Top Banner
High Voltage Engineering 10EE73 Dept. Of EEE, SJBIT Page 86 PART - B UNIT -5 GENERATION OF IMPULSE VOLTAGES AND CURRENTS: Introduction to standard lightning and switching impulse voltages. Analysis of single stage impulse generator-expression for Output impulse voltage. Multistage impulse generator working of Marx impulse. Rating of impulse generator. Components of multistage impulse generator. Triggering of impulse generator by three electrode gap arrangement. Triggering gap and oscillograph time sweep circuits. Generation of switching impulse voltage. Generation of high impulse current. 6 Hours DEFINITIONS:IMPULSEVOLTAGE Animpulsevoltageisaunidirectionalvoltagewhich,withoutappreciableoscillations,risesrapidlyto amaximumvalueandfallsmoreorlessrapidlytozeroFig.5.4.Themaximumvalueiscalledthepeak value of the impulse and the impulse voltage is specified by this value. Small oscillations are tolerated, provided thattheiramplitudeislessthan5%ofthepeakvalueoftheimpulsevoltage.Incaseof oscillationsinthewaveshape,ameancurveshouldbeconsidered. Ifanimpulsevoltagedevelopswithoutcaus ingflashoverorpuncture,itiscalledafullim causingasuddencollapseoftheimpulsevoltage, itiscalledachoppedimpulsevoltage.Afullim- pulsevoltageischaracterisedbyitspeakvalueand itstwotimeintervals,thewavefrontandwavetail timeintervalsdefinedbelow: The wavefronttimeofanimpulsewaveis thetimetakenbythewavetoreachtoitsmaxi- mum value starting from zero value. Usually it is difficulttoidentifythestartandpeakpointsofthe A C 50% D 10% t 0 t 1 t 2 t 3 Fig.5.1Fullimpulsewave
92

High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

Mar 06, 2018

Download

Documents

duonghuong
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 86

PART - B

UNIT -5 GENERATION OF IMPULSE VOLTAGES AND CURRENTS: Introduction to standard

lightning and switching impulse voltages. Analysis of single stage impulse generator-expression for

Output impulse voltage. Multistage impulse generator working of Marx impulse. Rating of impulse

generator. Components of multistage impulse generator. Triggering of impulse generator by three

electrode gap arrangement. Triggering gap and oscillograph time sweep circuits. Generation of

switching impulse voltage. Generation of high impulse current.

6 Hours

DEFINITIONS:IMPULSEVOLTAGE

Animpulsevoltageisaunidirectionalvoltagewhich,withoutappreciableoscillations,risesrapidlyto

amaximumvalueandfallsmoreorlessrapidlytozeroFig.5.4.Themaximumvalueiscalledthepeak value of

the impulse and the impulse voltage is specified by this value. Small oscillations are tolerated, provided

thattheiramplitudeislessthan5%ofthepeakvalueoftheimpulsevoltage.Incaseof

oscillationsinthewaveshape,ameancurveshouldbeconsidered.

Ifanimpulsevoltagedevelopswithoutcaus

ingflashoverorpuncture,itiscalledafullim

causingasuddencollapseoftheimpulsevoltage,

itiscalledachoppedimpulsevoltage.Afullim-

pulsevoltageischaracterisedbyitspeakvalueand

itstwotimeintervals,thewavefrontandwavetail

timeintervalsdefinedbelow:

The wavefronttimeofanimpulsewaveis

thetimetakenbythewavetoreachtoitsmaxi- mum

value starting from zero value. Usually it is

difficulttoidentifythestartandpeakpointsofthe

A

C

50% D

10%

t0 t1 t2 t3

Fig.5.1Fullimpulsewave

Page 2: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 87

waveand,therefore,thewavefronttimeisspecifiedas4.25times(t2–t

1), wheret

2 isthetimeforthe

wavetoreachtoits90%ofthepeakvalueandt1

isthetimetoreach10%ofthepeakvalue.Since (t2–

t1)representsabout80%ofthewavefronttime,itismultipliedby4.25togivetotalwavefront time. The point

where the lineCB intersects the time axis is referred to be the nominal starting point of

thewave.

Thenominalwavetailtimeismeasuredbetweenthenominalstartingpointt0

andthepointon

thewavetailwherethevoltageis50%ofthepeakvaluei.e.wavefailtimeisexpressedas(t3–t

0).

Thenominalsteepnessofthewavefrontistheaveragerateofriseofvoltagebetweenthepoints

onthewavefrontwherethevoltageis10%and90%ofthepeakvaluerespectively.

ThestandardwaveshapespecifiedinBSSandISSisa1/50microsec.wavei.e.awavefrontof

1microsec.andawavetailof50microsec.Atoleranceofnotmorethan±50%onthedurationofthe

wavefrontand20%onthetimetohalfvalueonthewavetailisallowed.Thewaveiscompletely

specifiedas100kV,1/50microsec.where100kVisthepeakvalueofthewave.

The waveshaperecommendedbytheAmericanStandardAssociationis4.5/40microsec.with

permissiblevariationsof0.5microsec.onthewavefrontand±10microsec.onthewavetail.Here

wavefronttimeistakenas4.67timesthetimetakenbythewavetorisefrom30%to90%ofitspeak

valueandwavetailtimeiscomputedasinBSSorISSi.e.itisgivenas(t3 –t

0)Fig.5.4.

ChoppedWave

Ifanimpulsevoltageisappliedtoapieceofinsulationandifaflashoverorpunctureoccurscausing

suddencollapseoftheimpulsevoltage,itiscalledachoppedimpulsevoltage.Ifchoppingtakesplace

onthefrontpartofthewave,itisknownasfrontchoppedwave,Fig.5.2(a)else,itisknownsimplyas

achoppedwave,Fig.5.2(b).Again,ifchoppingtakesplaceonthefront,itisspecifiedbythepeak

valuecorrespondingtothechoppedvalueanditsnominalsteepnessistherateofriseofvoltagemeasuredbetwee

nthepointswherethevoltageis10%and90%respectivelyofthevoltageattheinstantofchopping.However,awa

vechoppedonthetailisspecifiedonthelinesoffullwave.

Page 3: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 88

V V

t

(a)

t

(b)

Fig.5.2 Choppedwaves.(a)Frontchoppedwave(b)Choppedwave

ImpulseFlashOverVoltage

Wheneveranimpulsevoltageisappliedtoaninsulatingmediumofcertainthickness,flashovermayor

maynottakeplace.Ifoutofatotalofsaytenapplicationsofimpulsevoltageabout5ofthemflashover

thentheprobabilityofflashoverwiththatpeakvoltageoftheimpulsevoltageis50%.Therefore,a50

percentimpulseflashovervoltageisthepeakvalueofthatimpulseflashovervoltagewhichcauses

flashoveroftheobjectundertestforabouthalfthenumberofapplicationsofimpulses.However,itis

tobenotedthattheflashoveroccursataninstantsubsequenttotheattainmentofthepeakvalue.The

flashoveralsodependsuponthepolarity,durationofwavefrontandwavetailsoftheappliedimpulse voltages.

Iftheflashoveroccursmorethan50%ofthenumberofapplications,itisdefinedasimpulse

flashovervoltageinexcessof50%.

Theimpulseflashovervoltageforflashoveronthewavefrontisthevalueoftheimpulse

voltageattheinstantofflashoveronthewavefront.

ImpulsePunctureVoltage

Theimpulsepuncturevoltageisthepeakvalueoftheimpulsevoltagewhichcausespunctureofthe

materialwhenpunctureoccursonthewavetailandisthevalueofthevoltageattheinstantofpuncture

whenpunctureoccursonthewavefront.

ImpulseRatioforFlashOver

Theimpulseratioforflashoveristheratioofimpulseflashovervoltagetothepeakvalueofpower

frequencyflashovervoltage.

Theimpulseratioisnotaconstantforanyparticularobject,butdependsupontheshapeand

polarityoftheimpulsevoltage,thecharacteristicsofwhichshouldbespecifiedwhenimpulseratiosare quoted.

ImpulseRatioforPuncture

Theimpulseratioforpunctureistheratiooftheimpulsepuncturevoltagetothepeakvalueofthe

powerfrequencypuncturevoltage.

Page 4: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 89

IMPULSEGENERATORCIRCUITS

Fig.5.3representsanexactequivalentcircuitofasinglestageimpulsegeneratoralongwithatypical load.

C1

isthecapacitanceofthegeneratorchargedfromad.c.sourcetoasuitablevoltagewhich

causesdischargethroughthespheregap.ThecapacitanceC1

mayconsistofasinglecapacitance,in

whichcasethegeneratorisknownasasinglestagegeneratororalternativelyifC1isthetotalcapacitance

ofagroupofcapacitorschargedinparallelandthendischargedinseries,itisthenknownasamultistage

generator.

Fig.5.3Exactequivalentcircuitofasinglestageimpulsegeneratorwithatypicalload

L1

istheinductanceofthegeneratorandtheleadsconnectingthegeneratortothedischarge

circuitandisusuallykeptassmallaspossible.TheresistanceR1consistsoftheinherentseriesresistance

ofthecapacitancesandleadsandoftenincludesadditionallumpedresistanceinsertedwithinthegenerator

fordampingpurposesandforoutputwaveformcontrol.L3,R

3 are theexternalelementswhichmaybe

connectedatthegeneratorterminalforwaveformcontrol.R2

andR4

control thedurationofthewave. However,

R4 alsoservesasapotentialdividerwhenaCROisusedformeasurementpurposes.C

2andC

4

representthecapacitancestoearthofthehighvoltagecomponentsandleads.C4

alsoincludesthe

capacitanceofthetestobjectandofanyotherloadcapacitancerequiredforproducingtherequired

waveshape.L4representstheinductanceofthetestobjectandmayalsoaffectthewaveshapeappreciably.

Usuallyforpracticalreasons,oneterminaloftheimpulsegeneratorissolidlygrounded.The

polarityoftheoutputvoltagecanbechangedbychangingthepolarityofthed.c.chargingvoltage.

Fortheevaluationofthevariousimpulsecircuitelements,theanalysisusingtheequivalent circuit of

Fig. 5.3 is quite rigorous and complex. Two simplified but more practical forms of impulse

generatorcircuitsareshowninFig.5.4(a)and(b).

G R1 G

Page 5: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 90

C1 V0

i (t)

R2 C2

v(t)

C1 R2

R1

C1 v(t)

(a) (b)

Fig.5.4Simplifiedequivalentcircuitofanimpulsegenerator

Thetwocircuitsarewidelyusedanddifferonlyinthepositionofthewavetailcontrolresistance

R4.

WhenR2isontheloadsideofR

1(Fig.a)thetworesistancesformapotentialdividerwhichreduces

theoutputvoltagebutwhenR2 isonthegeneratorsideof R

1 (Fig.b)thisparticularlossofoutput voltageisabsent.

TheimpulsecapacitorC1ischargedthroughachargingresistance(notshown)toad.c.voltage

V0andthendischargedbyflashingovertheswitchinggapwithapulseofsuitablevalue.Thedesired

impulsevoltageappearsacrosstheloadcapacitanceC4.Thevalueofthecircuitelementsdetermines

theshapeoftheoutputimpulsevoltage.Thefollowinganalysiswillhelpusinevaluatingthecircuit

parametersforachievingaparticularwaveshapeoftheimpulsevoltage.

Table5.1

Valuesofαandβfortypicalwaveform

Wave α β

0.5/5

1/5

1/10

4.5/40

1/50

4.080

4.557

4.040

4.776

5.044

5.922

4.366

4.961

4.757

5.029

Page 6: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 91

Table5.2

Calculationfora1/50microsec.wave

Timein

microsec. e–0.015t

e–6.073t (2)–(3) 4.01749(4)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.8

4.0

4.1

4.2

4.0

10.0

50

48

47

4.0

0.998501

0.9970045

0.9955101

0.9940179

0.992528

0.9910403

0.9880717

0.9851119

0.9836353

0.982116

0.9704455

0.8607079

0.4723665

0.4867522

0.4941085

4.0

0.5448199

0.2968287

0.1617181

0.0881072

0.0480026

0.0261557

0.0077628

0.002342

0.0012554

0.00068396

5.3095×10–6

0.0

0.0

0.0

0.0

0.00

0.45368

0.7001757

0.8337919

0.9059106

0.9445253

0.9648875

0.9803088

0.9828076

0.9823798

0.981477

0.970445

0.8607079

0.4723665

0.4867522

0.4941085

0.0

0.4616148

0.71242

0.8483749

0.9217549

0.961045

0.9817633

0.9974577

4.0000

0.995616

0.998643

0.987418

0.87576

0.4806281

0.49526

0.5627

Table5.4

Approximatecapacitanceofsomeequipments

Equipment Capacitance γ

Lineinsulators,pininsulators

Bushings

Currenttransformers

Powertransformersupto1MVA

Powertransformersupto50MVA

Powertransformersabove100MVA

Cablesamplesfor10mlength

Experimentalsetupmeasuringupto100KV

Capacitor,leadsfora.c.testvoltageupto1000KV

25pF

150to400pF

200to600pF

1000to2000pF

10,000pF

30,000pF

2500pF

100pF

1000pF

1000

64.5

44.67

14.5

4.5

0.83

10.0

250

25

Page 7: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 92

MULTISTAGEIMPULSEGENERATORCIRCUIT

Inordertoobtainhigherandhigherimpulsevoltage,asinglestagecircuitisinconvenientforthe

followingreasons:

(i)Thephysicalsizeofthecircuitelementsbecomesverylarge.

(ii)Highd.c.chargingvoltageisrequired.

(iii)Suppression of corona discharges from the structure and leads during the charging period is

difficult.

(iv)Switchingofvaryhighvoltageswithsparkgapsisdifficult.

In1923E.Marxsuggestedamultipliercircuitwhichiscommonlyusedtoobtainimpulsevoltages

withashighapeakvalueaspossibleforagivend.c.chargingvoltage.

Dependinguponthechargingvoltageavailableandtheoutputvoltagerequiredanumberof

identicalimpulsecapacitorsarechargedinparallelandthendischargedinseries,thusobtaininga

multipliedtotalchargingvoltagecorrespondingtothenumberofstages.Fig.5.7showsa3-stageimpulse

generatorcircuitduetoMarxemploying‘b’circuitconnections.TheimpulsecapacitorsC1arecharged

tothe charging voltage V0throughthehighchargingresistors R

cinparallel. When all the gapsGbreak

down,theC1′capacitancesareconnectedinseriessothatC

2 ischargedthroughtheseriesconnection

ofallthewavefrontresistancesR1′andfinallyallC

1′andC

2 willdischargethroughtheresistorsR

2′

andR1′.UsuallyR

c >>R

2 >>R

4.

IfinFig.5.7thewavetailresistors R2′ineachstageareconnectedinparalleltotheseries

combinationofR1′,GandC

1′,animpulsegeneratoroftypecircuit‘a’isobtained.

Inorder that the Marx circuit operates consistently it is essential to adjust the distances between

variousspheregapssuchthatthefirstgapG1

is onlyslightlylessthanthatofG2

and soon.Ifisalso

necessarythattheaxesofthegapsGbeinthesameverticalplanesothattheultravioletradiationsdue

tosparkinthefirstgapG,willirradiatetheothergaps.Thisensuresasupplyofelectronsreleasedfrom the

gapelectronstoinitiatebreakdownduringtheshortperiodwhenthegapsaresubjectedto overvoltages.

Page 8: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 93

Thewavefrontcontrolresistancecanhavethreepossiblelocations(i)entirelywithinthegenerator

(ii)entirelyoutsidethegenerator(iii)partlywithinandpartlyoutsidethegenerator.

Thefirstarrangementisunsatisfactoryastheinductanceandcapacitanceoftheexternalleads

andtheloadformanoscillatorycircuitwhichrequirestobedampedbyanexternalresistance.The

secondarrangementisalsounsatisfactoryasasingleexternalfrontresistancewillhavetowithstand,

eventhoughforaveryshorttime,thefullratedvoltageandtherefore,willturnouttobeinconveniently long and

would occupy much space. A compromise between the two is the third arrangement as shown

inFig.5.7andthusboththe“spaceeconomy”anddampingofoscillationsaretakencareof.

ItcanbeseenthatFig.5.7canbereducedtothesinglestageimpulsegeneratorofFig.5.4 (b).

Afterthegeneratorhasfired,thetotaldischargecapacitanceC1

maybegivenas

1 n

1

theequivalentfrontresistance

C1

∑C1′

n

R1 =∑R1′ +R1″

Page 9: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 94

andtheequivalenttailcontrolresistance

n

R2 =∑R2′

wherenisthenumberofstages.

GoodlethassuggestedanothercircuitshowninFig.5.8,forgenerationofimpulsevoltage

wheretheloadisearthedduringthechargingperiod,withoutthenecessityforanisolatinggap.The

impulseoutputvoltagehasthesamepolarityasthechargingvoltageiscaseofMarxcircuit,itis

reversedincaseofGoodletcircuit.Also,ondischarge,bothsidesofthefirstsparkgapareraisedtothe

chargingvoltageintheMarxcircuitbutincaseofGoodletcircuittheyattainearthpotential.

Fig.5.8Basicgoodletcircuit

TRIGGERINGANDSYNCHRONISATIONOFTHEIMPULSEGENERATOR

Impulsegeneratorsarenormallyoperatedinconjunctionwithcathoderayoscillographsformeasureme

nt andforstudyingtheeffectofimpulsewavesontheperformanceoftheinsulationsoftheequipments.

Sincetheimpulsewavesareofshorterduration,itisnecessarythattheoperationofthegeneratorand

theoscillograph should be synchronized accurately and if the wave front of the wave is to be recorded

accurately,thetimesweepcircuitoftheoscillographshouldbeinitiatedatatimeslightlybeforethe

impulsewavereachesthedeflectingplates.

If theimpulsegeneratoritselfinitiatesthesweepcircuitoftheoscillograph,itisthennecessary

toconnect a delay cable between the generator or the potential divider and the deflecting plates of the

oscilloscope so that the impulse wave reaches the plates at a controlled time after the sweep has been

tripped. However, the use of delay cable leads to inaccuracies in measurement. For this reason, some

trippingcircuitshavebeendevelopedwherethesweepcircuitisoperatedfirstandthenafteratimeof

about0.1to0.5µsec.thegeneratoristriggered.

Oneofthemethodsinvolvestheuseofathree-spheregapinthefirststageofthegeneratoras shown in

Fig. 5.10. The spacing between the spheres is so adjusted that the two series gaps are able to

withstandthechargingvoltageoftheimpulsegenerator.Ahighresistanceisconnectedbetweenthe

outerspheresanditscentrepointisconnectedtothecontrolspheresothatthevoltagebetweenthe

Page 10: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 95

outerspheresisequallydividedbetweenthetwogaps.Ifthegeneratorisnowchargedtoavoltage slightly less

than the breakdown voltage of the gaps, the breakdown can be achieved at any instant by

applyinganimpulseofeitherpolarityandofapeakvoltagenotlessthanonefifthofthecharging

voltagetothecontrolsphere.

Theoperationisexplainedasfollows.TheswitchSisclosedwhichinitiatesthesweepcircuitof the

oscillograph. The same impulse is applied to the grid of the thyratron tube. The inherent time delay

ofthethyratronensuresthatthesweepcircuitbeginstooperatebeforethestartofthehighvoltageimpulse.

Afurtherdelaycanbeintroducedifrequiredbymeansofacapacitance-resistancecircuitR1C

4.The

trippingimpulseisappliedthroughthecapacitorC4.Duringthechargnigperiodofthegeneratorthe

anodeofthethyratrontubeisheldatapositivepotentialofabout20kV.Thegridisheldatnegativepotentialwithth

ehelpofbatteryBsothatitdoesnotconductduringthechargingperiod.Astheswitch

Sisclosed,thetriggerpulseisappliedtothegridofthethyratrontubewhichconductsandanegative

impulseof20kVisappliedtothecentralspherewhichtriggerstheimpulsegenerator.

Page 11: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 96

Fig.5.11showsatrigatrongapwhichisusedasthefirstgapoftheimpulsegeneratorand

consistsessentiallyofathree-electrodegap.Thehighvoltageelectrodeisasphereandtheearthed electrode

may be a sphere, a semi-sphere or any other configuration which gives homogeneous electric

field.Asmallholeisdrilledintotheearthedelectrodeintowhichametalrodprojects.Theannulargap

betweentherodandthesurroundinghemisphereisabout1mm.Aglasstubeisfittedovertherod

electrodeandissurroundedbyametalfoilwhichisconnectedtotheearthedhemisphere.Themetal

rodortriggerelectrodeformsthethirdelectrode,beingessentiallyatthesamepotentialasthedrilled electrode,

as it is connected to it through a high resistance, so that the control or tripping pulse can be

appliedbetweenthesetwoelectrodes.Whenatrippingpulseisappliedtotherod,thefieldisdistorted

inthemaingapandthelatterbreaksdownatavoltageappreciablylowerthanthatrequiredtocauseits breakdown

in the absence of the tripping pulse. The function of the glass tube is to promote corona discharge round

the rod as this causes photoionisation in the annular gap and the main gap and

consequentlyfacilitatestheirrapidbreakdown.

