Top Banner
1/ 73 Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks How to predict an epidemic of Zika virus? A challenge in nonlinear stochastic dynamics Americo Cunha Jr Universidade do Estado do Rio de Janeiro – UERJ NUMERICO ucleo de Modelagem e Experimenta¸c˜ ao Computacional http://numerico.ime.uerj.br In collaboration with: Eber Dantas (UERJ) Michel Tosin (UERJ) COLMEA 2019 - IM-UFRJ March 28, 2019 Rio de Janeiro, Brazil
103

How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10

May 24, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

1/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

How to predict an epidemic of Zika virus?A challenge in nonlinear stochastic dynamics

Americo Cunha Jr

Universidade do Estado do Rio de Janeiro – UERJ

NUMERICO – Nucleo de Modelagem e Experimentacao Computacional

http://numerico.ime.uerj.br

In collaboration with: Eber Dantas (UERJ)Michel Tosin (UERJ)

COLMEA 2019 - IM-UFRJMarch 28, 2019

Rio de Janeiro, Brazil

Page 2: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

2/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Outline

1 Introduction

2 Dynamic Model

3 Inverse Problem

4 Sensitivity Analysis

5 Uncertainty Quantification

6 Ongoing

7 Final Remarks

Page 3: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

3/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Section 1

Introduction

Page 4: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

4/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Zika virus (ZIKV)

Member of Flaviviridae virus family

First isolated in 1947 at Uganda, Africa

Mainly spread by Aedes mosquitoes

W.H.O declared it a public healthemergency of international concern

More than 140,000 confirmed cases inBrazil since 2015

International consensus that ZIKV is acause of:

Guillain–Barre syndrome

Microcephaly

Zika virus

Aedes aegypti

Page 5: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

5/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Global outbreak of Zika virus

World Map of Areas with Risk of Zika

Centers for Disease Control and Prevention, World Map of Areas with Risk of Zika, March 2018.

Page 6: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

6/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Zika virus outbreak in Brazil

New cases in Brazil by epidemiological week of 2016

0

6

12

17

23

num

ber

of p

eopl

e

103

10 20 30 40 50

time (weeks)

Ministerio da Saude. Obtencao de numero de casos confirmados de zika, por municıpio e semana

epidemiologica. https: // bit. ly/ 2OVgGGt

Page 7: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

7/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Dengue virus (DENV)

Member of Flaviviridae virus family

Mainly spread by Aedes mosquitoes, as inthe case for Zika virus

Probable cases in Brazil:

> 170,000 in 2018> 250,000 in 2017> 3 million in 2016 and 2015

Dengue virus

Aedes aegypti

Page 8: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

8/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Other Arbovirus

ARthropod-BOrne virus

Yellow Fever: South America and Africa(261 deaths in Brazil in 2017)

Chikungunya: worldwide(> 204,000 confirmed cases in Brazil since 2015)

Rift Valley fever: Africa and Arabian Peninsula(ongoing outbreak in Kenya by June 2018)

Countries and territories where chikungunya cases have been reported* (as of May 29, 2018)

*Does not include countries or territories where only imported cases have been documented.

Data table: Countries and territories where chikungunya cases have been reported

AFRICA ASIA AMERICAS

Angola Bangladesh Anguilla Panama

Benin Bhutan Antigua and Barbuda Paraguay

Burundi Cambodia Argentina Peru

Cameroon China Aruba Puerto Rico

Central African Republic India Bahamas Saint Barthelemy

Comoros Indonesia Barbados Saint Kitts and Nevis

Cote d’Ivoire Laos Belize Saint Lucia

Dem. Republic of the Congo Malaysia Bolivia Saint Martin

Djibouti Maldives Brazil

Saint Vincent & the Grenadines

Equatorial Guinea Myanmar (Burma) British Virgin Islands Sint Maarten

Gabon Nepal Cayman Islands Suriname

Guinea Pakistan Colombia Trinidad and Tobago

Kenya Philippines Costa Rica Turks and Caicos Islands

Madagascar Saudi Arabia Cuba United States

Malawi Singapore Curacao US Virgin Islands

Mauritius Sri Lanka Dominica Venezuela

Mayotte Thailand Dominican Republic

Mozambique Timor-Leste Ecuador

Nigeria Vietnam El Salvador OCEANIA/PACIFIC ISLANDS

Republic of the Congo Yemen French Guiana American Samoa

Reunion Grenada Cook Islands

Senegal Guadeloupe Federal States of Micronesia

Seychelles EUROPE Guatemala Fiji

Sierra Leone France Guyana French Polynesia

Somalia Italy Haiti Kiribati

South Africa Spain Honduras Marshall Islands

Sudan Jamaica New Caledonia

Tanzania Martinique

Papua New Guinea

Uganda Mexico Samoa

Zimbabwe Montserrat Tokelau

Nicaragua Tonga

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

Powered by TCPDF (www.tcpdf.org)

Chikungunya cases (May 2018)

Page 9: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

9/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Other Arbovirus

Japanese encephalitis: Southeast Asia, Western Pacific

West Nile virus: widely established from Canada to Venezuela

Both transmitted by the Culex mosquitoes

West Nile virus activity in USA (July 2018)

Page 10: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

10/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Typical questions to be answered

How many people will the outbreak potentially infect?

How far and how quickly will the disease spread?

What areas and people are at highest risk, and when are theymost at risk?

How can we best make use of limited resources?

How can we best slow or prevent the outbreak and protectvulnerable populations?

C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016.

Page 11: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

10/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Typical questions to be answered

How many people will the outbreak potentially infect?

How far and how quickly will the disease spread?

What areas and people are at highest risk, and when are theymost at risk?

How can we best make use of limited resources?

