny Earl E. Duckett Robert L. Dumond R. E. Dunnells John W. Duren James R. Eason Donald D. Ecker Teresa Ecker Stephen W. Edmondson Marvin E. Edwards, Jr. Gary L. Elliott Frampton Ellis Gary M. Ellis I. Nolan Etters, PhD W. E. Evans Martin Edward Everhard, PhD Joan H. Facey Wayne Reynolds Faircloth, PhD Miguel A. Faria, Jr.

Charles Farley Christopher J. Farnie Thomas Farrior Royal T. Farrow Michael A. Faten Mike D. Faulkenberry John C. Feeley, PhD Lorie M. Felton Brent Feske, PhD Robert Henry Fetner, PhD Robert Fincher Burl M. Finkelstein, PhD Joanna Finkelstein Reed Edward Fisher William R. Fisher J. Ed Fitzgerald, PhD Carl W. Flammer Eugene L. Fleeman K. Fleming, PhD G. Craig Flowers, PhD Robert E. Folker Walter R. Fortner Gary D. Fowler, Jr. Steven R. Franco Thomas Franey Thomas G. Frangos, PhD Dean R. Frey Ralph Fudge Thomas R. Gagnier A. Gahr, PhD Tinsley Powell Gaines Richard E. Galpin Gary John Gasche, PhD George S. Georgalis Reinhold A. Gerbsch, PhD Istvan B. Gereben Lawrence C. Gerow Georgina Gipson Charles G. Glenn Clyde J. Gober Maria Nelly Golarz de Bourne, PhD Eugene P. Goldberg, PhD Earl S. Golightly Thomas L. Gooch Walter Waverly Graham, PhD John B. Gratzek, PhD James S. Gray, PhD Robert M. Gray Clayton Houstoun Griffin Edward M. Grigsby Ramon S. Grillo, PhD William F. Grosser Erling JR Grovenstein, Jr., PhD Krishan G. Gupta Robert E. Hails Kent W. Hamlin John R. Haponski Clyde D. Hardin James Lombard Harding, PhD Cliff Hare Kenneth E. Harper Joseph Belknap Harris, PhD Raymond K. Hart, PhD Lynn J. Harter Paul V. Hartman Roger Conant Hatch Yuichi B. Hattori Harry T. Haugen J. Hauger, PhD William D. Haynes Thomas D. Hazzard Charles Jackson Hearn, PhD

Norman L. Heberer Kenneth F. Hedden, PhD Walter A. Hedzik Jeffrey J. Henniger Gustav J. Henrich John M. Hester, Jr. Craig U. Heydon Donald G. Hicks, PhD Harold Eugene Hicks Terry K. Hicks Thomas J. Hilderbrand Kendall W. Hill Warren Ted Hinds, PhD Roland W. Hinnels Robert Francis Hochman, PhD Douglas W. Hochstetler Dewey H. Hodges, PhD Kirk Hoefler Ross Hoffman William Hogge Cornelia Ann Hollingsworth, PhD Leonard Rudolph Howell, Jr., PhD Chenyi J. Hu Richard L. Hubbell James R. Hudson Bradford Huffines John Hughes William C. Humphries Hugh F. Hunter Richard Hurd, Jr. William John Husa, Jr., PhD James L. Hutchinson, PhD Al J. Hutko R. D. Ice, PhD Walter Herndon Inge, PhD Donald A. Irwin James W. Ivey Dabney C. Jackson Thomas W. Jackson David I. Jacob Stephen B. Jaffe Vidyasagar Jagadam Kenneth S. Jago Jiri Janata, PhD Robert H. Jarman Stanley J. Jaworski Roger D. Jenkins Wayne Henry Jens, PhD David R. Jernigan Ben S. Johnson Robert H. Johnson, PhD James P. Jollay Alan Richard Jones, PhD Dick L. Jones E. C. Jones James K. Jones Miroslawa Josowicz, PhD Paul F. Jurgensen Gerald L. Kaes Donald C. Kaley Judith A. Kapp, PhD M. Katagiri Ray C. Keause Raymond J. Keeler Michael Jon Kell, PhD William L. Kell, Jr. Craig Kellogg, PhD Gerald D. Kennett Warren W. Kent Joyce E. Kephart Boris M. Khudenko, PhD Cengiz M. Kilic

C. Louis Kingsbaker, Jr. R. C. Kinzie William H. Kirby, Jr Adrian F. Kirk Donald W. Knab Steven Knittel, PhD Mark A. Knoderer David A. Kodl Juha P. Kokko, PhD Jenny E. Kopp Tsu-Kung Ku Frederick Read Kuc, PhD Steven B. Kushnick W. Jack Lackey, PhD Alexander O. Lacsamana Myron D. Lair Trevor G. Lamond, PhD Willis E. Lanier Paul H. Laughlin Leo R. Lavinka Brian K. Lawrence Gerald W. Lawson John C. Leffingwell, PhD John P. Leffler Lane P. Lester, PhD Philip I. Levine Edward L. Lewis Kermit L. Likes Dennis Liotta, PhD Robert L. Little, PhD Fred Liu, PhD Robert Gustav Loewy, PhD Robert Loffredo, PhD Stanley Jerome Lokken, PhD William L. Lomerson, PhD Earl Ellsworth Long Justin T. Long, PhD Larry Lortscher Jerry Loupee G. A. Lowerts, PhD John Lauren Lundberg, PhD Sarah R. Mack Joseph Edward MacMillan, PhD Patrick K. Macy David A. Madden Roger Maddocks James M. Maddry L. T. Mahaffey John B. Malcolm Philip L. Manning Dale Manos David E. Marcinko, PhD Natale A. Marini John R. Martinec Arlene R. Martone Henry Mabbett Mathews, PhD Walter K. Mathews, PhD Mike Matis Curry J. May Georges S. McCall, II Neil Justin McCarthy, PhD Morley Gordon McCartney, PhD James R. McCord, III, PhD Burl E. McCosh, Jr. Sean McCue Malcolm W. McDonald, PhD Charles W. McDowell Larry F. McEver Ray McKemie D. K. Mclain, PhD Archibald A. McNeill Larry G. McRae, PhD

Page 89: Human Health Effects - Granicus

Appendix 4: The Petition Project  

 777

David Scott McVey, PhD Thomas R. McWhorter Andrew J. Medlin, Jr. Jacob I. Melnik Michael Menkus Ronald E. Menze Allen C. Merritt, PhD Walter G. Merritt, PhD Karne Mertins Glenn A. Middleton Miran Milkovic, PhD Jean P. Millen W. Jack Miller, PhD R. W. Milling, PhD Brett A. Mitchell Carey R. Mitchell G. C. Mitchell, Jr. Ralph Monaghan Carl Douglas Monk, PhD W. Dupree Moore Iraj Moradinia, PhD Stephen T. Moreland Thomas D. Moreland Robert G. Morley, PhD Seaborn T. Moss Don L. Mueller Juan A. Mujica Karl W. Myers George Starr Nichols, PhD Jonathan H. Nielsen Frec C. Nienaber Ray A. Nixon Prince M. Niyyar Stephen R. Noe Sidney L. Norwood Susan J. Norwood James Alan Novitsky, PhD Wells E. Nutt Stanley Miles Ohlberg, PhD Philip D. Olivier, PhD David R. Olson, PhD William L. Otwell Frank B. Oudkirk Jerry Owen William E. Owen Brent W. Owens Joseph L. Owens J. Pace, PhD Ganesh P. Pandya Les Parker James Parks John H. Paterson William R. Patrick Daniel D. Payne Franklin E. Payne William F. Payne Terry Peak Ira Wilson Pence, Jr., PhD Mel E. Pence Edgar E. Perrey Parker H. Petit Peter J. Petrecca David W. Petty Calvin Phillips John R. Pickett, PhD Arthur John Pignocco, PhD Gus Plagianis Robert V. Plehn Gayther Lynn Plummer, PhD Robert A. Pollard, Jr. Joseph W. Porter Jerry V. Post

Vijaya L. Pothireddy Cordell El Prater Russell Pressey, PhD Milton E. Purvis Michael Pustilnik, PhD Robert E. Rader Bradford J. Raffensperger Michael R. Rakestraw Periasamy Ramalingam, PhD Stephen C. Raper Oscar Rayneri Earnest H. Reade, Jr. James L. Rhoades, PhD Robert A. Rhodes, PhD Peter Rice Terrence L. Rich Allan A. Rinzel Paul W. Risbin Ken E. Roach David D. Robertson, PhD Dirk B. Robertson, PhD Douglas W. Robertson John S. Robertson, PhD David G. Robinson, PhD Wilbur R. Robinson Mark E. Robnett Willie S. Rockward, PhD Gwenda Rogers Robert G. Roper, PhD William J. Rowe George F. Ruehling Michael K. Rulison, PhD James H. Rust, PhD James Ryan Marcus Sack Thomas F. Saffold George Sambataro B. Samples Gary L. Sanford, PhD Deborah K. Sasser, PhD Herbert C. Saunders William E. Sawyer Kevin Scasny Kimberly L. Scasny James R. Schafner Thomas J. Schermerhorn, PhD William Schierholz Robert C. Schlant Cecil W. Schneider Michael Charles Schneider, PhD Terril J. Schneider Barry P. Schrader Randy C. Schultz Robert John Schwartz, PhD Florian Schwarzkopf, PhD David Frederick Scott, PhD Gerald E. Seaburn, PhD Oro C. Seevers Robert A. Seitz, PhD Morton O. Seltzer Premchard T. Shah W. A. Sheasin Andrew J. Shelton Louis C. Sheppard, PhD Chung-Shin Shi, PhD William G. Shira Joseph John Shonka, PhD Ronald W. Shonkwiler, PhD John V. Shutze, PhD Valery Shver Steven W. Siegan Samia M. Siha, PhD

John A. Slaats Herbert M. Slatton Earl Ray Sluder, PhD Joel P. Smith, Jr. Morris Wade Smith, PhD Ralph Edward Smith, PhD Tom Smoot, PhD Charles C. Somers, Jr. Richard C. Southerland Jon A. Spaller Guy K. Spicer Firth Spiegel Charles Hugh Stammer, PhD Carey T. Stark Ralph Steger Fredric Marry Steinberg John Edward Steinhaus, PhD Robert J. Stewart Michael J. Stieferman Richard C. Stjohn John C. Stokes Geo L. Strobel, PhD* Bill Styer Joseph H. Summerour Thomas G. Swanson Eric Swett Jose E. Tallet Darrell G. Tangman Robert Techo, PhD Robert L. Terpening Robert A. Theobald Peter R. Thomas M. D. Thompson, PhD William Oxley Thompson, PhD Brian Thomson L. H. Thomson Francis N. Thorne, PhD Aloysius Thornton, PhD Wilfred E. Tinney Kenneth M. Towe, PhD Mark Tribby, PhD Eric Tunison Nancy Turner R. W. Turner Richard Suneson Tuttle, PhD Noble Ransom Usherwood, PhD Ahmet Uzer, PhD James H. Venable Matthew J. Verbiscer Jim Vess Herbert Max Vines, PhD Terry L. Viness John Vogel Carroll E. Voss Donald L. Voss Peter Walker Russell Wagner Walker, PhD William C. Walker, PhD Gregory C. Walter Daniel F. Ward Fred F. Warden Raymond Warren Roland F. Wear Warren M. Weber Robert M. Webster Donald C. Wells Mike D. Whang, PhD James Q. Whitaker Arlon Widder Richard L. Wilks Paul T. Willhite Dansy T. Williams

