Top Banner
High Efficiency Low Cost Electrochemical Ammonia Production Julie N. Renner, Steve Szymanski, Proton OnSite Lauren Greenlee, NIST/University of Arkansas Andrew Herring, Colorado School of Mines Douglas Tiffany, University of Minnesota NH3 Fuel Conference Chicago, IL September 22 nd 2015
26

High Efficiency Low Cost Electrochemical Ammonia Production · PDF fileJulie N. Kadrmas and Julie C. Liu High Efficiency Low Cost Electrochemical Ammonia Production Julie N. Renner,

Feb 07, 2018

Download

Documents

doanh
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: High Efficiency Low Cost Electrochemical Ammonia Production · PDF fileJulie N. Kadrmas and Julie C. Liu High Efficiency Low Cost Electrochemical Ammonia Production Julie N. Renner,

Julie N. Kadrmas and Julie C. Liu High Efficiency Low Cost

Electrochemical Ammonia Production

Julie N. Renner, Steve Szymanski, Proton OnSite Lauren Greenlee, NIST/University of Arkansas

Andrew Herring, Colorado School of Mines Douglas Tiffany, University of Minnesota

NH3 Fuel Conference

Chicago, IL September 22nd 2015

Page 2: High Efficiency Low Cost Electrochemical Ammonia Production · PDF fileJulie N. Kadrmas and Julie C. Liu High Efficiency Low Cost Electrochemical Ammonia Production Julie N. Renner,

Outline

2

Proton OnSite Overview

Electrochemical Ammonia Synthesis

Results and Future Directions

0.00.51.01.52.02.53.03.54.04.55.0

Hour 1 Hour 2 Hour 3 Hour 4(after water

rinse)

Effi

cie

ncy

, % (

1.2

V)

Pt black

Fe-Ni LSA (1)

Fe-Ni LSA (2)

Fe-Ni HSA

Ni only

Fe only

Fe-Pt

0.00.51.01.52.02.53.03.54.04.55.0

Hour 1 Hour 2 Hour 3 Hour 4(after water

rinse)

Effi

cie

ncy

, % (

1.2

V)

Pt black

Fe-Ni LSA (1)

Fe-Ni LSA (2)

Fe-Ni HSA

Ni only

Fe only

Fe-Pt0.00.51.01.52.02.53.03.54.04.55.0

Hour 1 Hour 2 Hour 3 Hour 4(after water

rinse)

Effi

cie

ncy

, % (

1.2

V)

Pt black

Fe-Ni LSA (1)

Fe-Ni LSA (2)

Fe-Ni HSA

Ni only

Fe only

Fe-Pt0.00.51.01.52.02.53.03.54.04.55.0

Hour 1 Hour 2 Hour 3 Hour 4(after water

rinse)

Effi

cie

ncy

, % (

1.2

V)

Pt black

Fe-Ni LSA (1)

Fe-Ni LSA (2)

Fe-Ni HSA

Ni only

Fe only

Fe-Pt

H2O

H2O

O2

H2O

H2O

H2O

N2

H2O

H2O

H2O

NH3

NH3

AEM Catalyst

Layers

GDLs

OH-

e-

Page 3: High Efficiency Low Cost Electrochemical Ammonia Production · PDF fileJulie N. Kadrmas and Julie C. Liu High Efficiency Low Cost Electrochemical Ammonia Production Julie N. Renner,

• Core technology in PEM electrolysis

• Founded in 1996, >2200 fielded units, 15 MW capacity shipped

• Continuing to scale manufacturing and output to address energy markets

• MW scale electrolyzer system now available

Proton OnSite Overview

Headquarters in Wallingford, CT

Electrolyzer Applications:

Power Plants Government

Heat Treating Laboratories

Semiconductors Proton Fueling Station

3

Renewable Energy Storage Biogas

Page 4: High Efficiency Low Cost Electrochemical Ammonia Production · PDF fileJulie N. Kadrmas and Julie C. Liu High Efficiency Low Cost Electrochemical Ammonia Production Julie N. Renner,