Fig.5.11Thetrigatronsparkgap

For single stage or multi-stage impulse generators the trigatron gaps have been found quite

satisfactoryandtheserequireatrippingvoltageofabout5kVofeitherpolarity.Thetrippingcircuits

usedtodayarecommerciallyavailableandprovideingeneraltwoorthreetrippingpulsesoflower

amplitudes.Fig.5.12showsatypicaltrippingcircuit.Thecapacitor C1

ischargedthroughahigh

resistanceR4.AstheremotelycontrolledswitchSisclosed,apulseisappliedtothesweepcircuitofthe

oscillographthroughthecapacitorC5.AtthesametimethecapacitorC

2

ischargedupandatriggeringpulseisappliedtothetriggerelectrodeofthetrigatron.Therequisitedelayintriggeri

Page 12: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 97

ngthegenerator

canbeprovidedbysuitablyadjustingthevaluesofR2andC

4.TheresidualchargeonC

2canbedischarged

throughahighresistanceR5.Thesedayslasersarealsousedfortrippingthesparkgap.

Thetrigatronalsohasaphaseshiftingcircuitassociatedwithitsoastosynchronisetheinitiation

timewithanexternalalternatingvoltage.Thus,itispossibletocombinehighalternatingvoltagetests

withasuperimposedimpulsewaveofadjustablephaseangle.

Fig.5.12Atypicaltrippingcircuitofatrigatron

Thetrigatronisdesignedsoastopreventtheoverchargingoftheimpulsecapacitorsincaseof

anaccidentalfailureoftriggering.Anindicatingdeviceshowswhetherthegeneratorisgoingtofire

correctlyornot.Anadditionalfeedbackcircuitprovidesforasafewavechoppingandoscillograph

release,independentoftheemittedcontrolpulse.

IMPULSECURRENTGENERATION

Theimpulsecurrentwaveisspecifiedonthesimilarlinesasanimpulsevoltagewave.Atypicalimpulse

currentwaveisshowninFig.5.15.

High currentimpulsegeneratorsusually

consist of a large number of capacitors

connected in parallel to the common discharge

path.Atypicalimpulsecurrentgeneratorcircuit

isshowninFig.5.14.

Theequivalentcircuitofthegenerator

isshowninFig.5.15andapproximatestothat

ofacapacitanceCchargedtoavoltageV0whichcan

be consideredtodischargethroughan

inductanceLandaresistanceR.Inpracticeboth L

and Raretheeffectiveinductanceand

resistance of the leads, capacitors and the test

objects.

Fig.5.13Atypicalimpulsecurrentwave

AnalysisofImpulseCurrentGeneratorRefertoFig.5.15

AfterthegapSistriggered,theLaplacetransformcurrentisgivenas

Page 13: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 98

F

=

G

V0 1 I(s)=

s R+sL+1/Cs

=V

. 1

L s2 +R/Ls+1/LC

=V

. L

1

(s +α)2 +ω2

whereα= R

F 1 and ω= R2I 1/2

2L LC 4L2

1

H

R2CI

J

1/2

1

2 1/2

or ω= 1− LC

R C where ν=

2 L

4LK = (1–ν) LC

TakingtheinverseLaplacewehavethecurrent

i(t) = V

ωL

e–αt

sinωt

(5.25)

Forcurrenti(t)tobemaximumdi(t)

0

di(t) V

= dt ωL

dt

[ωe–αtcosωt–αe–αtsinωt]=0

= V

e–αt[ωcosωt–αsinωt]=0 ωL

Page 14: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 99

1.Definetheterms(i)Impulsevoltages;(ii)Choppedwave;(iii)Impulseflashovervoltage;(iv)Impulse

puncturevoltage;(v)Impulseratioforflashover;(vi)Impulseratioforpuncture.

2.DrawaneatexactequivalentcircuitofanImpulseGeneratorandindicatethesignificanceofeachparameter beingused.

3.Drawandcomparethetwosimplifiedequivalentcircuitsoftheimpulsegeneratorcircuits(a)and(b).

4. Givecompleteanalysisofcircuit‘a’ andshowthatthewavefrontandwavetailresistancesarephysically

realisableonlyundercertaincondition.Derivethecondition.

5. Givecompleteanalysisofcircuit‘b’andderivetheconditionforphysicalrealisationofwavefrontand

wavetailresistances.

6. Deriveanexpressionforvoltageefficiencyofasinglestageimpulsegenerator

7. Describetheconstruction,principleofoperationandapplicationofamultistageMarx'sSurgeGenerator.

8. ExplaintheGoodletcircuitofimpulsevoltagegenerationandcompareitsperformancewiththatofMarx’x

Circuit.

9. Describetheconstructionofvariouscomponentsusedinthedevelopmentofanimpulsegenerator.

10. ExplainwithneatdiagramtriggeringandsynchronisationoftheimpulsegeneratorwiththeCRO.

11.Drawatypicalimpulsecurrentgeneratorcircuitandexplainitsoperationandapplication.

12.Drawaneatdiagramofahighcurrentgeneratorcircuit(equivalentcircuit)andthroughanalysisofthe

circuitshowhowthewaveformcanbecontrolled.

Page 15: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 100

UNIT- 6

MEASUREMENT OF HIGH VOLTAGES: Electrostatic voltmeter-principle, construction

and limitation. Chubb and Fortescue method for HV AC measurement. Generating voltmeter-

Principle, construction. Series resistance micro ammeter for HV DC measurements. Standard

sphere gap measurements of HV AC, HV DC, and impulse voltages; Factors affecting the

measurements. Potential dividers-resistance dividers capacitance dividers mixed RC potential

dividers.Measurement of high impulse currents-Rogogowsky coil and Magnetic Links

10Hours

INTRODUCTION

Transientmeasurementshavemuchincommonwithmeasurementsofsteadystatequantitiesbutthe

short-livednatureofthetransientswhichwearetryingtorecordintroducesspecialproblems.Frequently the

transient quantity to be measured is not recorded directly because of its large magnitudese.g. when

ashuntisusedtomeasurecurrent,wereallymeasurethevoltageacrosstheshuntandthenweassume

thatthevoltageisproportionaltothecurrent,afactwhichshouldnotbetakenforgrantedwithtransient

currents.Oftenthevoltageappearingacrosstheshuntmaybeinsufficienttodrivethemeasuringdevice;

itrequiresamplification.Ontheotherhand,ifthevoltagetobemeasuredistoolargetobemeasured

withtheusualmeters,itmustbeattenuated.Thissuggestsanideaofameasuringsystemratherthana

measuringdevice.

Measurements ofhighvoltagesandcurrentsinvolvesmuchmorecomplexproblemswhicha

specialist,incommonelectricalmeasurement,doesnothavetoface.Thehighvoltageequipments

havelargestraycapacitanceswithrespecttothegroundedstructuresandhencelargevoltagegradients

aresetup.Apersonhandlingtheseequipmentsandthemeasuringdevicesmustbeprotectedagainst

theseovervoltages.Forthis,largestructuresarerequiredtocontroltheelectricalfieldsandtoavoid flashover

betweentheequipmentandthegroundedstructures.Sometimes,thesestructuresarere-

quiredtocontrolheatdissipationwithinthecircuits.Therefore,thelocationandlayoutoftheequipments is very

important to avoid these problems. Electromagnetic fields create problems in the measurements

ofimpulsevoltagesandcurrentsandshouldbeminimized.

Thechapterisdevotedtodescribingvariousdevicesandcircuitsformeasurementofhighvoltages

andcurrents.Theapplicationofthedevicetothetypeofvoltagesandcurrentsisalsodiscussed.

ELECTROSTATICVOLTMETER

Page 16: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 101

The electricfieldaccordingtoCoulombisthefieldofforces.Theelectricfieldisproducedbyvoltage

and,therefore,ifthefieldforcecouldbemeasured,thevoltagecanalsobemeasured.Whenevera

voltageisappliedtoaparallelplateelectrodearrangement,anelectricfieldissetupbetweentheplates.

Itispossibletohaveuniformelectricfieldbetweentheplateswithsuitablearrangementoftheplates.

Thefieldisuniform,normaltothetwoplatesanddirectedtowardsthenegativeplate.IfAistheareaoftheplateand

Eistheelectricfieldintensitybetweentheplatesεthepermittivityofthemediumbetweentheplates,weknowtha

ttheenergydensityoftheelectricfieldbetweentheplatesisgivenas,

1 2

Wd=

2 εE

Consideradifferentialvolumebetweentheplatesandparalleltotheplateswitharea Aand

thicknessdx,theenergycontentinthisdifferentialvolumeAdxis

Electrostaticvoltmetersmeasuretheforcebasedontheaboveequationsandarearrangedsuch

thatoneoftheplatesisrigidlyfixedwhereastheotherisallowedtomove.Withthistheelectricfield

getsdisturbed.Forthisreason,themovableelectrodeisallowedtomovebynotmorethanafractionof

amillimetretoafewmillimetresevenforhighvoltagessothatthechangeinelectricfieldisnegligibly

small.AstheforceisproportionaltosquareofVrms

,themetercanbeusedbothfora.c.andd.c.voltage

measurement.

The forcedevelopedbetweentheplatesissufficienttobeusedtomeasurethevoltage.Various

designsofthevoltmeterhavebeendevelopedwhichdifferintheconstructionofelectrodearrangement

andintheuseofdifferentmethodsofrestoringforcesrequiredtobalancetheelectrostaticforceof

attraction.Someofthemethodsare

(i)Suspensionofmovingelectrodeononearmofabalance.

(ii)Suspensionofthemovingelectrodeonaspring.

(iii)Penduloussuspensionofthemovingelectrode.

(iv)Torsionalsuspensionofmovingelectrode.

Thesmallmovementisgenerallytransmittedandamplifiedbyelectricaloropticalmethods.If

theelectrodemovementisminimisedandthefielddistributioncanexactlybecalculated,themetercan

beusedforabsolutevoltagemeasurementasthecalibrationcanbemadeintermsofthefundamental

quantitiesoflengthandforce.

Fromtheexpressionfortheforce,itisclearthatforagivenvoltagetobemeasured,thehigher

Page 17: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 102

theforce,thegreateristheprecisionthatcanbeobtainedwiththemeter.Inordertoachievehigher

forceforagivenvoltage,theareaoftheplatesshouldbelarge,thespacingbetweentheplates(d)

shouldbesmallandsomedielectricmediumotherthanairshouldbeusedinbetweentheplates.If

uniformityofelectricfieldistobemaintainedanincreaseinareaAmustbeaccompaniedbyanincrease

intheareaofthesurroundingguardringandoftheopposingplateandtheelectrodemay,therefore,

becomeundulylargespeciallyforhighervoltages.Similarlythegaplengthcannotbemadeverysmall

asthisislimitedbythebreakdownstrengthofthedielectricmediumbetweentheplates.Ifairisusedas

themedium,gradientsupto5kV/cmhavebeenfoundsatisfactory.ForhighergradientsvacuumorSF6

gashasbeenused.

The greatestadvantageoftheelectrostaticvoltmeterisitsextremelylowloadingeffectasonly

electricfieldsarerequiredtobesetup.Becauseofhighresistanceofthemediumbetweentheplates,

theactivepowerlossisnegligiblysmall.Thevoltagesourceloadingis,therefore,limitedonlytothe

reactivepowerrequiredtochargetheinstrumentcapacitancewhichcanbeaslowasafewpicofarads

forlowvoltagevoltmeters.

The measuringsystemassuchdoesnotputanyupperlimitonthefrequencyofsupplytobe

measured.However,astheloadinductanceandthemeasuringsystemcapacitanceformaseries resonance

circuit,alimitisimposedonthefrequencyrange.Forlowrangevoltmeters,theupperfrequencyis

generallylimitedtoafewMHz.

Fig.6.7showsaschematicdiagramofanabsoluteelectrostaticvoltmeter.Thehemispherical

metaldomeDenclosesasensitivebalanceBwhichmeasurestheforceofattractionbetweenthemovable

discwhichhangsfromoneofitsarmsandthelowerplateP.ThemovableelectrodeMhangswitha

clearanceofabove0.01cm,inacentralopeningintheupperplatewhichservesasaguard ring. The

diameterofeachoftheplatesis1metre.Lightreflectedfromamirrorcarriedbythebalancebeam serves to

magnify its motion and to indicate to the operator at a safe distance when a condition of

equilibriumisreached.Asthespacingbetweenthetwoelectrodesislarge(about100cmsforavoltage

ofabout300kV),theuniformityoftheelectricfieldismaintainedbytheguardringsGwhichsurround

thespacebetweenthediscsMandP.TheguardringsG aremaintainedataconstantpotentialinspace

byacapacitancedividerensuringauniformspatialpotentialdistribution.Whenvoltagesintherange

10to100kVaremeasured,theaccuracyisoftheorderof0.01percent.

Page 18: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 103

Hueterhasusedapairofspharesof100cmsdiameterforthemeasurementofhighvoltages

utilisingtheelectrostaticattractiveforcebetweenthem.Thespheresarearrangedwithaverticalaxis

andataspacingslightlygreaterthanthesparkingdistancefortheparticularvoltagetobemeasured. The

upperhighvoltagesphereissupportedonaspringandtheextensionofspringcausedbythe

electrostaticforceismagnifiedbyalamp-mirrorscalearrangement.Anaccuracyof0.5percenthas

beenachievedbythearrangement.

Electrostaticvoltmetersusingcompressedgasastheinsulatingmediumhavebeendeveloped.

Hereforagivenvoltagetheshortergaplengthenablestherequireduniformityofthefieldtobe

maintainedwithelectrodesofsmallersizeandamorecompactsystemcanbeevolved.

Onesuch voltmeter using SF6gashasbeenusedwhichcanmeasurevoltagesupto1000kVand

accuracyisoftheorderof0.1%.Thehighvoltageelectrodeandearthedplaneprovideuniformelectric

fieldwithintheregionofa5cmdiameterdiscsetina65cmdiameterguardplane.Aweighingbalanc

Page 19: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 104

arrangementisusedtoallowalargedampingmass.Thegaplengthcanbevariedbetween4.5,5and10cmsanddu

etomaximumworkingelectricstressof100kV/cm,thevoltagerangescanbeselected

to250kV,500kVand100kV.With100kV/cmasgradient,theaverageforceonthediscisfoundtobe0.8681Nequ

ivalentto88.52gmwt.Thediscmovementsarekeptassmallas1µmbytheweighingbalancearrangement.

Thevoltmetersareusedforthemeasurementofhigha.c.andd.c.voltages.Themeasurementof

voltageslowerthanabout50voltis,however,notpossible,astheforcesbecometoosmall.

GENERATINGVOLTMETER

Wheneverthesourceloadingisnotpermittedorwhendirectconnectiontothehighvoltagesourceisto

beavoided,thegeneratingprincipleisemployedforthemeasurementofhighvoltages,Agenerating voltmeter

is a variable capacitor electrostatic voltage generator which generates current proportional to

thevoltagetobemeasured.Similartoelectrostaticvoltmeterthegeneratingvoltmeterprovidesloss

freemeasurementofd.c.anda.c.voltages.Thedeviceisdrivenbyanexternalconstantspeedmotor

anddoesnotabsorbpowerorenergyfromthevoltagemeasuringsource.Theprincipleofoperationis

explainedwiththehelpofFig.6.8.Hisahighvoltageelectrodeandtheearthedelectrodeissubdivided

intoasensingorpickupelectrodeP,aguardelectrodeGandamovableelectrodeM,allofwhichare

atthesamepotential.ThehighvoltageelectrodeHdevelopsanelectricfieldbetweenitselfandthe

electrodesP,GandM.ThefieldlinesareshowninFig.6.8.Theelectricfielddensityσisalsoshown.

IfelectrodeMisfixedandthevoltageVischanged,thefielddensityσwouldchangeandthusacurrent

i(t)wouldflowbetweenPandtheground.

Fig.6.8Principleofgeneratingvoltmeter

z σ(a)da

Fig.6.10showsaschematicdiagramofageneratingvoltmeterwhichemploysrotatingvanes

Page 20: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 105

forvariationofcapacitance.ThehighvoltageelectrodeisconnectedtoadiscelectrodeD3

whichis

keptatafixeddistanceontheaxisoftheotherlowvoltageelectrodesD2,D1,andD0.TherotorD0is

drivenataconstantspeedbyasynchronousmotoratasuitablespeed.TherotorvanesofD0cause

periodicchangeincapacitancebetweentheinsulateddiscD2andthehighvoltageelectrodeD

5.The

numberandshapeofvanesaresodesignedthatasuitablevariationofcapacitance(sinusodialorlinear)

isachieved.Thea.c.currentisrectifiedandismeasuredusingmovingcoilmeters.Ifthecurrentis

smallanamplifiermaybeusedbeforethecurrentismeasured.

Fig.6.10Schematicdiagramofgeneratingvoltmeter

Generatingvoltmetersarelinearscaleinstrumentsandapplicableoverawiderangeofvoltages.

Thesensitivitycanbeincreasedbyincreasingtheareaofthepickupelectrodeandbyusingamplifier circuits.

Themainadvantagesofgeneratingvoltmetersare(i)scaleislinearandcanbeextrapolated

(ii)sourceloadingispracticallyzero(iii)nodirectconnectiontothehighvoltageelectrode.

However,theyrequirecalibrationandconstructionisquitecumbersome.

Thebreakdownofinsulatingmaterialsdependsuponthemagnitudeofvoltageappliedandthe

timeofapplicationofvoltage.However,ifthepeakvalueofvoltageislargeascomparedtobreakdown strength

of the insulating material, the disruptive discharge phenomenon is in general caused by the

instantaneousmaximumfieldgradientstressingthematerial.Variousmethodsdiscussedsofarcan

measurepeakvoltagesbutbecauseofcomplexcalibrationproceduresandlimitedaccuracycallformoreconven

ientandmoreaccuratemethods.Amoreconvenientthoughlessaccuratemethodwould

Page 21: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 106

betheuseofatestingtransformerwhereintheoutputvoltageismeasuredandrecordedandtheinput

voltageisobtainedbymultiplyingtheoutputvoltagebythetransformationratio.However,herethe

outputvoltagedependsupontheloadingofthesecondarywindingandwaveshapevariationiscaused

bythetransformerimpedancesandhencethismethodisunacceptableforpeakvoltagemeasurements.

THECHUBB-FORTESCUEMETHOD

ChubbandFortescuesuggestedasimpleandaccuratemethodofmeasuringpeakvalueofa.c.voltages. The

basiccircuitconsistsofastandardcapacitor,twodiodesandacurrentintegratingammeter

(MCammeter)asshowninFig.6.11(a).

v(t) C

C

ic (t) Rd

D1 D2

D1 D2

A A

(a) (b)

Fig.6.11(a)Basiccircuit(b)Modifiedcircuit

Thedisplacementcurrentic(t),Fig.6.12isgivenbytherateofchangeofthechargeandhence

thevoltageV(t)tobemeasuredflowsthroughthehighvoltagecapacitorCandissubdividedinto positive and

negative components by the back to back connected diodes. The voltage drop across these

diodescanbeneglected(1VforSidiodes)ascomparedwiththevoltagetobemeasured.Themeasuring

instrument(M.C.ammeter)isincludedinoneofthebranches.Theammeterreadsthemeanvalueof thecurrent.

I= 1

t2 dv(t) C C dt= .2V =2V fCorV =

I

T 1 dt T 2fC

Page 22: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 107

Therelationissimilartotheoneobtainedincaseofgeneratingvoltmeters.Anincreasedcurrent

wouldbeobtainedifthecurrentreacheszeromorethanonceduringonehalfcycle.Thismeansthe

waveshapesofthevoltagewouldcontainmorethanonemaximaperhalfcycle.Thestandarda.c.

voltagesfortestingshouldnotcontainanyharmonicsand,therefore,therecouldbeveryshortand

rapidvoltagescausedbytheheavypredischarges,withinthetestcircuitwhichcouldintroduceerrorsin

measurements.Toeliminatethisproblemfilteringofa.c.voltageiscarriedoutbyintroducingadamping

resistorinbetweenthecapacitorandthediodecircuit,Fig.6.11(b).

Fig.6.12

Also,iffullwaverectifierisusedinsteadofthehalfwaveasshowninFig.6.11,thefactor2in

thedenominatoroftheaboveequationshouldbereplacedby6.Sincethefrequencyf,thecapacitance

CandcurrentIcanbemeasuredaccurately,themeasurementofsymmetricala.c.voltagesusingChubb

andFortescuemethodisquiteaccurateanditcanbeusedforcalibrationofotherpeakvoltagemeasuring devices.

Fig.6.13showsadigitalpeakvoltagemeasuringcircuit.Incontrasttothemethoddiscussedjust

now,therectifiedcurrentisnotmeasureddirectly,insteadaproportionalanalogvoltagesignalisderived

whichisthenconvertedintoaproportionalmediumfrequencyforusingavoltagetofrequencyconvertor

(BlockAinFig.6.13).Thefrequencyratiofm/fismeasuredwithagatecircuitcontrolledbythea.c.

powerfrequency(supplyfrequencyf)andacounterthatopensforanadjustablenumberofperiod

∆t=p/f.Thenumberofcyclesncountedduringthisintervalis

Page 23: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 108

dq(t) d

Whereσ(a)istheelectricfielddensityorchargedensityalongsomepathandisassumedconstantover the

differential areadaof the pick up electrode. In this caseσ(a) is a function of time also and∫da the

areaofthepickupelectrodePexposedtotheelectricfield.

