Top Banner

of 12

Group Project Part a READY3

Jul 06, 2018

Download

Documents

hanif
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/17/2019 Group Project Part a READY3

    1/12

     

    EECB353 COMMUNICATION SYSTEM

    SEMESTER 3 2015/2016

    GROUP PROJECT - PART A 

    LECTURER’S NAME: DR. SAVITHRY A/P K. THANGARAJU

    SECTION: 01 

    GROUP: 03

    GROUP MEMBERS:

    1  HANIF BIN ABDUL AZIZ EP093691

    2  MUHAMMAD ARIFF BIN MUHAMMAD EP094516

    DATE OF SUBMISSION: 27TH  APRIL 2016

  • 8/17/2019 Group Project Part a READY3

    2/12

    2

    TABLE OF CONTENTS 

    1. POWER SPECTRUM ...................................................................................................................3 

    2. AM SYSTEM SIMULATION USING MATLAB/SIMULINK ................................................4

    2.1 Block Diagram ............................................................................................................................4 

    2.2 Relevant Specifications ..............................................................................................................4 

    2.3 Waveforms from the Transmitter Section ..................................................................................6 

    2.4 Waveforms from the Receiver Section .......................................................................................8

    3. COMPARISON BETWEEN DEMODULATED AND MODULATING SIGNAL  ...............9

    3.1 Optional MATLAB Coding to Show Demodulated Signal is Equal to Modulating Signal ...10

    4. FREQUENCY SPECTRUM ......................................................................................................12 

  • 8/17/2019 Group Project Part a READY3

    3/12

    3

    1. Power Spectrum

      Total power, Ptotal = 1000 W 

      Given efficiency = 0.33

    Where efficiency = (PUSB + PLSB) ÷ (Pusb + Plsb + Pcarrier )

    0.33 = Psidebands ÷ 1000

    Psideband = 330W

    Pcarrier = Ptotal  –  Psidebands 

    = 1000  –  330

    = 660 watts

    Pusb = Plsb = Psidebands/2 = 330/2 = 165 watts

    165

    670

    165

    0

    100

    200

    300

    400

    500

    600

    700

    800

    1.95 2 2.05

    Power, P (Watts)

    Frequency, f (MHz)

    Power Spectrum

  • 8/17/2019 Group Project Part a READY3

    4/12

    4

    2. AM SYSTEM SIMULATION USING MATLAB/SIMULINK

    2.1 Block Diagram

    Figure 1: Block Diagram of the complete AM system

    2.2 Relevant Specifications

      Message (modulating) signal frequency = 5 kHz, assumed to be 5 Hz for ease of simulation

      Carrier signal frequency = 1.2 MHz, assumed to be 1200 Hz for ease of simulation

      Carrier signal II frequency = 1.2 MHz, assumed to be 1200 Hz for ease of simulation

      Carrier signal amplitude = 6 Volts

      Maximum amplitude of DSB-FC waveforms = 6*2 = 12 Volts

      Analog filter design method used to demodulate DSB signal  –  Butterworth:

    -  Lowpass Filter: Order 8, Passband edge Frequency: 2*π*5.2 = 32.67 rad/s 

    -  Highpass Filter: Order 5, Passband edge frequency: 2*π*8.635 = 54.25 rad/s 

  • 8/17/2019 Group Project Part a READY3

    5/12

    5

    Some of the specifications used in the design

  • 8/17/2019 Group Project Part a READY3

    6/12

    6

    2.3 Waveforms from the Transmitter Section

  • 8/17/2019 Group Project Part a READY3

    7/12

    7

  • 8/17/2019 Group Project Part a READY3

    8/12

  • 8/17/2019 Group Project Part a READY3

    9/12

    9

    3. DEMODULATED OUTPUT SIGNAL AND COMPARISON WITH ORIGINAL

    MODULATING SIGNAL

  • 8/17/2019 Group Project Part a READY3

    10/12

    10

    3.1 Optional MATLAB Coding to Show Demodulated Signal is Equal to Modulating Signal

    fs = 8000; % Assume sampling rate is 8000 samples per second

    fc = 1200; % Carrier frequency in Hz

    t = [0:0.1*fs]'/fs; % Sampling times for 0.1 second

    m = sin(2*pi*5*t); % Representation of the modulating signal

    v = ammod (m,fc,fs); % Modulate m to produce v

    figure(2)

    subplot(2,1,1); plot(t,m); % Plot m on top

    subplot(2,1,2); plot(t,v) % Plot v below

    mr = amdemod (v,fc,fs); % Demodulate v to produce m

    figure(3)

    subplot(2,1,1); plot(t,m); % Plot m on top

    subplot(2,1,2); plot(t,mr) % Plot mr below

    Figure 2 : Top - Modulating Signal, Bottom - Modulated Signal

  • 8/17/2019 Group Project Part a READY3

    11/12

    11

    Figure 3: Top  –  Original Modulating Signal, Bottom - Demodulated Signal

  • 8/17/2019 Group Project Part a READY3

    12/12