How can we best slow or prevent the outbreak and protectvulnerable populations?

Mathematical models tosimulate Zika virus spread

can provide importantguidance and insight to

these questions.

C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016.

Page 12: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

11/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Research objectives

Develop an epidemic model to describe the recent outbreak ofZika virus in Brazil

Verify (qualitatively and quantitatively) the epidemic modelcapacity of prediction

Calibrate this epidemic model with real data to obtain reliablepredictions

Construct a stochastic model to deal with data uncertaintiesand made more robust predictions

Page 13: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

12/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Section 2

Dynamic Model

Page 14: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

13/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

SIS model

bN Sµ

βI/NIµ

γ

S - Population of susceptibleI - Population of infectedN - Total populationβ - Transmission rateγ - Recovery rateb - Birth rateµ - Mortality rate

Rate of change of S = Input of S - Output of S

dS

dt=

bN︸︷︷︸Births

+ γI︸︷︷︸Recovery

− β

I

NS︸ ︷︷ ︸

Infections

+ µS︸︷︷︸Mortality

Page 15: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

13/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

SIS model

bN Sµ

βI/NIµ

γ

S - Population of susceptibleI - Population of infectedN - Total populationβ - Transmission rateγ - Recovery rateb - Birth rateµ - Mortality rate

Rate of change of S = Input of S - Output of S

dS

dt=

bN︸︷︷︸Births

+ γI︸︷︷︸Recovery

− β

I

NS︸ ︷︷ ︸

Infections

+ µS︸︷︷︸Mortality

Page 16: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

13/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

SIS model

bN Sµ

βI/NIµ

γ

S - Population of susceptibleI - Population of infectedN - Total populationβ - Transmission rateγ - Recovery rateb - Birth rateµ - Mortality rate

Rate of change of S = Input of S - Output of S

dS

dt=

bN︸︷︷︸Births

+ γI︸︷︷︸Recovery

− β

I

NS︸ ︷︷ ︸

Infections

+ µS︸︷︷︸Mortality

Page 17: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

13/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

SIS model

bN Sµ

βI/NIµ

γ

S - Population of susceptibleI - Population of infectedN - Total populationβ - Transmission rateγ - Recovery rateb - Birth rateµ - Mortality rate

dS

dt=

bN︸︷︷︸Births

+ γI︸︷︷︸Recovery

− β

I

NS︸ ︷︷ ︸

Infections

+ µS︸︷︷︸Mortality

Page 18: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

13/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

SIS model

bN Sµ

βI/NIµ

γ

S - Population of susceptibleI - Population of infectedN - Total populationβ - Transmission rateγ - Recovery rateb - Birth rateµ - Mortality rate

Rate of change of I = Input of I - Output of I

dS

dt=

bN︸︷︷︸Births

+ γI︸︷︷︸Recovery

− β

I

NS︸ ︷︷ ︸

Infections

+ µS︸︷︷︸Mortality

Page 19: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

13/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

SIS model

bN Sµ

βI/NIµ

γ

S - Population of susceptibleI - Population of infectedN - Total populationβ - Transmission rateγ - Recovery rateb - Birth rateµ - Mortality rate

Rate of change of I = Input of I - Output of I

dI

dt= β

S

NI︸︷︷︸

Infections

γI︸︷︷︸Recovery

+ µI︸︷︷︸Mortality

Page 20: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

14/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

SIS model dynamical system

dS

dt= bN + γ I −

I

N+ µ

)S

dI

dt= β

I

NS − (γ + µ) I

+ initial conditions

S - Population of susceptibleI - Population of infectedN - Total population

β - Transmission rateγ - Recovery rateb - Birth rateµ - Mortality rate

Page 21: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

15/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

SIR model

bN Sµ

βI/NIµ

γRµ

Page 22: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

16/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

SIR model dynamical system

dS

dt= bN + γ I −

I

N+ µ

)S

dI

dt= β

I

NS − (γ + µ) I

dR

dt= γ I − µR

+ initial conditions

S - Population of susceptibleI - Population of infectedR - Population of recoveredN - Total population

β - Transmission rateγ - Recovery rateb - Birth rateµ - Mortality rate

Page 23: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

17/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

SEIR model

bN Sµ

βI/NEµ

αIµ

γRµ

Page 24: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

18/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

SEIR model dynamical system

dS

dt= bN − β I

NS − µ S

dE

dt= β

I

NS − (α + µ)E

dI

dt= αE − (γ + µ) I

dR

dt= γ I − µR

+ initial conditions

S - Population of susceptibleE - Population of exposedI - Population of infectiousR - Population of recoveredN - Total population

α - Incubation ratioβ - Transmission rateγ - Recovery rateb - Birth rateµ - Mortality rate

Page 25: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

19/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

SEIR-SEI model for Zika virus dynamics

human population

Sh

(βhI )v /Nv Ehαh Ih

γRh

vector population

Nδv Sv

δ

(βvI )h /Nh Ev

δ

αv Iv

δ

A. J. Kucharski et al. Transmission Dynamics of Zika Virus in Island Populations: A Modelling

Analysis of the 2013–14 French Polynesia Outbreak. PLOS Neglected Tropical Diseases, 2016.

