Top Banner

of 65

Harliansyah .Ph.D Kuliah Blok Neoplasia 2013

Apr 14, 2018

Download

Documents

Juwita
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 7/27/2019 Harliansyah .Ph.D Kuliah Blok Neoplasia 2013

    1/65

    1

    Oncogene andTumor Supressor Gene

    Harliansyah, Ph.D

    YARSI UniversityDepartment of Biochemistry

    harliansyah.hanif @ yarsi.ac.id

    March, 2013

  • 7/27/2019 Harliansyah .Ph.D Kuliah Blok Neoplasia 2013

    2/65

    2

  • 7/27/2019 Harliansyah .Ph.D Kuliah Blok Neoplasia 2013

    3/65

    3

  • 7/27/2019 Harliansyah .Ph.D Kuliah Blok Neoplasia 2013

    4/65

    4

  • 7/27/2019 Harliansyah .Ph.D Kuliah Blok Neoplasia 2013

    5/65

    Cancer Pathogenesis

    5

  • 7/27/2019 Harliansyah .Ph.D Kuliah Blok Neoplasia 2013

    6/65

    6

    Cellular Basis of Cancer

    Cancer is a collection of diseases

    characterized by abnormal anduncontrolled growth

    Cancer arises from a loss of normalgrowth control

    In normal tissues, the rates of newcell growth and old cell death arekept in balance

    In cancer, this balance is disrupted

    This disruption can result from

    1) uncontrolled cell growth or

    2) loss of a cell's ability to undergoapoptosis

  • 7/27/2019 Harliansyah .Ph.D Kuliah Blok Neoplasia 2013

    7/65

    7

    Cancer Cell Do Not Grow Faster Than

    Normal Cells

    Rather, Their Growth is Just

    Uncontrolled

  • 7/27/2019 Harliansyah .Ph.D Kuliah Blok Neoplasia 2013

    8/65

    8

    1 fertilized egg

    50x1012

    Proliferation Differentiation Death

    1016 cell divisions/lifetime

  • 7/27/2019 Harliansyah .Ph.D Kuliah Blok Neoplasia 2013

    9/65

    9

    Proliferation Differentiation Death

    Transit

    Proliferating

    Exiting

    Renewing

    Cellular equilibrium

  • 7/27/2019 Harliansyah .Ph.D Kuliah Blok Neoplasia 2013

    10/65

    10Proliferation Differentiation Death

    Cancer: disruption of

    cellular equilibrium

  • 7/27/2019 Harliansyah .Ph.D Kuliah Blok Neoplasia 2013

    11/65

    11

    Post mitoticStem cell

    Differentiated Normalsenescent

    differentiated

    cell

    Benign

    tumor

    Grade 2malignancy

    Grade 3 or 4

    malignancy

    Stem cells as the target of carcinogens

  • 7/27/2019 Harliansyah .Ph.D Kuliah Blok Neoplasia 2013

    12/65

    12

    Invasion and Metastasis

    Abnormal cells proliferateand spread (metastasize) toother parts of the body

    Invasion - directmigration andpenetration intoneighboring tissues

    Metastasis - cancer cellspenetrate into lymphatic

    system and blood vessels

  • 7/27/2019 Harliansyah .Ph.D Kuliah Blok Neoplasia 2013

    13/65

    13

    Benign tumors

    generally do not

    spread by

    invasion or

    metastasis Malignant

    tumors are

    capable of

    spreading by

    invasion and

    metastasis

    Malignant versus Benign Tumors

  • 7/27/2019 Harliansyah .Ph.D Kuliah Blok Neoplasia 2013

    14/65

    14

    What causes Cancer? Cancer is caused by

    alterations or mutations in

    the genetic code

    Can be induced in somatic

    cells by: Carcinogenic

    chemicals

    Radiation Some viruses

    Heredity - 5%

  • 7/27/2019 Harliansyah .Ph.D Kuliah Blok Neoplasia 2013

    15/65

    15

    Hanahan and Weinberg, Cell 100: 57, 2000

    Apoptosis

    Oncogenes

    Tumor Suppressor

    Inv. and MetsAngiogenesis

    Cell cycle

  • 7/27/2019 Harliansyah .Ph.D Kuliah Blok Neoplasia 2013

    16/65

    16

    What is the molecular basis of cancer?