However,ifthevoltageVtobemeasuredisconstant(d.cvoltage),acurrenti(t)willflowonly

ifitismovedi.e.nowσ(a)willnotbefunctionoftimebutthechargeqischangingbecausetheareaof

thepickupelectrodeexposedtotheelectricfieldischanging.Thecurrenti(t)isgivenby

PeakVoltmeterswithPotentialDividers

Passivecircuitsarenotveryfrequentlyusedthesedaysformeasurementofthepeakvalueofa.c.or

impulsevoltages.Thedevelopmentoffullyintegratedoperationalamplifiersandotherelectroniccircuits

hasmadeitpossibletosampleandholdsuchvoltagesandthusmakemeasurementsand,therefore,

havereplacedtheconventionalpassivecircuits.However,itistobenotedthatifthepassivecircuitsare designed

properly,theyprovidesimplicityandadequateaccuracyandhenceasmalldescriptionof

thesecircuitsisinorder.Passivecircuitsarecheap,

reliable andhaveahighorderofelectromagnetic

compatibility. However, in contrast, the most

sophisticatedelectronicinstrumentsarecostlierand

theirelectromagneticcompatibility(EMC)islow.

The passive circuits cannot measure high

voltages directly and use potential dividers

preferablyofthecapacitancetype.

Fig. 6.14 shows a simple peak voltmeter

circuitconsistingofacapacitorvoltagedivider

whichreducesthevoltageVtobemeasuredtoa

lowvoltageVm.

Fig.6.14Peakvoltmeter

SupposeR2

andRd

are notpresentandthesupplyvoltageisV.Thevoltageacrossthestorage

capacitorCswillbeequaltothepeakvalueofvoltageacrossC

2assumingvoltagedropacrossthediode

tobenegligiblysmall.Thevoltagecouldbemeasuredbyanelectrostaticvoltmeterorothersuitable

voltmeterswithveryhighinputimpedance.Ifthereversecurrentthroughthediodeisverysmalland

Page 24: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 109

thedischarge time constant of the storage capacitor very large, the storage capacitor will not discharge

significantly for a long time and hence it will hold the voltage to its value for a long time. If now, Vis

decreased,thevoltageV2decreasesproportionatelyandsincenowthevoltageacrossC

2issmallerthan

thevoltageacross Cs

towhichitisalreadycharged,therefore,thediodedoesnotconductandthe

voltageacrossCsdoesnotfollowthevoltageacrossC

4.Hence,adischargeresistorR

d mustbeintroduced

intothecircuitsothatthevoltageacrossCsfollowsthevoltageacrossC

4.Frommeasurementpointof

viewitisdesirablethatthequantitytobemeasuredshouldbeindicatedbythemeterwithinafew

secondsandhenceRdissochosenthat R

dC

s≈1sec.Asaresultofthis,followingerrorsareintroduced.

WiththeconnectionofRd,thevoltageacrossC

swilldecreasecontinuouslyevenwhentheinputvoltage

iskeptconstant.Also,itwilldischargethecapacitorC2andthemeanpotentialofV

2(t)willgaina

negatived.c.component.HencealeakageresistorR2mustbeinsertedinparallelwithC

2toequalise

theseunipolardischargecurrents.Theseconderrorcorrespondstothevoltageshapeacrossthestorage

capacitorwhichcontainsrippleandisduetothedischargeofthecapacitorCs.Iftheinputimpedance ofthe

measuring device is very high, the ripple is independent of the meter being used. The error is

approximately proportional to the ripple factor and is thus frequency dependent as the discharge time-

constantcannotbechanged.IfRdC

s=1sec,thedischargeerroramountsto1%for50Hzand0.33%.

for150Hz.Thethirdsourceoferrorisrelatedtothisdischargeerror.Duringtheconductiontime

(whenthevoltageacrossCsislowerthanthatacrossC

2 becauseofdischargeofC

s throughR

d)ofthe

diodethestoragecapacitorCsis rechargedtothepeakvalueandthusC

sbecomesparallelwithC

4.If

dischargeerrorised,rechargeerrore

r isgivenby

C e =2e s

r d C +C +C

1 2 s

HenceCsshouldbesmallascomparedwith

C2tokeepdowntherechargeerror.

Ithasalsobeenobservedthatinorderto keep

the overall error to a low value, it is desirable

tohaveahighvalueofR4.Thesameeffectcanbe

obtainedbyprovidinganequalisingarmtothelow

voltagearmofthevoltagedividerasshownin

Fig.6.15.Thisisaccomplishedbytheadditionof

Fig.6.15Modifiedpeakvoltmetercircuit

asecondnetworkcomprisingdiode,CsandR

dfornegativepolaritycurrentstothecircuitshowninFig.

6.16.Withthis,thed.c.currentsinbothbranchesareoppositeinpolarityandequaliseeachother.The

errorsduetoR2

arethuseliminated.

RabusdevelopedanothercircuitshowninFig.6.16.toreduceerrorsduetoresistances.Two

Page 25: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 110

storagecapacitorsareconnectedbyaresistorRswithineverybranchandbotharedischargedbyonly

oneresistanceRd.

D2 D2

Rs

D1 D1

Cs2 Cs1 Rd Rd Cs1 Cs2 Vm

Fig.6.16Two-wayboostercircuitdesignedbyRabus

HerebecauseofthepresenceofRs,thedischargeofthestoragecapacitorC

s2isdelayedand

hencetheinherentdischargeerroredisreduced.However,sincethesearetwostoragecapacitorswithin

onebranch,theywoulddrawmorechargefromthecapacitorC2andhencetherechargeerrore

rwould

increase.Itis,therefore,amatterofdesigningvariouselementsinthecircuitsothatthetotalsumofall

theerrorsisaminimum.Ithasbeenobservedthatwiththecommonlyusedcircuitelementsinthe

voltagedividers,theerrorcanbekepttowellwithinabout1%evenforfrequenciesbelow20Hz.

ThecapacitorC1hastowithstandhighvoltagetobemeasuredandisalwaysplacedwithinthe

testareawhereasthelowvoltagearmC2includingthepeakcircuitandinstrumentformameasuring

unitlocatedinthecontrolarea.Henceacoaxialcableisalwaysrequiredtoconnectthetwoareas.The cable

capacitancecomesparallelwiththecapacitance C2

whichisusuallychangedinstepsifthe

voltage to be measured is changed. A change of the length of the cable would, thus, also require

recalibrationofthesystem.Thesheathofthecoaxialcablepicksuptheelectrostaticfieldsandthus

preventsthepenetrationofthisfieldtothecoreoftheconductor.Also,eventhoughtransientmagnetic

fieldswillpenetrateintothecoreofthecable,noappreciablevoltage(extraneousofnoise)isinduced due to the

symmetrical arrangement and hence a coaxial cable provides a good connection between the two

areas.Whenever,adischargetakesplaceatthehighvoltageendofcapacitor C1 tothecable

connectionwherethecurrentlooksintoachangeinimpedanceahighvoltageofshortdurationmaybe

builtupatthelowvoltageendofthecapacitorC1

whichmustbelimitedbyusinganovervoltage

protectiondevice(protectiongap).Thesedeviceswillalsopreventcompletedamageofthemeasuring

circuitiftheinsulationofC1fails.

Page 26: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 111

SPHEREGAP

Spheregapisbynowconsideredasoneofthestandardmethodsforthemeasurementofpeakvalueof

d.c.,a.c.andimpulsevoltagesandisusedforcheckingthevoltmetersandothervoltagemeasuring

devicesusedinhighvoltagetestcircuits.Twoidenticalmetallicspheresseparatedbycertaindistance

formaspheregap.Thespheregapcanbeusedformeasurementofimpulsevoltageofeitherpolarity

providedthattheimpulseisofastandardwaveformandhaswavefronttimeatleast1microsec.and

wavetailtimeof5microsec.Also,thegaplengthbetweenthesphereshouldnotexceedasphere

radius.Iftheseconditionsaresatisfiedandthespecificationsregardingtheshape,mounting,clearancesofthesp

heresaremet,theresultsobtainedbytheuseofspheregapsarereliabletowithin±3%.Ithas

beensuggestedinstandardspecificationthatinplaceswheretheavailabilityofultravioletradiationis

low,irradiationofthegapbyradioactiveorotherionizingmediashouldbeusedwhenvoltagesof magnitude less

than 50 kV are being measured or where higher voltages with accurate results are to be obtained.

In ordertounderstandtheimportanceofirradiationofspheregapformeasurementofimpulse

voltagesespeciallywhichareofshortduration,itisnecessarytounderstandthetime-laginvolvedin

thedevelopmentofsparkprocess.Thistimelagconsistsoftwocomponents—(i)Thestatisticaltime-

lagcausedbytheneedofanelectrontoappearinthegapduringtheapplicationofthevoltage.(ii)The

formativetimelagwhichisthetimerequiredforthebreakdowntodeveloponceinitiated.

Thestatisticaltime-lagdependsontheirradiationlevelofthegap.Ifthegapissufficiently

irradiatedsothatanelectronexistsinthegaptoinitiatethesparkprocessandifthegapissubjectedto

animpulsevoltage,thebreakdownwilltakeplacewhenthepeakvoltageexceedsthed.c.breakdown

value.However,iftheirradiationlevelislow,thevoltagemustbemaintainedabovethed.c.break-

downvalueforalongerperiodbeforeanelectronappears.Variousmethodshavebeenusedforirradia- tione.g.

radioactivematerial,ultravioletilluminationassuppliedbymercuryarclampandcoronadischarges.

Ithasbeenobservedthatlargevariationcanoccurinthestatisticaltime-lagcharacteristicofa gap

whenilluminatedbyaspecifiedlightsource,unlessthecathodeconditionsarealsopreciselyspecified.

Irradiation byradioactivematerialshastheadvantageinthattheycanformastablesourceof

irradiationandthattheyproduceanamountofionisationinthegapwhichislargelyindependentofthe gap

voltageandofthesurfaceconditionsoftheelectrode.Theradioactivematerialmaybeplaced

insidehighvoltageelectrodeclosebehindthesparkingsurfaceortheradioactivematerialmayform

thesparkingsurface.

Page 27: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 112

Theinfluenceofthelightfromtheimpulsegeneratorsparkgapontheoperationofthesphere

gapshasbeenstudied.Heretheilluminationisintenseandoccursattheexactinstantwhenitisre-

quired,namely,attheinstantofapplicationofthevoltagewavetothespheregap.

Theformativetimelagdependsmainlyuponthemechanismofsparkgrowth.Incaseofsecond-

aryelectronemission,itisthetransittimetakenbythepositiveiontotravelfromanodetocathodethat

decidesthatformativetimelag.Theformativetime-lagdecreaseswiththeappliedovervoltageand

increasewithgaplengthandfieldnon-uniformity.

SpecificationsonSpheresandAssociatedAccessories

Thespheresshouldbesomadethattheirsurfacesaresmoothandtheircurvaturesasuniformaspossible.

Thecurvatureshouldbemeasuredbyaspherometeratvariouspositionsoveranareaenclosedbya

circleofradius0.3Daboutthesparkingpointwhere Disthediameterofthesphereandsparking

pointsonthetwospheresarethosewhichareatminimumdistancesfromeachother.

Forsmallersize,thespheresareplacedinhorizontalconfigurationwhereaslargesizes(diameters),

thespheresaremountedwiththeaxisofthespheregapsverticalandthelowersphereisgrounded.In

eithercase,itisimportantthatthespheresshouldbesoplacedthatthespacebetweenspheresisfree

fromexternalelectricfieldsandfrombodieswhichmayaffectthefieldbetweenthespheres(Figs.6.1 and6.2).

Page 28: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 113

Fig.6.1

Fig.6.2

Page 29: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 114

AccordingtoBSS358:1939,whenonesphereisgrounded,thedistancefromthesparking

pointofthehighvoltagespheretotheequivalentearthplanetowhichtheearthedsphereisconnected

shouldliewithinthelimitsasgiveninTable6.4.

Table6.1

Heightofsparkingpointofhighvoltagesphereabovetheequivalentearthplane.

S=Sparkingpointdistance

SphereDiameter S<0.5D S>0.5D

D Maxm.

Height Min.

Height Maxm.

Height Min.

Height

Upto 25cms.

50cms.

75cms.

100cms.

150cms.

200cms.

7D

6D

6D

5D

4D

4D

10S

8S

8S

7S

6S

6S

7D

6D

6D

5D

4D

4D

5D

4D

4D

5.5D

3D

3D

Inordertoavoidcoronadischarge,theshankssupportingthespheresshouldbefreefromsharp

edgesandcorners.Thedistanceofthesparkingpointfromanyconductingsurfaceexcepttheshanks

shouldbegreaterthan

F25+

VIcms

H 3K

where Vis the peak voltage is kV to be measured. When large spheres are used for the measurement of

lowvoltagesthelimitingdistanceshouldnotbelessthanaspherediameter.

Ithasbeenobservedthatthemetalofwhichthespheresaremadedoesnotaffecttheaccuracyof

measurements MSS 358: 1939 states that the spheres may be made of brass, bronze, steel, copper,

aluminiumorlightalloys.Theonlyrequirementisthatthesurfacesofthesespheresshouldbeclean,

freefromgreasefilms,dustordepositedmoisture.Also,thegapbetweenthespheresshouldbekept

freefromfloatingdustparticles,fibresetc.

Forpowerfrequencytests,aprotectiveresistancewithavalueof1Ω/Vshouldbeconnectedin

betweenthespheresandthetestequipmenttolimitthedischargecurrentandtopreventhighfrequency

oscillations in the circuit which may otherwise result in excessive pitting of the spheres. For higher

frequencies,thevoltagedropwouldincreaseanditisnecessarytohaveasmallervalueoftheresistance.

Forimpulsevoltagetheprotectiveresistorsarenotrequired.Iftheconditionsofthespheresandits

Page 30: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 115

associatedaccessoriesasgivenabovearesatisfied,thesphereswillsparkatapeakvoltagewhichwill

beclosetothenominalvalueshowninTable6.4.Thesecalibrationvaluesrelatetoatemperatureof

20°Candpressureof760mmHg.Fora.c.andimpulsevoltages,thetablesareconsideredtobeaccurate

within±3%forgaplengthsupto0.5D.Thetablesarenotvalidforgaplengthslessthan0.05Dand

impulsevoltageslessthan10kV.Ifthegaplengthisgreaterthan0.5D,theresultsarelessaccurateand

areshowninbrackets.

Page 31: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 116

Table6.2

Spheregapwithonesphereearthed

Peakvalueofdisruptivedischargevoltages(50%forimpulsetests)arevalidfor(i)alternatingvoltages

(ii)d.c.voltageofeitherpolarity(iii)negativelightningandswitchingimpulsevoltages

SphereGap VoltageKVPeak

Spacingmm Spherediaincm.

10

20

30

40

50

75

100

125

150

175

200

250

300

350

400

450

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

14.5

34.7

59.0

85

108

129

167

(195)

(214)

25

86

112

137

195

244

282

(314)

(342)

(366)

(400)

50

138

202

263

320

373

420

460

530

(585)

(630)

(670)

(700)

(730)

75

138

203

265

327

387

443

492

585

665

735

(800)

(850)

(895)

(970)

(1025)

100

138

203

266

330

390

443

510

615

710

800

875

945

1010

(1110)

(1200)

(1260)

(1320)

(1360)

150

138

203

266

330

390

450

510

630

745

850

955

1050

1130

1280

1390

1490

1580

1660

1730

1800

1870

1920

1960

200

203

266

330

390

450

510

630

750

855

975

1080

1180

1340

1480

1600

1720

1840

1940

2020

2100

2180

2250

2320

2370

2410

2460

2490

Page 32: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 117

Duetodustandfibrepresentintheair,themeasurementofd.c.voltagesisgenerallysubjectto

largererrors.Heretheaccuracyiswithin±5%providedthespacingislessthan0.4Dandexcessive

dustisnotpresent.

Theprocedureforhighvoltagemeasurementusingspheregapsdependsuponthetypeofvoltage

tobemeasured.

Table6.3

SphereGapwithonespheregrounded

Peakvaluesofdisruptivedischargevoltages(50%values).

Positivelightningandswitchingimpulsevoltages

PeakVoltagekV

SphereGap Spherediaincms

Spacingmm 14.5 25 50 75 100 150 200 10 34.7 20 59 59 30 85.5 86 40 110 112 50 134 138 138 138 138 138 138

75 (181) 199 203 202 203 203 203

100 (215) 254 263 265 266 266 266

125 (239) 299 323 327 330 330 330

150 (337) 380 387 390 390 390

175 (368) 432 447 450 450 450

200 (395) 480 505 510 510 510

250 (433) 555 605 620 630 630

300 (620) 695 725 745 760

350 (670) 770 815 858 820

400 (715) (835) 900 965 980

450 (745) (890) 980 1060 1090

500 (775) (940) 1040 1150 1190

600 (1020) (1150) (1310) 1380

700 (1070) (1240) (1430) 1550

750 (1090) (1280) (1480) 1620

800 (1310) (1530) 1690

900 (1370) (1630) (1820)

1000 (1410) (1720) 1930

1100 (1790) (2030)

1200 (1860) (2120)

Forthemeasurementofa.c.ord.c.voltage,areducedvoltageisappliedtobeginwithsothatthe

switchingtransientdoesnotflashoverthespheregapandthenthevoltageisincreasedgraduallytillthe

gapbreaksdown.Alternativelythevoltageisappliedacrossarelativelylargegapandthespacingis

Page 33: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 118

Page 34: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 119

Where∆V= per cent reduction in voltage in the breakdown voltage from the value when the

clearancewas14.6D,andmandCarethefactorsdependentontheratioS/D.

Fiegeland Keenhavestudiedtheinfluenceofnearbygroundplaneonimpulsebreakdown

voltageofa50cmdiameterspheregapusing4.5/40microsec.negativepolarityimpulsewave.Fig.6.3

showsthebreakdownvoltageasafunctionofA/D forvariousvaluesofS/D.Thevoltagevalueswere

correctedforrelativeairdensity.

It is observed that the voltage increases with increase in the ratioA/D. The results have been

comparedwiththosegiveninTable6.2andrepresentedinFig.6.3bydashedlines.Theresultsalso

agreewiththerecommendationregardingtheminimumandmaximumvaluesofA/DasgiveninTable 6.4.

InfluenceofHumidity

Kuffelhasstudiedtheeffectofthehumidityonthebreakdownvoltagebyusingspheresof2cmsto

25 cmsdiametersanduniformfieldelectrodes.Theeffectwasfoundtobemaximumintheregion0.4

mmHg.andthereafterthechangewasdecreased.Between4–17mmHg.therelationbetweenbreakdown

voltageandhumiditywaspracticallylinearforspacinglessthanthatwhichgavethemaximumhumidity

effect.Fig.6.4showstheeffectofhumidityonthebreakdownvoltageofa25cmdiameterspherewith

spacingof1cmwhena.c.andd.cvoltagesareapplied.Itcanbeseenthat

(i)Thea.c.breakdownvoltageisslightlylessthand.c.voltage.

(ii)Thebreakdownvoltageincreaseswiththepartialpressureofwatervapour.

Ithasalsobeenobservedthat

(i)Thehumidityeffectincreaseswiththesizeofspheresandislargestforuniformfieldelec- trodes.

(ii)Thevoltagechangeforagivenhumiditychangeincreasewithgaplength.

Page 35: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 120

Theincreaseinbreakdownvoltagewithincreaseinpartialpressureofwatervapourandthis

increaseinvoltagewithincreaseingaplengthisduetotherelativevaluesofionisationandattachment

coefficients in air. The water particles readily attach free electrons, forming negative ions. These ions

thereforeslowdownandareunabletoioniseneutralmoleculesunderfieldconditionsinwhichelectrons will

readilyionise.Ithas beenobservedthatwithinthehumidityrangeof4to17g/m3 (relative

humidityof25to95%for20°Ctemperature)therelativeincreaseofbreakdownvoltageisfoundtobe

between0.2 to 0.35%pergm/m3 forthelargestsphereofdiameter100cmsandgaplengthupto

50cms.

InfluenceofDustParticles

Whenadustparticleisfloatingbetweenthegapthisresultsintoerraticbreakdowninhomogeneousor

slightlyinhomogenouselectrodeconfigurations.Whenthedustparticlecomesincontactwithone electrode

under the application of d.c. voltage, it gets charged to the polarity of the electrode and gets attracted by

the opposite electrode due to the field forces and the breakdown is triggered shortly before arrival. Gaps

subjected to a.c. voltages are also sensitive to dust particles but the probability of erratic

breakdownisless.Underd.c.voltageserraticbreakdownsoccurwithinafewminutesevenforvoltages aslow

Page 36: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 121

as 80% of the nominal breakdown voltages. This is a major problem, with high d.c. voltage

measurementswithspheregaps.

UNIFORMFIELDSPARKGAPS

Brucesuggestedtheuseofuniformfieldsparkgapsforthemeasurementsofa.c.,d.c.andimpulse

voltages.Thesegapsprovideaccuracytowithin0.2%fora.c.voltagemeasurementsanappreciableimproveme

ntascomparedwiththeequivalentspheregaparrangement.Fig.6.5showsahalf-contour

ofoneelectrodehavingplanesparkingsurfaceswithedgesofgraduallyincreasingcurvature.

Fig.6.5Halfcontourofuniformsparkgap

TheportionABisflat,thetotaldiameteroftheflatportionbeinggreaterthanthemaximum

spacingbetweentheelectrodes.TheportionBCconsistsofasinecurvebasedontheaxesOBandOCandgivenby

XY=COsin(BX/BO.π/2).CDisanarcofacirclewithcentreatO.

BruceshowedthatthebreakdownvoltageVofagapoflength Scmsinairat20°Cand760mm

Hg.pressureiswithin0.2percentofthevaluegivenbytheempiricalrelation.

V=26.22S+6.08 S

Thisequation,therefore,replacesTables6.2and6.3whicharenecessaryforspheregaps.This is a great

advantage, that is, if the spacing between the spheres for breakdown is known the breakdown

voltagecanbecalculated.