Page 26: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

20/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Associated dynamical system

dSh

dt= −βh

IvNv

Sh

dEh

dt= βh

IvNv

Sh − αh Eh

dIhdt

= αh Eh − γ Ih

dRh

dt= γ Ih

dSv

dt= δ − βv Sv

IhNh− δ Sv

dEv

dt= βv Sv

IhNh− (δ + αv )Ev

dIvdt

= αv Ev − δ Iv

dC

dt= αh Eh

+ initial conditions

S - Population of susceptibleV - Population of vaccinatedE - Population of exposedI - Population of infectiousR - Population of recovered

C - Infected humans cumulativeN - Total populationα - Incubation ratioβ - Transmission rateγ - Recovery rate

δ - Vector lifespan ratioσ - Infection rate of vaccinatedν - Fraction of vaccinatedh - Human-relatedv - Vector-related

A. J. Kucharski et al. Transmission Dynamics of Zika Virus in Island Populations: A Modelling

Analysis of the 2013–14 French Polynesia Outbreak. PLOS Neglected Tropical Diseases, 2016.

Page 27: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

21/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Model parameters and outbreak data

open scientific literature

Brazilian health system

parameter value unit

αh 1/5.9 days−1

αv 1/9.1 days−1

γ 1/7.9 days−1

δ 1/11 days−1

βh 1/11.3 days−1

βv 1/8.6 days−1

N 206× 106 people

Page 28: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

22/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Time series of susceptible humans

10 20 30 40 50time (weeks)

2057.0

2057.8

2058.5

2059.3

2060.0

num

ber

of p

eopl

e

105

SIS model

10 20 30 40 50time (weeks)

2057.0

2057.8

2058.5

2059.3

2060.0

num

ber

of p

eopl

e

105

SIR model

10 20 30 40 50time (weeks)

2057.0

2057.8

2058.5

2059.3

2060.0

num

ber

of p

eopl

e

105

SEIR model

10 20 30 40 50tempo (semanas)

2057.0

2057.8

2058.5

2059.3

2060.0

núm

ero

de p

esso

as

105

SEIR-SEI model

Page 29: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

23/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Time series of infectious humans

10 20 30 40 50time (weeks)

0.0

7.5

15.0

22.5

30.0

num

ber

of p

eopl

e

103

SIS model

10 20 30 40 50time (weeks)

0.0

7.5

15.0

22.5

30.0

num

ber

of p

eopl

e

103

SIR model

10 20 30 40 50time (weeks)

0.0

7.5

15.0

22.5

30.0

num

ber

of p

eopl

e

103

SEIR model

10 20 30 40 50time (weeks)

0.0

7.5

15.0

22.5

30.0

num

ber

of p

eopl

e

103

SEIR-SEI model

Page 30: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

24/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Quantities of interest (QoI)

mathematical

model

parameters modelresponse

observation

operator

observable

QoI 1: cumulative number of infectious

Ct =

∫ t

τ=0αh Eh(τ) dτ

QoI 2: new infectious cases

Nw = Cw − Cw−1, (w = 2, 3, · · · , 52)

N1 = C1

Page 31: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

25/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Time series for QoI’s (SEIR-SEI model)

10 20 30 40 50time (weeks)

0

100

200

300

num

ber

of p

eopl

e

103

datamodel

cumulative number of infectious

0

6

13

19

25

num

ber

of p

eopl

e

103

10 20 30 40 50time (weeks)

datamodel

new infectious cases

Page 32: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

25/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Time series for QoI’s (SEIR-SEI model)

10 20 30 40 50time (weeks)

0

100

200

300

num

ber

of p

eopl

e

103

datamodel

cumulative number of infectious

0

6

13

19

25

num

ber

of p

eopl

e

103

10 20 30 40 50time (weeks)

datamodel

new infectious cases

Mathematical model doesnot represent the reality

with this set of parameters

Page 33: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

26/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Section 3

Inverse Problem

Page 34: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

27/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Calibration of the model

Uncalibrated Model

Model

Observations

Calibrated Model

Model

Observations

Page 35: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

28/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Forward and inverse problem

forward problem

inverse problem

mathematical

model

parameters

fittingparameters

observable

observations

Page 36: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

29/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Inverse problem formulation

data space: F = RM

parameter space: C ={α ∈ R12 | αmin ≤ α ≤ αmax

}observation vector: y = (y1, y2, · · · , yM) ∈ F

prediction vector: φ (α) = (φ1, φ2, · · · , φM) ∈ F

misfit function:

J(α) = ||y − φ (α) ||2F =M∑

m=1

∣∣∣ym − φm (α)∣∣∣2

Find a vector of parameters such that

α∗ = arg minα∈C

J(α).

=⇒ Q-wellposed: existence, uniqueness, unimodality and local stability

=⇒ Solution algorithm: bounded trust-region-reflective

Page 37: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

29/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Inverse problem formulation

data space: F = RM

parameter space: C ={α ∈ R12 | αmin ≤ α ≤ αmax

}observation vector: y = (y1, y2, · · · , yM) ∈ F

prediction vector: φ (α) = (φ1, φ2, · · · , φM) ∈ F

misfit function:

J(α) = ||y − φ (α) ||2F =M∑

m=1

∣∣∣ym − φm (α)∣∣∣2

Find a vector of parameters such that

α∗ = arg minα∈C

J(α).

=⇒ Q-wellposed: existence, uniqueness, unimodality and local stability

=⇒ Solution algorithm: bounded trust-region-reflective

Page 38: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

29/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Inverse problem formulation

data space: F = RM

parameter space: C ={α ∈ R12 | αmin ≤ α ≤ αmax

}observation vector: y = (y1, y2, · · · , yM) ∈ F

prediction vector: φ (α) = (φ1, φ2, · · · , φM) ∈ F

misfit function:

J(α) = ||y − φ (α) ||2F =M∑

m=1

∣∣∣ym − φm (α)∣∣∣2

Find a vector of parameters such that

α∗ = arg minα∈C

J(α).