Carlos A. Wilson Jeffrey P. Wilson, PhD Herbert Lynn Windom, PhD Ward O. Winer, PhD Alan R. Winn Robert H. Wise, Jr. Robert J. Witsell Monte W. Wolf, PhD James H. Wood Scott Wood Gerald Bruce Woolsey, PhD Jerry K. Wright, PhD Neill S. Wyche Hwa-Ming Yang, PhD Raymond H. Young, PhD Andrew T. Zimmerman Clarence Zimmerman Glenn A. Zittrauer D. Zuidema, PhD Hawaii John O. Anderson Jerome K. Bacon B. Balle Curtis Beck Charles Bocage James Brewbaker, PhD Richard Brill Edmond D. Cheng, PhD Salwyn S. Chinn John Corboy Michael Cruickshank, PhD Charles D. Curtis Anders P. Daniels, PhD Harry Davis, PhD Walter Decker Guy H. Dority, PhD Arlo Wade Fast, PhD Masanobu R. Fujioka William Gerogi Susan K. Gingrich Brian L. Gray Lloyd Grearson James A. Griffith Benjamin C. Hablutzel Mark Hagadone, PhD John C. Hamaker, PhD Kirk Hashimoto Philip Helfrich, PhD Philip D. Hellreich Fred Hertlein, III Yoshitsugi Hokama, PhD David R. Howton, PhD Lester M. Hunkele James Ingamells, PhD Glenn Jensen Richard A. Jurgensen Takashi Theodore Kadota, PhD Yong-Soo Kim, PhD Ronald H. Knapp, PhD Adelheid R. Kuehnle, PhD Michael Lane Joel S. Lawson, PhD Alan Lloyd John A. Love Claus Berthold Ludwig, PhD Charles Lavern Mader, PhD Charles K. Matsuda Edward R. McDowell, PhD Martin McMorroa

Page 90: Human Health Effects - Granicus

Climate Change Reconsidered  

 778

James Mertz John P. Mihlbauer Dave Miller Gabor Mocz, PhD David R. Moncrief William F. Moore Justus A. Muller Paul D. Nielson Richard L. O'Connell Steven Emil Olbrich, PhD Carlos A. Omphroy Panagioti Prevedouros, PhD Edison Walker Putman, PhD Raymond C. Robeck Kenneth G. Rohrbach, PhD Charles G. Rose James C. Sadler Arthur A. Sagle, PhD Narendra K. Saxena, PhD Jon H. Scarpino Benjamin R. Schlapak Steven Seifried, PhD Rogert Sherman Shoji Shibata, PhD Gerry Steiner, PhD Ramon K. Sy Michelle Teng, PhD S. A. Whalen Gary White Stephen Wilson Oliver Wirtki William K. Wong Cleveland C. Wu Alexander Wylly, PhD Klaus Wyrtki, PhD Alfred A. Yee Idaho Stephen B. Affleck, PhD Kimbol R. Allen Wilfred L. Antonson Elton E. Arensman Marvin D. Armstrong, PhD Adrian Arp, PhD Jim F. Ashworth Carl Fulton Austin, PhD George Babits J. Brent Bagshaw Craig Riska Baird, PhD Brent O. Barker LeRoy N. Barker, PhD Douglas D. Barman Justin P. Bastian Colin J. Basye Miles F. Beaux, II Wiley F. Beaux Matthew A. Beglinger Donald R. Belville Glen E. Benedict David R. Berberick Julius R. Berreth Darvil K. Black, PhD Willis J. Blaine Wilson Blake, PhD Richard C. Bland George Bloomsburg, PhD Joe Bloomsburg Carl R. Boehme John Roy Bower, Jr., PhD David D. Boyce

Fred W. Brackebusch Ken N. Brewer Timothy J. Brewer Randall A. Broesch James L. Browne Shelby H. Brownfield Merlyn Ardel Brusven, PhD Brent J. Buescher, PhD William M. Calhoun David Lavere Carter, PhD Thomas Cavaiani, PhD William R. Chandler L. F. Cheng, PhD Grant S. Christenson Randil L. Clark, PhD James W. Codding Joseph A. Coffman Guy M. Colpron Michael Cook Carl Corbit Ronald C. Crane, PhD Richard A. Cummings Raymond C. Daigh Kim B. Davies Karl Dejesus, PhD Robert F. Denkins Thomas R. Detar Melvin L. Dewsnup Mark C. Dooley Stanley L. Drennan Larry A. Drew, PhD Merlyn C. Duerksen O. Keener Earle William J. Farrell Matthew R. Fein Donald N. Fergusen Roger Ferguson Ferol F. Fish, PhD Dale Fitzsimmons Richard E. Forrest Harry Kier Fritchman, PhD Gary R. Gamble Robert L. Geddes Paul L. Glader Doug J. Glaspey Donald W. Glenn V. L. Goltry Hans D. Gougar, PhD John G. Haan Lloyd Conn Haderlie, PhD Richard Hampton, PhD Julie J. Hand Leonid Hanin, PhD Evan Hansen, PhD Gerald H. Hanson Robert N. Hanson Roger Wehe Harder Herbert E. Harper Tim Harper Herbert J. Hatcher, PhD John B. Hegsted Richard Charles Heimsch, PhD Brian G. Henneman Robert A. Hibbs, PhD Richard C. Hill Robert F. Hill Larry Hinderager Kenneth M. Hollenbaugh, PhD Clifford Holmes Harold E. Horne Case J. Houson John E. Howard

K. B. Howard Arthur R. Hubscher Allan S. Humpherys Richard M. Hydzik Bert W. Jeffries C. Thomas Jewell Janard J. Jobes Timothy J. Johans Donald Ralph Johhnson, PhD James B. Johnson, PhD Kent R. Johnson, PhD Lawrence Harding Johnston, PhD James J. Jones Jitendra V. Kalyani Robert W. Kasnitz Gary J. Kees Fenton Crosland Kelley, PhD Paul C. Kowallis Stephen Kronholm Philip M. Krueger, PhD John S. Kundrat Tim M. Lawton George J. LeDuc John W. Leonard Leroy Crawford Lewis, PhD William Little, PhD Richard Luke Robert A. Luke, PhD Gary K. Lund, PhD Patricia A. Maloney Billy L. Manwill Jon L. Mason Jeremiah Mc Carthy, PhD Kent McGarry Mark A. McGuire, PhD Bill McIlvanie Twylia J. McIlvanie Michael E. McLean Brent A. McMillen Scott G. McNee Reginald E. Meaker Donald L. Mecham Travis W. Mechling William L. Michalk Ellis W. Miller, PhD James A. Miller Dile J. Monson John L. Morris, PhD Jack Edward Mott, PhD George Murgel, PhD Thomas J. Muzik, PhD Michael J. Myhre Dave Nabbefeld Roger Donald Nass Thomas C. Neil, PhD Doug W. New Daniel Nogales, PhD Randy Noriyaki Mark J. Olson William Joseph Otting, PhD Bruce R. Otto Gerald G. Overly Aida Patterson Ed L. Payne, PhD Raymond M. Petrun Gene W. Pierson Harold A. Powers Vernon Preston Alan L. Prouty Thomas R. Rasmussen Bill Richards Robert E. Rinker, PhD

Eric P. Robertson Arthur P. Roeh Jodie Roletto Ralph F. Russi Jerry F. Sagendorf Charles Sargent David Laurence Schreiber, PhD Kevin L. Schroeder Carl W. Schulte Sidney J. Scribner Francis Sharpton, PhD Glen M. Sheppard George H. Silkworth Claude Woodrow Sill Jay Hamilton Smith, PhD John Wolfgang Smith, PhD Thomas H. Smith, PhD Wesley D. Smith, PhD Roger F. Sorenson Ross A. Spackman John C. Spalding Barbara Spengler Thomas Speziale, PhD Gene E. Start Raymond J. Stene Bruce W. Stoddard Marc Stromberg, PhD Wilfried J. Struck Dale Stukenholtz, PhD Richard A. Suckel David O. Suhr Donald C. Teske Gary K. Thomas Warren N. Thompson James P. Todd Francois D. Trotta Leland Wayne Tufts John H. Turkenburg Edmund Eugene Tylutki, PhD Joseph James Ulliman, PhD Randy K. Uranes Bingham H. Vandyke, Jr., PhD Chien Moo Wai, PhD Thornton H. Waite Leslie M. Walker Jon H. Warner Mont M. Warner, PhD D. T. Westermann, PhD John E. Wey, Jr. Jack Weyland, PhD Robert N. Wiley George L. Wilhelm S. Curtis Wilkins Oliver S. Williams Roy L. Wise George D. Wood Ryan Royce Yee Austin L. Young Mark Yuly, PhD Stephen P. Zollinger, PhD Illinois Refaat A. Abdel-Malek, PhD Eric R. Adolphson Kenneth Agnes Sean R. Agnew Vincent M. Albanese Rudolph C. Albrecht Charles W. Allen, PhD Albert L. Allred, PhD

Page 91: Human Health Effects - Granicus

Appendix 4: The Petition Project  

 779

Kent A. Alms Duane R. Amlee Dewey Harold Amos, PhD Thomas A. Amundsen David A. Anderson Joel Anderson Kevin P. Ankenbrand Herbert S. Appleman Douglas E. Applequist, PhD Anatoly L. Arber, PhD Ed Arce Robert W. Arends Lawrence Ariano Ralph Elmer Armington, PhD Aaron J. Arnold Jaime N. Aruguete Joseph J. Arx Warren Cotton Ashley, PhD Erika J. Atkinson Keith Atkinson Luben Atzeff Darrel D. Auch Brad August Arthur J. Avila Teresita D. Avila Alison M. Azar Harold Nordean Baker, PhD Louis Baker, PhD Marion John Balcerzak, PhD Andrew Ateleo Baldoni, PhD R. M. Bales Mike A. Banak Seymour George Bankoff, PhD Ernest Barenberg, PhD Charles Barenfanger John Barney Lawrence J. Barrows, PhD Eugene Barth Douglas B. Bauling Linda L. Baum, PhD Richard C. Baylor Gary Beall, PhD Rhett Bearmont Craig A. Beck Robert P. Becker, PhD O. Beggs Albert J. Behn, PhD Ihor Bekersky, PhD Gary Lavern Beland, PhD George Bennett, PhD Lawrence Uretz Berman Curtis L. Bermel Daniel S. Berry Daniel Best Herbert W. Beyer Debanshu Bhattacharya, PhD John W. Bibber, PhD Carl Jeffrey Biederstedt Gregg Bierei Roger A. Billhardt M. J. Birck J. L. Bitner Thomas E. Blandford William R. Blew Robert L. Blood Loren E. Bode, PhD Daniel G. Bodine Robert J. Boehle Thomas M. Bohn Mark S. Boley, PhD Patrick V. Bonsignore, PhD Lewis D. Book

David L. Booth, PhD Edgar A. Borda Harold Joseph Born, PhD Joseph Carles Bowe, PhD Robert E. Boyar R. Braatz, PhD Robert Giles Brackett, PhD Dorothy L. Bradbury Eric M. Bram Thomas Brandlein William H. Bray William Thomas Brazelton, PhD Manuel Martin Bretscher, PhD Gregory J. Brewer, PhD Joseph L. Brewer, PhD Michael K. Brewer Mark O. Brien Steve Briggs, PhD Robert B. Brigham Bruce Edwin Briley, PhD Ed A. Brink Douglas A. Brockhaus Mark Bronson David P. Brown, PhD William Brown John S. Brtis Eldon J. Brunner Gary G. Bryan Ronald C. Bryenton Gregory Buffington Philip G. Buffinton Michael Bundra Ivan L. Burgener Marty Burke Peter G. Burnett Donald S. Burnley Mike Burnson William C. Burrows, PhD Rodney L. Burton, PhD William H. Busch Robert Busing Duane J. Buss, PhD Margaret K. Butler Gary J. Butson, PhD Ralph O. Butz, Jr. James Albert Buzard, PhD Roy Byrom Fernando S. Caburnay Manual Calzada Marvin E. Camburn, PhD Howard S. Cannon, PhD William L. Carper Robert C. Casagranda Phillip M. Caserotti J. Steven Castleberry Stanley A. Changnon, Jr. Michael Andrew Chaszeyka Robert L. Cheever A. Cheney J. A. Cifonelli, PhD Leroy Clardy Robert Clark Russell H. Clark David G. Clay James M. Clifford Alan Clodfelter Jim Cloud Benjamin T. Cockrill, Jr. Fritz Coester, PhD Allan H. Cohen, PhD William C. Cohen, PhD Paul D. Coleman, PhD

