Top Banner
GRAVITON BACKREACTION & COSMOLOGICAL CONSTANT Tomislav Prokopec, ITP & Spinoza Institute, Utrecht University Munchen, Oct 9 2008 Based on Based on : Tomas Janssen & Tomislav Prokopec, arXiv:0707.3919 [gr-qc] Tomas Janssen & Tomislav Prokopec, arXiv:0707.3919 [gr-qc] (2007) (2007) Tomas Janssen, Shun-Pei Miao & Tomislav Prokopec, Tomas Janssen, Shun-Pei Miao & Tomislav Prokopec, arXiv:0807.0439 [gr-qc] arXiv:0807.0439 [gr-qc] Tomas Janssen & Tomislav Prokopec, arXiv:0807.0477 (2008) Tomas Janssen & Tomislav Prokopec, arXiv:0807.0477 (2008) ˚
19

GRAVITON BACKREACTION & COSMOLOGICAL CONSTANT

Jan 18, 2016

Download

Documents

edith

˚ 1˚. GRAVITON BACKREACTION & COSMOLOGICAL CONSTANT. Tomislav Prokopec, ITP & Spinoza Institute, Utrecht University. Based on : Tomas Janssen & Tomislav Prokopec, arXiv:0707.3919 [gr-qc] (2007) Tomas Janssen, Shun-Pei Miao & Tomislav Prokopec, arXiv:0807.0439 [gr-qc] - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: GRAVITON BACKREACTION & COSMOLOGICAL CONSTANT

GRAVITON BACKREACTION & COSMOLOGICAL CONSTANT

Tomislav Prokopec, ITP & Spinoza Institute, Utrecht University

Munchen, Oct 9 2008

Based onBased on::Tomas Janssen & Tomislav Prokopec, arXiv:0707.3919 [gr-qc] (2007) Tomas Janssen & Tomislav Prokopec, arXiv:0707.3919 [gr-qc] (2007) Tomas Janssen, Shun-Pei Miao & Tomislav Prokopec, arXiv:0807.0439 [gr-qc]Tomas Janssen, Shun-Pei Miao & Tomislav Prokopec, arXiv:0807.0439 [gr-qc]Tomas Janssen & Tomislav Prokopec, arXiv:0807.0477 (2008)Tomas Janssen & Tomislav Prokopec, arXiv:0807.0477 (2008)

˚ 1˚

Page 2: GRAVITON BACKREACTION & COSMOLOGICAL CONSTANT

THE COSMOLOGICAL CONSTANT PROBLEM

μν μν μν2 4

(vacuum matter)gravitationalgeometry energy momentumcoupling tensor

8 G ˆG (g) g = Tc c

(μ,ν =0,1,2,3)

˚ 2˚

Vacuum fluctuates and thereby contributes to the stress-energy tensor of the vacuum (Casimir 1948):

vac vac geom vacobs 2

8 G(T ) g

c

THE COSMOLOGICAL CONSTANT PROBLEM: The expected energy density of the vacuum

A finite volume V = L³ in momentum space constitutes reciprocal lattice: each point of the lattice is a harmonic oscillator with the ground state energy E/2, where E²=(cp)²+(mc²)².

Through Einstein’s equation this vacuum energy curves space-time such that it induces an accelerated expansion:

4 76 4vac Pl~m ~10 GeV

2 -46 40obs Pl~(H m ) ~10 GeV

is about 122 orders of magnitude larger than the observed value:

Q: H²Λ/3 is a classical attractor. Does it remain so in quantum theory?

Plmax ~ mk

Page 3: GRAVITON BACKREACTION & COSMOLOGICAL CONSTANT

BACKGROUND SPACE TIME

LINE ELEMENT (METRIC TENSOR):

˚ 3˚

● for power law expansion the scale factor reads:

),..1,1,1(,)()(1

22222

D

diagagorxdtadtds

aHHH

t

t01

1

0

/1

0

,)1(a

p

wwH

H .,const)1(

2

32

FRIEDMANN (FLRW) EQUATIONS (=0):

,3

82M

NGH

)(4 MMN pGH

Page 4: GRAVITON BACKREACTION & COSMOLOGICAL CONSTANT

˚ 4˚

(MASSLESS) SCALAR FIELD ACTION

SCALAR EOM

In momentum space (=0, V=0):