Membrane-based Electrolysis

4

MembraneElectrode Assembly

Stack

• “PEM” electrode = Proton Exchange Membrane

• Reaction occurs across a thin MEA

• Assembled into compact stacks and systems

Page 5: High Efficiency Low Cost Electrochemical Ammonia Production · PDF fileJulie N. Kadrmas and Julie C. Liu High Efficiency Low Cost Electrochemical Ammonia Production Julie N. Renner,

28 cm2

0.05 Nm3/hr 0.01 kg/day

86 cm2

2 Nm3/hr 4.3 kg/day

210 cm2

10 Nm3/hr 21.6 kg/day

680 cm2

50 Nm3/hr 100 kg/day

Up to three stacks per system

Scalable Technology

5

HOGEN® H Series

HOGEN® C Series

HOGEN® S Series HOGEN®

GC

From Single to Multi-Stack Systems

HOGEN® M Series

Page 6: High Efficiency Low Cost Electrochemical Ammonia Production · PDF fileJulie N. Kadrmas and Julie C. Liu High Efficiency Low Cost Electrochemical Ammonia Production Julie N. Renner,

Product Type

S-Series H-Series C-Series Megawatt

Year Introduced 2000 2004 2012 2015

Units Sold 450+ 200+ 22+ NA

H2 output (Nm3/hr) 1 6 30 200–400

Generates 1 Day 1 Day 1 Week 1 Day

Replaces

Six Pack Tube Trailer Jumbo Tube Trailer Jumbo Tube Trailers

How Much Hydrogen Can We Make?

Input Power 6 kW 36 kW 180 kW 1 - 2 MW

$/kW vs. S-Series 100% 43% 28% 13%E

6

Page 7: High Efficiency Low Cost Electrochemical Ammonia Production · PDF fileJulie N. Kadrmas and Julie C. Liu High Efficiency Low Cost Electrochemical Ammonia Production Julie N. Renner,

Outline

7

Proton OnSite Overview

Electrochemical Ammonia Synthesis

Results and Future Directions

0.00.51.01.52.02.53.03.54.04.55.0

Hour 1 Hour 2 Hour 3 Hour 4(after water

rinse)

Effi

cie

ncy

, % (

1.2

V)

Pt black

Fe-Ni LSA (1)

Fe-Ni LSA (2)

Fe-Ni HSA

Ni only

Fe only

Fe-Pt

0.00.51.01.52.02.53.03.54.04.55.0

Hour 1 Hour 2 Hour 3 Hour 4(after water

rinse)

Effi

cie

ncy

, % (

1.2

V)

Pt black

Fe-Ni LSA (1)

Fe-Ni LSA (2)

Fe-Ni HSA

Ni only

Fe only

Fe-Pt0.00.51.01.52.02.53.03.54.04.55.0

Hour 1 Hour 2 Hour 3 Hour 4(after water

rinse)

Effi

cie

ncy

, % (

1.2

V)

Pt black

Fe-Ni LSA (1)

Fe-Ni LSA (2)

Fe-Ni HSA

Ni only

Fe only

Fe-Pt0.00.51.01.52.02.53.03.54.04.55.0

Hour 1 Hour 2 Hour 3 Hour 4(after water

rinse)

Effi

cie

ncy

, % (

1.2

V)

Pt black

Fe-Ni LSA (1)

Fe-Ni LSA (2)

Fe-Ni HSA

Ni only

Fe only

Fe-Pt

H2O

H2O

O2

H2O

H2O

H2O

N2

H2O

H2O

H2O

NH3

NH3

AEM Catalyst

Layers

GDLs

OH-

e-

Page 8: High Efficiency Low Cost Electrochemical Ammonia Production · PDF fileJulie N. Kadrmas and Julie C. Liu High Efficiency Low Cost Electrochemical Ammonia Production Julie N. Renner,

Ammonia Production History

8

0

1000

2000

3000

4000

5000

6000

7000

8000

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

Est

imat

ed P

op

luat

ion

(m

illio

ns)

Year

mining

manufacturing

Fritz Haber Carl Bosch

mid 1800’s: mining

(1) History Today Volume 30 Issue 6 June 1980 (2) Dept. of the Interior US Geological Survey Bulletin 523, 1912

Guano mining1 Nitrate salt mining2

1899: Crooks raises alarm

1913: Haber-Bosch

• Haber-Bosch supports about half of the people on earth3

(3) J.W. Erisman, M.A. Sutton, J. Galloway, Z. Klimont, W. Winiwarter, Nat. Geosci., 1 (2008) 636-639.