Keith A. Collins Richard A. Comroe, PhD Paul J. Concepcion John Conconnan Patrick Condon Dennis D. Conner Gail Rushford Corbett, PhD Rebecca Corbit Stephen Watson Cornell, PhD Thomas Corrigan, PhD Khalid Cossor Phillip G. Costantinou Gordon E. Craigo Frederick L. Crane, PhD Donald W. Creger, Sr. John Edwin Crew, PhD Gregory A. Crews George A. Criswell Michael Summers Crowley, PhD Andrew A. Cserny, PhD John Robert Culbert Peter L. Cumerford Ronald L. Cutshall, Sr Russell A. Dahlstrom Heinz H. Damberger, PhD Philip Danielson Morris Juda Danzig, PhD Kaz Darzinskis Jeff David Lyndon L. Dean Robert H. Dean Donn Dears Edward Dale Deboer Frank Deboer, PhD Charles S. Dehaan Robert F. Deibel, Jr. Manuel J. Delerno Thomas G. Denton Edward M. Desrochers, Jr. Richard DeVries Donald Dewey, PhD James Dewey Justin E. Dewitte Charles Edward Dickerman, PhD Bryan J. Dicus Ray C. Dillon Timothy W. Dittmer Omer H. Dix W. Brent Dodrill Theodore Charles Doege Michael F. Dolan Robert A. Dolehide Richard J. Dombrowski Otello P. Domenella Wayne Donnelly John E. Dowis Gerald L. Downing David R. Doyle William K. Drake G. L. Dryder, PhD John T. Dueker Carl D. Dufner John D. Dwyer Michael Dwyer Steven Dyer C. Dykstra, PhD Philip J. Dziuk, PhD Philip Eugene Eaton, PhD Lawrence Thornton Eby, PhD Charles Ecanow, PhD Donald E. Eckmann W. Kent Eden

Paul H. Egbers Donald A. Eggert, PhD William W. Elam, PhD James O. Ellis, Sr. George Emerle Louis Emery, PhD David Engwall, PhD Jack H. Enloe Edward Bowman Espenshade, PhD R. Evans Don J. Fanslow, PhD Marjorie Whyte Farnsworth, PhD Wells E. Farnsworth, PhD David A. Fehr Imre M. Fenyes Joseph Fidley, PhD Joanne K. Fink, PhD Patricia Ann Finn, PhD Ross Francis Firestone, PhD Robyn Fischer Steve Fiscor Emalee G. Flaherty Donald R. Fletcher James M. Fox Stephen Joseph Fraenkel, PhD Julian Myron Frankenberg, PhD Raymond Frederici David M. Frederick Richard C. Frederick Allan L. Freedy Donald Nelson Frey, PhD Herbert C. Friedmann, PhD Andrew R. Frierdich Karl J. Fritz, PhD Wesley Fritz, PhD Aaron E. Fundich Jim Gadwood John Gaither Thomas R. Galassi Charles O. Gallina, PhD Daniel G. Ganey Douglas L. Garwood, PhD Eduardo Gasca George Gasper, PhD Roger W. Geiss William O. Gentry, PhD Boyd A. George, PhD George J. Getty Camillo Ghiron, PhD Frederick W. Giacobbe, PhD Larry V. Gibbons, PhD Jeff Gillespie John R. Gilmore, PhD Kenneth J. Ginnard George Isaac Glauberman, PhD William D. Glover William Gong, PhD William Good Harold J. Goodman Joseph Gorsic, PhD Chris D. Gosling George Robert Goss, PhD David G. Gossman Samuel P. Gotoff Marcus S. Gottlieb Robert J. Graham, PhD William K. Graham Ted R. Gray Frank D. Graziano, PhD Bruce E. Greenfield D. W. Greger David Gregg

Page 92: Human Health Effects - Granicus

Climate Change Reconsidered  

 780

Gregg T. Greiner Edward Lawrence Griffin Harold Lee Griffin James Edward Griffin, PhD Ronald E. Groer Eugene E. Gruber, PhD Andrew F. Guschwan Kenneth A. Gustafson Philip Felix Gustafson, PhD David Solomon Hacker, PhD Richard H. Hagedorn Reino Hakala, PhD Ken Hall Suleiman M. Hamway Daniel F. Hang Mark E. Hansen A. O. Hanson, PhD Robert K. Harbour Thomas D. Harding Danny L. Hare Ben Harrison, PhD Thomas R. Harwood John A. Hasdal, PhD Hans Hasen Robert Havens Douglas B. Hayden Robert J. Heaston, PhD David Robert Hedin, PhD Todd Hedlund Mihaela Hegstrom Lawrence C. Heidemann Stan F. Heidemann Paul K. Heilstedt Ron Heisner James Raymond Helbert, PhD Roy J. Helfinstine Joseph B. Helms William C. Helvey John F. Helwig Jeannine L. Henderson Alfred J. Hendron, Jr., PhD Lester Allan Henning Richard Henry, PhD Arthur A. Herm, PhD Edward Robert Hermann, PhD Ernest Carl Herrmann Cynthia Hess, PhD Karl Hess, PhD Kenneth E. Hevner Menard George Heydanek, Jr., PhD Warren R. Higgins Raymond M. Hinkle, PhD Terry L. Hird Joseph C. Hirschi Richard A. Hirschmann Bill J. Hlavaty Vincent Hodgson, PhD Timothy J. Holcomb Gary L. Hollewell Betsy L. Holli, PhD Franklin Ivan Honea, PhD Arie Hoogendoorn, PhD Doc Horsley, PhD Craig Horswill, PhD George E. Hossfeld Kathleen Ann House, PhD Robert M. House Ronald L. Howard T. E. Hsiu, PhD Charles Fu Jen Hsu, PhD Jean Luc Hubert Craig S. Huff

Dennis Huffaker Donald C. Huffaker, PhD Stanley R. Huffman James A. Huizinga James Hulvat, PhD John Gower Hundley, PhD Stephen A. Hutti Icko Iben, Jr., PhD Mac Igbal Nick Iliadis Cecil W. Ingmire Ronald S. Inman Mitio Inokuti, PhD Herbert O. Ireland, PhD Gary J. Isaak Anthony D. Ivankovich, PhD David Eugene James, PhD Lynn M. Janas, PhD Edwin P. Janus Frank Henry Jarke Gerald G. Jelly William J. Jendzio Stewart C. Jepson Glenn Richard Johnson, PhD Irving Johnson, PhD Milton Raymond Johnson, PhD Rodney B. Johnson Helen S. Johnstone John Lloyd Jones, PhD Les Jones Daniel R. Juliano, PhD William A. Junk, PhD George T. Justice Dennis D. Kaegi John E. Kaindl John M. Kalec Elisabeth M. Kaminsky Manfred Stephan Kaminsky, PhD Fred Kampmans Harvey Sherwin Kantor George Kapusta, PhD Dorkie Kasmar Joseph J. Katz, PhD R. Gilbert Kaufman, PhD Michael Kazarinov, PhD Frederick D. Keady Clint J. Keifer Walter R. Keller Charles D. Kellett Frank N. Kemmer Francis S. Kendorski Albert Joseph Kennedy, PhD Marina Kennelly, PhD Robert Kepp, PhD Naaman Henry Keyser Gregory B. Kharas, PhD G. Khelashvili, PhD John W. Kiedaisch, PhD John W. Kieken Myoung D. Kim Sanford MacCallum King, PhD Timothy P. Kinsley John D. Kinsman Betty W. Kjellstrom Harold E. Klemptner James C. Klouda Edward Andrew Knaggs Norm Knights James Otis Knobloch, PhD James W. Knox David E. Koehler James Start Koehler, PhD

Janice H. Koehler Richard W. Koester Randall Kok, PhD Tim Koller Sam Kongpricha, PhD Virgil J. Konopinski Mark J. Konya Kevin D. Kooistra Gerald L. Kopischke Dennis N. Kostic William Kowal Kevin Koyle John J. Krajewski, PhD John F. Krampien James J. Krawchuk Arthur A. Krawetz, PhD Robert E. Kreutzer, Jr. Kevin Krist, PhD Arthur T. Kroll Moyses Kuchnir, PhD Eugene James Kuhajek, PhD Moira Kuhl Samar K. Kundu, PhD Walter E. Kunze Peter Kusel, PhD Kenneth M. Labas James R. Lafevers, PhD Charles Ford Lange, PhD Ralph Louis Langenheim, PhD John L. Lapish Andre G. Lareau Seymour Larock Bruce Linder Larson, PhD Carl S. Larson, PhD Michael J. Larson Wayne O. Larson, PhD Eugene J. Lawrie James L. Leach, PhD Dennis R. Lebbin, PhD Jean-Pierre Leburton, PhD Richard V. Lechowich, PhD Charles Lee Do B. Lee Gregory E. Lehn Charles Leland James D. Lenardson Terrence A. Leppellere Dennis Leppin Ronald G. Leverich Terrence G. Leverich Lawrence T. Lewis, PhD Steven R. Lewis Ted E. Lewis Robert D. Libby David L. Licht Rebecca A. Lim, PhD Henry Robert Linden, PhD William E. Liss Kenneth J. Little Chian Liu, PhD Derong Liu, PhD Qian Liu, PhD Stephen R. Lloyd, PhD John T. Loftus Roger A. Logeson John S. Loomis, Jr. Herb Lopatka Janet A. Lorenz, PhD Paul Albert Lottes, PhD John E. Lovell Walter S. Lucas Spomenka M. Luedi

Thomas J. Lukas, PhD Kenneth P. Lundgren Channing Harden Lushbough, PhD Mark R. Lytell, Jr. Richard W. Lytton E. Jerome Maas, PhD Roy P. Mackal, PhD Arvind J. Madhani, PhD Alexander B. Magnus, Jr. James Magnuson Om Prakash Mahajan, PhD Eric L. Malaker Francis M. Mallee, PhD Leszek L. Malowanski Christian John Mann, PhD Carl A. Manthe Dennis L. Markwell Donald Paul Martin Ronald Lavern Martin, PhD Richard Martinez Edward L. Marut Donald Frank Mason, PhD Richard I. Mateles, PhD John Mathys, PhD Michael Matkovich Robert R. Mazer Laurence R. Mcaneny, PhD Ed McCanbe Ann E. McCombs Charles R. McConnell, PhD Sherwood W. McGee Michael J. McGirr Randall K. McGivney Ellen A. McKeon Peter McKinney James R. McVicker Ralph D. Meeker, PhD Joseph C. Mekel Kenneth E. Mellendorf, PhD Edgar L. Mendenhall Jim Mendenhall Richard C. Meyer, PhD Stuart Lloyd Meyer, PhD Gary L. Miles Thomas J. Miller David Mintzer, PhD Alex Mishulovich, PhD Vyt Misiulis Robert H. Mohlenbrock, Jr., PhD Jeff Monahan, PhD Raymond W. Monroe Gregory E. Morris Robert A. Morris Gary E. Mosher Herman E. Muller Paul E. Mullinax Dan J. Muno Alan E. Munter Bichara B. Muvdi, PhD John L. Nanak, Jr. David Ledbetter Nanney, PhD Thomas F. Nappi Richard M. Narske, PhD Joseph J. Natarelli J. Timothy Naylor Dale D. Nelson Harry J. Neumiller, Jr., PhD Richard William Neuzil Marcella G. Nichols Thomas W. Nichols John Nicklow, PhD John D. Noble, PhD