    Cancer is a genetic disease.

    Mutations in genes result in alteredproteins

    During cell division

    External agentsRandom event

    Most cancers result from mutations insomatic cells

    Some cancers are caused by mutations ingermline cells

  • 7/27/2019 Harliansyah .Ph.D Kuliah Blok Neoplasia 2013

    17/65

    17

    Theories o f cancer genesis

    Standard Dogma

    Proto-oncogenes (Ras melanoma)

    Tumor suppressor genes (p53 variouscancers)

    Modified Dogma

    Mutation in a DNA repair gene leads to theaccumulation of unrepaired mutations(xeroderma pigmentosum)

    Early-Instability Theory

    Master genes required for adequate cellreproduction are disabled, resulting inaneuploidy (Philadelphia chromosome)

  • 7/27/2019 Harliansyah .Ph.D Kuliah Blok Neoplasia 2013

    18/65

    18

    CANCER AND GENETICS

    Cancer: genome disease

    Causes of genomic changes

    Effects of genomic changes

    Revolution in cancer treatment: Smart Bullets Period

  • 7/27/2019 Harliansyah .Ph.D Kuliah Blok Neoplasia 2013

    19/65

    19

    CANCER: GENOME DISEASE

    Loss of DNA

    Gain of DNA

    Changes in nucleotides

    Epigenetic effects

  • 7/27/2019 Harliansyah .Ph.D Kuliah Blok Neoplasia 2013

    20/65

    20

    Signs for Genom ic Changes in

    Cancer

    Changes in chromosome numbers

    - Aneuploidy

    Chromosomal changes- Increase in DNA copy number-15 different

    region

    - Loss in chromosomal -200.000 regions

    Micro changes- Microsatellite changes Mikrosatellite - 100.000

    - Nucleotide changes

  • 7/27/2019 Harliansyah .Ph.D Kuliah Blok Neoplasia 2013

    21/65

    21

  • 7/27/2019 Harliansyah .Ph.D Kuliah Blok Neoplasia 2013

    22/65

    22

    Chromosomal changes in the genome of cancer

    cells: tip of the iceberg

    Terminal

    Deletion

    http://www.tokyo-med.ac.jp/genet/cai-e.htm

    Ring

    Chromosome

    Robertsonian

    Translocation

    DeletionReciprocal

    translocation

    IsochromosomesInsertion Inversion

    Duplication

  • 7/27/2019 Harliansyah .Ph.D Kuliah Blok Neoplasia 2013

    23/65

    23

    Nucleotide changes in the genome of cancer

    cells: unseen site of the iceberg

    NucleotideDeletions

    NucleotideInsertions

    NucleotideSubstitutions

    http://www.tokyo-med.ac.jp/genet/cai-e.htm

  • 7/27/2019 Harliansyah .Ph.D Kuliah Blok Neoplasia 2013

    24/65

    24

    DNA Loss in cancer cells

  • 7/27/2019 Harliansyah .Ph.D Kuliah Blok Neoplasia 2013

    25/65

    25

    Early Brain Tumor

    (Astrocytoma Stage II)

    Advance Brain Tumor

    Glioblastoma Multiform (Stage IV)

    DNA Loss in cancer cells: beyond coincidence ...