Page 9: High Efficiency Low Cost Electrochemical Ammonia Production · PDF fileJulie N. Kadrmas and Julie C. Liu High Efficiency Low Cost Electrochemical Ammonia Production Julie N. Renner,

Haber-Bosch (HB) Process

9

• H2 obtained from fossil fuels, high temp and high pressure, high capital cost

• Inefficient (consumes ~1% of the worlds energy)

• High-polluting (~3% GHG emissions) Ammonia Production: Moving Towards Maximum Efficiency and Lower GHG Emissions http://www.fertilizer.org/, 2014.

Feeding the Earth, International Fertilizer Industry Association, http://www.fertilizer.org/, 2009.

Page 10: High Efficiency Low Cost Electrochemical Ammonia Production · PDF fileJulie N. Kadrmas and Julie C. Liu High Efficiency Low Cost Electrochemical Ammonia Production Julie N. Renner,

Vision for Electrochemical Ammonia Production

10

Ammonia Synthesis

Renewable

Power NH3

N2, water

Industrial Uses:

chemical synthesis,

emissions scrubbing,

refrigeration

Fertilizer

• Electrically driven process for low temp/pressure/emissions

• Compatible with intermittent operation

• High regional demand for fertilizer co-located with renewables

J.N. Renner, L.F. Greenlee, A.M. Herring, K.E. Ayers, Electrochemical Synthesis of Ammonia: A Low Pressure, Low Temperature Approach, in: The Electrochemical Society Interface, Summer 2015.

Page 11: High Efficiency Low Cost Electrochemical Ammonia Production · PDF fileJulie N. Kadrmas and Julie C. Liu High Efficiency Low Cost Electrochemical Ammonia Production Julie N. Renner,

Wind to Ammonia Pilot Plant: University of Minnesota / Morris (West Central Research & Outreach Center)

Ammonia storage

Proton supplied H2 and N2 generation

Excess

RE

N2

Haber-Bosch reactor

NH3

Onsite wind power H2

H2 Toro fuel cell utility vehicle

Page 12: High Efficiency Low Cost Electrochemical Ammonia Production · PDF fileJulie N. Kadrmas and Julie C. Liu High Efficiency Low Cost Electrochemical Ammonia Production Julie N. Renner,

Scalable Technology

12

• Enables networks of distributed scale and near point-of-use

• Proton developing MW-scale

A 5 MW system could produce 10 tons/day ammonia (@ 500 mA/cm2, 50% efficiency, 1.5 V)

HOGEN® H Series HOGEN® C Series

Up to three stacks per systemHOGEN®

S Series

HOGEN®

GC

From Single to Multi-Stack SystemsAmmonia Production Technology Plan

PHASE I

Bench Scale Size: 25 cm2

Proof-of-Concept PhaseBench Scale

TargetsCurrent Efficiency: > 1%

PHASE II

GC Size: 28-84 cm2

Breadboard PhaseGarden Capacity (100 g/year)

TargetsCurrent Efficiency: 10%Current Density: 10 mA/cm2

FUTURE

M Series: 250,000-500,000 cm2

Product PhaseSmall Farm (260 acres – 12,500 kg/year)

TargetsCurrent Efficiency: 50%Current Density: 50 mA/cm2

M Series

Page 13: High Efficiency Low Cost Electrochemical Ammonia Production · PDF fileJulie N. Kadrmas and Julie C. Liu High Efficiency Low Cost Electrochemical Ammonia Production Julie N. Renner,

Background/Key Obstacles

13

• PEM demonstrated feasibility

• At 1.5 V and below, need ~50% Faradaic efficiency to match HB

• Key obstacle: selective catalyst • low NH3 overpotential

• high H2 overpotential

A volcano plot predicting metal performance for nitrogen electroreduction

Ap

plie

d P

ote

nti

al (

V)

Binding Energy

E. Skúlason, et. al, Phys. Chem. Chem. Phys., 14 (2012).

R. Lan, J.T.S. Irvine, S. Tao, Scientific Reports, 3 (2013).

Applied Potential (V)