220

20

22

,0)(''

)2(1

)('1

VR

a

aD

aVR

g

)(

2

1

2

1 2

VRggxdS D

00ˆ,ˆ)(ˆ)()2(

)(ˆ *1

1

kk

xkikk

xkikD

D

aaeaekd

x

SCALAR THEORY

)1(2

3,)()(

4

||1)( )2()1(

kHkH

a kkk

Scalar field spectrum Pφ in de Sitter (ε=0)

sin( )ˆ ˆ0 ( , ) ( ', ) 0 ( , ) , '

dk k xx x k x x x

k k x

P

2

2

2

2

)(1

4),(

aH

kHkP

CONTAINS IR SINGULARITY

Page 5: GRAVITON BACKREACTION & COSMOLOGICAL CONSTANT

˚ 5˚

coincident 2 point function (propagator) in dS limit:

SCALAR THEORY: SINGULARITIES

►we find:

)ln(1

10)(0);( 2

0)(02 aHxxxi E

dS

● when =constant, the

1/term can be subtracted

● when =ε(t), but slowly changing in time, s.t. dε/dt<<Hε

close to matter era: =3/2+ε:

)2/3()ln(2

1

2

1

)2/3(3

10)(0 22/32

OaHx E

3/2,3

2,0,

2

3ta

tHHww MMM

22

2

~1

~)2/3(

tH

H

implying a secular growth of vacuum fluctuations that can compensate a

cosmological term

2~

3

32 ||

)2(0)(0

max

min

k

aHk

kIR

kdx

the IR singularity of a coincident 2 point function:

is IR singular for 0 ≤ ε ≤ 3/2 large quantum backreaction expected

● singularities occur when = 3/2, 4/3, 5/4,.., 1,.. 4/5, 3/4, 2/3, 1/2 & 0

Page 6: GRAVITON BACKREACTION & COSMOLOGICAL CONSTANT

CLASSICAL ATTRACTOR IN FLRW SPACES

Q: can quantum vacuum fluctuations change the late time de Sitter attractor behaviour?

Einstein’s equations in FLRW spaces (0):

˚ 6˚

► CLASSICAL SOLUTION

M

MMM

pw

Hw

H

H

,3

1)1(2

322

,

33

82 M

NGH

twH M 3

)1(2

3coth

3

Classical (de Sitter) attractor

Quantum behaviour (?)

3/H

t3/

0

3)1(

23

cosh

)1(23

2

tw

w

M

M

Page 7: GRAVITON BACKREACTION & COSMOLOGICAL CONSTANT

SCALAR PROPAGATOR IN FLRW SPACES

This propagator allows for determination of the quantum backreaction and more generally effects of quantum scalar fields in dynamical FLRW spaces

˚ 7˚

SCALAR PROPAGATOR

Janssen & Prokopec 2007Janssen, Miao & Prokopec 2008

aHHyDDD

FD

DDHH

xxi DD

DD

D

D

D0122/

12

2 ,4

1;2

;2

1,

2

1

2/2

12

1

)4(

)'(|1|)';(

,)1(

)2(41

)2)(1(21

)2)(1(

2

12

22

2

DDDDDDD

D

HOPE: THAT THIS SCALAR PROPAGATOR RESUMS THE LOGS OF a:

2sin4,

'

||||)|'(|)';( 2

22 lHy

xxixxy

1const.)],()ln(1[2

200

H

HOaHaHH

)'(),;( xxixxiRgg D ► EOM

► Ansatz: ),()'(),;( 2/1 yaaxxi D

l = geodesic distance in de Sitter space

Page 8: GRAVITON BACKREACTION & COSMOLOGICAL CONSTANT

LAGRANGIAN FOR PERTURBATIONS˚ 8˚

Graviton: lagrangian to second order in h

► PERTURBATIONS ,16,)()(ˆ22

N

aa

Gggxg

►GAUGE: graviton propagator in exact gauge is not known. We added a gauge fixing term:

)()()(ˆ xx

► GRAVITON-SCALAR MIXING

shellon0

2200

2)2( )(')2(''2

1''