  • 7/27/2019 Harliansyah .Ph.D Kuliah Blok Neoplasia 2013

    26/65

    26

    p53

    locus

    Chromosomal loss:

    Mostly, it is a sign

    for the loss of atumor suppressor

    gene

    PTEN

    locus

    CDKN2

    locus

    RB1

    locus

    ???

    locus

  • 7/27/2019 Harliansyah .Ph.D Kuliah Blok Neoplasia 2013

    27/65

    27

    Cancer: Genome Disease

    Epigenetic effects

  • 7/27/2019 Harliansyah .Ph.D Kuliah Blok Neoplasia 2013

    28/65

    28

    Genetic and Epigenetic Silencing of Tumor Suppressor Genes

    Plass - 2002

    http://hmg.oupjournals.org/content/vol11/issue20/images/large/ddf21901.jpeg
  • 7/27/2019 Harliansyah .Ph.D Kuliah Blok Neoplasia 2013

    29/65

    29

    Carcinogenic

    chemicals

    UV

    Replication Errors

    Radiation

    Viruses

    Rearrangements

    (translocation, deletions,

    amplifications)

    Point mutations

    Alters DNA of genes controlling cell proliferation.

    (Proliferation becomes abnormal)

    Cancer cell

    Normal cellDamaged DNA

    THE CAUSES OF GENOMIC CHANGES IN CANCER

  • 7/27/2019 Harliansyah .Ph.D Kuliah Blok Neoplasia 2013

    30/65

    30

    Hasar

    Etken Tr

    Hasar

    EtkeniKanser Riski areti

    FizikselMortesi Inlar Deri Ka., Melanoma P53 (CC-TT)

    Radyasyon Tiroid Ka., Lsemi Translokasyon

    Kimyasal

    Benzopren Akcier Ka. p53 (G-T)

    Aflatoksin Karacier Ka. p53 (249 G-T)

    Oksidatif Stres Yallk Kanserleri P53 (C-T)

    Biyolojik HBV Karacier Ka.Virus DNA

    ntegrasyonu

    THE CAUSES OF GENOMIC CHANGES IN CANCER:

    Somatic Changes

  • 7/27/2019 Harliansyah .Ph.D Kuliah Blok Neoplasia 2013

    31/65

    31

    Genes Disease Function Inheretance Cancer Risk

    FA Genes F-A DNA Damage respose ? OR Lsemi

    XP GenesX-P

    NER Type

    DNA RepairOR Skin Ca.

    BLM Bloom DNA Helicase ? OR Various cancers

    WRN Werner DNA Helicase ? OR Sarcoma

    RECQ4 Rothmund-Thomson

    DNA Helicase OR Sarcoma

    MLH1, MSH2,

    PMS1, PMS2

    MMR

    DNA Repair

    OD Colon,

    Endometrium Ca.

    OR Lsemi, NF1

    BRCA1, BRCA2 DNA Repair

    OD Breast, Ovary,

    Prostate, Pancreas

    Ca

    ATMA-T

    DNA Damage sense ?

    OR Lymphoma,

    Leukemia

    OD Breast Ca. ?

    p53 Li-Fraumeni DNA Damage sense OD Various cancers

    THE CAUSES OF GENOMIC CHANGES IN CANCER:

    Hereditary Predisposition

  • 7/27/2019 Harliansyah .Ph.D Kuliah Blok Neoplasia 2013

    32/65

    32

    Approximately 90-95% of all cancers

    are sporadic.

    5-10% are inherited.

    CANCER AND

    GENETICS

  • 7/27/2019 Harliansyah .Ph.D Kuliah Blok Neoplasia 2013

    33/65

    33

    Oncogenes Tumor suppressor genes

    DNA repair genes

    GENES PLAYING ROLE IN

    CANCER DEVELOPMENT

  • 7/27/2019 Harliansyah .Ph.D Kuliah Blok Neoplasia 2013

    34/65

    34

    What are the genes responsible for tumorigenic

    cel l growth?

    Normal

    Cancer

    Proto-oncogenes Cell growth

    and

    proliferationTumor suppressor genes

    +

    -

    Mutated or activated

    oncogenes Malignant

    transformationLoss or mutation of

    Tumor suppressor genes

    ++

  • 7/27/2019 Harliansyah .Ph.D Kuliah Blok Neoplasia 2013

    35/65

    35

    ONCOGENES

    Oncogenes are mutated forms of

    cellular proto-oncogenes.