Theotheradvantagesofuniformfieldsparkgapsare

(i)Noinfluenceofnearbyearthedobjects

(ii)Nopolarityeffect.

However,thedisadvantagesare

(i)Veryaccuratemechanicalfinishoftheelectrodeisrequired.

(ii)Carefulparallelalignmentofthetwoelectrodes.

(iii)Influenceofdustbringsinerraticbreakdownofthegap.Thisismuchmoreseriousinthese gaps

ascomparedwithspheregapsasthehighlystressedelectrodeareasbecomemuch larger.

Therefore,auniformfieldgapisnormallynotusedforvoltagemeasurements.

Page 37: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 122

RODGAPS

Arodgapmaybeusedtomeasurethepeakvalueofpowerfrequencyandimpulsevoltages.Thegap

usuallyconsistsoftwo4.27cmsquarerodelectrodessquareinsectionattheirendandaremountedon

insulatingstandssothatalengthofrodequaltoorgreaterthanonehalfofthegapspacingoverhangs

theinneredgeofthesupport.ThebreakdownvoltagesasfoundinAmericanstandardsfordifferent

gaplengthsat25°C,760mmHg.pressureandwithwatervapourpressureof15.5mmHg.arereproducedhere

Gaplengthin

Cms.

BreakdownVoltageKV

peak

GapLengthincms.

Breakdown

VoltageKVpeak

2

4

6

8

10

15

20

25

30

35

40

50

60

70

26

47

62

72

81

102

124

147

172

198

225

278

332

382

80

90

100

120

140

160

180

200

220

435

488

537

642

744

847

950

1054

1160

The breakdown voltage is a rodgap increasesmoreorlesslinearlywithincreasingrelativeair

densityoverthenormalvariationsinatmosphericpressure.Also,thebreakdownvoltageincreaseswith

increasingrelativehumidity,thestandardhumiditybeingtakenas15.5mmHg.

Because ofthelargevariationinbreakdownvoltageforthesamespacingandtheuncertainties

associatedwiththeinfluenceofhumidity,rodgapsarenolongerusedformeasurementofa.c.or impulse

voltages. However, more recent investigations have shown that these rods can be used for

d.c.measurementprovidedcertainregulationsregardingtheelectrodeconfigurationsareobserved.The

arrangementconsistsoftwohemisphericallycappedrodsofabout20mmdiameterasshowninFig.6.6.

Page 38: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 123

Fig.6.6ElectrodearrangementforarodgaptomeasureHV

The earthedelectrodemustbelongenoughtoinitiatepositivebreakdownstreamersifthehigh

voltagerodisthecathode.Withthisarrangement,thebreakdownvoltagewillalwaysbeinitiatedby

positivestreamersforboththepolaritiesthusgivingaverysmallvariationandbeinghumiditydependent.

Exceptforlowvoltages(lessthan120kV),wheretheaccuracyislow,thebreakdownvoltagecanbe

givenbytheempiricalrelation.

V =δ(A+BS) 4 5.1×10–2(h+8.65)kV

wherehistheabsolutehumidityingm/m3 andvariesbetween4and20gm/m3 intheaboverelation. The

breakdown voltage is linearly related with thegap spacing and theslopeoftherelation

B=5.1kV/cmandisfoundtobeindependentofthepolarityofvoltage.HoweverconstantAispolarity

dependentandhasthevalues

A=20kVforpositivepolarity

=15kVfornegativepolarityofthehighvoltageelectrode.

Theaccuracyoftheaboverelationisbetterthan±20%and,therefore,providesbetteraccuracy

evenascomparedtoaspheregap.

IMPULSEVOLTAGEMEASUREMENTSUSINGVOLTAGEDIVIDERS

Iftheamplitudesoftheimpulsevoltageisnothighandisintherangeofafewkilovolts,itispossible

tomeasure them even when these are of short duration by using CROS. However, if the voltages to be

measured are of high magnitude of the order of magavolts which normally is the case for testing and

researchpurposes,variousproblemsarise.Thevoltagedividersrequiredareofspecialdesignandneed

athoroughunderstandingoftheinteractionpresentinthesevoltagedividingsystems.Fig.6.17shows a

layoutofavoltagetestingcircuitwithinahighvoltagetestingarea.ThevoltagegeneratorGis

connectedtoatestobject—TthroughaleadL.

Page 39: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 124

Fig.6.17Basicvoltagetestingcircuit

Thesethreeelementsformavoltagegeneratingsystem.TheleadLconsistsof aleadwireand

aresistancetodamposcillationortolimitshort-circuitcurrentsifofthetestobjectfails.Themeasuring

systemstartsattheterminalsofthetestobjectandconsistsofaconnectingleadCLtothevoltage dividerD. The

output of the divider is fed to the measuring instrument (CRO etc.)M. The appropriate

groundreturnshouldassurelowvoltagedropsforevenhighlytransientphenomenaandkeeptheground

potentialofzeroasfaraspossible.

Itis to be noted that the test object is a predominantly capacitive element and thus this forms an

oscillatorycircuitwiththeinductanceoftheload.Theseoscillationsarelikelytobeexcitedbyany steep voltage

rise from the generator output, but will only partly be detected by the voltage divider. A

resistorinserieswiththeconnectingleadsdampsouttheseoscillations.Thevoltagedividershould always be

connected outside the generator circuit towards the load circuit (Test object) for accurate

measurement.Incaseitisconnectedwithinthegeneratorcircuit,andthetestobjectdischarges(chopped

wave)thewholegeneratorincludingvoltagedividerwillbedischargedbythisshortcircuitatthetest

objectandthusthevoltagedividerisloadedbythevoltagedropacrosstheleadL.Asaresult,the

voltagemeasurementwillbewrong.

Yetforanotherreason,thevoltagedividershouldbelocatedawayfromthegeneratorcircuit.

Thedividerscannotbeshieldedagainstexternalfields.Allobjectsinthevicinityofthedividerwhich

may acquiretransientpotentialsduringatestwilldisturbthefielddistributionandthusthedivider

performance.Therefore,theconnectingleadCLisanintegralpartofthepotentialdividercircuit.

InordertoavoidelectromagneticinterferencebetweenthemeasuringinstrumentMandCthe

highvoltagetestarea,thelengthofthedelaycableshouldbeadequatelychosen.Veryshortlengthof

thecablecanbeusedonlyifthemeasuringinstrumenthashighlevelofelectromagneticcompatibility (EMC).

For any type of voltage to be measured, the cable should be co-axial type. The outer conductor

providesashieldagainsttheelectrostaticfieldandthuspreventsthepenetrationofthisfieldtothe

innerconductor.Eventhough,thetransientmagneticfieldswillpenetrateintothecable,noappreciable

voltageisinducedduetothesymmetricalarrangement.Ordinarycoaxialcableswithbraidedshields

maywellbeusedford.c.anda.c.voltages.However,forimpulsevoltagemeasurementdoubleshielded

cableswithpredominentlytwoinsulatedbraidedshieldswillbeusedforbetteraccuracy.

Duringdisruptionoftestobject,veryheavytransientcurrentflowandhencethepotentialofthe

groundmayrisetodangerouslyhighvaluesifproperearthingisnotprovided.Forthis,largemetal

sheetsofhighlyconductingmaterialsuchascopperoraluminiumareused.Mostofthemodernhigh

Page 40: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 125

voltagelaboratoriesprovidesuchgroundreturnalongwithaFaradayCageforacompleteshieldingof

thelaboratory.Expandedmetalsheetsgivesimilarperformance.Atleastmetaltapesoflargewidth

shouldbeusedtoreducetheimpedance.

VoltageDivider

Voltagesdividersfora.c.,d.c.orimpulsevoltagesmayconsistofresistorsorcapacitorsoraconvenient

combination of these elements. Inductors are normally not used as voltage dividing elements as pure

inductances of proper magnitudes without stray capacitance cannot be built and also these inductances

wouldotherwiseformoscillatorycircuitwiththeinherentcapacitanceofthetestobjectandthismay

leadtoinaccuracyinmeasurementandhighvoltagesinthemeasuringcircuit.Theheightofavoltage

dividerdependsupontheflashovervoltageandthisfollowsfromtheratedmaximumvoltageapplied.

Now,thepotentialdistributionmaynotbeuniformandhencetheheightalsodependsuponthedesign

ofthehighvoltageelectrode,thetopelectrode.Forvoltagesinthemegavoltrange,theheightofthe

dividerbecomeslarge.Asathumbrulefollowingclearancesbetweentopelectrodeandgroundmaybe

assumed.

4.5to3metres/MVford.c.voltages.

2to4.5m/MVforlightningimpulsevoltages.

Morethan5m/MVrmsfora.c.voltages.

Morethan4m/MVforswitchingimpulsevoltage.

Thepotentialdividerismostsimplyrepresentedbytwo

impedancesZ1

andZ2

connectedinseriesandthesamplevoltage

requiredformeasurementistakenfromacrossZ2,Fig.6.18.

IfthevoltagetobemeasuredisV1andsampledvoltageV

2,

then

V

2=

Z2 V

Z +Z 1

Fig.6.18Basicdiagramofapoten-

tialdividercircuit

1 2

Iftheimpedancesarepureresistances

R2

V2

= R +R

V1

1 2

Page 41: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 126

V

The voltageV2

isnormallyonlyafewhundredvoltsandhencethevalueofZ2

issochosenthat

V2acrossitgivessufficientdeflectiononaCRO.Therefore,mostofthevoltagedropisavailableacrosstheimped

anceZ1

andsincethevoltagetobemeasuredisinmegavoltthelengthofZ1

islarge

whichresultininaccuratemeasurementsbecauseofthestraycapacitancesassociatedwithlonglength

voltagedividers(especiallywithimpulsevoltagemeasurements)unlessspecialprecautionsaretaken.

Onthelowvoltagesideofthepotentialdividerswhereascreenedcableoffinitelengthhastobe

employedforconnectiontotheoscillographothererrorsanddistortionofwaveshapecanalsooccur.

ResistancePotentialDividers

Theresistancepotentialdividersarethefirsttoappearbecauseoftheirsimplicityofconstruction,less

spacerequirements,lessweightandeasyportability.Thesecanbeplacednearthetestobjectwhich

mightnotalwaysbeconfinedtoonelocation.

Thelengthofthedividerdependsupontwoorthreefactors.Themaximumvoltagetobemeasured

isthefirstandifheightisalimitation,thelengthcanbebasedonasurfaceflashovergradientinthe orderof3–

4kV/cmirrespectiveofwhethertheresistanceR1

isofliquidorwirewoundconstruction.

Thelengthalsodependsupontheresistancevaluebutthisisimplicitlyboundupwiththestraycapacitance

oftheresistancecolumn,theproductofthetwo(RC)givingatimeconstantthevalueofwhichmust

notexceedthedurationofthewavefrontitisrequiredtorecord.

Itistobenotedwithcautionthattheresistanceofthepotentialdividershouldbematchedtothe

equivalentresistanceofagivengeneratortoobtainagivenwaveshape.

Fig.6.19(a)showsacommonformofresistancepotentialdividerusedfortestingpurposes

wherethewavefronttimeofthewaveislessthan1microsec.

R1

R3 Z V1

R2 2

R1

Z

R2 R4

R1

R3 Z

R2 R4

(a) (b) (c)

Fig.6.19Variousformsofresistancepotentialdividersrecordingcircuits(a)Matchingatdividerend

(b)MatchingatOscillographend(c)Matchingatbothendsofdelaycable

Page 42: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 127

HereR3,theresistanceatthedividerendofthedelaycableischosensuchthatR

2+R

3=Zwhich

putsanupperlimitonR2

i.e.,R2<Z.Infact,sometimestheconditionformatchingisgivenas

R1R2

Z=R3 + R +R

1 2

But, sinceusuallyR1 >>R

2,theaboverelationreducestoZ =R

3 +R

4.FromFig.6.19(a),the

voltageappearingacrossR2

is

V2

=

Page 43: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 128

Z1 V

Z +R

whereZ1 istheequivalentimpedanceofR

2 inparallelwith(Z +R

3),thesurgeimpedanceofthecable

beingrepresentedbyanimpedanceZtoground.

(Z+R3)R2 (Z+R3)R2

Now Z1 =

R =

+Z+R 2Z

Therefore, V2 =

2 3

(Z+R3)R2 V1

2Z Z +R

1 1

However,thevoltageenteringthedelaycableis

V2 Z (Z+R3)R2 . V1 R2

V3 = Z=

Z+R Z+R 2Z

Z +R =V1 2(Z

+R)

3 3 1 1 1 1

AsthisvoltagewavereachestheCROendofthedelaycable,itsuffersreflectionsasthe impedance

offered by the CRO is infinite and as a result the voltage wave transmitted into the CRO is

doubled.TheCRO,therefore,recordsavoltage

R2

V3′=

Z +R V1

1 1

Thereflectedwave,however,asitreachesthelowvoltagearmofthepotentialdividerdoesnot

sufferanyreflectionasZ =R2+R

3andistotallyabsorbedby(R

2+R

3).

SinceR2issmallerthanZandZ

1 isaparallelcombinationofR

2 and(R

3 +Z),Z

1 isgoingtobe

smallerthanR2andsinceR

1>>R

2,R

1willbemuchgreaterthanZ

1and,thereforetoafirstapproximation

Z1 +R

1 ≈R

4.

R R Therefore, V3′= 2 V1 ≈ 2 V1

asR2 <<R1

R1 R1 +R2

Fig. 6.19(b)and(c)arethevariantsofthepotentialdividercircuitofFig.6.19(a).Thecable

matchingisdonebyapureohmicresistanceR4

=Zattheendofthedelaycableand,therefore,the

voltagereflectioncoefficientiszeroi.e.thevoltageattheendofthecableistransmittedcompletely

intoR4andhenceappearsacrosstheCROplateswithoutbeingreflected.Astheinputimpedanceofthe

delaycableisR4

=Z,thisresistanceisaparalleltoR2

andformsanintegralpartofthedivider’slow

voltagearm.Thevoltageofsuchadivideris,therefore,calculatedasfollows:

Equivalentimpedance

R2Z R1(R2 +Z)+R2Z

=R1+ =

R2 +Z

(R2 +Z)

Therefore,Current I= V1(R2 +Z)

Page 44: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 129

R1(R2 +Z)+R2Z

1

IR2Z

V1(R2 +Z)

R2Z

andvoltage V2 =

R =

+Z R(R

+Z)+RZ R +Z

2 1 2 2

Page 45: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 130

1 2 2

R2Z =

R(R +Z)+RZV1

V2 R2Z

orvoltageratio = V R(R +Z)+RZ

1 1 2 2

DuetothematchingattheCROendofthedelaycable,thevoltagedoesnotsufferanyreflection

atthatendandthevoltagerecordedbytheCROisgivenas

V2 =

R(R

R2ZV1 =

+Z)+RZ (R

R2ZV1 =

+R)Z+RR

R2V1

1 2 2 1 2 12

(R +R)+R1 R2

Normallyforundistortedwaveshapethroughthecable

Z≈R2

1 2 Z

Therefore,

V

2=

2R

R2 V +R

1

1 2

ForagivenappliedvoltageV1thisarrangementwillproduceasmallerdeflectionontheCRO

platesascomparedtotheoneinFig.6.19(a).

ThearrangementofFig.6.19(c)providesformatchingatbothendsofthedelaycableandisto

berecommendedwhereitisfeltnecessarytoreducetotheminimumirregularitiesproducedinthe

delaycablecircuit.SincematchingisprovidedattheCROendofthedelaycable,therefore,thereisno reflection

ofthevoltageatthatendandthevoltagerecordedwillbehalfofthatrecordedinthe

arrangementofFig.6.19(a)viz.

V

2=

2(R R2 V +R)

1

1 2

Itisdesirabletoenclosethelowvoltageresistance(s)ofthepotentialdividersinametalscreening

box.Steelsheetisasuitablematerialforthisboxwhichcouldbeprovidedwithadetachableclose

fittinglidforeasyaccess.IftherearetwolowvoltageresistorsatthedividerpositionasinFig.6.19(a)

and(c),theyshouldbecontainedinthescreeningbox,asclosetogetheraspossible,witharemovable

metallicpartitionbetweenthem.Thepartitionservestwopurposes(i)itactsasanelectrostaticshield

betweenthetworesistors(ii)itfacilitatesthechangingoftheresistors.Thelengthsoftheleadsshould

beshortsothatpracticallynoinductanceiscontributedbytheseleads.Thescreeningboxshouldbe fitted with a

large earthing terminal. Fig. 6.20 shows a sketched cross-section of possible layout for the

Page 46: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 131

lowvoltagearmofvoltagedivider.

Page 47: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 132

CapacitancePotentialDividers

Capacitancepotentialdividersaremorecomplexthantheresistancetype.Formeasurementofimpulse

voltagesnotexceeding1MVcapacitancedividerscanbebothportableandtransportable.Ingeneral,

formeasurementof1MVandover,thecapacitancedividerisalaboratoryfixture.Thecapacitance

dividersareusuallymadeofcapacitorunitsmountedoneabovetheotherandboltedtogether.Itisthis

failurewhichmakesthesmalldividersportable.Ascreeningboxsimilartothatdescribedearliercan

beusedforhousingboththelowvoltagecapacitorunitC2 andthematchingresistorifrequired.

ThelowvoltagecapacitorC2 shouldbenon-inductive.Aformofcapacitorwhichhasgiven

excellentresults is of mica and tin foil plate, construction, each foil having connecting tags coming out

at oppositecorners.Thisensuresthatthecurrentcannotpassfromthehighvoltagecircuittothedelay

cablewithoutactuallygoingthroughthefoilelectrodes.Itisalsoimportantthatthecouplingbetween

thehighandlowvoltagearmsofthedividerbepurelycapacitive.Hence,thelowvoltagearmshould

containonecapacitoronly;twoormorecapacitorsinparallel mustbeavoidedbecauseofappreciable

inductancethatwouldthusbeintroduced.Further, thetappingstothedelaycablemustbetakenoffas

closeaspossibletotheterminalsofC4.Fig.6.21showsvariantsofcapacitancepotentialdividers.

C1

R Z, Cd

C2

C1

R3 Cd

C4

C2

R4

R1

C1 (Z – R2 ) Z

R2

C2

(a) (b) (c)

Page 48: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 133

Fig.6.21Capacitordividers(a)Simplematching(b)Compensatedmatching

(c)Dampedcapacitordividersimplematching

ForvoltagedividersinFig.(b)and(c),thedelaycablecannotbematchedatitsend.Alow

resistorinparalleltoC2

wouldloadthelowvoltagearmofthedividertooheavilyanddecreasethe

outputvoltagewithtime.SinceRandZformapotentialdividerandR=Z,thevoltageinputtothe

cablewillbehalfofthevoltageacrossthecapacitorC4.

Thishalvedvoltagestravelstowardstheopen end of the

cable (CRO end) and gets doubled after reflection. That is, the voltage recorded by the CRO

isequaltothevoltageacrossthecapacitorC4.

Thereflectedwavechargesthecabletoitsfinalvoltage

magnitudeandisabsorbedbyR(i.e.reflectiontakesplaceatRandsinceR=Z,thewaveiscompletely

absorbedascoefficientofvoltagereflectioniszero)asthecapacitorC2

actsasashortcircuitforhigh

frequencywaves.Thetransformationratio,therefore,changesfromthevalue:

C1 +C2

C1

forveryhighfrequenciestothevalue

C1 +C2 +Cd

C1

forlowfrequencies.

However,thecapacitanceofthedelaycableCd isusuallysmallascomparedwithC

4.

Forcapacitivedivideranadditionaldampingresistanceisusuallyconnectedintheleadonthe

highvoltagesideasshowninFig.6.21(c).Theperformanceofthedividercanbeimprovedifdamping

resistorwhichcorrespondstotheaperiodiclimitingcaseisinsertedinserieswiththeindividualelement

ofcapacitordivider.Thiskindofdampedcapacitivedivideractsforhighfrequenciesasaresistive

dividerandforlowfrequenciesasacapacitivedivider.Itcan,therefore,beusedoverawiderangeof

frequenciesi.e.forimpulsevoltagesofverydifferentdurationandalsoforalternatingvoltages.

Fig.6.22 Simplifieddiagramofaresistancepotentialdivider

Page 49: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 134

Fig. 6.22 shows a simplified diagram of a resistance potential divider after taking into

considerationstheleadinconnectionastheinductanceandthestraycapacitanceaslumpedcapacitance. HereL

representstheloopinductanceofthelead-inconnectionforthehighvoltagearm.Thedamping

resistanceRdlimitsthetransientovershootinthecircuitformedbytestobject,L,R

d andC.Itsvaluehas

adecidedeffectontheperformanceofthedivider.Inordertoevaluatethevoltagetransformationofthe

divider,thelowvoltagearmvoltageV2resultingfromasquarewaveimpulseV

1onthehvsidemustbe

investigaged.ThevoltageV2

followscurve2inFig.6.23(a)incaseofaperiodicdampingandcurve2 in

Fig.6.23(b)incaseofsub-criticaldamping.Thetotalareabetweencurves1and2takinginto

considerationthepolarity,isdescribedastheresponsetime.