=⇒ Q-wellposed: existence, uniqueness, unimodality and local stability

=⇒ Solution algorithm: bounded trust-region-reflective

Page 39: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

30/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Calibrated model response

10 20 30 40 50time (weeks)

0

100

200

300

num

ber

of p

eopl

e

103

datamodel

cumulative number of infectious

0

6

13

19

25

num

ber

of p

eopl

e

103

10 20 30 40 50time (weeks)

datamodel

new infectious cases

Page 40: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

30/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Calibrated model response

10 20 30 40 50time (weeks)

0

100

200

300

num

ber

of p

eopl

e

103

datamodel

cumulative number of infectious

0

6

13

19

25

num

ber

of p

eopl

e

103

10 20 30 40 50time (weeks)

datamodel

new infectious cases

Robust predictions demandssome kind of “certification”.

Page 41: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

31/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Section 4

Sensitivity Analysis

Page 42: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

32/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Parametric study for βh

10 20 30 40 50time (weeks)

0.0

100.0

200.0

300.0

400.0

num

ber

of p

eopl

e

104

85%90%95%nominal105%110%

cumulative number of infectious

0.0

25.0

50.0

75.0

100.0

num

ber

of p

eopl

e

103

10 20 30 40 50time (weeks)

85%90%95%nominal105%110%

new infectious cases

Page 43: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

33/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Parametric study for αh

10 20 30 40 50time (weeks)

0.0

50.0

100.0

150.0

200.0

num

ber

of p

eopl

e

103

85%90%95%nominal105%110%

cumulative number of infectious

0.0

7.5

15.0

22.5

30.0

num

ber

of p

eopl

e

103

10 20 30 40 50time (weeks)

85%90%95%nominal105%110%

new infectious cases

Page 44: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

34/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Parametric study for γ

10 20 30 40 50time (weeks)

0.0

50.0

100.0

150.0

200.0

num

ber

of p

eopl

e

103

85%90%95%nominal105%110%

cumulative number of infectious

0.0

6.3

12.5

18.8

25.0

num

ber

of p

eopl

e

103

10 20 30 40 50time (weeks)

85%90%95%nominal105%110%

new infectious cases

Page 45: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

35/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Parametric study for βv

10 20 30 40 50time (weeks)

0.0

50.0

100.0

150.0

200.0

num

ber

of p

eopl

e

104

85%90%95%nominal105%110%

cumulative number of infectious

0.0

12.5

25.0

37.5

50.0

num

ber

of p

eopl

e

103

10 20 30 40 50time (weeks)

85%90%95%nominal105%110%

new infectious cases

Page 46: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

36/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Parametric study for αv

10 20 30 40 50time (weeks)

0.0

75.0

150.0

225.0

300.0

num

ber

of p

eopl

e

103

85%90%95%nominal105%110%

cumulative number of infectious

0.0

7.5

15.0

22.5

30.0

num

ber

of p

eopl

e

103

10 20 30 40 50time (weeks)

85%90%95%nominal105%110%

new infectious cases

Page 47: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

37/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Parametric study for δ

10 20 30 40 50time (weeks)

0.0

75.0

150.0

225.0

300.0

num

ber

of p

eopl

e

103

85%90%95%nominal105%110%

cumulative number of infectious

0.0

6.3

12.5

18.8

25.0

num

ber

of p

eopl

e

103

10 20 30 40 50time (weeks)

85%90%95%nominal105%110%

new infectious cases

Page 48: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

38/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Variance-based sensitivity analysis

Mathematical model:

Y =M(X), Xi ∼ U(0, 1), (i.i.d.)

Hoeffding-Sobol’ decomposition:

Y =M0 +∑

1≤i≤nMi (Xi ) +

∑1≤i<j≤n

Mij(Xi ,Xj) + · · ·+M1···n(X1 · · ·Xn)

An orthogonal decomposition in terms of conditional expectations:

M0 = E {Y }Mi (Xi ) = E

{Y |Xi

}−M0

Mij(Xi ,Xj) = E{Y |Xi ,Xj

}−M0 −Mi −Mj

etc

Page 49: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

39/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Sobol’ indices

Total variance:

D = Var[M(X )

]=∑

u⊂{1,··· ,k}

Var[Mu(Xu)

]First order Sobol’ indices:

Si = Var[Mi (Xi )

]/D

(quantify the additive effect of each input separately)

Second order Sobol’ indices:

Sij = Var[Mij(Xi ,Xj)

]/D

(quantify interaction effect of inputs Xi and Xj)

Page 50: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

40/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Metamodelling via Polynomial Chaos

Assuming Y =M(X) has finite variance, then it admits aPolynomial Chaos expansion

Y =∑α∈Nk

yα Φα(X)

where

Φα(X): multivariate orthonormal polynomials

yα: real-valued coeficients to be determined

D. Xiu, and G. Karniadakis, The Wiener-Askey Polynomial Chaos for Stochastic Differential Equa-

tions. SIAM Journal on Scientific Computing, 24: 619-644, 2002.

Page 51: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

41/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

PC-based Sobol’ indices

For computational purposes, a truncated PCE is employed

Y ≈∑α∈A

yα Φα(X)

Thus, Sobol’ indices are given by

Su = Du/D =∑α∈Au

y2α

/∑α∈A\0

y2α

Au ={α ∈ A : i ∈ u⇐⇒ αi 6= 0}

Sobol’ indices of any order can be obtained, analytically, from thecoefficients of the PC expansion!

B. Sudret, Global sensitivity analysis using polynomial chaos expansions. Reliability Engineering &

System Safety, 2016, 93(7): 964–979, 2008.