Page 93: Human Health Effects - Granicus

Appendix 4: The Petition Project  

 781

Jeffrey J. Nodorft William L. Nold Michael L. Norman, PhD Richard Daviess Norman Jack D. Noyes Alan H. Numbers Bernard C. Ogarek Fredric C. Olds* Lawrence Oliver, PhD Farrel John Olsen, PhD Larry S. Olthoff Michael P. O'Mara William O'Neill, PhD William C. Orthwein, PhD Ali M. Oskoorouchi, PhD Joseph M. O'Toole Jacques Ovadia, PhD Carl F. Painter, PhD Nicholas J. Pappas Eugene N. Parker, PhD James D. Parker Kirit Patel Natu C. Patel Clinton P. Patterson Val E. Peacock, PhD Barry E. Pelham David W. Pennington Roscoe L. Pershing, PhD Peter Paul Petro, PhD Dave Pettit Thomas E. Phipps, PhD Susan K. Pierce, PhD Charles Edward Pietri Glen A. Piland Dean A. Pilard Richard A. Pilon Roger D. Pinc Mark A. Pinsky, PhD Chris Piotrowski Ed Piszynski Rus Pitch Philip Andrew Pizzica Robert J. Podlasek, PhD Richard Polad Donald W. Potter John E. Powell, Jr. Robert C. Powell, PhD G. Gary Preston George W. Price Michael R. Prisco, PhD William H. Prokop David L. Puent Kay M. Purcell Kathy Qin Jim Quandt Charles E. Quentel Robert D. Quinn Carl G. Rako George Ramatowski James Rasor, II Andrew Rathsack Kent Rausch, PhD Richard G. Rawlings Sylvian Richard Ray, PhD Fred Reader Craig R. Reckard Harold Frank Reetz, PhD Gary K. Regan Leonard Reiffel, PhD Vincent Reiling, PhD Paul G. Remmele Joseph C. Renn

James M. Richmond, PhD Bill Tom Ridgeway, PhD George Roy Ringo, PhD John V. Roach Arthur Roberts, PhD Jene L. Robinson Jacob Van Roeckel James A. Roecker George A. Roegge Donna L. Rook Kelly Roos, PhD Andrew H. Rorick Albert R. Rosavana David Rose, PhD Eric J. Rose Richard A. Rosenberg, PhD Peter S. Rosi Gordon Keith Roskamp, PhD Timothy Rozycki George G. Rudawsky Thomas A. Rudd Edward Evans Rue John Ruhl Timothy J. Rusthoven Mark Ruttle Julian G. Ryan Debra J. Rykoff, PhD Gregory Ryskin, PhD George D. Sadler, PhD M. M. Said, PhD James A. Samartano Dennis R. Samuelson Paul D. Sander, PhD Mykola Saporoschenko, PhD Satish Chandra Saxena, PhD Angelo M. Scanu Harold E. Scheid Jay Ruffner Schenck, PhD Roger M. Schiavoni Alexander B. Schilling, PhD Robert Arvel Schluter, PhD William A. Schmucker Charles David Schmulbach, PhD Richard Schockley Felix Schreiner, PhD Richard J. Schuerger, PhD Garmond Gaylord Schurr Robert W. Schwaner John J. Sciarra Paul A. Seaburg, PhD J. Glenn Seay Bruce R. Sebree, PhD Otto F. Seidelman Lewis S. Seiden, PhD Richard G. Semonin Lee H. Sentman, PhD Gordon E. Sernel Charles Shabica, PhD Alan R. Shapiro John D. Shepherdson Charles P. Sheridan Arthur J. Sherman Douglas B. Sherman Joseph Cyril Sherrill, PhD Sanjeev G. Shroff, PhD James C. Shults Lawrence G. Sickels Kent Sickmeyer Arthur Siegel Chester Paul Siess, PhD Gaston N. Siles Walter Lawrence Silvernail, PhD

Joseph H. Simmons Ralph O. Simmons, PhD Gerald Simon Donald E. Sims Matthew D. Sink Amor Sison John R. Skelley Gary M. Skirtich Francis J. Slama, PhD Arthur Smith Roger C. Smith* Ned L. Snider Richard H. Snow, PhD Duane Snyder Milton A. Sobie Harry J. Soloway Dennis B. Solt, PhD Robert E. Sorensen Peter Sorokin Chris Soule Edmund S. Sowa Brian Spencer James W. Spires Mark W. Sprouls William R. Staats, PhD Stephen S. Stack Thomas R. Stack Paul Stahmann J. E. Stanhopf E. J. Stanton Peter J. Stanul Stephen E. Stapp Timothy W. Starck John J. Staunton Enrique D. Steider Frank Jay Stevenson, PhD D. Scott Stewart, PhD Robert G. Stewart Robert Llewellyn Stoffer, PhD David H. Stone, PhD Bob Storkman Glenn E. Stout, PhD Nathan Stowe Randy E. Strang James F. Stratton, PhD Stephen A. Straub, PhD Edward A. Streed Joseph W. Stucki, PhD Benjamin G. Studebaker Alan M. Stueber, PhD John Stueve Frank C. Suarez Thomas E. Sullivan Armando Susmano Christine Sutton R. Kent Swedlund Jerry Sychra, PhD Steven A. Szambaris Ajit C. Tamhane, PhD Rita Tao Robert E. Teneick, PhD Lee C. Teng, PhD Marius C. Teodorescu, PhD Ram P. Tewari, PhD W. Tharnish Carol Tharp Lawrence Eugene Thielen Otto G. Thilenius, PhD Kris Thiruvathukal, PhD Brian G. Thomas, PhD John D. Thomas Don E. Thompson

Stacy T. Thomson Thomas A. Thornburg Peter E. Throckmorton, PhD E. Timson A. Dudley Tipton August P. Tiritilli Cyril M. Tomsic Kenneth James Trigger Alkesh N. Trivedi Edwin S. Troscinski Alvah Forrest Troyer, PhD Larry S. Trzupek, PhD Richard Trzupek Donald Tuomi, PhD* Anthony Turkevich, PhD James J. Ulmes Ronald T. Urbanik Larry D. Vail, PhD Albert P. Van der Kloot William Van Lue Donald O. Van Ostenburg, PhD William Brian Vander Heyden, PhD Donald D. Vanfossan, PhD Albert L. Vanness Edmund Vasiliauskas, PhD Ira J. Vaziri John G. Victor, PhD Larry L. Vieley Francis J. Vincent Robert W. Voedisch Edward D. Vojack Edward W. Voss, PhD Mike Wadlington Howard L. Wakeland Jack Wakeland Jeff Walker John W. Walker Rodger Walker Daniel J. Walters Soo-Young C. Wanda R. Wanke, PhD Evelyn Kendrick Wantland, PhD Brent A. Ward Toby Ward Lewis R. Warmington David D. Warner James Warner Bruce Warren Donald L. Watson Jason A. Watters David L. Webb George E. Webb, Jr. David Fredrick Weber, PhD James A. Weber Olaf L. Weeks William B. Welch Eric Welles Daniel Wenstrup William A. Weronko John R. Wesley Hans U. Wessel, PhD Douglas Brent West, PhD Paul J. West James William Westwater, PhD Robert Lloyd Wetegrove, PhD Grady A. White Laurie C. Wick Timothy H. Wiley Arthur R. Williams Jack M. Williams, PhD Jack R. Williams Thomas Williams, PhD

Page 94: Human Health Effects - Granicus

Climate Change Reconsidered  

 782

Tom Willibey Alan P. Wilson Lorenzo Wilson R. Wilson, PhD Carman P. Winarski Ronald John Wingender, PhD Robert W. Wingerd Dale M. Winter Lester H. Winter Robert Wisbey David C. Witkins Lloyd David Witter, PhD Dale Wittmer, PhD Edward Wolf George D. Wolf Gene H. Wolfe Clarke K. Wolfert Sylvia Wolfson Sophie M. Worobec Virgil A. Wortman Judy L. Wright Leo A. Wrona Jaroslav Wurm, PhD* Peter S. Wyckoff William P. Yamnitz X. Terry Yan, PhD John Herman Yopp, PhD Don York Susan D. Younes Donald E. Young, PhD Forrest A. Younker Hany H. Zaghloul Edward P. Zahora Zhonggang Zeng, PhD Arthur J. Zimmer, PhD Indiana Bernaard J. Abbott, PhD Paul Abbott Chris Adam Robert Aldridge Gabriel C. Aldulescu Joshua C. Allen Madelyn H. Allen Jonathan Alley Lawrence D. Andersen Eric Anderson Walter C. Anglemeyer Morris Herman Aprison, PhD John Arch Thomas G. Armbuster Delano Z. Arvin, PhD Joe E. Ashby, PhD Romney A. Ashton Robert Aten, PhD Mark D. Atkins Matthew R. Atkinson Christian C. Badger Tim Baer James E. Bailey Edward J. Bair, PhD Dale I. Bales, PhD David L. Banta Mark A. Bartlow Norris J. Bassett Walter Frank Beineke, PhD Mark R. Bell, PhD James Noble Bemiller, PhD Paraskevi Mavridis Bemiller, PhD Edward J. Benchik

John M. Bentz Rod Bergstedt William P. Best Robert J. Beyke Lawrence M. Bienz Robert Francis Bischoff Kenneth A. Bisson Raymond J. Black Jon Blackburn Paul V. Blair, PhD George B. Boder James M. Bogner James K. Boomer W. Bordeaux Andrew Chester Boston, PhD Steve Boswell Edmond Milton Bottorff, PhD James L. Bowman Charles A. Boyd D. Boyd, PhD Frederick Mervin Boyd, PhD Raymond D. Boyd Richard A. Boyd Redford H. Bradt, PhD John T. Brandt Harold W. Bretz, PhD Tom P. Brignac Raymond Samuel Brinkmey, PhD Thomas R. Brinner, PhD Arlen Brown, PhD Herbert Brown, PhD James Brown John W. Brown Cornelius Payne Browne, PhD W. George Brueggemann Robert F. Bruns, PhD Russell Allen Buchanan Stuart Buckmaster Bradley Burchett, PhD Kim A. Burke John Burwell Tom Busch Richard W. Butler John C. Callender Ernest Edward Campaigne, PhD Randy S. Cape Michael E. Caplis, PhD Eric S. Carlsgaard Donald D. Carr, PhD Jerry Allan Caskey, PhD Stanley W. Chernish Dhan Chevli, PhD David L. Christmas Ellsworth P. Christmas, PhD John P. Chunga James M. Clark Waller S. Clements David L. Clingman Roberto Colella, PhD Christina M. Collester Don Collier Andy R. Collins P. Connolly Addison G. Cook, PhD Donald Jack Cook, PhD Tracy Correa, PhD Robert J. Corsiglia Peter A. Costisick Mike Cox Donald K. Craft Tom Crawford, PhD Robert Crist