    Proto-oncogenes code for cellular

    proteins which regulate normal cell

    growth and differentiation.

  • 7/27/2019 Harliansyah .Ph.D Kuliah Blok Neoplasia 2013

    36/65

    36

    Class I: Growth Factors

    Class II: Receptors for Growth Factors and Hormones

    Class III: Intracellular Signal Transducers

    Class IV: Nuclear Transcription Factors

    Class V: Cell-Cycle Control Proteins

    Five types of proteins encoded by proto-oncogenes participate in control of cell growth:

    F ti f C ll l P t O

  • 7/27/2019 Harliansyah .Ph.D Kuliah Blok Neoplasia 2013

    37/65

    37

    4. Nuclear

    Proteins:

    Transcription

    Factors

    5. Cell Growth

    Genes

    3. CytoplasmicSignal Transduction

    Proteins

    1. Secreted Growth Factors

    2. Growth Factor Receptors

    Functions of Cellular Proto-Oncogenes

  • 7/27/2019 Harliansyah .Ph.D Kuliah Blok Neoplasia 2013

    38/65

    38

    A generic signalling

    pathway

  • 7/27/2019 Harliansyah .Ph.D Kuliah Blok Neoplasia 2013

    39/65

    39

    Oncogenes

    proto-oncogene = ras

    Oncogene = mutated ras

    Always activated

    Always stimulating

    proliferation

  • 7/27/2019 Harliansyah .Ph.D Kuliah Blok Neoplasia 2013

    40/65

    40

    amino acid posi t ion

    Ras gene 12 59 61 Tumor

    c-ras (H, K, N) Gly Ala Gln normal cells

    H-ras Gly Ala Leu lung carcinoma

    Val Ala Gln bladder carcinoma

    K-ras Cys Ala Gln lung carcinoma

    Arg Ala Gln lung carcinoma

    Val Ala Gln colon carcinoma

    N-ras Gly Ala Lys neuroblastoma

    Gly Ala Arg lung carcinoma

    Murine sarcoma virus

    H-ras Arg Thr Gln Harvey strain

    K-ras Ser Thr Gln Kirsten strain

    Am ino acid subst i tu t ions in Ras fam i ly p roteins

    (inac tivates GTPase)

  • 7/27/2019 Harliansyah .Ph.D Kuliah Blok Neoplasia 2013

    41/65

    41

    Act ivat ion mechanisms of proto-oncogenes

    proto-oncogene --> oncogene

  • 7/27/2019 Harliansyah .Ph.D Kuliah Blok Neoplasia 2013

    42/65

    42

    CHROMOSOMAL REARRANGEMENTS OR TRANSLOCATIONS

    Neoplasm Translocation Proto-oncogene

    Burkitt lymphoma t(8;14) 80% of cases c-myc1

    t(8;22) 15% of cases

    t(2;8) 5% of cases

    Chronic myelogenous t(9;22) 90-95% of cases bcr-abl2

    leukemia

    Acute lymphocytic t(9;22) 10-15% of cases bcr-abl2

    Leukemia

    1c-myc is translocated to the IgG locus, which results in its activated expression

    2bcr-abl fusion protein is produced, which results in a constitutively active abl kinase

  • 7/27/2019 Harliansyah .Ph.D Kuliah Blok Neoplasia 2013

    43/65

    43

    GENE AMPL IFICATION

    Oncogene Amplification Source of tumor

    c-myc ~20-fold leukemia and lung carcinoma

    N-myc 5-1,000-fold neuroblastoma

    retinoblastoma

    L-myc 10-20-fold small-cell lung cancer

    c-abl ~5-fold chronic myoloid leukemia

    c-myb 5-10-fold acute myeloid leukemia

    colon carcinoma

    c-erbB ~30-fold epidermoid carcinoma

    K-ras 4-20-fold colon carcinoma

    30-60-fold adrenocortical carcinoma

  • 7/27/2019 Harliansyah .Ph.D Kuliah Blok Neoplasia 2013

    44/65

    44

    Oncogenes are usually dominant

    (gain of function)

    cellular proto-oncogenes that have been mutated

    (and activated)

    cellular proto-oncogenes that have been captured byretroviruses and have been mutated in the process