Withsubcriticaldamping,eventhoughtheresponsetimeissmaller,thedampingshouldnotbe very

small.Thisisbecauseanundesirableresonancemayoccurforacertainfrequencywithinthe

passingfrequencybandofthedivider.Acompromisemustthereforeberealisedbetweentheshortrise

timeandtherapidstabilizationofthemeasuringsystem.AccordingtoIECpublicationNo.60amaximum

overshootof3%isallowedforthefullimpulsewave,5%foranimpulsewavechoppedonthefrontat

timesshorterthan1microsec.Inordertofulfilltheserequirements,theresponsetimeofthedivider

mustnotexceed0.2microsec.forfullimpulsewaves4.2/50or4.2/5orimpulsewaveschoppedonthe

tail.Iftheimpulsewaveischoppedonthefrontattimeshorterthan1microsectheresponsetimemust

benotgreaterthan5%ofthetimetochopping.

Page 50: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 135

KlydonographorSurgeRecorder

Since lightningsurgesareinfrequentandrandominnature,itisnecessarytoinstalalargenumberof

recordingdevicestoobtainareasonableamountofdataregardingthesesurgesproducedontransmission lines

andotherequipments.Somefairlysimpledeviceshavebeendevelopedforthispurpose. Klydonograph is

one such device which makes use of the patterns known as Litchenberg figures which

areproducedonaphotographicfilmbysurfacecoronadischarges.

TheKlydonograph(Fig.6.24)consistsofaroundedelectroderestingupontheemulsionsideof

aphotographicfilmorplatewhichiskeptonthesmoothsurfaceofaninsulatingmaterialplatebacked

byaplateelectrode.Theminimumcriticalvoltagetoproduceafigureisabout2 kV and the maximum

voltagethatcanberecordedisabout20kV,asathighervoltagessparkoversoccurswhichspoilsthe

film.Thedevicecanbeusedwithapotentialdividertomeasurehighervoltagesandwitharesistance

shunttomeasureimpulsecurrent.

Locking ring

Keramot

cap

Plate electrode

Top plate connected to potential divider tapping

Electrodesupport

Removable plug

Adjustable holder

Compression spring

Stainlesssteel hemispherical electrode

Photographic film (emulsion side)

Keramot backing plate

Locking ring

Electrodesupport

Baseplate connected to earth

Positioning device Fig. 6.24 Kiydonograph

Page 51: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 136

There are characteristic differences between the figures for positive and negative voltages.

However,foreitherpolaritytheradiusofthefigure(ifitissymmetrical)orthemaximumdistancefrom

thecentreofthefiguretoitsoutsideedge(ifitisunsymmetrical)isafunctiononlyoftheapplied

voltage.Theoscillatoryvoltagesproducesuperimposedeffectsforeachpartofthewave.Thusitis possibleto

knowwhetherthewaveisunidirectionaloroscillatory.Sincethesizeofthefigurefor

positivepolarityislarger,itispreferabletousepositivepolarityfigures.Thisisparticularlydesirable

incaseofmeasurementofsurgesontransmissionlinesorothersuchequipmentwhichareordinarily

operatingona.c.voltageandthealternatingvoltagegivesablackbandalongthecentreofthefilm

causedbysuperpositionofpositiveandnegativefiguresproducedoneachhalfcycle.Foreachsurge

voltageitispossibletoobtainbothpositiveandnegativepolarityfiguresbyconnectingpairsofelectrodes

inparallel,onepairwithahighvoltagepointandanearthedplateandtheotherpairwithahighvoltage

plateandanearthedpoint.

Klydonographbeingasimpleandinexpensivedevice,alargenumberofelementscanbeused

formeasurement.Ithasbeenusedinthepastquiteextensivelyforprovidingstatisticaldataonmagnitude,

polarityandfrequencyofvoltagesurgesontransmissionlineseventhoughitsaccuracyofmeasurement

isonlyoftheorderof25percent.

Example 1.Determinethebreakdownvoltageforairgapsof2mmand15mmlengthsunderuni-

formfieldandstandardatmosphericconditions.Also,determinethevoltageiftheatmosphericpres-

sureis750mmHgandtemperature35°C.

Solution:Accordingtoempiricalformulawhichholdsgoodatstandardatmosphericconditions

Vb

=26.22S+6.08 S

whereSisthegaplengthincms.

(i)When S=0.2cm

V=26.22×0.2+6.08 0.2 =7.56kV Ans.

(ii)When S=4.5cms

Vb

=26.22×4.5+6.08 4.5 =36.33+7.446=45.776kV Ans.

Theairdensitycorrectionfactor

= 5.92b 273+t

Page 52: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 137

I

=

=5.92×75

=0.9545 Ans. 273+35

Therefore,voltagefor2mmgapwillbe7.216kVandfor15mmgapitwillbe44.78kV.

Example 3.Anelectrostaticvoltmeterhastwoparallelplates.Themovableplateis10cmindiam-

eter.With10kVbetweentheplatesthepullis5×10–3N.Determinethechangeincapacitancefora movementof

1mmofmovableplate.

Solution: 5×10–3=1.

2

1

36π ×10−9×

18 25π×10−4

d2

or d=26.35mm.

Therefore,changeincapacitance

103

×10−9×25

×10

−4F 1 −

1

36 π H26.35

27.35K =0.0959pF Ans.

Example5.Apeakreadingvoltmeterisrequiredtomeasurevoltageupto150kV.Thepeakvoltmeter usesanRCcircuit,amicroammeterandacapacitancepotentialdivider.Thepotentialdividerhasa

ratioof1200:1andthemicrometercanreadupto10µA.DeterminethevalueofRandCifthetime constantofRCcircuitis8secs.

Solution:Thevoltageacrossthelowvoltagearmofthepotentialdivider,

150×1000

1200 =125volts.

Thesamevoltageappearsacrosstheresistance.

Therefore R=V

= I

125

10×10−6

=14.5MΩ

SincethetimeconstantoftheRCcircuitis8sec.

C=-------8

14.5×106

=0.64µF Ans.

1.Whataretherequirementsofaspheregapformeasurementofhighvoltages?Discussthedisadvantages

ofspheregapformeasurements.

2.Explainclearlytheprocedureformeasurementof(i)impulse;(ii)a.c.highvoltagesusingspheregap.

3.Discusstheeffectof(i)nearbyearthedobjects(ii)humidityand(iii)dustparticlesonthemeasurements

Page 53: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 138

usingspheregaps.

4.Describetheconstructionofauniformfieldsparkgapanddiscussitsadvantagesanddisadvantagesfor

highvoltagemeasurements.

5. Explainwithneatdiagramhowrodgapscanbeusedformeasurementofhighvoltages. Compareits

performancewithaspheregap.

6.

ExplainwithneatdiagramtheprincipleofoperationofanElectrostaticVoltmeter.Discussitsadvan

tages andlimitationsforhighvoltagemeasurements.

7.

Drawaneatschematicdiagramofageneratingvoltmeterandexplainitsprincipleofoperation.Disc

uss itsapplicationandlimitations.

8. DrawChubb-

FortescueCircuitformeasurementofpeakvalueofa.c.voltagesdiscussitsadvantagesover

othermethods.

9.

Discusstheproblemsassociatedwithpeakvoltmetercircuitsusingpassiveelements.Drawcircuit

devel- opedbyRabusandexplainhowthiscircuitovercomestheseproblems.

10.

Whataretheproblemsassociatedwithmeasurementofveryhighimpulsevoltages?Explainhowth

ese canbetakencareofduringmeasurements.

11.Discuss and compare the performance of (i) resistance (ii) capacitance potential dividers for

measurement ofimpulsevoltages.

12.Discussvariousresistancepotentialdividersandcomparetheirperformanceofmeasurementofimpul

se voltages.

13.Discussvariouscapacitance,potentialdividersandcomparetheirperformanceformeasurementofim

- pulsevoltages.

14.Drawasimplifiedequivalentcircuitofaresistancepotentialdivideranddiscussitsstepresponse.

15. Discussvariousmethodsofmeasuringhighd.c.anda.c.currents.

16. Discussvariousmethodsofmeasuringhighimpulsecurrents.

17.

WhatisRogowskiCoil?Explainwithaneatdiagramitsprincipleofoperationformeasurementofhi

Page 54: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 139

gh impulsecurrents.

Page 55: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 140

jωt

UNIT -7

NON-DESTRUCTIVE INSULATION TESTING TECHNIQUES: Dielectric loss and

loss angle measurements using Schering Bridge, Transformer ratio Arms Bridge. Need for

discharge detection and PD measurements aspects. Factor affecting the discharge detection.

Discharge detection methods-straight and balanced methods.

6 Hours

Allelectrical appliances are insulated with gaseous or liquid or solid or a suitable combination of

these materials. The insulation is provided between live parts or between live part and grounded part of

the appliance.Thematerialsmaybesubjectedtovaryingdegreesofvoltages,temperaturesandfrequen-

ciesanditisexpectedofthesematerialstoworksatisfactorilyovertheserangeswhichmayoccur

occasionallyinthesystem.Thedielectriclossesmustbelowandtheinsulationresistancehighinorder

topreventthermalbreakdownofthesematerials.Thevoidformationwithintheinsulatingmaterials

mustbeavoidedasthesedeterioratethedielectricmaterials.

Oneofthepossibletestingprocedureistoover-stressinsulationwithhigha.c.and/ord.c.or surge

voltages. However, the disadvantage of the technique is that during the process of testing the

equipmentmaybedamagediftheinsulationisfaulty.Forthisreason,followingnon-destructivetesting

methodsthatpermitearlydetectionforinsulationfaultsareused:

(i)Measurementoftheinsulationresistanceunderd.c.voltages.

(ii)DeterminationoflossfactortanδandthecapacitanceC.

(iii)Measurementofpartialdischarges.

MEASUREMENTOFDIELECTRICCONSTANTANDLOSSFACTOR Dielectriclossandequivalentcircuit

Incaseoftimevaryingelectricfields,thecurrentdensityJcusingAmpereslawisgivenby

Jc=σE+

Forharmonicallyvaryingfields

∂D ∂E

∂t =σE+ε

∂t

E=Em

ejωt

∂E

∂t =jE

mωe = jωE Ir I

Therefore, Jc=σE+jωεE

Page 56: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 141

2

ε

=(σ+jωε)E d

Ingeneral, in addition to conduction losses, ionization f andpolarizationlossesalsooccurand,therefore,thedielec- Iw

tricconstantε=ε0 ε

r is nolongerarealquantityratheritisa Fig.7.3Phasordiagramforareal

dielectricmaterial

complexquantity.Bydefinition,thedissipationfactortanδistheratioofrealcomponentofcurrentIω

tothereactivecomponentIr (Fig.7.3).

I tanδ=ω=

Ir

pdid

Pr

Hereδistheanglebetweenthereactivecomponentofcurrentandthetotalcurrentflowing

throughthedielectricatfundamentalfrequency.Whenδisverysmalltanδ =δ whenδisexpressedin

radiansandtanδ=sinδ=sin(90–φ)=cosφi.e.,tanδthenequalsthepowerfactorofthedielectric material.

Asmentionedearlier,thedielectriclossconsistsofthreecomponentscorrespondingtothethree

lossmechanism.

Pdiel

=Pc + P

p +P

i

andforeachoftheseanindividualdissipationfactorcanbegivensuchthat

tanδ=tanδc + tanδ

p + tanδ

i

Ifonlyconductionlossesoccurthen

Pdiel

=Pc =σE2 Ad=V2ωCtanδ=

2

Vωε0 εrA

d

tanδ

or σE2 =V

ωεεtanδ=E2 ωεε tanδ

or tanδ=

d2 0 r 0 r

σωε0 εr

Thisshowsthatthedissipationfactorduetoconductionlossaloneisinverselyproportionalto

thefrequencyandcan,therefore,beneglectedathigherfrequencies.However,forsupplyfrequency

eachlosscomponentwillhaveconsiderablemagnitude.

Inordertoincludealllosses,itiscustomarytorefertheexistenceofalosscurrentinadditionto

thechargingcurrentbyintroducingcomplexpermittivity.

ε* =ε′–jε″

andthetotalcurrentIisexpressedas

I=(jωε′+ωε″) C0 V ε0

whereC0isthecapacitancewithoutdielectricmaterial. or

I=jωC0ε

r*.V

(ε′ −jε″) where ε*r =

0

Page 57: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 142

d

=ε′r–jε

r″

εr*iscalledthecomplexrelativepermittivityorcomplexdielectricconstant,ε′andε

r′arecalled

thepermittivityandrelativepermittivityandε″andεr″arecalledthelossfactorandrelativelossfactor

respectively.Thelosstangent

ε″ εr″

tanδ = = ε′ εr′

Theproductoftheangularfrequencyandε″isequivalenttothedielectricconductivityσ″i.e.,σ″=ωε″.

Thedielectricconductivitytakesintoaccountallthethreepowerdissipativeprocessesinclud- ing

theonewhichisfrequencydependent.Fig.7.4showstwoequivalentcircuitsrepresentingtheelectricalbehavio

urofinsulatingmaterialsundera.c.voltages,losseshavebeensimulatedbyresistances.

VwC

I

RP CP

RS I d

C w

IRS

I

S

CS

V/R V

(a)

(b)

Fig.7.4Equivalentcircuitsforaninsulatingmaterial

NormallytheanglebetweenVandthetotalcurrentinapurecapacitoris90°.Duetolosses,this

angleislessthan90°.Therefore,δistheanglebywhichthevoltageandchargingcurrentfallshortof the90°displacement.

Fortheparallelcircuitthedissipationfactorisgivenby

1

andfortheseriescircuit

tanδ = ωCpRp

tanδ=ωCsR

s

For afixedfrequency,boththeequivalentsholdgoodandonecanbeobtainedfromtheother.

However,thefrequencydependenceisjusttheoppositeinthetwocasesandthisshowsthelimited

validityoftheseequivalentcircuits.

Theinformationobtainedfromthemeasurementoftanδandcomplexpermittivityisanindica-

tionofthequalityoftheinsulatingmaterial.

(i)If tanδvariesandchangesabruptlywiththeapplicationofhighvoltage,itshowsinception

ofinternalpartialdischarge.

(ii)Theeffecttofrequencyonthedielectricpropertiescanbestudiedandthebandoffrequen- cies where

dispersion occursi.e.,wherethatpermittivityreduceswithriseinfrequencycan beobtained.

HIGHVOLTAGESCHERINGBRIDGE

Page 58: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 143

Thebridge is widely used for capacity and dielectric loss measurement of all kinds of

capacitances, for instance cables, insulators and liquid insulating materials. We know that most of the

high voltage equipments have low capacitance and low loss factor. Typical values of these equipments

are given in

Chapter5.Thisbridgeisthenmoresuitableformeasurementofsuchsmallcapacitanceequipmentsas

thebridgeuseseitherhighvoltageorhighfrequencysupply.Ifmeasurementsforsuchlowcapacity

equipmentsiscarriedoutatlowvoltage,theresultssoobtainedarenotaccurate

Fig.7.5showsahighvoltagescheringbridgewherethespecimenhasbeenrepresentedbya

parallelcombinationofRp andC

p.

Fig.7.5Basichighvoltagescheringbridge

Thespecialfeaturesofthebridgeare:

4.Highvoltagesupply,consistsofahighvoltagetransformerwithregulation,protectivecir- cuitry

and special screening. The input voltage is 220 volt and output continuously variable

between0and10kV.Themaximumcurrentis100mAanditisof1kVAcapacity.

4.ScreenedstandardcapacitorCs of100pF±5%,10kVmaxanddissipationfactortanδ

=10–5.Itisagas-filledcapacitorhavingnegligiblelossfactoroverawiderangeoffrequency.

5.TheimpedancesofarmsIandIIareverylargeand,therefore,currentdrawnbythesearms

issmallfromthesourceandasensitivedetectorisrequiredforobtainingbalance.Also,

sincetheimpedanceofarmIandIIareverylargeascomparedtoIIIandIV,thedetectorand

theimpedancesinarmIIIandIVareatapotentialofonlyafewvolts(10to20volts)above

earthevenwhenthesupplyvoltageis10kV,exceptofcourse,incaseofbreakdownofone

ofthecapacitorsofarmIorIIinwhichcasethepotentialwillbethatofsupplyvoltage.

Sparkgapsare,therefore,providedtosparkoverwheneverthevoltageacrossarmIIIorIV

exceeds100voltsoastoprovidepersonnelsafetyandsafetyforthenulldetector.

4.NullDetector: Anoscilloscopeisusedasanulldetector.The γ–platesaresuppliedwiththe bridgevoltageV

abandthex-plateswiththesupplyvoltageV.IfV

abhasphasedifference

withrespecttoV,anellipsewillappearonthescreen(Fig.7.6).However,ifmagnitude

balance is not reached, an inclined straight line will be observed on the screen. The

information about the phase is obtained from the area of the eclipse and the one about the

magnitude from the inclination angle. Fig. 7.6ashows that both magnitude and phase are

balancedandthisrepresentsthenullpointcondition.Fig.(7.6c)and(d)showsthatonly

phaseandamplituderespectivelyarebalanced.

Page 59: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 144

(a) (b) (c) (d)

Fig.7.6Indicationsonnulldetector

The handling of bridge keys allows to meet directly both the phase and the magnitude

conditionsinasingleattempt.Atimeconsumingiterativeprocedurebeingusedearlieris

thusavoidedandalsowiththisaveryhighorderofaccuracyinthemeasurementisachieved.

Thehighaccuracyisobtainedasthesenulloscilloscopesareequippedwithaγ–amplifier of

automatically controlled gain. If the impedances are far away from the balance point, the

wholescreenisused.Fornearlyobtainedbalance,itisstillalmostfullyused.AsVab

becomes

smaller,byapproachingthebalancepoint,thegainincreasesautomaticallyonlyfordeviations

veryclosetobalance,theellipseareashrinkstoahorizontalline.

5.AutomaticGuardPotentialRegulator:Whilemeasuringcapacitanceandlossfactorsusing

a.c.bridges,thedetrimentalstraycapacitancesbetweenbridgejunctionsandtheground

adverselyaffectthemeasurementsandarethesourceoferror.Therefore,arrangements should be

made to shield the measuring system so that these stray capacitances are either

neutralised,balancedoreliminatedbypreciseandrigorouscalculations.Fig.7.7shows

variousstraycapacitanceassociatedwithHighVoltageScheringBridge.

Fig.7.7Scheringbridgewithstraycapacitances

C

a,C

b,C

candC

darethestraycapacitancesatthejunctionsA,B,CandDofthebridge.Ifpoint

DisearthedduringmeasurementcapacitanceCd

isthuseliminated.SinceCc

comesacrossthepower

supplyforearthedbridge,hasnoinfluenceonthemeasurement.Theeffectof otherstraycapacitances

Ca

andCb

canbeeliminatedbyuseofauxiliaryarms,eitherguardpotentialregulatororauxiliary

branchassuggestedbyWagner.

Fig.7.8showsthebasicprincipleofWagnerearthtoeliminatetheeffectofstraycapacitances

CaandC

b.InthisarrangementanadditionalarmZ isconnectedbetweenthelowvoltageterminalofthe four arm

Page 60: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 145

bridge and earth. The stray capacitanceCbetween the high voltage terminal of the bridge and

thegroundedshieldandtheimpedanceZtogetherconstituteasixarmbridgeandadoublebalancing

procedureisrequired.

SwitchSisfirstconnectedtothebridgepointbandbalanceisobtained.Atthispointaandbare

atthesamepotentialbutnotnecessarilyatthegroundpotential.SwitchSisnowconnectedtopointC

andbyadjustingimpedanceZbalanceisagainobtained.Underthisconditionpoint‘a’mustbeatthe

samepotentialasearthalthoughitisnotpermanentlyatearthpotential.SwitchSisagainconnectedto

pointbandbalanceisobtainedbyadjustingbridgeparameters.Theprocedureisrepeatedtillallthe

threepointsa,b andcareattheearthpotentialandthusCa andC

b areeliminated.

Cs C

b c

a D S

Z

Fig.7.8BridgeincorporatingWagnerearth

This method is, however, now rarely

used.Insteadanauxiliaryarmusingautomatic

guard potential regulator is used. The basic

circuitisshowninFig.7.9.

Theguardpotentialregulatorkeepsthe

shieldpotentialatthesamevalueasthatof

thedetectordiagonalterminalsaandbforthe

bridge balance considered. Since potentials of

a,bandshieldareheldatthesamevaluethe

straycapacitancesareeliminated.Duringthe

processofbalancingthebridgethepoints a

andbattaindifferentvaluesofpotentialin

Fig.7.9AutomaticWagnerearthorautomatic

guardpotentialregulator

magnitudeandphasewithrespecttoground.Asaresult,theguardpotentialregulatorshouldbeableto adjust the

voltage both in magnitude and phase. This is achieved with a voltage divider arrangement

providedwithcoarseandfinecontrols,oneofthemfedwithin-phaseandtheotherquadraturecompo-

nentofvoltage.Thecontrolvoltageisthentheresultantofbothcomponentswhichcanbeadjusted

eitherinpositiveorinnegativepolarityasdesired.Thecomparisonbetweentheshieldingpotential

adjustedbymeansoftheGuardpotentialregulatorandthebridgevoltageismadeinthenullindicator

oscilloscopeasmentionedearlier.Modifyingthepotential,itiseasytobringthereadingofthenull

detectortoahorizontalstraightlinewhichshowsabalancebetweenthetwovoltagesbothinmagni-

tudeandphase.

Page 61: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 146

22

1 d p pi

The automaticguardpotentialregulatoradjustsautomaticallytheguardpotentialofthebridge

makingthisequalinmagnitudeandphasetothepotentialofthepointaorbwithrespecttoground.