David F. Crosley Marsha L. Culbreth Stephen L. Cullen J. William Cupp, PhD John T. Curran Theodore Wayne Cutshall, PhD James M. Czarnik Marie E. Dasher Bruce R. Dausman David G. Davidson Harold William Davies, PhD Paul F. Davis Harry G. Day Mark E. Deal David J. Dean Steve Denner, PhD Kenneth R. Deremer Kenneth R. Devoe Shree S. Dhawale, PhD Charles V. Di Giovanna, PhD Tom Dingo H. Marshall Dixon, PhD Gerald Ennen Doeden, PhD Joe Dotzlaf Steven L. Douglas David W. Dragoo Underwood Dudley, PhD David R. Duffy Samuel D. Dunbar John J. Durante Daniel J. Durbin, PhD Martin C. Dusel Robert L. Dyer James P. Dykes Jae Ebert Ronald L. Edwards Weldon T. Egan Richard S. Egly, PhD Calvin W. Emmerson John L. Emmerson, PhD Terry L. Endress Gary L. England Brian D. Erxleben Ed Escallon Edward A. Fabrici Mitchel D. Fehr Norman G. Feige John C. Fenoglio Steven E. Ferdon Virginia Rogers Ferris, PhD Paul A. Feszel Greg Filkovski Bruce Fiscus Elson Fish Edward W. Fisher William B. Fisher John D. Foell Eugene Joseph Fornefeld, PhD Dwaine Fowlkes James W. Frazell Jim Friederick Alfred Keith Fritzsche, PhD Eric Fry Meredith W. Fry Philip L. Fuchs, PhD Forst Donald Fuller, PhD Stephen E. Funkhauser Arnold R. Gahlinger Gustavo E. Galante Roy E. Gant Don Gard, PhD Sudhakar R. Garlapati

David E. Gay William A. Geary, PhD Perry J. Gehring, PhD Gordon H. Geiger, PhD Doyle Geiselman, PhD Demosthenes Peter Gelopulos, PhD Phillip Gerhart, PhD John S. Gilpin Robert W. Glasscock Dan Gleaves Robert Hamor Gledhill, PhD Hugh S. Glidewell Matthew F. Gnezda, PhD Victor W. Goldschmidt, PhD William Raymond Gommel, PhD James P. Graf Douglas Grahn, PhD Lawrence W. Grauvogel Norman W. Gray Richard Grenne Susan S. Grenzebach Steven H. Griffith Tom U. Grinslade Larry R. Groves Joseph C. Gruss Albert Guilford C. L. Gunn Gerald Edward Gutowski, PhD Don Haack David L. Hagen, PhD Richard L. Hahn, PhD David W. Haines John E. Haines, Jr. Todd M. Haley Harold T. Hammel, PhD Robert F. Hand Charles Hantzis James Hardesty Robert B. Harnoff Peter J. Hart, PhD Clark Hartford James M. Hartshorne William H. Hathaway Bruce A. Hayes Darrell R. Hazlewood James C. Heap Dwight H. Heberer Thomas J. Helbing John P. Henaghan Stanley M. Hendricks, II Ronald D. Hentz Wallace E. Hertel Harold R. Hicks W. B. Hill, PhD Donald E. Hilton Loren John Hoffbeck, PhD Joseph D. Holder John E. Holdsworth John T. Hopwood Randolph R. Horton William J. Hosmon James E. Hough Karl J. Houghland Hub Hougland Don Morgan Huber, PhD Roger J. Hull Carl D. Humbarger Jesse Max Hunter, PhD Charles C. Huppert, PhD John M. Igelman Donald K. Igou, PhD Gregory J. Ilko

Page 95: Human Health Effects - Granicus

Appendix 4: The Petition Project  

 783

E. William Itell Robert B. Jacko, PhD Bill G. Jackson, PhD David E. Jahn Aloysius A. Jaworski Robert L. Johnson Wyatt Johnson Howard D. Johnston James E. Jones John D. Jones John H. Jones Ken A. Jones Eric J. Jumper, PhD Donald J. Just Dimitar Kalchev W. B. Karcher Gregory A. Katter Daniel J. Kaufman Carlos Kemeny Jim Kent Steven P. Kepler B. Charles Kerkhove, Jr. Edward T. Keve Dan Kieffner Winfield S. Kiester Dennis D. Kilkenny Jon Kilpinen, PhD Gary A. Kimberlin Glen J. Kissel, PhD Ronald E. Kissell Peter T. Kissinger, PhD Lassi A. Kivioja, PhD Howard Joseph Klein, PhD John C. Klingler Steve Klug Williams G. Knorr James Paul Kohn, PhD William A. Koontz Edmund Carl Kornfeld, PhD Aaron David Kossoy, PhD Thomas F. Kowalczyk, Jr. Michael J. Koyak Richard Kraft Bruce L. Lamb C. Elaine Lane E. E. Laskowski Ralph F. Lasley William S. Laszlo David Lawson Marisa S. Leach Lucky Leavell Timothy A. Lee Richard Leidlein Andrew Lenard, PhD Peter E. Liley, PhD Ronald H. Limbach William C. Link Donald Linn, PhD Tim A. Litz Robert L. Longardner James S. Lovick Philip J. Lubensky Melvin Robert Lund Neil P. Lynch Martin Maassen John C. Mackey Jeffrey Maguire John August Manthey William Markel, PhD Terry W. Marsh Bill L. Martz* Carrie M. Marusek

James A. Marusek Jojseph B. Materson Tats Matsuoka Robert Mayemick Larry R. Mayton Allan J. McAllister Roger D. McClintock Edwin D. McCoy James T. McElroy Orville L. McFadden Scott McGarvie John D. McGregor Edward A. McKaig, PhD William J. McKenna James C. McKinstry Robert A. McKnight, Jr. Duncan R. McLeish R. J. McMonigal, PhD Chuck McPherson Mark R. Meadows, Sr. James R. Meier, Sr. Wilton Newton Melhorn, PhD Gary Merkis Mark B. Messmer Emil W. Meyer Sandra Miesel Anthony J. Mihulka John A. Mikel Douglas Gene Mikolasek, PhD Robert Douglas Miles Dane A. Miller, PhD George R. Miller Robert T. Miller Stephen L. Miller Bradley G. Mills Norman T. Mills Kenneth L. Minett Thomas J. Miranda, PhD Michal Misiurewicz, PhD Donald H. Mohr John G. Mohr Kenneth R. Moore, Jr. Thomas S. Moore, PhD Alfred L. Morningstar Raymond L. Morter, PhD James L. Mottet John R. Mow Joel E. Mowatt Daniel H. Mowrey, PhD Thomas J. Mueller, PhD Barry B. Muhoberac, PhD Jeff K. Munger Bernard Munos Haydn Herbert Murray, PhD Michael L. Nahrwold Wade L. Neal David A. Nealy, PhD Joseph J. Neff Steven H. Neucks Charles C. Ney Kenneth E. Nichols, PhD George D. Nickas, PhD Henry Frederick Nolting Robert C. Novak John Lewis Occolowitz George O. P. O'Doherty, PhD Michael H. O'Donnell Winston Stowell Ogilvy, PhD John Olashuk Timothy C. O'Neill Jonathan M. Oram John Robert Osborn, PhD

Albert Overhauser, PhD Willis M. Overton, IV C. Subah Packer, PhD Jim F. Pairitz Wayne Parke Charles S. Parmenter, PhD George A. Payne Doug Perry Kenneth D. Perry Robert G. Phillips Robert L. Pigott Ronald C. Pinter Jeffery J. Poole Jerry Prescott Kenneth Price, PhD Marvin E. Priddy Salvatore Profeta, Jr., PhD Gary J. Proksch, PhD Charles L. Provost Robert R. Pruse Phillip G. Przybylinski Lawrence T. Purcell David Puzan Forrest W. Quackenbush, PhD Beat U. Raess, PhD Jeffrey T. Rafter Douglas Ramers, PhD John E. Ramsey Phillip Gordon Rand, PhD Mamunur Rashid, PhD Lee Raue Francis Harvey Raven, PhD James V. Redding Jack Reed Roger G. Reed David W. Reherman Paul F. Reszel Brian F. Ricci Doug A. Richison David F. Ring Paul Rivers, PhD B. D Nageswara Roa, PhD Larry Roach Fred E. Robbins Ira J. Roberts Charles A. Robinson Jean-Christophe Rochet, PhD Nancy Rodgers, PhD Milton W. Roggenkamp Thomas K. Rollins Michael G. Rossmann, PhD R. E. Rothhaar, PhD John W. Rothrock, Jr. James Lincoln Rowe, PhD Don E. Ruff Robert G. Rydell Michael Sain, PhD Donald G. Scearce Barry W. Schafer Donald Joseph Scheiber, PhD Alfred Ayars Schilt, PhD Alvin Schmucker Stephen J. Schneider George A. Schul David Schultz, PhD Bobby J. Sears George Sears Mark F. Seifert, PhD Phillip Sensibaugh Andrew Sexton Dennis N. Sheets Mary A. Sheller, PhD

Steve Shepherd Kevin M. Sherd Thomas W. Sherman, Jr. W. Sherman, II Ronald W. Shimanek Vernon Jack Shiner, PhD Robert L. Shone, PhD A. Cornwell Shuman, PhD J. Shung, PhD Edward Harvey Simon, PhD* Dennis Skala Robert H. Slagel C. B. Slagle Danny Smith Roger Smith William H. Smith, Jr. Parviz Soleymani Quentin Francis Soper, PhD Robert J. Sovacool Edward Eugene Sowers, PhD Larry D. Spangler John M. Spears John A. Spees Bill Spindler William Jacob Stadelman, PhD Michael C. Stalnecker S. M. Standish Alan G. Stanley Gerald R. Stanley Donn Starkey John M. Starkey, PhD Frank R. Steldt, PhD Nick C. Steph, PhD William Stevenson William R. Stiefel William H. Stone Ronald S. Straight Catherine Strain Richard N. Streacker Edgar F. Stresino Ronald Stroup Robert M. Struewing Stanley Julian Strycker, PhD Jeffrey James Stuart, PhD Victor Sturm Carol S. Stwalley, PhD James S. Sweet Carey Swihart John A. Synowiec, PhD Albin A. Szewczyk, PhD Virginia Tan Tabib Elpidio V. Tan Curtis L. Taylor Harold L. Taylor, PhD Harold Mellon Taylor, PhD James A. Taylor Scott A. Taylor Lowell Tensmeyer, PhD Howard F. Terrill Nayana B. Thaker Thomas Delor Thibault, PhD Jerry A. Thomas Marlin U. Thomas, PhD Martin J. Thomas, PhD Christina Z. Thompson Larry G. Thompson Leo Thorbecke J. Bradley Thurston Bryan M. Tilley Glen Cory Todd, PhD Charles Edward Tomich William R. Tompkins