Page 52: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

42/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Global sensitivity analysis: first order

Page 53: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

43/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Global sensitivity analysis: second order

Page 54: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

44/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Global sensitivity analysis: total order

Page 55: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

45/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Global sensitivity analysis: general overview

→ Two most relevant: δ and βH (75% variance around 7th EW )

→ Third most, γ, mainly by nonlinear interactions with δ and βH

→ Parameters limited to nonlinear interactions have, in general,delayed effects (significant for EW > 15)

→ (sparsity-of-effects principle) Higher order interactions haveminor effect: 1st and 2nd are 99.8–96.7% variance on 5–10th EW

Around 7th EW → uncertainty propagation of {βh,δ}

Page 56: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

46/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Section 5

Uncertainty Quantification

Page 57: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

47/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Uncertainty Quantification (UQ) framework

Mathematical model:Y =M(X)

General steps for UQ:

1 Stochastic modeling−→ characterization of inputs uncertainties

(MaxEnt Principle)

2 Uncertainty propagation−→characterization of output uncertainties

(Monte Carlo Method)

3 Response certification−→ specification of reliability levels for predictions

(Nonparametric Statistical Inference)

C. Soize, Uncertainty Quantification: An Accelerated Course with Advanced Applications in Com-

putational Engineering, Springer, 2017.

Page 58: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

48/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Maximum Entropy Principle (MaxEnt)

Among all the probability distributions, consistent with the knowninformation about a random parameter, choose the one whichcorresponds to the maximum of entropy (MaxEnt).

MaxEnt distribution = most unbiased distribution

Entropy of the random variable X is defined as

S (pX ) = −∫RpX (x) ln pX (x) dx ,

“measure for the level of uncertainty”

Page 59: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

49/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

MaxEnt optimization problem

Maximize

S (pX ) = −∫RpX (x) ln pX (x) dx ,

respecting N + 1 constraints (known information) given by∫Rgk (X ) pX (x) dx = mk , k = 0, · · · ,N,

where the gk are known real functions, with g0(x) = 1.

MaxEnt general solution

pX (x) = 1K(x) exp (−λ0) exp

− N∑k=1

λk gk(x)

Page 60: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

49/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

MaxEnt optimization problem

Maximize

S (pX ) = −∫RpX (x) ln pX (x) dx ,

respecting N + 1 constraints (known information) given by∫Rgk (X ) pX (x) dx = mk , k = 0, · · · ,N,

where the gk are known real functions, with g0(x) = 1.

MaxEnt general solution

pX (x) = 1K(x) exp (−λ0) exp

− N∑k=1

λk gk(x)

Page 61: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

50/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Philosophy of MaxEnt Principle

The parameter of interesthas a unknown distribution

Distributions arbitrarilychosen can be coarse andbiased

A conservative strategy isto use the most unbiased(MaxEnt) distribution

real

Page 62: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

50/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Philosophy of MaxEnt Principle

The parameter of interesthas a unknown distribution

Distributions arbitrarilychosen can be coarse andbiased

A conservative strategy isto use the most unbiased(MaxEnt) distribution

realbiased

Page 63: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

50/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Philosophy of MaxEnt Principle

The parameter of interesthas a unknown distribution

Distributions arbitrarilychosen can be coarse andbiased

A conservative strategy isto use the most unbiased(MaxEnt) distribution

realbiased

unbiased

Page 64: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

51/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Uncertainty propagation through the model

Monte Carlo Method

pre-processing

generationof scenarios

X1

...

XM

known FX

generator ofrandom vector X

processing

solution ofmodel equations

U = h(X)

computationalmodel

deterministic solverof u = h(x)

post-processing

computationof statistics

U1 = h(X1)

...

UM = h(XM )

estimated FU

statistical inferenceto estimate convergenceand distribution of U

Page 65: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

52/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Probabilistic model 1

Random variables: βh and δ

Available information: support and mean (nominal) value

MaxEnt distribution

pX (x) = 1[a,b](x) exp (−λ0 − λ1 x)

“truncated exponential (2 parameters)”

Page 66: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

53/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Confidence band for the QoIs

10 20 30 40 50

time (weeks)

0.0

1.5

3.0

4.5

6.0

num

ber

of p

eopl

e

105

cumulative number of infectious

10 20 30 40 50

time (weeks)

0.0

0.8

1.5

2.3

3.0

num

ber

of p

eopl

e

104

95% prob. mean nominal data

new infectious cases

Page 67: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

54/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Probabilistic model 2

Random variables: βh and δ

Available information: support, mean (nominal) value and dispersion

MaxEnt distribution

pX (x) = 1[a,b](x) exp(−λ0 − λ1 x − λ2 x

2)

“truncated exponential (3 parameters)”

Page 68: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

55/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Confidence band for the QoIs

βh dispersion = 5% , δ dispersion = 5%

10 20 30 40 50

time (weeks)

0.0

1.5

3.0

4.5

6.0

num

ber

of p

eopl

e

105

cumulative number of infectious

10 20 30 40 50

time (weeks)

0.0

0.8

1.5

2.3

3.0

num

ber

of p

eopl

e

104

95% prob. mean nominal data

new infectious cases

Page 69: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

55/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Confidence band for the QoIs

βh dispersion = 10% , δ dispersion = 5%

10 20 30 40 50

time (weeks)

0.0

1.5

3.0

4.5

6.0

num

ber

of p

eopl

e

105

cumulative number of infectious

10 20 30 40 50

time (weeks)

0.0

0.8

1.5

2.3

3.0

num

ber

of p

eopl

e

104

95% prob. mean nominal data

new infectious cases

Page 70: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

55/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Confidence band for the QoIs

βh dispersion = 10% , δ dispersion = 10%

10 20 30 40 50

time (weeks)

0.0

1.5

3.0

4.5

6.0

num

ber

of p

eopl

e

105

cumulative number of infectious

10 20 30 40 50

time (weeks)

