Top Banner
HEAT EXCHANGER
46
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Heat Exchanger 1

HEAT EXCHANGER

Page 2: Heat Exchanger 1

Heat Exchanger

• Heat exchanger may be defined as:

--An apparatus

--A device, or

--A piece of equipment

• In which, a fluid transmits heat to another fluid.

• There are a large number of different heat exchangers

varying both in application and design.

Page 3: Heat Exchanger 1

Heat Exchangers may be classified based on:

Transfer Processes

Construction features

Flow arrangements

Degree of surface compactness

Heat transfer mechanisms

Applications

Page 4: Heat Exchanger 1

Transfer Process

Indirect Contact Type

(Surface Heat Exchanger)

Direct Transfer Type

( Recuperative Heat Exchanger)

Storage Type

(Regenerative Heat Exchanger)

Fluidized bed Type Heat Exchanger

Direct Contact Type (Cooling Tower)

Application: •Tubular HE •Plate HE •Extended Surface HE

Application: •Air preheaters for blast furnaces, glass furnaces, open-hearth furnaces

Application: Drying, mixing, adsorption, reactor, waste heat recovery

Page 5: Heat Exchanger 1

Construction

Feature

Tubular

Double Pipe

Shell & Tube

Plate- Baffle

Rod-Baffle Spiral

Tube

Plate Gasketed

Spiral

Lemella

Extended Plate- Fin

Tube-Fin

Regenerative

Rotary

Disk Type

Drum Type

Fixed Direct Contact

Page 6: Heat Exchanger 1

Flow Arrangement

Single Pass

Parallel Flow

Counter Flow

Cross Flow

Multi Pass

Extended Surface HE

Overall Cross-Counter Flow

Overall Cross-Parallel Flow

Shell & tube HE

Plate HE

Parallel Counte Flow

Split Flow

Divided Flow

Page 7: Heat Exchanger 1

Degree of Surface Compactness

Compact [Surface area density (β) ≥

700 m2/m3]

Non-Compact [Surface area density

(β) < 700 m2/m3]

Page 8: Heat Exchanger 1
Page 9: Heat Exchanger 1
Page 10: Heat Exchanger 1
Page 11: Heat Exchanger 1
Page 12: Heat Exchanger 1
Page 13: Heat Exchanger 1

Tubes

Page 14: Heat Exchanger 1
Page 15: Heat Exchanger 1
Page 16: Heat Exchanger 1

Baffles

Page 17: Heat Exchanger 1
Page 18: Heat Exchanger 1

Tube Sheets

Page 19: Heat Exchanger 1
Page 20: Heat Exchanger 1
Page 21: Heat Exchanger 1
Page 22: Heat Exchanger 1
Page 23: Heat Exchanger 1
Page 24: Heat Exchanger 1
Page 25: Heat Exchanger 1
Page 26: Heat Exchanger 1
Page 27: Heat Exchanger 1
Page 28: Heat Exchanger 1
Page 29: Heat Exchanger 1
Page 30: Heat Exchanger 1

HEAT EXCHANGER DESIGN METHODOLOGY

Design is an activity aimed at providing complete descriptions of an engineering system, part of a system, or just of a single system component.

These descriptions represent an definite specification of the system/component structure, size, and performance, as well as other characteristics important for subsequent manufacturing and utilization.

This can be accomplished using a well-defined design methodology.

Page 31: Heat Exchanger 1

A design methodology for a heat exchanger as a component must be consistent with the life-cycle design of a system.

Lifecycle design assumes considerations organized in the following stages.

Problem formulation (including interaction with a consumer)

Concept development (selection of workable designs, preliminary design)

Detailed exchanger design (design calculations and other pertinent considerations)

Manufacturing

Utilization considerations (operation, phase-out, disposal)

Page 32: Heat Exchanger 1

A methodology for designing a new (single) heat exchanger is illustrated in Fig.

It is based on experience and presented by Kays and London (1998), Taborek (1988), and Shah (1982) for compact and shell-and-tube exchangers.

This design procedure may be characterized as a case study (one case at a time) method.