Faradaic Efficien

cy (%)

NH

3 F

orm

atio

n R

ate

(X1

0-5

mo

l m-2

s-1

)

Page 14: High Efficiency Low Cost Electrochemical Ammonia Production · PDF fileJulie N. Kadrmas and Julie C. Liu High Efficiency Low Cost Electrochemical Ammonia Production Julie N. Renner,

AEM-based Approach

14

• AEM enables wider range of efficient catalysts vs. PEM

• Lower cost materials of construction in alkaline environment

H2O

H2O

O2

Anode:

H2O

H2O

H2O

N2

H2O

H2O

H2O

NH3

NH3

12 OH- 3 O2 + 6 H2O + 12 e-

Cathode:

12 H2O + 2 N2 + 12 e- 4 NH3 + 12 OH-

AEM Catalyst

Layers

GDLs

OH-

e-

More Catalyst Options:

• Non-noble

• Blended metals

• Core-shell

• Ligands

Page 15: High Efficiency Low Cost Electrochemical Ammonia Production · PDF fileJulie N. Kadrmas and Julie C. Liu High Efficiency Low Cost Electrochemical Ammonia Production Julie N. Renner,

Outline

15

Proton OnSite Overview

Electrochemical Ammonia Synthesis

Results and Future Directions

0.00.51.01.52.02.53.03.54.04.55.0

Hour 1 Hour 2 Hour 3 Hour 4(after water

rinse)

Effi

cie

ncy

, % (

1.2

V)

Pt black

Fe-Ni LSA (1)

Fe-Ni LSA (2)

Fe-Ni HSA

Ni only

Fe only

Fe-Pt

0.00.51.01.52.02.53.03.54.04.55.0

Hour 1 Hour 2 Hour 3 Hour 4(after water

rinse)

Effi

cie

ncy

, % (

1.2

V)

Pt black

Fe-Ni LSA (1)

Fe-Ni LSA (2)

Fe-Ni HSA

Ni only

Fe only

Fe-Pt0.00.51.01.52.02.53.03.54.04.55.0

Hour 1 Hour 2 Hour 3 Hour 4(after water

rinse)

Effi

cie

ncy

, % (

1.2

V)

Pt black

Fe-Ni LSA (1)

Fe-Ni LSA (2)

Fe-Ni HSA

Ni only

Fe only

Fe-Pt0.00.51.01.52.02.53.03.54.04.55.0

Hour 1 Hour 2 Hour 3 Hour 4(after water

rinse)

Effi

cie

ncy

, % (

1.2

V)

Pt black

Fe-Ni LSA (1)

Fe-Ni LSA (2)

Fe-Ni HSA

Ni only

Fe only

Fe-Pt

H2O

H2O

O2

H2O

H2O

H2O

N2

H2O

H2O

H2O

NH3

NH3

AEM Catalyst

Layers

GDLs

OH-

e-

Page 16: High Efficiency Low Cost Electrochemical Ammonia Production · PDF fileJulie N. Kadrmas and Julie C. Liu High Efficiency Low Cost Electrochemical Ammonia Production Julie N. Renner,

Ammonia Generation Rig

16

• Design reviewed by senior engineers, safety qualified

• Test bed to compare multiple configurations and catalysts

• Sensitive colorimetric assay for ammonia (verified independently)

Increasing ammonia concentration

Ammonia Capture via Acid Trap and Determination via Colorimetric Assay:

Page 17: High Efficiency Low Cost Electrochemical Ammonia Production · PDF fileJulie N. Kadrmas and Julie C. Liu High Efficiency Low Cost Electrochemical Ammonia Production Julie N. Renner,

Membrane Screening

17

• 9X greater diffusion through higher IEC material

• May indicate hydrophobicity/swelling in limiting ammonia crossover

• Good performing membranes have an order of magnitude less crossover than baseline production rates

• Commercial baseline material good starting point

AEM

NH3

DI Water

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

Lower IEC Higher IEC Commercial Baseline

No

rmal

ized

Am

mo

niu

m

Cro

sso

ver

(mg*

mil/

min

*cm

2)