Page 96: Human Health Effects - Granicus

Climate Change Reconsidered  

 784

Daniel J. Toole Ruperto V. Trevino John E. Trok, PhD Jerry A. True Lawrence D. Tucker Robert C. Tucker, PhD Tim N. Tyler, PhD John Joseph Uhran, PhD Tadeusz M. Ulinsnki Joseph L. Unthank, PhD Bertram Van Breeman Richard E. Van Strien, PhD William Vandemerme, PhD Vern C. Vanderbilt, PhD Robert Dahlmeier Vatne, PhD Spencer Max Vawter Darrell A. Veach Arthur A. Verdi James H. Vernier Richard Anthony Vierling, PhD Raymond Viskanta, PhD Karl J. Vogler, PhD Donald F. Voros Vladeta Vuckovic, PhD Susan M. Waggoner Norman O. Wagoner Jerry C. Walker, PhD James L. Walters David R. Wanhatalo Robert W. Weer John H. Weikel, PhD George W. Welker, PhD Lowell Ernest Weller, PhD Tom Wells Robert Joseph Werth, PhD Aubrey L. Wesson Gordon L. Westergren Winfield B. Wetherbee, PhD Bill Wetherton Alfons J. Wetzel Dave L. Wheatley Larry A. Wheelock Roy Lester Whistler, PhD Joe Lloyd White, PhD Lawrence Wiedman, PhD Charles Eugene Wier, PhD Gene Muriel Wild, PhD Jay L. Wile, PhD James C. William, PhD Carl J. Williams Tony D. Wilson John R. Wingard Frank A. Witzmann, PhD William E. Woenker You-Yeon Won, PhD Gary K. Woodward Gregory M. Wotell Jerry Wright Lee E. Wright T. J. Wright Yao Hua Wu, PhD Neil Yake Jason W. Yeager Richard Yoder Andres J. Zajac Ihor Zajac, PhD Michael W. Zeller Paul L. Ziemer, PhD John E. Zimmerman Steven L. Zirkelback Earl J. Zwick, PhD

Iowa William L. Ackerman Keith L. Amunson Julia W. Anderson, PhD Mike E. Anderson Robert J. Barry Steven Bateman Jim Baumer, PhD Robert L. Beech, PhD Glen L. Bellows Lisa A. Beltz, PhD Dick A. Bergren, PhD Arnold G. Beukelman Albert Joseph Bevolo, PhD Charles H. Black, PhD Lorraine T. Blanck Gerald L. Bolingbroke, PhD Robert M. Bowie, PhD Bruce A. Braun Jeb E. Brewer Alan J. Brinkmann, PhD Bryan C. Bross Scott A. Brunsvold Kenneth D. Bucklin George V. Burnet, PhD Wilbur H. Busch John M. Buss Stanley E. Buss Joel Calhoun Lyle L. Carpenter C. Clifton Chancey, PhD James Brackney Christiansen, PhD Richard H. Cockrum Thomas W. Conway, PhD Richard E. Cowart, PhD Donald J. Cox, PhD Daniel T. Crawford Ronald L. Crowley Abie C. Davis Bonnie Dawley Kenneth J. Denault, PhD William Arna Deskin, PhD John T. Dolehide David L. Dooley Harold E. Doorenbos, PhD* Dan B. Drahos Charles W. Dreibelbis Gary L. Driscoll, PhD Warren Dunkel John R. Ebersberger Charlie R. Edwards Carl Thomas Egger, PhD Curt Erickson Kerry Eubanks L. C. Evbers Michael G. Farley Frank K. Farmer Leonard Samuel Feldt, PhD Lavern J. Flage Gary E. Forristall Joseph E. Foss Dale A. Frank Lloyd R. Frederick, PhD William A. Gallus, Jr., PhD Dennis S. Gannon Greg Gerdes Frederick S. Gezella Mohamed Mansour Ghoneim William H. Gilbert, PhD Mary Ann Gillbert Chester Goodrich, PhD

Michael J. Gries William E. Griffin Morris Paul Grotheer, PhD James A. Haigh Charles Virdus Hall, PhD Harold Elmore Hammerstrom, PhD Ronald Scott Harland Kenneth S. Harris Nicholas L. Hartwig, PhD Frederick B. Hembrough, PhD Herbert Edward Hendriks, PhD Ken Henrichsen, PhD Paul W. Herrig Richard G. Hindman, PhD Larry L. Hintze David M. Hodgin Darrel Barton Hoff, PhD Palmer Joseph Holden, PhD Charles Holz C. D. Van Houweling Frederick B. Hubler Roger Huetig Frank Hummer, PhD Eric K. Jacobsen Albert A. Jagnow Mark Jagnow Paul G. Jagnow James Jennison James L. Johnson Mark Johnson Lawrence L. Jones Rex E. Jorgensen Richard D. Jorgenson, PhD Steven R. Junod John Kammermeyer, PhD Brian Kenny Kenneth Kise, Jr., PhD Thomas Kleen Thomas Kline, PhD Tyson Koch Kris D. Kohl, PhD Gregory L. Kooker Frank P. Koontz, PhD Ann D. Kuenstling Charles R. Kuhlman Paul Lancaster James F. Lardner Stephen L. Larsen John H. Lemke, PhD Wayman Lipsey Mark G. Lorenz Kirk A. Macumber Adeeb Bassili Makar, PhD Cheryl Marigon Dennis N. Marple, PhD Charles R. Marsden Christopher R. Marshall, PhD Michael J. Martin, PhD John C. Mayer Thomas D. McGee, PhD Clifford L. Meints, PhD Charles L. Miksch Glen E. Miller Darren R. Moon Stephen K. Murdock Richard Neate Leon R. Nelson Carl William Niekamp, PhD John V. Nigro James L. Nitzschke Christopher P. Nizzi Duane A. Nollsch

Albert Stanley Norris Kevin Charles O'Kane, PhD Eric Olson Randy Paap James C. Parker Richard S. Parker Peter A. Pattee, PhD Ralph E. Patterson III, PhD Theodore F. Paulson Larry Preston Pedigo, PhD David T. Peterson, PhD John M. Pitt, PhD Kurt Pontasch, PhD R. Potratz David L. Pranger Richard E. Preston Michael Pruchnicki L. L. Pruitt Keith J. Quanbeck D. L. Reasons Theodore Lynn Rebstock, PhD Peter D. Rens Winthrop S. Risk Kevin R. Rogers Rick P. Salocker Somnath Sarkar, PhD George K. Sassmann Maurice G. Scheider D. Schmidt George William Schustek Vincent A. Schuster Pamela R. Sessions Gaylord E. Shaw, PhD James B. Sheets Merlin R. Siefker Leland W. Sims Gary E. Sindelar Scott P. Smith, PhD Daniel E. Sprengeler David L. Sprunger Aaron J. Spurr Robert J. Stalberger Ole H Viking Stalheim, PhD Dean Strand Matt D. Streeter Steven D. Struble Kirk Struve Rexanne Struve Stephen A. Sundquist Carl E. Syversen Eugene W. Taylor Stephen Tedore Kent Thompson Louis M. Thompson, PhD Richard W. Tock, PhD Steven A. Tonsfeldt, PhD Bruce Towne Jim G. Trettin Tom B. Ulrickson Lee E. Vaughan Jack D. Virtue Terence C. Virtue Paul R. Vogt Dennis F. Waugh Charles A. Wellman D. K. Whigman, PhD Robert A. Wiley, PhD Grey Woodman Daniel J. Zaffarano, PhD

Page 97: Human Health Effects - Granicus

Appendix 4: The Petition Project  

 785

Kansas Dwight L. Adams Stephen R. Alewine Donald R. Andersen, Jr. Harrison Clarke Anderson Thornton Anderson William L. Anderson Robynn Andracsek Ernest Angino, PhD Amalia R. Auvigne James F. Badgett D. Bahm Richard C. Bair Tracy M. Baker Nathan S. Baldwin Cliff Bale Larry Bale Mark J. Bareta Neal Barkley Campbell C. Barnds Ross W. Barton Lynn Shannon Bates, PhD Curtis M. Beecham, PhD John S. Black Charles Blatchley, PhD Robert G. Boling Alan G. Bosomworth Lawrence Glenn Bradford, PhD Don L. Braker Brian W. Braudaway Wesley G. Britson Bruce C. Brooks Robert A. Brooks, PhD Ward W. Brown Dail Bruce Joan Brunfeldt Ralph W. Bubeck William M. Byrne, Jr., PhD Jon M. Callen Earl D. Carlson Craig Caulk Charles T. Chaffin, PhD Jon Christensen Justin Clegg Calvin E. Coates Shannon Colbern, PhD James E. Connor Max E. Cooper Ted L. Cooper Dennis D. Copeland Murray D. Corbin Patrick Ivan Coyne, PhD Kent Craghead Phillip T. Cross Robert Hamblett Crowther Glenn Crumb, PhD James R. Daniels Chad Davies, PhD Eugene William Dehner, PhD* Ronald A. Dial J. W. Dohr Leslie J. Doty John Doull, PhD Rod Duke David W. Dukes Clinton E. Dunn A. F. Dyer Joe R. Eagleman, PhD Donald R. Eidemiller Darrel Lee Eklund, PhD Robert E. Elder

Al Erickson Michael J. Eslick Roger W. Evans Eugene Patrick Farrell Gregory A. Farrell Gene Richard Feaster, PhD Roger Fedde, PhD Stephen L. Ferry Theodore C. Finkemeier Debra Fitzgerald John R. Floden Carl A. Fowler Steve Frankamp Dale E. Fulcher David W. Garrett Dick A. Geis Donald R. Germann Clifford Glenn James N. Glenn Earl F. Glynn Bruice Gockel Kenneth L. Goetz, PhD David J. Goldak Peter J. Gorder, PhD Robert C. Gorman Albert J. Gotch, PhD Douglas D. Graver Lewis L. Gray Jerry Green M. Griffin, PhD William C. Groutas, PhD John T. Growney Paul P. Gualtieri Larry Haffey Stephen F. Hagan Quinlan Halbeisen Wesley H. Hall William W. Hambleton, PhD Mark A. Hamilton Robert M. Hammaker, PhD Scott E. Hampel T. Harder, PhD Geoffrey O. Hartzler Kirk Hastings Douglas H. Headley Dennis Hedke John Herald Sandy Herndon B. Heyen, PhD Robert J. Hodes Brett A. Hopkins, PhD Robert Hopkins Marta Howard William C. Hutcheson Cory Imhoff Michael D. Jackson Roscoe G. Jackson, II, PhD Byron E. Jacobson Dale P. Jewett Leland R. Johnson, PhD David W. Kapple Kim Karr, PhD Suzanne Kenton Michael Kerner Gerald Francis Kerr John Kettler Michael R. Kidwell Cecil M. Kingsley Philip G. Kirmser, PhD Kenneth J. Klabunde, PhD Robert W. Klee Burke B. Krueger

Jack K. Krum, PhD Daniel O. Kuhn James E. Kullberg Michael J. Lally Roger O. Lambson, PhD David L. Lamp Vance Lassey Richard Leeth Richard Leicht E. C. Lester Jingyu Lin, PhD Edwin D. Lindgren Glenn Liolios John B. Loser James Loving Leon Lyles, PhD Keith D. Lynch, PhD Franklin F. Mackenzie Susan L. Mann Robert A. Martinez Gayle Mason Keith Mazachek, PhD Thomas McCaleb Robert J. McCloud Richard E. McCoy James L. McIlroy George M. McKee, Jr. Alvin E. Melcher Dwight F. Metzler Steven M. Michnick Frank R. Midkiff Clinton F. Miller Richard L. Miller, PhD Leon J. Mills, PhD Eldon F. Mockry Reginald B. Moore Norman R. Morrow Fred Moss Vincent U. Muirhead E. A. Munyan Joseph K. Myers Jay F. Nagori C. Nobles Charles Arthur Norwood, PhD Carl E. Nuzman Verda Nye Rocky Nystom Daniel J. O'Brien, PhD Steven P. O'Neill Thomas E. Orr Dennis D. Ozman Kyle Parker Randy C. Parker Dean Pattison Charles W. Pauls David B. Pauly, Jr Wayne Penrod Bill Perry Heide M. Petermann Leroy Lynn Peters, PhD* David Pflum Max E. Pickerill, PhD Danny L. Piper Jack J. Polise Arthur F. Pope Donald L. Poplin Robert Pratt Tom Pronold John J. Ramm Thomas E. Ray Dean D. Reeves David J. Relihan