Theregulatordoesnotuseanyexternalsourceofvoltagetoachievethisobjective.Itisrathercon-

nectedtothebridgecornerpointbetweenaorbandcandistakenasareferencevoltageandthisis

thentransmittedtotheguardcircuitwithunitygainbothinmagnitudeandphase.Theshieldsofthe leadsto

CsandC

p arenotgroundedbutconnectedtotheoutputofthe regulatorwhich,infact,isan

operationalamplifier.Theinputimpedanceoftheamplifierismorethan1000Megaohmsandthe

outputimpedanceislessthan0.5ohm.Thehighinputimpedanceandverylowoutputimpedanceof

theamplifierdoesnotloadthedetectorandkeepstheshieldpotentialatanyinstantatanartificial ground.

BalancingtheBridge

ForreadyreferenceFig.7.5isreproducedhereanditsphasordiagramunderbalancedcondition

isdrawninFig.7.10(b)

V1wCs

V2wC2

d

90°

I1

V2/R2

V1/Rp V1

I1R1 =V2

Fig.7.10(a)Scheringbridge(b)Phasordiagram

ThebridgeisbalancedbysuccessivevariationofR1 andC

2 untilontheoscilloscope(Detector)

ahorizontalstraightlineisobserved:

Atbalance ZI

ZII

=ZIII

ZIV

Rp

Now ZI = 1+jωCpRp

Z

II=

1

jωCs

R2

ZIII

=RI andZ

IV=

1+jωCR

Frombalanceequationwehave

Rp

R1 (1+iωCpRp)

Rp (1−jω CpRp) or

R 1+ω2C2R2

1/jωCs (1+jωC2R2) =

R2

=1+jωC2R2

jωCsR2

Page 62: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 147

Page 63: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 148

TRANSFORMERRATIOARMBRIDGE

For measurementofvariousparameterslikeresistance,in-

ductance,capacitance,usuallyfourarmbridgesareused. For

high frequency measurements, the arm with high

resistances leads to difficulties due to their residual induct-

ance,capacitanceandskineffect.Alsoiflengthoftheleads

islarge, shielding is difficult. Hence at high frequencies the

transformerratioarmbridgewhicheliminatesatleasttwo arms,

are preferred. These bridges provide more accurate

resultsforsmallcapacitancemeasurements.Therearetwo

typesoftransformerratioarmbridges(i)Voltageratio;(ii)

C¢s

Nb Ra

Na

D

Ns

Rs Cs

Current ratio. The voltage ratio type is used for high fre-

quency low voltage application. Fig. 7.16 shows schematic

diagramofavoltageratioarmbridge.Assumingidealtrans-

former,underbalancecondition:

Fig.7.16Transformervoltageratio

armbridge

However,inpracticalsituationduetothepresenceofmagnetisingcurrentandtheloadcurrents,

thevoltageratioslightlydiffersfromtheturnsratioandtherefore,themethodinvolvescertainerrors.

Theerrorsareclassifiedasratioerrorandloaderrorwhichcanbecalculatedbeforehandfora transformer. A typical

bridge has a useful range from a fraction of apFtoabout100 µFand is accurate over awide

rangeoffrequencyfrom100Hzto100kHz,theaccuracybeingbetterthan±0.5%.

The currentratioarmbridgeisusedforhighvoltagelowfrequencyapplications.Themain advantage of

the method is that the test specimen is subjected to full system voltage. Fig. 7.17 shows

schematicdiagramofthebridge.Themaincomponentofthebridgeisathreewindingcurrenttrans-

formerwithverylowlossesandleakage(coreofhighpermeability).Thetransformeriscarefully

shieldedagainststraymagneticfieldsandprotectedagainstmechanicalvibrations.

NEED FOR PARTIALDISCHARGES

Partialdischargeisdefinedaslocaliseddischargeprocessinwhichthedistancebetweentwoelec- trodes

is only partially bridgedi.e.,the insulation between the electrodes is partially punctured. Partial

dischargesmayoriginatedirectlyatoneoftheelectrodesoroccurinacavityinthedielectric.Someof

Page 64: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 149

thetypicalpartialdischargesare:(i)Coronaorgasdischarge.Theseoccurduetonon-uniformfieldon

sharpedgesoftheconductorsubjectedtohighvoltageespeciallywhentheinsulationprovidedisairor

gasorliquidFig.7.18(a).(ii)Surfacedischargesanddischargesinlaminatedmaterialsontheinter-

facesofdifferentdielectricmaterialsuchasgas/solidinterfaceasgasgetsoverstressedεr

timesthestressonthesolidmaterial(whereεr

istherelativepermittivityofsolidmaterial)andionizationofgas

resultsFig.7.18(b)and(c). (iii)Cavitydischarges:Whencavitiesareformedinsolidorliquidinsulat- ing

materialsthegasinthecavityisoverstressedanddischargesareformedFig.7.18(d)(iv).TreeingChannels:Hi

ghintensityfieldsareproducedinaninsulatingmaterialatitssharpedgesand

thisdeterioratestheinsulatingmaterial.Thecontinuouspartialdischargessoproducedareknownas

TreeingChannelsFig.7.18(e).

ExternalPartialDischarge

Externalpartial discharge is the process which occurs external to the equipment e.g. on overhead lines,

onarmatureetc.

InternalPartialDischarge

Internal paratial discharge is a process of electrical discharge which occurs inside a closed

system (discharge in voids, treeing etc). This kind of classification is essential for the PD measuring

system as externaldischargescanbenicelydistinguishedfrominternaldischarges.Partialdischargemeasure-

ment have been used to assess the life expectancy of insulating materials. Even though there is no well

defined relationship, yet it gives sufficient idea of the insulating properties of the material. Partial

discharges on insulation can be measured not only by electrical methods but by optical, acoustic and

chemicalmethodalso.Themeasuringprinciplesarebasedonenergyconversionprocessassociated

withelectricaldischargessuchasemissionofelectromagneticwaves,light,noiseorformationofchemical

compounds.Theoldestandsimplestbutlesssensitiveisthemethodoflisteningtohissingsoundcomingoutofp

artialdischarge.Ahighvalueoflossfactortanδisanindicationofoccurrenceofpartialdischargeinthematerial.

Thisisalsonotareliablemeasurementastheadditionallossesgeneratedduetoapplicationofhighvoltageareloc

alisedandcanbeverysmallincomparisontothevolume losses resulting from polarization process. Optical

methods are used only for those materials which are

transparentandthusnotapplicableforallmaterials.Acousticdetectionmethodsusingultrasonictransducersha

ve,however,beenusedwithsomesuccess.Themostmodernandthemostaccuratemethods

aretheelectricalmethods.ThemainobjectivehereistoseparateimpulsecurrentsassociatedwithPD

fromanyotherphenomenon.

Page 65: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 150

ThePartialDischargeEquivalentCircuit

If thereareanypartialdischargesinadielectricmaterial,thesecanbemeasuredonlyacrossits

terminal.Fig.7.19showsasimplecapacitorarrangementinwhichagasfilledvoidispresent.The

partialdischargeinthevoidwilltakeplaceastheelectricstressinthevoidisεrtimesthestressinthe

restofthematerialwhereεristherelativepermittivityofthematerial.Duetogeometryofthematerial,

variouscapacitancesareformedasshowninFig.7.19(a).Fluxlinesstartingfromelectrodeandtermi-

natingatthevoidwillformonecapacitanceCb1

andsimilarlyCb2

betweenelectrodeBandthecavity.

Ccisthecapacitanceofthevoid.SimilarlyC

a1andC

a2arethecapacitanceofhealthyportionsofthe

dielectriconthetwosidesofthevoid.Fig.7.19(b)showstheequivalentof7.19(a)whereCa =C

a1

+Ca2

,andCb=C

b1C

b2/(C

b1+C

b2) andC

c isthecavitycapacitance.IngeneralC

a >>C

b>>C

c.

Page 66: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 151

ClosingofswitchSisequivalenttosimulatingpartialdischargeinthevoidasthevoltageVc

acrossthevoidreachesbreakdownvoltage.Thedischargeresultsintoacurrentic(t)toflow.ResistorR

c

simulatesthefinitevalueofcurrentic(t).

SupposevoltageVisappliedacrosstheelectrodeAandBandthesampleischargedtothis

voltageandsourceisremoved.ThevoltageVcacross thevoidissufficienttobreakdownthevoid.Itis

equivalenttoclosingswitch SinFig.7.19(b).Asaresult,thecurrent ic(t)flowswhichreleasesa

charge∆qc=∆V

cC

cwhichisdispersedinthedielectricmaterialacrossthecapacitanceC

b andC

a.Here

∆Vcisthedropinthevoltage V

casaresultofdischarge.Theequivalentcircuitduringredistributionof

charge∆qcisshowninFig.7.20

DVc

Cb

A

Ca DV

B

Fig.7.20Equivalentof7.19(a)afterdischarge

ThevoltageasmeasuredacrossABwillbe

∆V=

Cb

Ca +Cb

∆Vc=

Cb

Ca +Cb

∆qc

Cc

Ordinarily∆VcisinkVwhereas∆Visafewvoltssincetheratio C

b/C

a isoftheorderof10–4to

10–5.Thevoltagedrop∆VeventhoughcanbemeasuredbutasCb andC

c arenormallynotknown

neither∆Vcnor∆q

ccanbeobtained.AlsosinceVisinkVand∆Visinvoltstheratio∆V/Visverysmall

≈10–3,thereforethedetectionof∆V/Visatedioustask.

Page 67: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 152

Suppose,thatthetestobjectremainsconnectedtothevoltagesourceFig.7.24.HereCkisthe

couplingcapacitor.Zistheimpedance consistingeitheronlyoftheleadimpedanceoforleadimpe-

danceandPD-freeinductororfilterwhichdecouplesthecouplingcapacitorandthetestobjectfrom

thesourceduringdischargeperiodonly,whenveryhighfrequencycurrentpulseic(t)circulatebetween

CkandC

t.C

t isthetotalequipmentcapacitanceofthetestspecimen.

Fig.7.21

ItistobenotedthatZoffershighimpedancetocircularcurrent(impulsecurrents)and,there-

fore,thesearelimitedonlytoCk and C

t.However,supplyfrequencydisplacementcurrentscontinueto

flowthroughCkandCtandwaveshapesofcurrentsthroughCkandCtareshowninFig.7.24.

Fig.7.22CurrentwaveformsinCk andC

t.

It isinterestingtofindthatpulsecurrentsinCkandC

thave exactlysamelocationbutopposite polarities

and these are of the same magnitude. Therefore, one can say that these pulse currents are not

suppliedbythesourcebutareduetolocalpartialdischarges.Theamplitudeofpulsesdependsuponthe

Page 68: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 153

z

voltageappliedandthenumberofpulsesdependsuponthenumberofvoids.Thelargerthenumberof

faultsthehigherthenumberofpulsesoverahalfcycle.

Duringdischarge,thevoltageacrossthetestobjectCt

fallsbyanamount∆Vandduringthis

periodCkstorestheenergyandreleasethechargebetweenC

k andC

t thuscompensatingthedrop∆V.

TheequivalentcapacitanceofthetestspecimenisCt≈C

a +C

bassumingC

ctobenegligiblysmall.If C

k

>>Ct,thechargetransferisgivenby

q = i(t)dt≈(Ca+C

b)∆V

Now ∆V= Cb

Ca +Cb

and ∆V= q

Ca +Cb

∆Vc

Therefore, q

Ca +Cb

= Cb

Ca +Cb

∆Vc

or q=Cb

∆VC

Hereqisknownasapparentchargeasitisnotequaltothechargelocallyinvolvedi.e.Cc∆V

c.

Thischargeqis,however,morerealisticthancalculating∆V,asqisindependentofCa

whereas∆V

dependsuponCa.

InpracticetheconditionCk

>>Ct

isneversatisfiedastheCk

willoverloadthesupplyandalso

itwillbeuneconomical.However,ifCk

isslightlygreaterthanCt,thesensitivityofmeasurementis

reducedasthecompensatingcurrentic

(t)becomessmall.IfCt

is comparabletoCk

and∆Visthedrop

involtageof Ct

asaresultofdischarge,thetransferofchargebetween Ct

andCk

willresultinto

commonvoltage∆V′.

∆V′= Ct ∆V+Ck.O

= Ct +Ck

Ct ∆V

Ct+Ck

= q

Ct +Ck

∆V′isthenetriseinvoltageoftheparallelcombinationofCkandC

t and,therefore,thecharge

qm

transferredtoCt fromC

k willbe

qm

=Ck∆V′

Thechargeqm

isknownasmeasurablecharge.Theratioofmeasurablechargetoapparent

chargeis,therefore,givenas

qm = q

Ck

Ct +Ck

Inordertohavehighsensitivityofmeasurementsi.e.,highqm/q itisclearthatC

kshouldbelarge

compared toCt.ButweknowthattherearedisadvantagesinhavinglargevalueofC

k.Therefore,this

methodofmeasurementofPDhaslimitedapplications.

Page 69: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 154

ThemeasurementofPDcurrentpulsesprovidesimportantinformationconcerningthedischarge

processesinatestspecimen.Thetimeresponseofanelectricdischargedependsmainlyonthenature of

faultanddesignofinsulatingmaterial.Theshapeofthecircularcurrentisanindicationofthe physical

discharge process at the fault location in the test object. The principle of measurement ofPD

currentisshowninFig.7.25.

Fig.7.23Principleofpulsecurrentmeasurement

HereCindicatesthestraycapacitancebetweentheleadofCtandtheearth,theinputcapaci-

tanceoftheamplifierandotherstraycapacitances.Thefunctionofthehighpassamplifieristosup-

pressthepowerfrequencydisplacementcurrentik(t)andI

c(t)andtofurtheramplifytheshortduration

currentpulses.ThusthedelaycableiselectricallydisconnectedfromtheresistanceR.Supposeduring

apartialdischargeashortdurationpulsecurrentδ(t)isproducedandresultsinapparentchargeqonCt

whichwillberedistributedbetweenCt,CandC

k .ThecircuitforthesameisgiveninFig.7.24.

(i)Pulseshapednoisesignals:TheseareduetoimpulsephenomenonsimilartoPDcurrents.

(ii)Harmonicsignals:Thesearemainlyduetopowersupplyandthyristorisedcontrollers.

Wearetakingapparentchargeastheindexlevelofthepartialdischargeswhichisintegrationof

PDpulse currents. Therefore, continuous alternating current of any frequency would disturb the

integrationprocessofthemeasuringcircuitandhenceitisimportantthatthesecurrents(otherthanPD

currents)mustbesuppressedbeforethemixtureofcurrentsispassedthroughtheintegratingcircuit.

Thesolutiontotheproblemisobtainedbyusingfiltercircuitswhichmaybecompletelyindependentof

integratingcircuits.

Fig.7.26showstwodifferentwaysinwhichthemeasuringimpedanceZm

canbeconnectedin thecircuit.

Z

Page 70: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 155

z

NB

ampl.

Peak level indi- cator

P C

meter

V2 (t)

V2

Ct

V Ck

M Zm

(a)

Z

Ck

Ct

Zm M

(b)

Fig.7.26

InFig.7.26(a)Zm

isconnectedinserieswith Ct

andprovidesbettersensitivityasthePD

currentsexcitedfromCtwouldbebetterpickedupbymeasuringcircuitZ

m. However,thedisadvantage

isthatincaseofpunctureofthetestspecimenthemeasuringcircuitwouldalsobedamaged. Specifically

forthisreason,thesecondarrangementinwhichZm

isconnectedbetweenthegroundterminalofCk

andthegroundandisthecircuitmostcommonlyused.

Asismentionedearlier,accordingtointernationalstandardsthelevelofpartialdischargesis judged by

quantity of apparent charge measured. The apparent charge is obtained by integration of the

circularcurrentic(t).ThisoperationiscarriedoutonthePDpulsesusing‘wideband’and‘narrow

band’,measuringsystems.Thesearebasicallybandpassfilterswithamplifyingaction.Ifweexamine

thefrequencyspectrumofthepulsecurrent,itwillbeclearwhybandpassfiltersaresuitablefor

integratingPDpulsecurrents.

Weknowthatforanon-periodicpulsecurrenti(t),thecomplexfrequencyspectrumofthe

currentisgivenbyFouriertransformas

NarrowBandPD-DetectionCircuit

AnarrowbandPDdetectioncircuitisbasicallyaverysensitivemeasurementreceivercircuitwitha

continuouslyvariablemeasuringorcentrefrequencyfm

intherangeofapproximately50kHZtosev-

eralMHz.Thenomenclaturetonarrow-bandisjustifiedasthebandwidthofthefilteramplifieris

typicallyonly9kHz.However,ifspecialcircumstancesdemand,thebandwidthmaybeslightlymade

widerornarrowerthan9kHz.

Fig.7.31showsanarrowbandPDmeasuringcircuit.ℑ

Z

V0 (t)

V1 (t)

Page 71: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 156

R L

Fig.7.31BasicnarrowbandPDmeasuringcircuit

ParallelcombinationofRandLconstitutethemeasuringimpedanceZm.Themeasuringimpe-

danceactsasahighpassandhighfrequencyPDcurrentspulsesi(t)aredecoupledfromthetestcircuit. WhereasinwidebandcircuitsthemeasuringimpedanceZ

m(R||L||C)performsintegrationoperation

ontheinputDiracdeltacurrenti(t),nointegration iscarriedoutbyZminthenarrowbandcircuit.Alow

resistanceratingofthemeasuringimpedanceZm

preventsthattheseriesconnectionofCk andC

tat-

tenuateshighfrequencycomponentsofPDsignals.SincethedelaycableisterminatedwithZ0whichis

thesurgeimpedanceofthecableitselfthecapacitanceCc ofthecabledoesnotplayanyrole.

AssumingthattheparallelcombinationofRandLissochosenthatLdoesnotperform integrating

operation on the input signali(t) = I0

δ(t),thevoltagev1(t)at the input of the narrow band amplifier is

proportionaltothePDimpulsecurrenti(t)i.e.,

v1

(t)=I0 δ(t)R

m

Again,assumingthati(t)=I0 e–t/τasinFig.7.27,wehave

v1 (t)=I

0e–t/τR

m

I0 τRm V0 τ

V1(jω)=

1+jω τ=

1+jω τ

RZ0

where Rm =R+Z

0

ThetimeconstantofthecircuitT=Rm

C

CtCk

where C = Ct +Ck

Let S0

=V0

τ ThequantityS

0containstheinformationconcerningtheindividualpulsechargeqandisreferred

toastheintegralsignalamplitudeandisrepresentedinFig.7.34.

V0

S0 =V0t

V1 (jw)

V1 (t) V0 t

t t

(a) (b)

ònw

Fig.7.32(a)Approximatevoltageimpulse(b)Itsfrequencyresponse

Table7.1

Page 72: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 157

ComparisonbetweenwidebandandnarrowbandPDmeasuringcircuits

WideBand NarrowBand

4.

4.

5.

4.

5.

7.

7.

Bandwidth

Centrefrequency

Pulseresolutiontime

Pulsepolarity

Noisesusceptibility

MaximumadmissiblePD

pulsewidth

Indicationofmeasured

value

f2–f

1 =150to200kHz

Fixedf0

=80–150kHz

Smallabout15µsec.

Detectable

Relativelyhighasno.of

interferencesources

increaseswithbandwidth

Approx1µsec.

DirectlyinpC

∆f=9kHz

Variablefm

=50kHzto2MHz

Largeabout220µsec.

Notdetectable

Lowduetoselectivemeasurements

throughvariablecentrefrequency.

Dependsuponf

m in

DirectlyinpC

Tableaboveshowsrelativemeritsanddemeritsofthetwocircuits.However,inpracticalsitua-

tions,asystemthatcanbeswitchedoverbetweenwidebandandnarrowbandshouldprovetobemore

versatileanduseful.

OSCILLOSCOPEASPDMEASURINGDEVICE OscilloscopeisanintegralandindispensablecomponentofaPDmeasuringsystem.Anindicating

metere.g.apCmeterandRIVmetercangivequantityofcharge,whetherthechargeisasaresultof

partialdischargeorduetoexternalinterferences,cannotbeestimated.Thisproblemcanbesolvedonly

iftheoutputwaveformisstudiedontheOscilloscope.Whethertheoriginofthedischargesisfrom

withinthetestobjectornot,canfrequentlybedeterminedbasedonthetypicalpatterns.Ifitisascer-

tainedfromthepatternsthatthedischargeisfromthetestobject,themagnitudeoftheapparentcharge

shouldbemeasuredwithpCmetersorRIVmeters.Thepeakvalueoftheintegratedpulsecurrentisthe

desiredapparentchargeq.Thesesignalsarenormallysuperposedonthea.c.testvoltageforobserva-

tionontheOscilloscope.Dependinguponthepreferenceseithersineorellipticalshapescanbese-

lected.Onecompleterotationoftheellipseoronecompletecycleofsinewaveequals20msec.of

duration.Sincethedurationofthesecurrentpulsestobemeasuredisafewmicrosecond,thesepulses

whenseenonthepowerfrequencywave,looklikeverticallinesofvaryingheightssuperimposedon

thepowerfrequencywaves.

WhenevercalibrationfacilityexistsinthePDtestcircuit,thecalibrationcurveofknowncharge

appearsonthescreen.Thecalibrationpulsecanbeshiftedentirelyalongtheellipseorsinecurveofthe

powersupplyandthesignaltobemeasuredcanbecomparedwiththecalibrationpulse.

Example1:A20kV,50HzScheringbridgehasastandardcapacitanceof106µF.Inatest ona

bakelitesheetbalancewasobtainedwithacapacitanceof0.35µF inparallelwithanon-inductive

resistanceof318ohms,thenon-inductiveresistanceintheremainingarmofthebridgebeing130

ohms.Determinetheequivalentseriesresistanceandcapacitanceandthep.f.ofthespecimen.