Page 18: High Efficiency Low Cost Electrochemical Ammonia Production · PDF fileJulie N. Kadrmas and Julie C. Liu High Efficiency Low Cost Electrochemical Ammonia Production Julie N. Renner,

Commercial Catalyst Screening

18

• Platinum consistently had <1% efficiencies (similar to PEM), performance degrades after an hour

• Order of magnitude increase in efficiencies with non-noble metal

• Increased efficiency seems to correlate with decreased production

• Indicates competition between HER and NH3 production

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

0

5E-13

1E-12

1.5E-12

2E-12

2.5E-12

3E-12

3.5E-12

4E-12

4.5E-12

5E-12

Pt Fe Ni Mn

Cathode Catalyst

Pro

du

ctio

n R

ate

(m

ol N

H3 /

s cm

2 )

Cu

rrent Efficien

cy (%)

Conditions: 1.3 V, 0.5 hours of operation

Page 19: High Efficiency Low Cost Electrochemical Ammonia Production · PDF fileJulie N. Kadrmas and Julie C. Liu High Efficiency Low Cost Electrochemical Ammonia Production Julie N. Renner,

Effect of Voltage

19

• Increasing production rate and efficiency with increasing potential using Fe (opposite effect with Ni)

• High current efficiencies possible with Ni

• Provides further evidence for competition between HER and NH3 production

0.00E+00

5.00E-13

1.00E-12

1.50E-12

2.00E-12

2.50E-12

0.0

0.5

1.0

1.5

2.0

1 1.2 1.4 1.6

Potential (V)

Pro

du

ction

Rate (m

ol N

H3 /s cm

2 )

Cu

rren

t Ef

fici

ency

(%

)

Conditions: 1 hour of operation at each voltage step

0.00E+00

2.00E-13

4.00E-13

6.00E-13

8.00E-13

1.00E-12

1.20E-12

0.0

2.0

4.0

6.0

8.0

10.0

12.0

1 1.2 1.4 1.6

Potential (V)

Cu

rren

t Ef

fici

ency

(%

)

Pro

du

ction

Rate (m

ol N

H3 /s cm

2 )

Commercial Fe Commercial Ni

Page 20: High Efficiency Low Cost Electrochemical Ammonia Production · PDF fileJulie N. Kadrmas and Julie C. Liu High Efficiency Low Cost Electrochemical Ammonia Production Julie N. Renner,

Catalyst Synthesis

20

FeNi Low SA

FeNi High SA

Large Fe-only Small Ni-only

• Exquisite control over nanoparticle morphologies for Ni and Fe compounds

• Compared to commercial Pt

Page 21: High Efficiency Low Cost Electrochemical Ammonia Production · PDF fileJulie N. Kadrmas and Julie C. Liu High Efficiency Low Cost Electrochemical Ammonia Production Julie N. Renner,

Nanoparticle performance

21

• Performance of Ni-Fe materials are affected by surface area

• LSA more Fe like

• HAS more Ni like

• Ni materials have higher stability and efficiency

• Pt performance degrades

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Hour 1 Hour 2 Hour 3 Hour 4(after water rinse)

Effi

cie

ncy

, % (

1.2

V)

Pt black

Fe-Ni LSA (1)

Fe-Ni LSA (2)

Fe-Ni HSA

Ni only

Fe only

0.00E+00

1.00E-12

2.00E-12

3.00E-12

4.00E-12

5.00E-12

6.00E-12

7.00E-12

8.00E-12

9.00E-12

Hour 1 Hour 2 Hour 3 Hour 4(after water rinse)

Am

mo

nia

Pro

du

ctio

n R

ate

(m

ol c

m-2

s-1

)

Pt black

Fe-Ni LSA (1)

Fe-Ni LSA (2)

Fe-Ni HSA

Ni only

Fe only

* Fe-only efficiency at hour 1 is non-zero, estimated >10%

Conditions: 1.2 V, 1 hour of operation

Pro

du

ctio

n R

ate

(m

ol N

H3 /

s cm

2 )

Effi

cien

cy (

%)

Hour 1 Hour 1 Hour 2 Hour 3 Hour 2 Hour 3

Page 22: High Efficiency Low Cost Electrochemical Ammonia Production · PDF fileJulie N. Kadrmas and Julie C. Liu High Efficiency Low Cost Electrochemical Ammonia Production Julie N. Renner,