0.0

0.8

1.5

2.3

3.0

num

ber

of p

eopl

e

104

95% prob. mean nominal data

new infectious cases

Page 71: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

56/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Probabilistic model 3

Random variables: βh, δ and σ

Available information for βh and δ: support, mean (nominal) value

Distribution for βh and βv

pX (x) = 1[a,b](x) exp(−λ0 − λ1 x − λ2 x

2)

Available information for σ: support

MaxEnt distribution for σ

pX (x) = 1[a,b](x)1

b − a

“uniform”

Page 72: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

57/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Confidence band for the QoIs

random dispersion ∼ U(5%, 10%)

10 20 30 40 50

time (weeks)

0.0

1.5

3.0

4.5

6.0

num

ber

of p

eopl

e

105

cumulative number of infectious

10 20 30 40 50

time (weeks)

0.0

0.8

1.5

2.3

3.0

num

ber

of p

eopl

e

104

95% prob. mean nominal data

new infectious cases

Page 73: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

58/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Confidence band for the QoIs

no dispersion

10 20 30 40 50

time (weeks)

0.0

1.5

3.0

4.5

6.0

num

ber

of p

eopl

e

105

10 20 30 40 50

time (weeks)

0.0

0.8

1.5

2.3

3.0

num

ber

of p

eopl

e

104

95% prob. mean nominal data

σ = {5%,5%}

10 20 30 40 50

time (weeks)

0.0

1.5

3.0

4.5

6.0

num

ber

of p

eopl

e

105

10 20 30 40 50

time (weeks)

0.0

0.8

1.5

2.3

3.0

num

ber

of p

eopl

e

104

95% prob. mean nominal data

σ = {10%,5%}

10 20 30 40 50

time (weeks)

0.0

1.5

3.0

4.5

6.0

num

ber

of p

eopl

e

105

10 20 30 40 50

time (weeks)

0.0

0.8

1.5

2.3

3.0nu

mbe

r of

peo

ple

104

95% prob. mean nominal data

σ = {10%,10%}

10 20 30 40 50

time (weeks)

0.0

1.5

3.0

4.5

6.0

num

ber

of p

eopl

e

105

10 20 30 40 50

time (weeks)

0.0

0.8

1.5

2.3

3.0

num

ber

of p

eopl

e

104

95% prob. mean nominal data

σ ∼ U(5%, 10%)

10 20 30 40 50

time (weeks)

0.0

1.5

3.0

4.5

6.0

num

ber

of p

eopl

e

105

10 20 30 40 50

time (weeks)

0.0

0.8

1.5

2.3

3.0

num

ber

of p

eopl

e

104

95% prob. mean nominal data

Page 74: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

59/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Evolution of QoIs PDFs

random dispersion ∼ U(5%, 10%)

0.0 1.5 3.0 4.5 6.0

number of people

0.0

0.4

0.7

1.1

1.5

prob

abili

ty

10-4

105

57101520

2530354552

cumulative number of infectious

0.0 0.8 1.5 2.3 3.0

number of people

0.0

0.8

1.5

2.3

3.0

prob

abili

ty

10-3

104

57101520

2530354552

new infectious cases

Page 75: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

60/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Time-averaged cumulative infectious

10-5

1.0 1.8 2.5 3.3 4.0 number of people

0.0

0.5

1.0

1.5

2.0

pro

babi

lity

dens

ity fu

nctio

n

105

PDFmeanmean std 95% prob.

10-5

1.0 1.8 2.5 3.3 4.0 number of people

0.0

0.5

1.0

1.5

2.0

pro

babi

lity

dens

ity fu

nctio

n

105

PDFmeanmean std 95% prob.

10-5

1.0 1.8 2.5 3.3 4.0 number of people

0.0

0.5

1.0

1.5

2.0

pro

babi

lity

dens

ity fu

nctio

n

105

PDFmeanmean std 95% prob.

no dispersion σ = {10%,10%} σ ∼ U(5%, 10%)

Page 76: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

61/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

(mean) Cumulative infectious CDF until EW 20

σ ∼ U(5%, 10%)

1.0 1.3 1.5 1.8 2.0

number of people

0.0

0.3

0.5

0.8

1.0

prob

abili

ty

100

105

Statistics of C

mean = 1,47× 105

std. dev. = 1,53× 104

skewness = 0.084kurtosis = 2.605

P(C ≥ c∗) = 87.10%

c∗ = 130,000

Half the maximum C (data)

Page 77: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

62/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

(mean) New cases CDF until 10th EW

σ ∼ U(5%, 10%)

1.0 1.3 1.5 1.8 2.0

number of people

0.0

0.3

0.5

0.8

1.0

prob

abili

ty

100

104

Statistics of Nw

mean = 1,57× 104

std. dev. = 1,35× 103

skewness = −0.032kurtosis = 2.656

P(Nw ≥ NC ∗) = 83.40%

NC∗ = 14,440

average NC (data) until EW 10

Page 78: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

63/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Section 6

Ongoing

Page 79: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

64/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Investigation of control strategies

Page 80: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

65/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

SVEIR-SEI model for Zika virus dynamics

human population

Sh

ν

Vh

(βhI )v /Nv

(σβhI )v /Nv

Ehαh Ih

γRh

vector population

Nδv Sv

δ

(βvI )h /Nh Ev

δ

αv Iv

δ

H. S. Rodrigues et al. Vaccination models and optimal control strategies to dengue. Mathematical

Biosciences, 247 (2014) 1–12.