Solution:HereC′s=106µF,C

2 =0.35µF

Page 73: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 158

s

R

R2

=318ohmsandR1

=130ohms.

Since R =R C2

=130× s 1

C′

0.35

106 =0.429ohm Ans.

R2

and Cs =C′ s

1

318 =106× =259µF Ans.

130

tanδs =ωC

s R

s =314×259×10–6×0.429

=5.5×104 ×10–6=0.035 Ans.

Since tanδ=sinδ=cos(90–δ)

=cosφ=0.035 Ans.

Page 74: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 159

R

R

Example 2.Determinep.f.andtheequivalentparallelresistanceandcapacitanceoftherestspeci-

menofexample7.1

Solution:Forparallelequivalent

R2

Cp

=Cs

1

HereCs isthestandardcapacitance

318 C

p =106×

130=259µF Ans.

R1

Rp=

ω2 C C R2

Rp =

2 s 2

130

3142 ×0.35×106×10−12×3182

=351ohms Ans.

tanδ= 1

314×351×259×10−6

1 = =0.035

28.54 Ans.

Example 3.A 33 kV,50HzhighvoltageScheringbridgeisusedtotestasampleofinsulation.The

variousarmshavethefollowingparametersonbalance.Thestandardcapacitance500pF,theresis-

tivebranch800ohmandbranchwithparallelcombinationofresistanceandcapacitancehasvalues

180ohmsand0.15µF.Determinethevalueofthecapacitanceofthissampleitsparallelequivalent lossresistance,thep.f.andthepowerlossunderthesetestconditions.

Solution:Given Cs =500pF

R1=800ohm

R2

=180ohm

C2

=0.15µF

Now C

=C R2 =500×10−12×

180=

p s 114.5pF 1 800

R1 800 R

p =

ω2C C R2 = 3142 ×500×10−12×0.15×10−6×1802

2 s 2

Page 75: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 160

pp

= 800

4.3958×1011×1018

1

=335.9×107 =3339 MΩ

1

p.f.=tanδp =

ωC R =

314×114.5×10−12×3339×106

= 1

117.95

0.008478 Ans.

V2

Powerloss = R

332 ×10

6

= 3339×106

=0.326watts Ans.

Example 4.Alengthofcableistestedforinsulationresistancebythelossofchargemethod.An

electrostaticvoltmeterofinfiniteresistanceisconnectedbetweenthecableconductorandearthform-

ingtherewithajointcapacitanceof600pF.Itisobservedthatafterchargingthevoltagefallsfrom250

voltsto92Vinonemin.Determinetheinsulationresistanceofthecable.

Solution:Thevoltageatanytimetisgivenas

v=Ve–t/CR

whereVistheinitialvoltage

or V

=et/CR

v

or 1nV

= t

v CR

t 60 or R= =

C1nV v

= 60

600×10−12

1n250

92

600×10−12×1

=100,000Mohms Ans.

Example5.Followingmeasurementsaremadetodeterminethedielectricconstantandcomplex

permittivityofatestspecimen:

Theaircapacitanceoftheelectrodesystem=50pF

Thecapacitanceandlossangleoftheelectrodeswithspecimen=190pFand0.0085respectively.

190 Solution:Thedielectricconstantε

r = =5.8

50

Nowcomplexpermittivityε =ε′–jε″

=ε0

(εr′–jε

r″)

Page 76: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 161

εr′=ε

r =5.8

tanδ =εr″=

ε r ″=0.0085

εr′ 5.8

Page 77: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 162

or εr″=0.0323

ε=ε0 (5.8–j0.0323)

=8.854×10–12(5.8–j0.0323)

=(5.36–j0.0286)×10–11F/m Ans.

Example 6.Determinethespecificheatgeneratedinthetestspecimenduetodielectriclossifthe

dielectricconstantandlossangleofthespecimenare5.8and0.0085respectively.Theelectricfieldis

40kV/cmat50Hz.]

Solution:Thespecificlossisgivenby

σE2 Watts/m3

whereσistheconductivityofthespecimenandEthestrengthofelectricfield.

Alsoweknowthat

tanδ = σ

ωε0εr

or σ=ωε0ε

r tanδ

Therefore,specificlossisgivenas

σE2 =ωε0ε

r tanδE2

=314×8.854×10–12×5.8×0.0085×1600×1010

=1436Watts/m3 Ans.

Example7.Asoliddielectricof1cmthicknessandεr=5.8hasaninternalvoidof1mmthickness. If

thevoidisfilledwithairwhichbreaksdownat21KV/cm,determinethevoltageatwhichaninternal

dischargecanoccur.

Solution:RefertoFig.Ex.7.7

Forinternaldischargetotakeplacethegradientinvoidshouldbe21kV/cm.Therefore,the

gradientinthedielectricslabwillbe

21=5.526kV/cm.

5.8

Therefore,totalvoltagerequiredtoproducethesegradientwillbe

=5.526×0.9+21×0.1

=4.97+4.1

=7.07kVrms Ans.

Page 78: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 163

Questions

1.Whatisnon-destructivetestingofinsulatingmaterials?Giveverybrieflythecharacteristicsof thesemethods.

2.Startingfromfirstprinciples,developexpressiontoevolveequivalentcircuitofaninsulatingmaterial.

3.Drawaneatdiagramofahighvoltagescheringbridgeanddescribevariousfeaturesofthebridge.

4. Describethefunctionsof(i)Nulldetector(ii)Automaticguardpotentialregulatorusedinhighvoltage

Scheringbridge.

5. DrawaneatdiagramofhighvoltageScheringbridgeandanalyseitforbalancedcondition. Drawits

phasordiagram.Assume(i)Seriesequivalent(ii)Parallelequivalentrepresentationoftheinsulatingma- terial.

6.Whatmodificationsdoyousuggestinthebasic Scheringbridgewhilemeasuringlarge capacitances?

Giveitsanalysis.Howtheexpressionsforcapacitanceandlossanglegetmodified?

7. Whatisaninvertedscheringbridge?Giveitsapplication.

8. Explain the operation of high voltage Schering bridge when the test specimen (i) is grounded (ii) has high

lossfactor.

9. Discussvarioustypesoftransformerratioarmbridgesandgivetheirapplicationandadvantages.

10. Describewithaneatdiagramtheprincipleoftheoperationoftransformercurrentratioarmbridge.Ex-

plainhowthisisusedformeasurementofcapacitanceandlossfactorofaninsulatingmaterial.

11.Whatarepartialdischarges?Differentiatebetweeninternalandexternaldischarges.

12.Developanddrawequivalentcircuitofinsulatingmaterialduringpartialdischarge.

13.What is apparent charge in relation to partial discharges? Show that the calculation of apparentchargeas

ameasureofpartialdischargeseventhoughismorerealisticthancalculationofchangeinvoltageacross

theelectrode,haslimitedapplicationforpartialdischargemeasurement.

14. Explainwithneatdiagrambasicprincipleofpulsecurrentmeasurementforestimationof partial dis- charges.

15. Writeshortnoteonthemeasuringimpedancecircuitforestimationofpartialdischarges.

16.Showsthatthed.c.contentofthefrequencyspectrumequalstheapparentchargeinthepulsecurrent.

17. Explainwithneatdiagramshowwidebandcircuitcanbeusedformeasuringpartialdischarge.

18. “Forpropermeasurementofpartialdischargetheresolutiontimeofthecircuitshouldbesmallerthanthe time-

constantofthecurrentpulse”Why?Explain.

19. ExplainwithneatdiagramtheNarrow-BandPD-detectioncircuit.

20. Showthattheimpulseresponseofnarrow-bandpassreceiverisanOscilatoryandwithmainfrequencyfm

andtheamplitudeisgivenbysignumfunction.Discussthelimitationofnarrowbandpassdetector.

21.ComparetheperformanceofnarrowbandandwidebandPDmeasuringcircuits.

22.Explainwithneatdiagramabridgecircuitusedforsuppressinginterferencesignals.

23.WriteashortnoteontheuseofanOscilloscopeasaPDmeasuringdevice.

Page 79: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 164

UNIT- 8

HIGH VOLTAGE TESTS ON ELECTRICAL APPARATUS: Definitions of

terminologies, tests on isolators, circuit breakers, cables insulators and transformers

Theveryfastdevelopmentofsystemsisfollowed bystudies

ofequipmentandtheserviceconditionstheyhavetofulfill.Theseconditionswillalso

determinethevaluesfortestingatalternating,impulseandd.c.voltagesunderspecificconditions.

As wegoforhigherandhigheroperatingvoltages(sayabove1000kV)certainproblemsare

associatedwiththetestingtechniques.Someoftheseare:

(i)Dimensionofhighvoltagetestlaboratories.

(ii)Characteristicsofequipmentforsuchlaboratories.

(iii)Somespecialaspectsofthetesttechniquesatextrahighvoltages.

Thedimensionsoflaboratoriesfortestequipmentsof750kVandabovearefixedbythefollowing

mainconsiderations:

(i)Figures(values)oftestvoltagesunderdifferentconditions.

(ii)Sizesofthetestofequipmentsina.c.,d.c.andimpulsevoltages.

(iii) Distancesbetweentheobjectsunderhighvoltageduringthetestperiodandtheearthed

surroundingssuchasfloors,wallsandroofsofthebuildings.Theproblemsassociatedwith

thecharacteristicsoftheequipmentsusedfortestingaresummarisedhere.

Therearesomedifficultproblemswithimpulsetestingequipmentsalsoespeciallywhentesting

largepowertransformersorlargereactorsorlargecablesoperating atveryhighvoltages.Theequiva-

lentcapacitanceoftheimpulsegeneratorisusuallyabout40nanofaradsindependentoftheoperating

voltagewhichgivesastoredenergyofabout1/2×40 10–9×36×109 =720KJfor6MVgenerators which

isrequiredfortestingequipmentsoperatingat150kV.Itisnotatalldifficulttopileupalarge

numberofcapacitancestochargetheminparallelandthendischargeinseriestoobtainadesired

impulsewave.Butthedifficultyexistsinreducingtheinternalreactanceofthecircuitsothatashort

wavefrontwithminimumoscillationcanbeobtained.Forexamplefora4MVcircuittheinductanceof

thecircuitisabout140 µHanditisimpossibletotestanequipmentwithacapacitanceof5000pFwith

afronttimeof4.2µsec.andlessthan5%overshootonthewavefront.

Cascadedrectifiersareusedforhighvoltaged.c.testing.Acarefulconsiderationisnecessary

whentestonpollutedinsulationistobeperformedwhichrequirescurrentsof50to200mAbutex- tremely

predischarge streamer of 0.5 to 1 amp during milliseconds occur. The generator must have an

internalreactanceinordertomaintainthetestvoltagewithouttoohighavoltagedrop.

TESTINGOFOVERHEADLINEINSULATORS

Varioustypesofoverheadlineinsulatorsare(i)Pintype(ii)Posttype(iii)Stringinsulatorunit

(iv)Suspensioninsulatorstring(v)Tensioninsulator.

Page 80: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 165

ArrangementofInsulatorsforTest

Stringinsulatorunitshouldbehungbyasuspensioneyefromanearthedmetalcrossarm.Thetest

voltageisappliedbetweenthecrossarmandtheconductorhungverticallydownfromthemetalparton

thelowersideoftheinsulatorunit.

Suspensionstringwithallitsaccessoriesasinserviceshouldbehungfromanearthedmetal

crossarm.Thelengthofthecrossarmshouldbeatleast4.5timesthelengthofthestringbeingtested

andshouldbeatleastequalto0.9moneithersideoftheaxisofthestring.Nootherearthedobject

shouldbenearertotheinsulatorstringthen0.9mor4.5timesthelengthofthestringwhicheveris

greater.Aconductorofactualsizetobeusedinserviceorofdiameternotlessthan1cmandlength4.5

timesthelengthofthestringissecuredinthesuspensionclampandshouldlieinahorizontalplane.

Thetestvoltageisappliedbetweentheconductorandthecrossarmandconnectionfromtheimpulse

generatorismadewithalengthofwiretooneendoftheconductor.Forhigheroperatingvoltages

wherethelengthofthestringislarge,itisadvisabletosacrificethelengthoftheconductorasstipu-

latedabove.Instead,itisdesirabletobendtheendsoftheconductoroverinalargeradius.

Fortensioninsulatorsthearrangementismoreorlesssameasinsuspensioninsulatorexcept

thatitshouldbeheldinanapproximatelyhorizontalpositionunderasuitabletension(about1000Kg.).

Highvoltagetestingofelectricalequipmentrequirestwotypesoftests:(i) Typetests,and(ii) Routine

test. Type tests involves quality testing of equipment at the design and development leveli.e.

samplesoftheproductaretakenandaretestedwhenanewproductisbeingdevelopedanddesignedor

anoldproductistoberedesignedanddevelopedwhereastheroutinetestsaremeanttocheckthe quality of the

individual test piece. This is carried out to ensure quality and reliability of individual test objects.

Highvoltagetestsinclude(i)Powerfrequencytestsand(ii)Impulsetests.Thesetestsarecar-

riedoutonallinsulators.

(i)50%dryimpulseflashovertest.

(ii)Impulsewithstandtest.

(iii)Dryflashoveranddryoneminutetest.

(iv)Wetflashoverandoneminuteraintest.

(v)Temperaturecycletest.

(vi)Electro-mechanicaltest.

(vii)Mechanicaltest.

(viii)Porositytest.

(ix)Puncturetest.

(x)Mechanicalroutinetest.

Thetestsmentionedabovearebrieflydescribedhere.

(i) Thetestiscarriedoutonacleaninsulatormountedasinanormalworkingcondition.An impulse

voltage of 1/50µ sec.waveshapeandofanamplitudewhichcancause50%flashoverofthe

insulator,isapplied,i.e.oftheimpulsesapplied50%oftheimpulsesshouldcauseflashover.The

polarityoftheimpulseisthenreversedandprocedurerepeated.Theremustbeatleast20applications

oftheimpulseineachcaseandtheinsulatormustnotbedamaged.Themagnitudeoftheimpulse

voltageshouldnotbelessthanthatspecifiedinstandardspecifications.

(ii)Theinsulatorissubjectedtostandardimpulseof1/50µsec.waveofspecifiedvalueunder

Page 81: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 166

dryconditionswithbothpositiveandnegativepolarities.Iffiveconsecutiveapplicationsdonotcause

anyflashoverorpuncture,theinsulatorisdeemedtohavepassedtheimpulsewithstandtest.Ifoutof

five,twoapplicationscauseflashover,theinsulatorisdeemedtohavefiledthetest.

(iii)Powerfrequencyvoltageisappliedtotheinsulatorandthevoltageincreasedtothespeci- fied

valueandmaintainedforoneminute.Thevoltageisthenincreasedgraduallyuntilflashover

occurs.Theinsulatoristhenflashedoveratleastfourmoretimes,thevoltageisraisedgraduallyto

reachflashoverinabout10seconds.Themeanofatleastfiveconsecutiveflashovervoltagesmustnot

belessthanthevaluespecifiedinspecifications.

(iv)If the test is carried out under artificial rain, it is called wet flash over test. The insulator is

subjectedtosprayofwateroffollowingcharacteristics:

Precipitationrate 3±10%mm/min. Direction

45°tothevertical

Conductivityofwater 100microsiemens±10%

TemperatureofwaterAmbient+15°C

Theinsulatorwith50%oftheone-min.raintestvoltageappliedtoit,isthensprayedfortwo

minutes,thevoltageraisedtotheoneminutetestvoltageinapproximately10sec.andmaintainedthere

foroneminute.Thevoltageisthenincreasedgraduallytillflashoveroccursandtheinsulatoristhen

flashedatleastfourmoretimes,thetimetakentoreachflashovervoltagebeingineachcaseabout

10sec.Theflashovervoltagemustnotbelessthanthevaluespecifiedinspecifications.

(v)Theinsulatorisimmersedinahotwaterbathwhosetemperatureis70°higherthannormal

waterbathforTminutes.ItisthentakenoutandimmediatelyimmersedinnormalwaterbathforT minutes.

AfterT minutestheinsulatorisagainimmersedinhotwaterbathforT minutes.Thecycleis

repeatedthreetimesanditisexpectedthattheinsulatorshouldwithstandthetestwithoutdamagetothe

insulatororglaze.HereT=(15+W/4.36)whereWistheweightoftheinsulatorinkgs.

(vi)Thetestiscarriedoutonlyonsuspensionortensiontypeofinsulator.Theinsulatoris subjected to a

2½ times the specified maximum working tension maintained for one minute. Also,

simultaneously75%ofthedryflashovervoltageisapplied.Theinsulatorshouldwithstandthistest

withoutanydamage.

(vii)Thisisabendingtestapplicable topintypeandline-postinsulators.Theinsulatorissub- jected to a

load three times the specified maximum breaking load for one minute. There should be no damage to

the insulator and in case of post insulator the permanent set must be less than 1%. However,

incaseofpostinsulator,theloadisthenraisedtothreetimesandthereshouldnotbeanydamagetothe

insulatoranditspin.

(viii)Theinsulatorisbrokenandimmersedina0.5%alcoholsolutionoffuchsinunderapres-

sureof13800kN/m2 for24hours.Thebrokeninsulatoristakenoutandfurtherbroken.Itshouldnot

showanysignofimpregnation.

(ix)Animpulseovervoltageisappliedbetweenthepinandtheleadfoilboundoverthetopand

sidegroovesincaseofpintypeandpostinsulatorandbetweenthemetalfittingsincaseofsuspension

typeinsulators.Thevoltageis1/50 µsec.wavewithamplitudetwicethe50%impulseflashover

voltageandnegativepolarity.Twentysuchapplicationsareapplied.Theprocedureisrepeatedfor4.5,

3,5.5timesthe50%impulseflashovervoltageandcontinuedtilltheinsulatorispunctured.The

insulatormustnotpunctureifthevoltageappliedisequaltotheonespecifiedinthespecification.

(x)Thestringininsulatorissuspendedverticallyorhorizontallyandatensileload20%in

excessofthemaximumspecifiedworkingloadisappliedforoneminuteandnodamagetothestring

Page 82: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 167

shouldoccur.

TESTINGOFCABLES

Highvoltage power cables have proved quite useful especially in case of HV d.c. transmission. Under-

grounddistributionusingcablesnotonlyaddstotheaestheticlooksofametropolitancitybutitpro-

videsbetterenvironmentsandmorereliablesupplytotheconsumers.

PreparationofCableSample

Thecablesamplehastobecarefullypreparedforperformingvarioustestsespeciallyelectricaltests.

Thisisessentialtoavoidanyexcessiveleakageorendflashoverswhichotherwisemayoccurduring

testingandhencemaygivewronginformationregardingthequalityofcables.Thelengthofthesample

cablevariesbetween50cmsto10m.Theterminationsareusuallymadebyshieldingtheendsofthe

cablewithstressshieldssoastorelievetheendsfromexcessivehighelectricalstresses.

Acableissubjectedtofollowingtests:

(i)Bendingtests.

(ii)Loadingcycletest.

(iii)Thermalstabilitytest.

(iv)Dielectricthermalresistancetest.

(v)Lifeexpectancytest.

(vi)Dielectricpowerfactortest.

(vii)Powerfrequencywithstandvoltagetest.

(viii)Impulsewithstandvoltagetest.

(ix)Partialdischargetest.

(i)Itistobenotedthatavoltagetestshouldbemadebeforeandafterabendingtest.Thecable is

bentroundacylinderofspecifieddiametertomakeonecompleteturn.Itisthenunwoundand

rewoundintheoppositedirection.Thecycleistoberepeatedthreetimes.

(ii)Atestloop,consistingofcableanditsaccessoriesissubjectedto20loadcycleswitha

minimumconductortemperature5°Cinexcessofthedesignvalueandthecableisenergizedto

4.5timestheworkingvoltage.Thecableshouldnotshowanysignofdamage.

(iii)After test as at (ii), the cable is energized with a voltage 4.5 times the working voltage for a

cableof132kVrating(themultiplyingfactordecreaseswithincreasesinoperatingvoltage)andthe

loadingcurrentissoadjustedthatthetemperatureofthecoreofthecableis5°Chigherthanitsspeci-

fiedpermissibletemperature.Thecurrentshouldbemaintainedatthisvalueforsixhours.

(iv)Theratioofthetemperaturedifferencebetweenthecoreandsheathofthecableandthe heat flow

from the cable gives the thermal resistance of the sample of the cable. It should be within the

limitsspecifiedinthespecifications.

(v)Inordertoestimatelifeofacable,anacceleratedlifetestiscarriedoutbysubjectingthe

cabletoavoltagestresshigherthanthenormalworkingstress.Ithasbeenobservedthattherelation

betweentheexpectedlifeofthecableinhoursandthevoltagestressisgivenby

g= K n t

whereKisaconstantwhichdependsonmaterialandnisthelifeindexdependingagainonthe material.

Page 83: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 168

(vi)HighVoltageScheringBridgeisusedtoperformdielectricpowerfactortestonthecable

sample.Thepowerfactorismeasuredfordifferentvaluesofvoltagese.g.0.5,4.0,4.5and4.0timesthe

ratedoperatingvoltages.Themaximumvalueofpowerfactoratnormalworkingvoltagedoesnot

exceed aspecifiedvalue(usually0.01)ataseriesoftemperaturesrangingfrom15°Cto65°C.The

differenceinthepowerfactorbetweenratedvoltageand4.5timestheratedvoltageandtherated voltage and

twice the rated voltage does not exceed a specified value. Sometimes the source is not able to supply

charging current required by the test cable, a suitable choke in series with the test cable helps

intidingoverthesituation.

