Top Banner
Groundwater P = Q + ET + G + DS
33

Groundwater P = Q + ET + G + S. Floridan Aquifer Extent.

Dec 17, 2015

Download

Documents

Rafe Wilcox
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Groundwater P = Q + ET + G +  S. Floridan Aquifer Extent.

Groundwater

P = Q + ET + G + DS

Page 2: Groundwater P = Q + ET + G +  S. Floridan Aquifer Extent.

Floridan AquiferExtent

Page 3: Groundwater P = Q + ET + G +  S. Floridan Aquifer Extent.

Geologic Profiles

(Stratigraphy)

Page 4: Groundwater P = Q + ET + G +  S. Floridan Aquifer Extent.

Confinement

Page 5: Groundwater P = Q + ET + G +  S. Floridan Aquifer Extent.

Groundwater and Wetlands

Page 6: Groundwater P = Q + ET + G +  S. Floridan Aquifer Extent.

Transmissivity

• How much water can be moved horizontally– Function of thickness

and Ksat

– Good measure of well productivity

– Floridan is the most transmissive aquifer in the world

Page 7: Groundwater P = Q + ET + G +  S. Floridan Aquifer Extent.

Loss of Potential

Page 8: Groundwater P = Q + ET + G +  S. Floridan Aquifer Extent.
Page 9: Groundwater P = Q + ET + G +  S. Floridan Aquifer Extent.
Page 10: Groundwater P = Q + ET + G +  S. Floridan Aquifer Extent.
Page 11: Groundwater P = Q + ET + G +  S. Floridan Aquifer Extent.

Potentiometric Surface

• Elevation of “free water surface”

• Where this surface and the ground intersect (and there’s no confinement) water seeps

Page 12: Groundwater P = Q + ET + G +  S. Floridan Aquifer Extent.
Page 13: Groundwater P = Q + ET + G +  S. Floridan Aquifer Extent.
Page 14: Groundwater P = Q + ET + G +  S. Floridan Aquifer Extent.

Relevant Questions

• Where is the water going?– Potentiometric (piezometric) surface

• How much water is moving? How quickly?– Potentiometric surface and Darcys Law

• What level of natural assimilation is occuring?– Water quality modeling

Page 15: Groundwater P = Q + ET + G +  S. Floridan Aquifer Extent.

Gainesville’s Well Field

Also Lake City

Jasper

Geology

Land use

Conservation

Easement

Page 16: Groundwater P = Q + ET + G +  S. Floridan Aquifer Extent.

Murphree Wellfield Cone of Depression

1988 (Observed) 2010 (Predicted)

Page 17: Groundwater P = Q + ET + G +  S. Floridan Aquifer Extent.

How to make a sinkhole

Pray for lots of Rain

Suck a lot of water

Page 18: Groundwater P = Q + ET + G +  S. Floridan Aquifer Extent.

Drilling and pumping

Developed into a hole 300ft deep and

300ft wide

Hundreds of sinkholes developed over a

period of 6 hours.

Page 19: Groundwater P = Q + ET + G +  S. Floridan Aquifer Extent.

Freeze Protection• To protect strawberry yield during a January

freeze in 2010, ~ 2 billion gallons per day of water pumped over a 5 day period. Voila.

Page 20: Groundwater P = Q + ET + G +  S. Floridan Aquifer Extent.

Invasion

Fire

Subsidence

Degraded wildlife habitat

Page 21: Groundwater P = Q + ET + G +  S. Floridan Aquifer Extent.

Artesian Springs• Where a confining layer exists, there may be a

pressure potential in the aquifer HIGHER than the gravity potential of the surface.

• When tapped, water flows upwards

Page 22: Groundwater P = Q + ET + G +  S. Floridan Aquifer Extent.

Soil water movement across a watershed boundary.

P=Q+ET+G+ΔS

Qgroundwater= K A ΔH/L

Darcy’s Law

Darcy’s law is mostly used to calculate vertical leakage through a clay layer, but may also be used to calculate lateral flow.

Q is water crossing the defined area of the boundary in m3/day

Page 23: Groundwater P = Q + ET + G +  S. Floridan Aquifer Extent.

K is hydraulic conductivityMost meaningful as saturated hydraulic conductivity Ksat (m/day). Why?

Q= K A ΔH/L

Page 24: Groundwater P = Q + ET + G +  S. Floridan Aquifer Extent.

ΔH is the difference in H between two points

Water flows from high ψtotal to low ψtotal (could be “up”)

Point ψG ψP H

A

B

C

H = Ψgravity + Ψpressure

H = level of water in an open well above some datum

HA = ? HB = ? ΔH = ?

Flow Direction?!?

Page 25: Groundwater P = Q + ET + G +  S. Floridan Aquifer Extent.

H @ D?

H@F?

ΔH?

Direction? 10

98

7

654

32

1

0

Page 26: Groundwater P = Q + ET + G +  S. Floridan Aquifer Extent.

ΔH AD? Dir?

ΔH BF? Dir?

ΔH AF? Dir?

ΔH/L BF?

Page 27: Groundwater P = Q + ET + G +  S. Floridan Aquifer Extent.

Q=K A ΔH/LK? A? ΔH? L?

Vertical leakage problem

Ksat=0.001m/d

Watershed=100 ha

0

1

2

3

4

5

6

Datum

Page 28: Groundwater P = Q + ET + G +  S. Floridan Aquifer Extent.

Q = K * A * ΔH/L

K = 0.001 m/d

A = 100ha = 1,000,000 m2

ΔH = 5-3 = 2m

L = 2m

Q = 0.001m/d x 1,000,000m2 x 2m / 2m

Q = 1,000 m3/day or 365,000 m3/year

Q surface depth = 365,000 m3 / 1,000,000 m2= 0.365m

Page 29: Groundwater P = Q + ET + G +  S. Floridan Aquifer Extent.

Q=K A ΔH/L

K=0.1m/d

A=100m x 50m=5,000m2

ΔH=108m-105m=3m

L=1,000m

Qm3/d= 0.1m/d * 5,000m2 *0.003 = 1.5m3/d

Lateral leakage problem

Page 30: Groundwater P = Q + ET + G +  S. Floridan Aquifer Extent.

Groundwater Flowpaths at Streams

Page 31: Groundwater P = Q + ET + G +  S. Floridan Aquifer Extent.

Groundwater Discharges

Page 32: Groundwater P = Q + ET + G +  S. Floridan Aquifer Extent.

Groundwater Flowpaths

Page 33: Groundwater P = Q + ET + G +  S. Floridan Aquifer Extent.

Next Time…

• Soil Water Storage