    (and activated)

    virus-specific genes that behave like cellular proto-

    oncogenes that have been mutated to oncogenes (i.e.,

    activated)

  • 7/27/2019 Harliansyah .Ph.D Kuliah Blok Neoplasia 2013

    45/65

    45

    The resu lt:

    Overproduction of growth factors

    Flooding of the cell with replication

    signals Uncontrolled stimulation in the

    intermediary pathways

    Cell growth by elevated levels of

    transcription factors

  • 7/27/2019 Harliansyah .Ph.D Kuliah Blok Neoplasia 2013

    46/65

    46

    Tumor suppressor genes

    Normal function - inhibit cell proliferation

    Absence/inactivation of inhibitor --> cancer

    Both gene copies must be defective

    KNUDSON TWO HIT HYPOTHESIS IN FAMIL IAL CASES

  • 7/27/2019 Harliansyah .Ph.D Kuliah Blok Neoplasia 2013

    47/65

    47

    KNUDSON TWO HIT HYPOTHESIS IN FAMIL IAL CASES

    RB rb

    rb rbRB

    Familial RB (%30)

    Tumor cells Normal cells

    Normal cells

    Inactivation of a tumor suppressor

    gene requires two mutations, inherited

    mutation and somatic mutation.

    RBLOH

    KNUDSON TWO HIT HYPOTHESIS IN SPORADI C CASES

  • 7/27/2019 Harliansyah .Ph.D Kuliah Blok Neoplasia 2013

    48/65

    48

    RB RB

    RB

    LOH

    RB

    Mutation

    NormalCells

    Tumor cells

    KNUDSON TWO HIT HYPOTHESIS IN SPORADI C CASES

    RB RB

    Inactivation of a tumorsuppressor gene

    requires two somatic

    mutations.

  • 7/27/2019 Harliansyah .Ph.D Kuliah Blok Neoplasia 2013

    49/65

    49

    TUMOR SUPPRESSOR GENES

    Disorders in w hich gene is af fected

    Gene (locu s) Func t ion Famil ial Sporad ic

    DCC (18q) cell surface unknown colorectal

    interactions cancer

    WT1 (11p) transcription Wilms tumor lung cancer

    Rb1 (13q) transcription retinoblastoma small-cell lung

    carcinoma

    p53 (17p) transcription Li-Fraumeni breast, colon,syndrome & lung cancer

    BRCA1(17q) transcriptional breast cancer breast/ovarian

    tumors

    BRCA2 (13q) regulator/DNA repair

  • 7/27/2019 Harliansyah .Ph.D Kuliah Blok Neoplasia 2013

    50/65

    50

    CELL CYCLE

    Daugther cell

    Mitosis

    DNA replication

    Control Point

    Gateway

    GrowthFactors

    Cell cycleinhibitors

    CELL CYCLES

    Rb gene

  • 7/27/2019 Harliansyah .Ph.D Kuliah Blok Neoplasia 2013

    51/65

    51

    Rb gene Rb protein controls cell cycle moving past G1 checkpoint

    Rb protein binds regulatory transcription factor E2F

    E2F required for synthesis of replication enzymes

    E2F - Rb bound = no transcription/replication

    Growth factor --> Ras pathway

    --> G1Cdk-cyclin synthesized

    Active G1 Cdk-cyclin kinase phosphorylates Rb

    Phosphorylated Rb cannot bind E2F --> S phase Disruption/deletion ofRb gene

    Inactivation of Rb protein

    --> uncontrolled cell proliferation --> cancer

    53

  • 7/27/2019 Harliansyah .Ph.D Kuliah Blok Neoplasia 2013

    52/65

    52

    p53 Phosphyorylated p53 activates transcription ofp21 gene

    p21 Cdk inhibitor (binds Cdk-cyclin complex --> inhibits kinase

    activity) Cell cycle arrested to allow

    DNA to be repaired

    If damage cannot be repaired

    --> cell death (apoptosis)