Page 33: Heat Exchanger 1

Major design considerations include:

• Process and design specifications

• Thermal and hydraulic design

• Mechanical design

• Manufacturing considerations and cost

• Trade-off factors and system-based optimization

Page 34: Heat Exchanger 1

Assumptions for Heat Transfer Analysis

To analyze the exchanger heat transfer problem, a set of assumptions are introduced so that the resulting theoretical models are simple enough for the analysis.

The following assumptions and/or idealizations are made for the exchanger heat transfer problem formulations: the energy balances, rate equations, boundary conditions, and subsequent analysis

Page 35: Heat Exchanger 1

1. The heat exchanger operates under steady-state

conditions [i.e., constant flow rates and fluid

temperatures (at the inlet and within the exchanger)

independent of time].

2. Heat losses to or from the surroundings are negligible

(i.e. the heat exchanger outside walls are adiabatic).

3. There are no thermal energy sources or sinks in the

exchanger walls or fluids, such as electric heating,

chemical reaction, or nuclear processes.

Page 36: Heat Exchanger 1

5. The temperature of each fluid is uniform over every cross section in

counter flow and parallel flow exchangers (i.e., perfect transverse

mixing and no temperature gradient normal to the flow direction).

Each fluid is considered mixed or unmixed from the temperature

distribution viewpoint at every cross section in single-pass cross

flow exchangers, depending on the specifications. For a multi pass

exchanger, the foregoing statements apply to each pass depending

on the basic flow arrangement of the passes; the fluid is

considered mixed or unmixed between passes as specified.

5. Wall thermal resistance is distributed uniformly in the entire

exchanger.

Page 37: Heat Exchanger 1

6. Either there are no phase changes (condensation or

vaporization) in the fluid streams flowing through the

exchanger or the phase change occurs under the following

condition. The phase change occurs at a constant

temperature as for a single-component fluid at constant

pressure; the effective specific heat cp,eff for the phase-

changing fluid is infinity in this case, and hence

cmax = mcp,eff → ∞ where m is the fluid mass flow rate.

7. Longitudinal heat conduction in the fluids and in the wall

is negligible.

Page 38: Heat Exchanger 1

8. The individual and overall heat transfer coefficients are constant (independent of temperature, time, and position) throughout the exchanger, including the case of phase-changing fluids in assumption 6.

9. The specific heat of each fluid is constant throughout the exchanger, so that the heat capacity rate on each side is treated as constant. Note that the other fluid properties are not involved directly in the energy balance and rate equations, but are involved implicitly in NTU and are treated as constant.

Page 39: Heat Exchanger 1

10. For an extended surface exchanger, the overall extended surface

efficiency o is considered uniform and constant.

11. The heat transfer surface area A is distributed uniformly on each fluid

side in a single-pass or multi pass exchanger. In a multi pass unit, the

heat transfer surface area is distributed uniformly in each pass,

although different passes can have different surface areas.

12. For a plate-baffled 1–n shell-and-tube exchanger, the temperature rise

(or drop) per baffle pass (or compartment) is small compared to the

total temperature rise (or drop) of the shell fluid in the exchanger, so

that the shell fluid can be treated as mixed at any cross section. This

implies that the number of baffles is large in the exchanger.

Page 40: Heat Exchanger 1

13. The velocity and temperature at the entrance of the heat

exchanger on each fluid side are uniform over the flow cross

section. There is no gross flow mal-distribution at the inlet.

14. The fluid flow rate is uniformly distributed through the

exchanger on each fluid side in each pass i.e., no passage-to-

passage or viscosity-induced mal-distribution occurs in the

exchanger core. Also, no flow stratification, flow bypassing, or

flow leakages occur in any stream. The flow condition is

characterized by the bulk (or mean) velocity at any cross

section.

Page 41: Heat Exchanger 1
Page 42: Heat Exchanger 1

Thermal Circuit and UA

Page 43: Heat Exchanger 1
Page 44: Heat Exchanger 1
Page 45: Heat Exchanger 1
Page 46: Heat Exchanger 1