Comparison

22

• Orders of magnitude increase in current efficiency compared to PEM

• Similar efficiencies at lower temperatures than molten hydroxide

• Production rates need to be increased

Process Catalyst

Energy

Consumption

(kwh/kg NH3)

Ammonia

Production Rate

(mol NH3/cm2s)

Faradaic

Efficiency

(%)

Cell

Potential

(V)

Temp

(°C)

Haber-Bosch1 Typically

Fe-based 13.2 N/A N/A N/A

300-

500

PEM

Electrochemical2 Pt 1600-3600

6.20 X 10-10 –

2.80 X 10-10 0.16-0.36 1.2-1.4 25

Mixed Electrolyte

Electrochemical3

perovskite

oxide 130 - 1140

3.1 X 10-11 –

1.71 X 10-10 0.5-4.5 1.2-1.4 400

Molten Hydroxide

Electrochemical4 Fe2O3 16 2.40 X 10-9 35 1.2 200

AEM

Electrochemical

Pt, Fe, Ni,

FeNi 14-520

1.33 X 10-12 –

3.80 X 10-12 1.1 - 41 1.2 50

(1) W. Leighty, The Leighty Foundation, Energy Storage with Anhydrous Ammonia: Comparison with other Energy Storage, October 2008.

(2) R. Lan, J.T.S. Irvine, S. Tao, Scientific Reports, 3 (2013)

(3) R. Lan, S.W. Tao, RSC Adv., 3 (2013) 18016-18021.

(4) S. Licht, B.C. Cui, B.H. Wang, F.F. Li, J. Lau, S.Z. Liu, Science, 345 (2014) 637-640.

Page 23: High Efficiency Low Cost Electrochemical Ammonia Production · PDF fileJulie N. Kadrmas and Julie C. Liu High Efficiency Low Cost Electrochemical Ammonia Production Julie N. Renner,

Conclusions

23

• The developed system provided an adequate test bed

• Proof-of-concept was established for AEM-based ammonia generation

• An order of magnitude increase in efficiency was observed compared literature at similar conditions

H2O

H2O

O2

H2O

H2O

H2O

N2

H2O

H2O

H2O

NH3

NH3

AEM Catalyst

Layers

GDLs

OH-

e-

• AEM-based technology is promising for efficient ammonia production at low temperatures

Page 24: High Efficiency Low Cost Electrochemical Ammonia Production · PDF fileJulie N. Kadrmas and Julie C. Liu High Efficiency Low Cost Electrochemical Ammonia Production Julie N. Renner,

How do we achieve our vision?

24

Ammonia Synthesis

Renewable

Power NH3

N2, water

Industrial Uses:

chemical synthesis,

emissions scrubbing,

refrigeration

Fertilizer

Phase II Work:

• New ammonia rig

• More detailed product analysis

• NiFe and other nanocatalysts

• Membrane/ionomer/electrode optimization

• Demonstrate increased current density and durability

• Technoeconomic analysis

Future Work:

• Fundamental studies on reaction mechanisms

• Bio-inspired catalysts for selectivity

• Purification and systems work

• Scale-up

Page 25: High Efficiency Low Cost Electrochemical Ammonia Production · PDF fileJulie N. Kadrmas and Julie C. Liu High Efficiency Low Cost Electrochemical Ammonia Production Julie N. Renner,

Acknowledgements Proton OnSite:

• Kathy Ayers

• Nemanja Danilovic

• Luke Wiles (engineering asst.)

• Arie Havasov (co-op)

• Wolfgang Grassmann (co-op)

Collaborators:

• Lauren Greenlee NIST/Univ. of Arkansas

• Andrew Herring Colorado School of Mines

• Douglas Tiffany University of Minnesota

Page 26: High Efficiency Low Cost Electrochemical Ammonia Production · PDF fileJulie N. Kadrmas and Julie C. Liu High Efficiency Low Cost Electrochemical Ammonia Production Julie N. Renner,

Questions and Discussion

Funding: •USDA Phase I/II SBIR

•NSF/ASEE Postdoctoral Fellowship