James C. Remsberg Robert L. Reymond, Jr. Charles A. Reynolds, PhD Brian K. Richardet Larry J. Richardson David Allan Ringle, PhD Kenneth Roane Edward H. Roberts M. John Robinson, PhD James W. Rockhold Richard L. Ronning Karl K. Rozman, PhD James M. Ryan, PhD Richard J. Saenger Frederick Eugene Samson, PhD L. A. Sankpill Larry V. Satzler Michael J. Sauber Kelly B. Savage Robert R. Schalles, PhD Charles Schmidt J. Richard Schrock, PhD Robert Samuel Schroeder, PhD Warren D. Schwabauer, Jr. Charles M. Schwinger James E. Sears Arnold W. Shafer Dexter Brian Sharp, PhD Brett E. Sharpe Brian A. Sheets Leland M. Shepard Lloyd W. Sherrill Kim Shoemaker Merle Dennis Shogren Mark A. Shreve Ray Shultz Glen L. Shurtz, PhD James Van Sickle William E. Simes Larry Skelton Edward Lyman Skidmore, PhD Bruce G. Smith Michael R. Smith Randall K. Spare Feliz A. Spies Robert P. Spriggs Jerry L. Stephens Jeffrey Smith Stevenson, PhD William T. Stevenson, PhD Robert T. Stolzle Richard L. Stoppelmoor Steven E. Stribling Doug T. Stueve Bala Subramaniam, PhD James W. Suggs Stuart Endsley Swartz, PhD Saeed Taherian, PhD Marcus K. Taylor Randall Teter Leslie Thomas Timothy C. Tredway Richard S. Troell James M. Tullis Richard M. Vaeth M. Van Swaay, PhD Gary Vogt Rosmarie von Rumker, PhD Bruce L. Wacker Wilber B. Walton Dennis L. Wariner Robert K. Wattson, Jr. Laurence R. Weatherley, PhD

Page 98: Human Health Effects - Granicus

Climate Change Reconsidered  

 786

Allan R. Weide Kenneth R. Wells Ronald L. Wells, PhD Jerry R. Werdel Steve S. Werner Tom J. Westerman Eric R. Westphal, PhD Carol J. Whitlock Wendell Keith Whitney, PhD William Wiener Jim Wiley Don K. Wilken Allen K. Williams Phillip Brock Williams, PhD Robert L. Williams, Jr. Thomas Williams Lonnie D. Willis Robert G. Wilson, PhD Steven J. Wilson Earl C. Windisch Elmer J. Wohler Russell L. Woirhaye Jim Wolf Charles Hubert Wright, PhD Ralph G. Wyss Shawn Young Dwight A. Youngberg Mario K. Yu Melvin E. Zandler, PhD Michael T. Zimmer Adam D. Zorn Glen W. Zumwalt, PhD Kentucky Dell H. Adams Neil Adams, PhD Howard W. Althouse R. Byron Alvey Michael R. Amick Robert L. Amster Donald Applegate Donald Archer Raymond A. Ashcraft A. Ashley, PhD Richard A. Aurand Thomas H. Baird John P. Baker, PhD Randal Baker Lee A. Balaklaw Paul A. Barry Bonnie L. Bartee Walter G. Barth Charles I. Bearse, III Lloyd Willard Beck Daniel D. Beineke, PhD Charles D. Bennett R. Berson, PhD Michael Binzer Mary L. Blair John G. Bloemer Richard S. Bonn Harold Boston Roscoe C. Bowen, PhD Jeffrey D. Brock Fred A. Brooks William F. Brothers, Jr. Thomas Dudley Brower Gerald Richard Brown, PhD Philip T. Browne Harry A. Bryan

Barry J. Burchett Michael A. Burke Frank C. Campbell, Jr. Robert E. Campbell Alan A. Camppli, PhD Thomas D. Carder Jeffrey S. Caudill Robert Lee Caudill William K. Caylor James M. Charles Richard Cheeks Frederick Chen, PhD Lijian Chen, PhD John Albert Clendening, PhD Thomas R. Coffey James L. Cole Donald W. Collier Stanley W. Collis Todd Colvin Shawn W. Combs Thad F. Connally Henry E. Cook, Jr. Maura Corley Linda G. Corns James Cramer Rhonda Creech Philip G. Crnkovich William D. Cubbedge John J. Czarniecki Frank N. Daniel Roger A. Daugherty Aaron R. Davis Gilber De Cicco Paul E. Dieterlen Philip W. Disney Billy Dobbs George Charles Doderer William B. Dougherty James W. Drye Donald B. Dupre, PhD Gregory A. Durffent Lee G. Durham Victor E. Duvall Thomas E. Eaton, PhD Gary Eberly Harvey Lee Edmonds, Jr., PhD William D. Ehringer, PhD P. Eichenberger Donald R. Ellison William K. Elwood, PhD William G. Emmerling Jim L. End Dennis W. Enright Michael B. Erp Russell J. Fallon Lynda R. Farley Allan George Farman, PhD David Ray Finnell Ken W. Fishel Tommie E. Flora Burton R. Floyd, Jr. Paul C. Fogle David C. Foltz Gene P. Fouts Mary Feltner Futrell, PhD Fletcher Gabbard, PhD Theodore H. Gaeddert, Jr. Stanley A. Gall Theo H. Gammel J. Steven Gardner Ronald F. Gariepy, PhD Daniel L. Garrison

Lawrence K. Gates Lewis G. Gay Thomas Edward Geoghegan, PhD Robert B. George Earl Robert Gerhard, PhD Jonathan Gertz Peter P. Gillis, PhD Bobby G. Gish Gordon C. Glass Peter D. Goodwin Clifford D. Goss Kenton J. Graviss, PhD William Daniel Green, Jr Ara Hacetoglu Richard P. Hagan, PhD Paul F. Haggard W. Hahn Ted D. Haley* Robert Halladay Harold D. Haller Charles Edward Hamrin, Jr., PhD Charles Hardebeck Byron C. Hardinge Dean O. Harper, PhD Kevin W. Harris Roswell A. Harris, PhD Dennis R. Hatfield Aaron Haubner, PhD John H. Havron Erv Hegedus Richard B. Heister, II Regina C. Henry Wiley Hix Henson, PhD Carl W. Hibscher Don Hise R. W. Holman, PhD Kenneth R. Holzknecht Alan W. Homiak Ricky Honaker, PhD Debra House Kevin E. Houston David W. Howard James F. Howard, PhD J. William Huber Donald W. Hunter Hal Hyman Lorna Hymon Ralph E. Jackson Leo B. Jenkins, PhD Randolph A. Jensen Elaine L. Jocobson, PhD Omar M. Johnson Ray Edwin Johnson, PhD James H. Justice Norman E. Karam Leslie E. Karr Ann M. Keller Kenneth F. Keller, PhD Kurt A. Keller William W. Kelly, Jr. John Elmo Kennedy, PhD Riley Nelson Kinman, PhD Riley N. Kinners, PhD W. S. Klein David Kling Nancy F. Kloentrup, PhD Riley N. Kminer, PhD James E. Krampe Clarence R. Krebs Steve Kristoff, PhD Wasley Sven Krogdahl, PhD John E. Kuhn, PhD

Garth Kuhnhein John P. Lambert Harold Legate Charles L. Lilly Merlin D. Lindemann, PhD Noel W. Lively Susan Logsdon James Longo George E. Love John Lowbridge, PhD Charles S. Lown Gerald J. Lowry, PhD Phillip Lucas Robert M. Lukes, PhD George W. Luxbacher, PhD William Charles MacQuown, PhD Dannys Maggard Alan T. Male, PhD Robert C. Mania, PhD Ronald A. Mann, PhD William J. Mansfield Dan Marinello Maurice K. Marshall Ronald L. Marshall M. Masthay, PhD Richard S. Mateer, PhD Wayne R. McCleese Terry McCreary, PhD Bill McGowan, PhD John Long Meisenheimer, PhD Phil M. Miles David B. Miller Franklin K. Miller Ronald R. Monson Dory D. Montzaemi Duane Moore Glenn I. Moore Charle E. Mosgrave Steven W. Moss F. Allen Muhl Fitzhugh Y. Mullins Michael L. Munday James K. Neathery, PhD Jerry S. Newcomb David A. Newman, PhD Arthur J. Nitz, PhD Michael E. Nordloh Lynn Ogden Bernie D. Oliver Steve Ott Joseph C. Overmann B. K. Parekh, PhD Dexter Brian Patton, III Arthur P. Peel Douglas W. Peters Jeffrey L. Peters Glenn Pfendt John E. Plumlee Michael Portman Ronald T. Presbys Phil Quire William Quisenberry Craig Rabeneck Manny K. Rafla, PhD Stephen C. Rapchak Michael A. Ray Erick L. Redmon Frederick C. Rehberg Phillip J. Reucroft, PhD Gary Reynolds J. E. Rhoades Bart E. Richley

Page 99: Human Health Effects - Granicus

Appendix 4: The Petition Project  

 787

John Thomas Riley, PhD David Roach, PhD James O. Roan Philip J. Robbins Stewart W. Robinson, PhD Thomas J. Roe Jason K. Romain Lance D. Rowell Paul B. Rullman Mary J. Ruwart, PhD James M. Rynerson Thomas A. Saladin Robert Alois Sanford, PhD Mark S. Sapsford Thomas A. Saygers Charles M. Saylor, III Larry Saylor Donald J. Scheer, PhD Frank M. Schuster George W. Schwert, PhD Randolph J. Scott Daniel M. Settles, PhD Richard W. Sewell Michael Sherlock Robin N. Siewert John A. Sills, PhD Marek A. Sitarski, PhD Frank Sizemore Jon James Smalstig Avery E. Smith Hayden Smith Anne Cameron Snider James D. Sohl Gerard T. Sossorg Joseph Sottile, PhD Gary L. Southerland Gary G. Sowards Donald G. Spaeth, PhD Werner E. Speer Robert Wright Squires, PhD Harry P. Standinger Douglas E. Stearns Dennis M. Stephens Darcy S. Stewart Richard C. Stocke Bill Stoeppel Alan Stone Richard W. Storey Vernon Stubblefield, PhD S. R. Subramani Tommy L. Sutton George H. Swearingen, Jr. Morris A. Talbott Daniel Tao, PhD Daniel V. Terrell, III Gregory R. Thiel M. P. Thorne Paul E. Tirey Albert M. Tsybulevskiy, PhD Robert S. Tucker Kot V. Ungrug, PhD Joseph Van Zee William York Varney, PhD Rodney D. Veitschegger, Jr. Willis G. Vogel Jim Volz Konstanty F. von Unrug, PhD George Vourvopoulos, PhD William J. Waddell Bruce E. Waespe David W. Wallace Alva C. Ward

Danny R. Ward Mark T. Warren Michael Webb Larry G. Wells, PhD William Wetherton Roy E. Whitt Rudy Wiesemann Robert O. Wilford James Cammack Wilhoit, PhD Bill R. Wimpelberg Dennis C. Withey Douglass W. Witt Earl C. Wood Farley R. Wood Alice J. Woosley Donald R. Yates Scott Yost, PhD Ralph S. Young Peter S. Zanetti Richard Jerry Van Zee, PhD Robert J. Zik David J. Zorn Louisiana Joseph P. Accardo Leonard Caldwell Adams, PhD Tim Addington Mark R. Agnew Steven L. Ainsworth Christopher G. Allen Paul W. Allen, PhD Arthur E. Anderson James R. Anderson Roy E. Anderson Robert E. Angel Lowell N. Applegate Lou Armstrong Daniel J. Aucutt Bryan Audiffred William E. Avera Hugh Bailey Wallace H. Barrett Robert J. Bascle E. Baudoin Rick Bauman Edward W. Beall Joseph A. Beckman, PhD Charles Bedell Edward Lee Beeson, Jr., PhD C. Allen Bell James M. Bell E. Paul Bercegeay, PhD Dan Berry Craig D. Berteau R. Dale Biggs, PhD David L. Billingsley, Jr. Ron J. Blanton Virgil L. Boaz, PhD Larry P. Bodin Frank R. Boehm, Jr. Gerald S. Boesch, Jr. Lawrence G. Bole Troy N. Book James E. Boone, PhD John Boulet Arnold Heiko Bouma, PhD Timothy M. Boyd Samuel B. Brady, IV Ernest Breaux Larry Breeding