    Disruption/deletion ofp53 gene

    Inactivation of p53 protein

    --> uncorrected DNA damage

    --> uncontrolled cell proliferation --> cancer

  • 7/27/2019 Harliansyah .Ph.D Kuliah Blok Neoplasia 2013

    53/65

    53

    These are genes that ensure each strand of geneticinformation is accurately copied during cell division of the

    cell cycle.

    Mutations in DNA repair genes lead to an increase in thefrequency of mutations in other genes, such as proto-

    oncogenes and tumor suppressor genes.

    i.e. Breast cancer susceptibility genes (BRCA1 and BRCA2)

    Hereditary non-polyposis colon cancer susceptibility genes(MSH2, MLH1, PMS1, PMS2) have DNA repair functions.

    Their mutation will cause tumorigenesis.

    DNA REPAIR GENES

  • 7/27/2019 Harliansyah .Ph.D Kuliah Blok Neoplasia 2013

    54/65

    54Van Gent et al, 2001

    Molecular

    mechanisms of

    DNA double

    strand break

    repair

    BRCA1/2

    IMPORTANCE OF DNA REPAIR

  • 7/27/2019 Harliansyah .Ph.D Kuliah Blok Neoplasia 2013

    55/65

    55

    IMPORTANCE OF DNA REPAIR

  • 7/27/2019 Harliansyah .Ph.D Kuliah Blok Neoplasia 2013

    56/65

    56

    Multiple mutations lead to colon cancer

    Genetic changes --> tumor changes

    Cellular

    Tumor Progress ion

  • 7/27/2019 Harliansyah .Ph.D Kuliah Blok Neoplasia 2013

    57/65

    57

    Revolution in cancer treatment:

    Smart Bullets Period

    Summary of 30 years of research (1971-2001)

  • 7/27/2019 Harliansyah .Ph.D Kuliah Blok Neoplasia 2013

    58/65

    58

    Hanahan & Weinberg 2000

    y y ( )

  • 7/27/2019 Harliansyah .Ph.D Kuliah Blok Neoplasia 2013

    59/65

    59

    Bilimsel Aratrmalarn

    Kanserle Savaa KatksRCEPTN

    HERCEPTIN

    STI-571

  • 7/27/2019 Harliansyah .Ph.D Kuliah Blok Neoplasia 2013

    60/65

    60

    Translocation and Bcr-Abl fusion in CML

  • 7/27/2019 Harliansyah .Ph.D Kuliah Blok Neoplasia 2013

    61/65

    61

    STI-571 against Bcr-Abl

  • 7/27/2019 Harliansyah .Ph.D Kuliah Blok Neoplasia 2013

    62/65

    62

    Smart bul let STI -571 lockes itself to the target molecule

    STI-571

  • 7/27/2019 Harliansyah .Ph.D Kuliah Blok Neoplasia 2013

    63/65

    63

    Thousands of Targets

    HERCEPTIN

    STI-571

    ?

    ??

    ??

    ?

    ?

    ?

    ??

    ?

    ?

    ?

    ?

    ?

    ??

    ?

    MOLECULAR BIOLOGY & INFORMATICS

  • 7/27/2019 Harliansyah .Ph.D Kuliah Blok Neoplasia 2013

    64/65

    64

    MOLECULARBIOLOGY & INFORMATICS

    Biyoinformatik

    ~30.000 genes

    ~300.000 protein

    ~3.000.000 interaction

    1 human cell

    ~3.000.000.000 bp

    DNA

  • 7/27/2019 Harliansyah .Ph.D Kuliah Blok Neoplasia 2013

    65/65