Page 81: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

66/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Associated dynamical system

dSh

dt= −

(βh

IvNv

+ ν

)Sh

dVh

dt= νSh − σβh

IvNv

Vh

dEh

dt= βh (Sh + σ Vh)

IvNv−αh Eh

dIhdt

= αh Eh − γ Ih

dRh

dt= γ Ih

dSv

dt= δ − βv Sv

IhNh− δ Sv

dEv

dt= βv Sv

IhNh− (δ + αv )Ev

dIvdt

= αv Ev − δ Iv

dC

dt= αh Eh

+ initial conditionsS - Population of susceptibleV - Population of vaccinatedE - Population of exposedI - Population of infectiousR - Population of recovered

C - Infected humans cumulativeN - Total populationα - Incubation ratioβ - Transmission rateγ - Recovery rate

δ - Vector lifespan ratioσ - Infection rate of vaccinatedν - Fraction of vaccinatedh - Human-relatedv - Vector-related

H. S. Rodrigues et al. Vaccination models and optimal control strategies to dengue. Mathematical

Biosciences, 247 (2014) 1–12.

Page 82: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

67/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Time series for QoI’s (SVEIR-SEI model)

10 20 30 40 50time (weeks)

0

100

200

300

num

ber

of p

eopl

e

103

cumulative number of infectious

0

6

13

19

25

num

ber

of p

eopl

e

103

10 20 30 40 50time (weeks)

datamodel

new infectious cases

Page 83: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

68/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Quantification of model discrepancy

Page 84: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

69/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Calculation of model discrepancy

Conventional statistical calibration:

y︸︷︷︸truth

= f (x ,p)︸ ︷︷ ︸model

+ ε︸︷︷︸error

Novel approach:

y︸︷︷︸truth

≈ f (x ,pε)︸ ︷︷ ︸model

, pε =∑k

αk Φk(ξ)

Bayesian inversion to identify α

π(model | data)︸ ︷︷ ︸posterior

∝ π(data | model)︸ ︷︷ ︸likelihood

×π(model)︸ ︷︷ ︸prior

K. Sargsyan, H. N. Najm and R. Ghanem, On the statistical calibration of physical models.

International Journal of Chemical Kinetics, 47 (2015) 246-276.

Page 85: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

70/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Section 7

Final Remarks

Page 86: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

71/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Concluding remarks

Contributions:

Development of an epidemic model to describe Brazilianoutbreak of Zika virus

Calibration of this model with real epidemic data

Construction of a parametric probabilistic model ofuncertainties

Ongoing research:

Investigate the effectiveness of different control strategies

Quantify model discrepancy in a nonparametric way

Future directions:

Scenarios exploration with active subspace method

Data-driven identification of epidemiological models

Page 87: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

72/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Acknowledgments

Invitation for the talk:

Profa. Maria Eulalia Vares

Prof. Leandro Pimentel

Financial support:

Page 88: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

73/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Thank you for your attention!

[email protected]

www.americocunha.org

E. Dantas, M. Tosin and A. Cunha Jr,

Calibration of a SEIR–SEI epidemic model to describe Zika virus outbreak in Brazil,Applied Mathematics and Computation, 338: 249-259, 2018.https://doi.org/10.1016/j.amc.2018.06.024

E. Dantas, M. Tosin and A. Cunha Jr,

Uncertainty quantification in the nonlinear dynamics of Zika virus, 2019 (in preparation).https://hal.archives-ouvertes.fr/hal-02005320

Page 89: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

73/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

nominal parameters

Page 90: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

73/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Nominal parameters and initial conditions

α value unit

αh 1/5.9 days−1

αv 1/9.1 days−1

γ 1/7.9 days−1

δ 1/11 days−1

βh 1/11.3 days−1

βv 1/8.6 days−1

N 206× 106 people

S ih 205,953,959 people

E ih 8,201 people

I ih 8,201 people

R ih 29,639 people

S iv 0.99956 ——

E iv 2.2× 10−4 ——

I iv 2.2× 10−4 ——

Page 91: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

73/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Model response with nominal parameters

10 20 30 40 50time (weeks)

205.8

205.9

206.0

num

ber

of p

eopl

e

106

Susceptible humans

10 20 30 40 50time (weeks)

20

80

140

200

num

ber

of p

eopl

e

103

Recovered humans

5 10 15 20 25 30 35 40 45 50time (weeks)

0.99955

0.99970

0.99985

1.00000

prop

ortio

n of

vec

tors

100

Susceptible vectors

10 20 30 40 50time (weeks)

0

7

13

20

num

ber

of p

eopl

e

103

Exposed humans

10 20 30 40 50time (weeks)

0

100

200

300

num

ber

of p

eopl

e

103

datamodel

Cumulative infectious

10 20 30 40 50time (weeks)

0.0

0.8

1.7

2.5

prop

ortio

n of

vec

tors

10-4

Exposed vectors

10 20 30 40 50time (weeks)

0

1

2

3

num

ber

of p

eopl

e

104

Infectious humans

0

6

13

19

25

num

ber

of p

eopl

e

103

10 20 30 40 50time (weeks)

datamodel

New cases

10 20 30 40 50time (weeks)

0.0

0.8

1.7

2.5

prop

ortio

n of

vec

tors

10-4

Infectious vectors

Page 92: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

73/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Inverse Problem

Page 93: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

73/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Well-posedness

Let the forward map φ : E → F associates to each parametervector x , restricted to be on the set of admissible values C in theparameter space E , an observable vector in the data space F . TheNLS problem is Quadratically (Q-) wellposed if, and only if, φ(C )possesses an open neighborhood ϑ such that

1 Existence and uniqueness: for every z ∈ ϑ, the inverseproblem has a unique solution x

2 Unimodality: for every z ∈ ϑ, the objective function x J(x)has no parasitic stationary point

3 Local stability: the mapping z x is locally Lipschitzcontinuous from (ϑ, || · ||F ) to (C , | · ||E ).

G. Chavent. Nonlinear Least Squares for Inverse Problems: Theoretical Foundations and

Step-by-Step Guide for Applications. Springer, 2010.