Karen Brignac Francis W. Broussard Mary J. Broussard Tim Brunson David W. Bryant David William Bunch, PhD Ronald Butler Augustus George Caldwell, PhD Gene Callens, PhD Sidney Campbell Louis J. Capozzoli, PhD Bobby L. Caraway, PhD Edward Carriere, PhD Oran R. Carter James Clark Carver, PhD Thomas E. Catlett Thomas W. Cendrowski John N. Cetinich Bruce Chamberlain Angelo Chamberlin John T. Chandler Harlan H. Chappelle Emery R. Chauvin Huimin Chen, PhD Danny J. Clarke Chris M. Cobb J. M. Coffield R. D. Coles Ted Z. Collins James G. Connell William J. Connick, Jr. Kenneth R. Copeland Kevin Corbin Walter H. Corkern, PhD Frank A. Cormier Michael R. Coryn Judith Coston Vincent F. Cottone Ronald A. Coulson, PhD Ronald Reed Cowden, PhD Lawson G. Cox Joel B. Cromartie Gene Autrey Crowder, PhD John H. Cunniff Harold B. Curry Louis Chopin Cusachs, PhD Rita Czek Russell E. Dailey L. R. Dartez, Jr. Shawn P. Daugherty Dennis J. Dautreuil James H. Davidson Harry H. Dawson Robert C. Dawson Donal Forest Day, PhD Winston Russel de Monsabert, PhD John H. Dekker Anthony J. DeLucca Charles N. Delzell, PhD Thomas A. Demars, PhD Tom DePierri William G. DePierri, PhD Marcio Dequeiroz, PhD Herbert C. Dessauer, PhD David F. Dibbley Elizabeth S. Didier, PhD Paul A. Dieffenthaller Larry Dorris Carl L. Douglas, Jr. Harry Vernon Drushel, PhD Patrick Dubois C. J. Duet

Terry M. Duhon Genet Duke, PhD Raymond J. Dunn Henry J. Dupre Sidney J. Dupuy, III Eugene F. Earp D. Elliott, PhD W. Engle Thomas L. Eppler, PhD John R. Eustis Dabney M. Ewin Donald C. Faust Gary Z. Fehrmann D. Bryan Ferguson John Ferguson Jorge M. Ferrer Aaren Fiedler Jack Everett Field, PhD Gary L. Findley, PhD Robert G. Finkenaur Marlon R. Fitzgerlad Robert Wilson Flournoy, PhD Michael A. Fogarty Martin M. Fontenot Rudolph M. Franklin Benjamin D. Fremming Jeffrey W. French Roger D. Fuller Frank P. Gallagher Jonathan C. Garrett Raymond F. Gasser, PhD Edward William Gassie, PhD Richard L. Gates Paul Robert Geissler, PhD Alexander A. Georgiev, PhD T. C. Gerhold Peter John Gerone, PhD Robert T. Giles Bob Gillespie Jeffrey D. Ginnvan Marvin G. Girod Nicholas E. Goeders, PhD John T. Goorley, PhD V. L. Goppelt George Gott Robert J. Gouldie John A. Grach Joseph C. Graciana Eric Greager Randolph K. Greaves Donald L. Greer, PhD Donald A. Griglack Alan B. Grosbach Ronald R. Grost Frank R. Groves, Jr., PhD Roland J. Guidry, Jr. William T. Hall Bruce A. Hallila John H. Hallman, PhD Abraham S. Hananel, PhD D. E. Hansen M. Wayne Hanson, PhD Ted N. Harper Clarence C. Harrey, Jr. Albert D. Harvey, PhD Kim L. Harvey Kerry M. Hawkins V. R. Hawks, Sr. William G. Hazen Phillip C. Hebert Harold Gilman Hedrick, PhD Richard E. Heffner

Page 100: Human Health Effects - Granicus

Climate Change Reconsidered  

 788

J. Hemstreet, PhD G. C. Hepburn, Jr. Stephen R. Herbel John J. Herbst Roger N. Hickerson F. M. Hill, Jr. Thomas D. Hixson Paul K. Holt Lloyd G. Hoover Sylvester P. Horkowitz Edwin Dale Hornbaker, PhD Nancy A. Hosman Walter A. Hough, PhD Stephen C. Hourcade John E. Housiaux Michael S. Howard, PhD Fritz Howes F. Markley Huey K. Huffman Woodie D. Huffman Barry Hugghins Robert L. Hutchinson, PhD Terry E. Irwin, II Edward A. Jeffreys Dale R. Jensen Edwin N. Jett Emil S. Johansen Adrian Earl Johnson, Jr., PhD Thomas J. Johnson Jack E. Jones, PhD William H. Jones Douglas L. Jordan Paul A. Jordan John Andrew Jung, PhD Michael Lee Junker, PhD Robert J. Justice J. Justiss, Jr. Richard D. Karkkainen J. B. Karpa Kevin Kelly, PhD Stephen J. Kennedy Walter Paul Kessinger, Jr., PhD Michael L. Kidda Charles A. Killgore John King Charles Leo Kingrea, PhD K. Klingman, PhD Thomas R. Klopf Mark A. Knoblach Daniel E. Knowles Stanley Phelps Koltun Anton Albert Komarek Christopher La Rosa Dale J. Lampton Vicki A. Lancaster, PhD Ricky M. Landreneau L. Landry Ronald J. Landry H. Norbert Lanners, PhD John LaRochelle, PhD Dana E. Larson James A. Latham Edwin H. Lawson Lynn L. Leblanc, PhD Bill Ledford Grief C. Lee Joseph M. Leimkuhler James C. Leisk Samuel A. Leonard Gregory Scott Lester James C. Lin, PhD Arthur L. Long

William E. Long William Henry Long, PhD Jerry A. Louviere John R. MacGregor Vincent T. Mallette Carl W. Mangus Alvin V. Marks John Luis Martinez Barbara L. Matens Campo Elias Matens J. L. Mathews Rex Leon Matlock, PhD Neil Matthews Charles M. May, Jr. David R. Mayfield Bobby Mayweather Michael L. McAnelly Danny W. McCarthy, PhD Mickey McDonald John P. McDonnell C. A. McDowell, Jr. R. D. McGee Michael McIntosh J. T. McQuitty Alan L. McWhorter, PhD Tammy S. Meador Jimmy L. Meier, Sr. Jerry J. Melton Robert Merrill William W. Merrill Charles R. Merrimen, PhD Dennis Meyer Robert A. Meyer Michael S. Mikkelson Kelley F. Miles Harvey I. Miller, PhD Joseph Henry Miller, PhD Robert H. Miller, PhD Arnout L. Mols Christy A. Montegur Douglas Moore J. Stephen Moore Richard Newton Moore Paul H. Morphy Harry Edward Moseley, PhD Peter V. Moulder Clifford Mugnier Douglas V. Mumm Donald D. Muncy Jack P. Murphy John D. Murry Adil Mustafa Rocco J. Musumeche Peter C. Mutty Lynn J. Myers Billy J. Neal William J. Needham Joseph Navin Neucere Robert H. Newll Charles H. Newman, PhD Conrad E. Newman Rogers J. Newman, PhD James R. Nichols Martin R. Nolan Richard Dale Obarr, PhD Liang S. Ocy, PhD William B. Oliver, III Donald A. Olivier Dean S. Oneal Addison Davis Owings, PhD Richard Milton Paddison Muriel Signe Palmgren, PhD

Richard Parish, PhD Kirt S. Patel Frank M. Pattee John W. Paxton Julian Payne Armand Bennett Pepperman, PhD John H. Pere James L. Peterson George E. Petrosky Chester Arthur Peyronnin, Jr. James E. Pfeffer John R. Pimlott Richard M. Pitcher Larry Plonsker, PhD Timothy M. Power Irving J. Prentice Charles W. Pressley R. L. Prichard William A. Pryor, PhD Elliott Raisen, PhD Ganesier Ramachandran Charles L. Rand Clinton M. Rayes William Rehmann Alfred Douglas Reichle, PhD Robert T. Reimers, PhD Leslie H. Reynolds Lee J. Richard Leonard Frederick Richardson, PhD Neil Richter Herman H. Rieke, PhD Jim Rike Kent R. Rinehart Terry D. Rings Bruce A. Rogers Gerard A. Romaguera Richard Rosenroetter M. Rosenzweig Lawrence James Rouse, PhD Steve Rowland Gillian Rudd, PhD Kelli Runnels, PhD Louis L. Rusoff, PhD Richard A. Sachitano, PhD Charles M. Sampson Ronald G. Sarrat Ralph J. Saucier Robert Joseph Schramel Roy W. Schubert, PhD Jeffrey A. Schwarz Otto R. Schweitzer, PhD Albert Edward Schweizer, PhD Michael J. Screpetis Richard D. Seba, PhD Joseph E. Sedberry, Jr., PhD Rowdy L. Shaddox Gordon Shaw Lawrence H. Shaw David Preston Shepherd, PhD Frederick F. Shih, PhD Muhammad D. Shuja Karen L. Shuler Mark Sibille Harold D. Siegel William Carl Siegel Larry Sifton Lucila Silva William E. Simon, PhD A. Craig Simpson Howard F. Sklar Denny L. Small James M. Smith

Larry Smith Thomas M. Snow Kepner D. Southerland Elmer N. Spence Donald Sprowl, PhD Burt L. St. Cyr Paul A. Stagg Kevin Stanley Eric States G. Sterling Arthur E. Stevenson Rune Leonard Stjernholm, PhD Edward H. Stobart Theresa D. Stokeld Robert C. Stone, Jr. James P. Storey William T. Straughan, PhD Roland A. Sturdivant Alberto Suarez Ruth Sundeen Frank J. Sunseri Tony E. Swisher Katherine Talluto, PhD Orey Tanner, Jr. Eric R. Taylor, PhD Erik D. Taylor Paul R. Tennis Frank J. Tipler, PhD Wallace K. Tomlinson James E. Toups Ed Trahan Ann F. Trappey John H. Traus Melvin L. Triay Peter J. Van Slyke Anthony R. Venson, PhD John R. Vercellotti, PhD Robert C. Vestal Marc Vezeau Clemens J. Voelkel Eugene von Rosenberg Coerte A. Voorhies Charles Henry Voss, Jr., PhD Harold V. Wait John Wakeman, PhD Nell Pape Waring F. J. Warren, Jr. Edis W. Warrif W. P. Weatherby Luke T. Webb Anthony J. Weber Donald J. Weintritt Shane Wells Juergen Wesselhoeft Richard M. West Tom West Albert J. Wetzel James Henry Wharton, PhD Ralph E. Wharton Paul R. Whetsell Tadeusz Karol Wiewiorowski, PhD Monty Wilkins Louis E. Willhoit, Jr., PhD Oneil J. Williams, Jr. Ron Williams Chester G. Wilmot, PhD Leslie C. Wilson, PhD Kathleen S. Wiltenmuth William J. Woessner William H. Wohler Andrzej Wojtanowicz, PhD Laurence Wong, PhD