(vii)Cablesaretestedforpowerfrequencya.c.andd.c.voltages.Duringmanufacturetheentire

cableispassedthroughahighervoltagetestandtheratedvoltagetocheckthecontinuityofthecable.

Asaroutinetestthecableissubjectedtoavoltage4.5timestheworkingvoltagefor10minwithout

damagingtheinsulationofthecable.HVd.c.of4.8timestheratedd.c.voltageofnegativepolarityfor

30min.isappliedandthecableissaidtohavewithstoodthetestifnoinsulationfailuretakesplace.

(viii)Thetestcableissubjectedto10positiveand10negativeimpulsevoltageofmagnitudeas

specifiedinspecification,thecableshouldwithstand5applicationswithoutanydamage.Usually,after

theimpulse test, the power frequency dielectric power factor test is carried out to ensure that no failure

occurredduringtheimpulsetest.

(ix)Partialdischargemeasurementofcablesisveryimportantasitgivesanindicationofex-

pectedlifeofthecableanditgiveslocationoffault,ifany,inthecable.

Whenacableissubjectedtohighvoltageandifthereisavoidinthecable,thevoidbreaks

downandadischargetakesplace.Asaresult,thereisasuddendipinvoltageintheformofanimpulse.

ThisimpulsetravelsalongthecableasexplainedindetailinChapterVI.Thedurationbetweenthe

normalpulseandthedischargepulseismeasuredontheoscilloscopeandthisdistancegivestheloca-

tionofthevoidfromthetestendofthecable.However,theshapeofthepulsegivesthenatureand

intensityofthedischarge.

In ordertoscantheentirelengthofthecableagainstvoidsorotherimperfections,itispassed through a

tube of insulating material filled with distilled water. Four electrodes, two at the end and two

inthemiddleofthetubearearranged.Themiddleelectrodesarelocatedatastipulateddistanceand

theseareenergizedwithhighvoltage.Thetwoendelectrodesandcableconductoraregrounded.As

thecableispassedbetweenthemiddleelectrode,ifadischargeisseenontheoscilloscope,adefectin this part of

the cable is stipulated and hence this part of the cable is removed from the rest of the cable.

TESTINGOFPOWERTRANSFORMERS

Transformerisoneofthemostexpensiveandimportantequipmentinpowersystem.Ifitisnotsuitably

designeditsfailuremaycausealengthyandcostlyoutage.Therefore,itisveryimportanttobecautious while

designing its insulation, so that it can withstand transient over voltage both due to switching and

lightning.Thehighvoltagetestingoftransformersis,therefore,veryimportantandwouldbediscussed here.

Other tests like temperature rise, short circuit, open circuit etc. are not considered here. However,

thesecanbefoundintherelevantstandardspecification.

PartialDischargeTest

The testiscarriedoutonthewindingsofthetransformertoassessthemagnitudeofdischarges.The

transformerisconnectedasatestspecimensimilartoanyotherequipmentasdiscussedinChapter-VI

andthedischargemeasurementsaremade.Thelocationandseverityoffaultisascertainedusingthe

Page 84: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 169

travellingwavetheorytechniqueasexplainedinChapterVI.Themeasurementsaretobemadeatall

theterminals of the transformer and it is estimated that if the apparent measured charge exceeds 104

picocoulombs,thedischargemagnitudeisconsideredtobesevereandthetransformerinsulationshould

besodesignedthatthedischargemeasurementshouldbemuchbelowthevalueof104pico-coulombs.

ImpulseTestingofTransformer

The impulselevelofatransformerisdeterminedbythebreakdownvoltageofitsminorinsulation (Insulation

between turn and between windings), breakdown voltage of its major insulation (insulation between

windings and tank) and the flash over voltage of its bushings or a combination of these. The impulse

characteristics of internal insulation in a transformer differs from flash over in air in two main

respects.Firstlytheimpulseratioofthetransformerinsulationishigher(variesfrom4.1to4.2)than that of

bushing (4.5forbushings,insulatorsetc.).Secondly,theimpulsebreakdownoftransformer

KV

1 2 3 4 5 t

Fig.8.1Volttimecurveoftypicalmajorinsulationintransformer

insulation inpracticallyconstantandisindependentoftimeofapplicationofimpulsevoltage.Fig.8.1 shows

that after three micro seconds the flash over voltage is substantially constant. The voltage stress

betweentheturnsofthesamewindingandbetweendifferentwindingsofthetransformerdepends

uponthesteepnessofthesurgewavefront.Thevoltagestressmayfurthergetaggravatedbythepiling

upactionofthewaveifthelengthofthesurgewaveislarge.Infact,duetohighsteepnessofthesurge

waves,thefirstfewturnsofthewindingareoverstressedandthatiswhythemodernpracticeisto

provideextrainsulationtothefirstfewturnsofthewinding.Fig.8.2showstheequivalentcircuitofa

transformerwindingforimpulsevoltage.

Fig.8.2Equivalentcircuitofatransformerforimpulsevoltage

HereC1

represents inter-turncapacitanceandC2

capacitance betweenwindingandtheground (tank).

In order that the minor insulation will be able to withstand the impulse voltage, the winding is subjected

to chopped impulse wave of higher peak voltage than the full wave. This chopped wave is

producedbyflashoverofarodgaporbushinginparallelwiththetransformerinsulation.Thechop-

pingtimeisusually3to6microseconds.Whileimpulsevoltageisappliedbetweenonephaseand

Page 85: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 170

ground,highvoltageswouldbeinducedinthesecondaryofthetransformer.Toavoidthis,thesecond-

arywindingsareshort-circuitedandfinallyconnectedtoground.Theshortcircuiting,however,de-

creasestheimpedanceofthetransformerandhenceposesprobleminadjustingthewavefrontand

wavetailtimingsofwave.Also,theminimumvalueoftheimpulsecapacitancerequiredisgivenby

whereP=ratedMVAofthetransformerZ=percentimpedanceoftransformer.V=ratedvoltageof transformer.

Fig.8.3showsthearrangementofthetransformerforimpulsetesting.CROformsanintegral

partofthetransformerimpulsetestingcircuit.Itisrequiredtorecordtowaveformsoftheapplied

voltageandcurrentthroughthewindingundertest.

Fig.8.3Arrangementforimpulsetestingoftransformer

Impulsetestingconsistsofthefollowingsteps:

(i)Applicationofimpulseofmagnitude75%oftheBasicImpulseLevel(BIL)ofthetransformer

undertest.

(ii)Onefullwaveof100%ofBIL.

(iii)Twochoppedwaveof115%ofBIL.

(iv)Onefullwaveof100%BILand

(v)Onefullwaveof75%ofBIL.

During impulsetestingthefaultcanbelocatedbygeneralobservationlikenoiseinthetankor

smokeorbubbleinthebreather.

If thereisafault,itappearsontheOscilloscopeasapartialofcompletecollapseoftheapplied voltage.

Study ofthewaveformoftheneutralcurrentalsoindicatedthetypeoffault.Ifanarcoccurs

betweentheturnsorformturntotheground,atrainofhighfrequencypulsesareseenontheoscillo-

scopeandwaveshapeofimpulsechanges.Ifitisapartialdischargeonly,highfrequencyoscillations

areobservedbutnochangeinwaveshapeoccurs.

Thebushingformsanimportantandintegralpartoftransformerinsulation.Therefore,itsim-

pulseflashovermustbecarefullyinvestigated.Theimpulsestrengthofthetransformerwindingis

Page 86: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 171

sameforeitherpolarityofwavewhereastheflashovervoltageforbushingisdifferentfordifferent

polarity.Themanufacturer,however,whilespecifyingtheimpulsestrengthofthetransformertakes

intoconsiderationtheoverallimpulsecharacteristicofthetransformer.

TESTINGOFCIRCUITBREAKERS

Anequipmentwhendesignedtocertainspecificationandisfabricated,needstestingforitsperform-

ance.Thegeneraldesignistriedandtheresultsofsuchtestsconductedononeselectedbreakerandare

thusapplicabletoallothersofidenticalconstruction.Thesetestsarecalledthetypetests.Thesetests

areclassifiedasfollows:

4.Shortcircuittests:

(i)Makingcapacitytest.

(ii)Breakingcapacitytest.

(iii)Shorttimecurrenttest.

(iv)Operatingdutytes

4.Dielectrictests:

(i)Powerfrequencytest:

(a)Oneminutedrywithstandtest.

(b)Oneminutewetwithstandtest.

(ii)Impulsevoltagedrywithstandtest.

5.Thermaltest.

4.Mechanicaltest

Oncea particular design is found satisfactory, a large number of similar C.Bs. are manufactured

formarketing.EverypieceofC.B.isthentestedbeforeputtingintoservice.Thesetestsareknownas

routinetests.Withthesetestsitispossibletofindoutifincorrectassemblyorinferiorqualitymaterial hasbeen

usedforaprovendesignequipment.Thesetestsareclassifiedas(i)operationtests,(ii)millivoltdroptests,(iii

)powerfrequencyvoltagetestsatmanufacturer’spremises,and(iv)power

frequencyvoltagetestsaftererectiononsite.

Wewilldiscussfirstthetypetests.Inthatalsowewilldiscusstheshortcircuittestsafterthe

otherthreetests.

DielectricTests

Thegeneraldielectriccharacteristicsofanycircuitbreakerorswitchgearunitdependuponthebasic

designi.e.clearances, bushing materials, etc. upon correctness and accuracy in assembly and upon the

quality of materials used. For a C.B. these factors are checked from the viewpoint of their ability to

withstand over voltages at the normal service voltage and abnormal voltages during lightning or other

phenomenon.

Thetestvoltageisappliedforaperiodofoneminutebetween(i)phaseswiththebreakerclosed,

(ii)phasesandearthwithC.B.open,and(iii)acrosstheterminalswithbreakeropen.Withthisthe

breakermustnotflashoverorpuncture.Thesetestsarenormallymadeonindoorswitchgear.Forsuch

C.Bstheimpulsetestsgenerallyareunnecessarybecauseitisnotexposedtoimpulsevoltageofavery

highorder.Thehighfrequencyswitchingsurgesdooccurbuttheeffectoftheseincablesystemsused

Page 87: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 172

forindoorswitchgeararefoundtobesafelywithstoodbytheswitchgearifithaswithstoodthenormal

frequencytest.

Sincetheoutdoorswitchgeariselectricallyexposed,theywillbesubjectedtoovervoltages

causedbylightning.Theeffectofthesevoltagesismuchmoreseriousthanthepowerfrequencyvoltages

inservice.Therefore,thisclassofswitchgearissubjectedinadditiontopowerfrequencytests,the

impulsevoltagetests.

Thetestvoltageshouldbeastandard1/50µsecwave,thepeakvalueofwhichisspecified according to

the rated voltage of the breaker. A higher impulse voltage is specified for non-effectively

groundedsystemthanthoseforsolidlygroundedsystem.Thetestvoltagesareappliedbetween(i)each pole and

earth in turn with the breaker closed and remaining phases earthed, and (ii) between all termi- nals on

one side of the breaker and all the other terminals earthed, with the breaker open. The specified

voltagesarewithstandvaluesi.e.thebreakershouldnotflashoverfor10applicationsofthewave.

Normallythistestiscarriedoutwithwavesofboththepolarities.

Thewetdielectrictestisusedforoutdoorswitchgear.Inthis,theexternalinsulationissprayed

fortwominuteswhiletheratedservicevoltageisapplied;thetestovervoltageisthenmaintainedfor

30secondsduringwhichnoflashovershouldoccur.Theeffectofrainonexternalinsulationispartly

beneficial,insofarasthesurfaceistherebycleaned,butisalsoharmfuliftheraincontainsimpurities.

ThermalTests

Thesetestsaremadetocheckthethermalbehaviourofthebreakers.Inthistesttheratedcurrent

throughallthreephasesoftheswitchgearispassedcontinuouslyforaperiodlongenoughtoachieve

steadystateconditions.Temperaturereadingsareobtainedbymeansofthermocoupleswhosehotjunc- tions

areplacedinappropriatepositions.Thetemperatureriseaboveambient,ofconductors,must

normallynotexceed40°Cwhentheratednormalcurrentislessthan800ampsand50°Cifitis800

ampsandabove.

Anadditionalrequirementinthetypetestisthemeasurementofthecontactresistancesbetween

theisolatingcontactsandbetweenthemovingandfixedcontacts.Thesepointsaregenerallythemain

sourcesofexcessiveheatgeneration.Thevoltagedropacrossthebreakerpoleismeasuredfordifferent

valuesofd.c.currentwhichisameasureoftheresistanceofcurrentcarryingpartsandhencethatof contacts.

Page 88: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 173

MechanicalTests

AC.B.mustopenandcloseatthecorrectspeedandperformsuchoperationswithoutmechanical failure. The

breaker mechanism is, therefore, subjected to a mechanical endurance type test involving

repeatedopeningandclosingofthebreaker.B.S.116:1952requires500suchoperationswithout

failureandwithnoadjustmentofthemechanism.Somemanufacturefeelthatasmanyas20,000

operationsmaybereachedbeforeanyusefulinformationregardingthepossiblecausesoffailuremay

beobtained.Aresultingchangeinthematerialordimensionsofaparticularcomponentmayconsider-

ablyimprovethelifeandefficiencyofthemechanism.

ShortCircuitTests

ThesetestsarecarriedoutinshortcircuittestingstationstoprovetheratingsoftheC.Bs.Before

discussingthetestsitispropertodiscussabouttheshortcircuittestingstations.

Therearetwotypesoftestingstations;(i)fieldtype,and(ii)laboratorytype.

In caseoffieldtypestationsthepowerrequiredfortestingisdirectlytakenfromalargepower

system.Thebreakertobetestedisconnectedtothesystem.Whereasthismethodoftestingiseconomi-

calforhighvoltageC.Bs.itsuffersfromthefollowingdrawbacks:

4.Thetestscannotberepeatedlycarriedoutforresearchanddevelopmentasitdisturbsthe

wholenetwork.

4.Thepoweravailabledependsuponthelocationofthetestingstations,loadingconditions,

installedcapacity,etc.

5.Testconditionslikethedesiredrecoveryvoltage,theRRRVetc.cannotbeachievedcon- veniently.

In caseoflaboratorytestingthepowerrequiredfortestingisprovidedbyspeciallydesigned

generators.Thismethodhasthefollowingadvantages:

4.Testconditionssuchascurrent,voltage,powerfactor,restrikingvoltagescanbecontrolled

accurately.

4.Severalindirecttestingmethodscanbeused.

5.Testscanberepeatedandhenceresearchanddevelopmentoverthedesignispossible.

Thelimitationsofthismethodarethecostandthelimitedpoweravailabilityfortestingthe breakers.

Fig.8.5Circuitfordirecttesting

Page 89: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 174

HereXG=generatorreactance,S

1 andS

2aremasterandmakeswitchesrespectively.RandXare

theresistanceandreactanceforlimitingthecurrentandcontrolofp.f.,Tisthetransformer,C,R1

andR2

isthecircuitforadjustingtherestrikingvoltage.

Fortesting,breakingcapacityofthebreakerundertest,masterandbreakerundertestareclosed

first.Shortcircuitisappliedbyclosingthemakingswitch.Thebreakerundertestisopenedatthe

desiredmomentandbreakingcurrentisdeterminedfromtheoscillographasexplainedearlier.

Formakingcapacitytestthemasterandthemakeswitchesareclosedfirstandshortcircuitis applied by closing

the breaker under test. The making current is determined from the oscillograph as explainedearlier.

Questions:

1.Explaintheprocedurefortestingstringinsulator.

2.Describethearrangementofinsulatorsforperformingvarioustests.

3.Listoutvariousteststobecarriedoutoninsulatorandgiveabriefaccountofeachtest.

4. Writeashortnoteonthecablesamplepreparationbeforeitissubjectedtovarioustests.

5.Listoutvariousteststobecarriedoutonacableandgiveabriefaccountofeachtest.

6. Explainbrieflyvariousteststobecarriedoutonabushing.

7. Explain the function of discharge device used in a power capacitor and explain the test for efficacy of this

device.

8. Explaintheprocedureforperforming(i)IRtest(ii)Stabilitytestand(iii)Partialdischargetest.

9. Explainbrieflyimpulsetestingofpowertransformer.

10. DescribevariousteststobecarriedoutonC.B.

Page 90: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 175

ShortCircuitTestPlants

The essentialcomponentsofatypicaltestplantarerepresentedinFig.8.4.Theshort-circuitpoweris supplied

by specially designed short-circuit generators driven by induction motors. The magnitude of voltage can

be varied by adjusting excitation of the generator or the transformer ratio. A plant master-

breakerisavailabletointerruptthetestshortcircuitcurrentifthetestbreakershouldfail.Initiationof

theshortcircuitmaybebythemasterbreaker,butisalwaysdonebyamakingswitchwhichisspecially

designedforclosingonveryheavycurrentsbutnevercalledupontobreakcurrents.Thegenerator

windingmaybearrangedforeitherstarordeltaconnectionaccordingtothevoltagerequired;by

furtherdividingthewindingintotwosectionswhichmaybeconnectedinseriesorparallel,achoiceof

fourvoltagesisavailable.Inadditiontothistheuseofresistorsandreactorsinseriesgivesawide

rangeofcurrentandpowerfactors.Thegenerator,transformerandreactorsarehousedtogether,usu-

allyinthebuildingaccommodatingthetestcells.

Generator

Fig.8.4Schematicdiagramofatypicaltestplant

Theshortcircuitgeneratorisdifferentindesignfromtheconventionalpowerstation.Thecapacityof

thesegeneratorsmaybeoftheorderof2000MVAandveryrigidbracingoftheconductorsandcoil

endsisnecessaryinviewofthehighelectromagneticforcespossible.Thelimitingfactorforthemaxi-

mumoutputcurrentistheelectromagneticforce.Sincetheoperationofthegeneratorisintermittent,

thisneednotbeveryefficient.Thereductionofventilationenablesthemainfluxtobeincreasedand

permitstheinclusionofextracoilendsupports.Themachinereactanceisreducedtoaminimum.

Immediatelybeforetheactualclosingofthemakingswitchthegeneratordrivingmotorisswitched

outandtheshortcircuitenergyistakenfromthekineticenergyofthegeneratorset.Thisisdoneto

avoidanydisturbancetothesystemduringshortcircuit.However,inthiscaseitisnecessarytocom-

pensateforthedecrementingeneratorvoltagecorrespondingtothediminishinggeneratorspeeddur-

ingthetest.Thisis achievedbyadjustingthegeneratorfieldexcitationtoincreaseatasuitablerate

duringtheshortcircuitperiod.

ResistorsandReactors

Theresistorsareusedtocontrolthep.f.ofthecurrentandtocontroltherateofdecayofd.c.component

ofcurrent.Thereareanumberofcoilsperphaseandbycombinationsofseriesandparallelconnec-

tions,desiredvalueofresistanceand/orreactancecanbeobtained.

Capacitors

Theseareusedforbreakinglinechargingcurrentsandforcontrollingtherateofre-strikingvoltage.

ShortCircuitTransformers

Theleakagereactanceofthetransformerislowsoastowithstandrepeatedshortcircuits.Sincethey

Page 91: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 176

areinuseintermittently,theydonotposeanycoolingproblem.Forvoltagehigherthanthegenerated

Page 92: High Voltage Engineering 10EE73 - · PDF fileChubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV

High Voltage Engineering 06EE73

Dept. Of EEE, SJBIT Page 177

voltages,usuallybanksofsinglephasetransformersareemployed.IntheshortcircuitstationatBhopal

therearethreesinglephaseunitseachof11kV/76kV.Thenormalratingis30MVAbuttheirshort

circuitcapacityis475MVA.

MasterC.Bs.

Thesebreakersareprovidedasbackupwhichwilloperate,shouldthebreakerundertestfailtooper-

ate.Thisbreakerisnormallyairblasttypeandthecapacityismorethanthebreakerundertest.After

everytest,itisolatesthetestbreakerfromthesupplyandcanhandlethefullshortcircuitofthetest circuit.

MakeSwitch

Themakeswitchisclosedafterotherswitchesareclosed.Theclosingoftheswitchisfast,sureand

withoutchatter.Inordertoavoidbouncingandhenceweldingofcontacts,ahighairpressureismain-

tainedinthechamber.Theclosingspeedishighsothatthecontactsarefullyclosedbeforetheshort

circuitcurrentreachesitspeakvalue.

TestProcedure

Beforethetestisperformedallthecomponentsareadjustedtosuitablevaluessoastoobtaindesired

valuesofvoltage,current,rateofriseofrestrikingvoltage,p.f.etc.Themeasuringcircuitsarecon-

nectedandoscillographloopsarecalibrated.

Duringthetestseveraloperationsareperformedinasequenceinashorttimeoftheorderof

0.2sec. This is done with the help of a drum switch with several pairs of contacts which is rotated with

amotor.Thisdrumwhenrotatedclosesandopensseveralcontrolcircuitsaccordingtoacertainse-

quence.Inoneofthebreakingcapacityteststhefollowingsequencewasobserved:

(i)Afterrunningthemotortoaspeedthesupplyisswitchedoff.

(ii)Impulseexcitationisswitchedon.

(iii)MasterC.B.isclosed.

(iv)Oscillographisswitchedon.

(v)Makeswitchisclosed.

(vi)C.B.undertestisopened.

(vii)MasterC.B.isopened.

(viii)Excitercircuitisswitchedoff.