Page 94: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

73/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Well-posedness

Theorem

Let the follow finite dimension minimum set of hypothesis hold:

E = finite dimensional vector space, with norm || · ||E ,C = closed, convex subset of E ,

Cη = convex open neighborhood of C in E ,

F = Hilbert space, with norm || · ||F ,z ∈ F ,

φ : Cη F is twice differentiable along segments of Cη,

and: V =∂

∂tφ((1− t)x0 + tx1),A =

∂2

∂t2φ((1− t)x0 + tx1)

are continuous functions of x0, x1 ∈ Cη and t ∈ [0, 1].

Then, if moreover C is small enough for the deflection condition θ ≤ π/2 to

hold, x is OLS-identifiable on C , or equivalently: the NLS problem is

Q-wellposed on C .

G. Chavent. Nonlinear Least Squares for Inverse Problems: Theoretical Foundations and

Step-by-Step Guide for Applications. Springer, 2010.

Page 95: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

73/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Calibrated parameters and initial conditions

α TRR input lb ub TRR output

αh 1/5.9 1/12 1/3 1/12αv 1/9.1 1/10 1/5 1/10γ 1/7.9 1/8.8 1/3 1/3δ 1/11 1/21 1/11 1/21βh 1/11.3 1/16.3 1/8 1/10.40βv 1/8.6 1/11.6 1/6.2 1/7.77

S ih 205,953,959 0.9× N N 205,953,534

E ih 8,201 0 10,000 6,827

I ih 8,201 0 10,000 10,000

S iv 0.9996 0.99 0.999 0.999

E iv 2.2× 10−4 0 1 4.14× 10−4

I iv 2.2× 10−4 0 1 0

Page 96: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

73/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Remarks on the calibration

Reasonable parameters

cumulative number of infectious overshoots data by only 5.74%

Initial infectious humans is approximately 10,000 individuals

Peak value of new infectious cases differs from the data maximumby 10.57%

Peak of new infectious cases occurs two weeks before the peakof the data

Page 97: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

73/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Comparison of infectious humans curves

10 20 30 40 50time (weeks)

0

1

2

3

num

ber

of p

eopl

e

105

First calibration

10 20 30 40 50time (weeks)

0

3

7

10

num

ber

of p

eopl

e

103

Second calibration

Page 98: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

73/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Comparison of infectious humans curves

10 20 30 40 50time (weeks)

0

20

40

60

num

ber

of p

eopl

e

103

10005000100002000030000400005000060000

Curves for various initial infectioushumans values

10 20 30 40 50time (weeks)

0

5

10

15

num

ber

of p

eopl

e

103

10005000100002000030000400005000060000

Zoom in the local peak regionof the image to the left

Page 99: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

73/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Comparison of cumulative and new infectious curves

10 20 30 40 50time (weeks)

0

167

333

500

num

ber

of p

eopl

e

103

Data10005000

100002000030000

400005000060000

cumulative number of infectious

10 20 30 40 50time (weeks)

0

10

20

30

num

ber

of p

eopl

e

103

Data10005000100002000030000400005000060000

new infectious cases

Page 100: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

73/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Calibrated model response

10 20 30 40 50time (weeks)

205.7

205.8

206.0

num

ber

of p

eopl

e

106

Susceptible humans

10 20 30 40 50time (weeks)

0

117

233

350

num

ber

of p

eopl

e

103

Recovered humans

5 10 15 20 25 30 35 40 45 50time (weeks)

0.99900

0.99933

0.99967

1.00000

prop

ortio

n of

vec

tors

100

Susceptible vectors

10 20 30 40 50time (weeks)

0

12

23

35

num

ber

of p

eopl

e

103

Exposed humans

10 20 30 40 50time (weeks)

0

100

200

300

num

ber

of p

eopl

e

103

datamodel

Cumulative infectious

10 20 30 40 50time (weeks)

0.0

1.5

3.0

4.5

prop

ortio

n of

vec

tors

10-4

Exposed vectors

10 20 30 40 50time (weeks)

0

3

7

10

num

ber

of p

eopl

e

103

Infectious humans

0

6

13

19

25

num

ber

of p

eopl

e

103

10 20 30 40 50time (weeks)

datamodel

New cases

10 20 30 40 50time (weeks)

0.0

0.6

1.2

1.8

prop

ortio

n of

vec

tors

10-4

Infectious vectors

Page 101: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

73/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Monte Carlo convergence

Page 102: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

73/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Study of convergence for MC simulation

Stochastic dynamic model:

U(t, ω) = f (U(ω, t))

Convergence metric for of Monte Carlo simulation:

conv(ns) =

1

ns

ns∑n=1

∫ tf

t0

‖ U(t, ωn) ‖2 dt

1/2

C. Soize, A comprehensive overview of a non-parametric probabilistic approach of model uncertainties

for predictive models in structural dynamics. Journal of Sound and Vibration, 288: 623–652, 2005.

Page 103: How to predict an epidemic of Zika virus?coloquiomea/apresentacoes/cunha_2019.pdf · C. Manore and M. Hyman, Mathematical Models for Fighting Zika Virus, SIAM News, May 2016. 10/

73/ 73

Introduction Dynamic Model Inverse Problem Sensitivity Analysis Uncertainty Quantification Ongoing Final Remarks

Study of convergence for MC simulation

0.00 0.34 0.68 1.02 number of MC realizations

38.910

38.915

38.921

38.926 c

onve

rgen

ce m

etric

108

103

Figure: MC convergence metric as function of the number of realizations.