VaaHDaaL DD

● lagrangian must be diagonalized w.r.t. the scalar fields 00 &

02 '2

1,

2

1

gaFFFggLGF

● upon a suitable rotation tensor, vector and 2 scalar fields decouple on shell

Page 9: GRAVITON BACKREACTION & COSMOLOGICAL CONSTANT

GRAVITON PROPAGATOR IN FLRW SPACES˚ 9˚

Janssen, Miao & Prokopec 2008

aHHyDDD

FD

DDHH

xxi nDnD

nDnD

D

D

Dn 0,,12

,,

2/

12

2 ,4

1;2

;2

1,

2

1

2/2

12

1

)4(

)'(|1|)';(

,)1(

4)2(

2)2)(1(

)1(2

)1(1

2

12

22

2,

DDDDnnnDn

DnD

EOM (symbolic) DiiD

GRAVITON PROPAGATORS

► VECTOR DOFs: 1vector1vector , iiDD lj

lj

ijij

► GHOST DOFs: 001

0001

000shellon

ghost ,,

iiiDDD ghost

)2,1,0(,)1(2

)1(1 2

nHnn

nDngggDn

Dnn iiD

Page 10: GRAVITON BACKREACTION & COSMOLOGICAL CONSTANT

GRAVITON PROPAGATORS˚10˚

► SCALAR AND TENSOR DOFs (G=3x3 operator matrix):

,

)()(0

)()(0

00

22

02

20

2022

022

isiciisc

iiscisic

i

iMklrs

DiIiMG

0)( 3

22

i

Di klrsslkrklrs

,2

)3(2

D

D )sin(),cos(,3

)3(2)2tan(

scD

D

Page 11: GRAVITON BACKREACTION & COSMOLOGICAL CONSTANT

SCALAR 1 LOOP EFFECTIVE ACTION

When the determinant is evaluated in a FLRW space, it leads to a backreaction that can compensate Λ.

ONE LOOP (MASSLESS) SCALAR FIELD EFFECTIVE ACTION:

˚11˚

DIAGRAMMATICALLY 1 LOOP(vacuum bubble):

NB: Can be calculated by knowing the relevant propagator.

NB2: Propagators are not known for general spaces; now known for FLRW spaces with constant ε.

Janssen, Miao & Prokopec 2008

[ ] [ ] [ ]

1/ 2

1loop contribution

1[ ] [ ] ln

2[ ]

i iS iS ie D e e S Tr g

Det g

..

2

1][ 4

ggxdS

Page 12: GRAVITON BACKREACTION & COSMOLOGICAL CONSTANT

GRAVITON 1 LOOP EFFECTIVE ACTION

☀ When renormalized, one gets the one loop effective action:

˚12˚

Janssen, Miao & Prokopec 2008

]det[]det[

]det[(fields)

tensort

ghost)0()2()0(

ijklorvecij

iSiSiSi

DD

DeeDe

L

ijklij DiTrDTr

iDTr

iS

1

ghosttensor

vector)0( )][ln()][ln(2

)][ln(2

)3(

1

11

1

1ln2)1(ln)1011149186(

16

11

0

23244

33

221023

QQ p

H

H

aVa

► i: renormalization dependent constants

► H0: a Hubble parameter scale

► (z)=dln[(z)]/dz: digamma function

► can be expanded around the poles of (z):

0,2

1,

3

2,

4

3,

5

4,..1,..,

4

5,

3

4,

2

3,2p

►EFFECTIVE ACTION:

● the poles 0, 1, 2 (dS, curv, rad) are not relevant.

NB: Q & pQ can be obtained from the conservation law: )3(44QQQ pHaa

dt

d

Page 13: GRAVITON BACKREACTION & COSMOLOGICAL CONSTANT

DYNAMICS NEAR THE DE SITTER POLE

►near the de Sitter pole (ε=0): small quantum effect

˚13˚

● Late time dynamics: asymptotes a nearly-classical de Sitter attractor:

0ln2

93

1

23 2

0

42

HHG

H

HB

w

HHAGH N

MN

(A,B: undetermined constants)

Classical (de Sitter) attractor

Quantum corrected attractor

3/H

t3/

t3/

Page 14: GRAVITON BACKREACTION & COSMOLOGICAL CONSTANT

DYNAMICS NEAR THE MATTER ERA POLE

►near the matter era pole (ε=3/2): secular growth and large quantum effects

˚14˚

● Late time dynamics: asymptotes the near-pole classical attractor:

)1(341011149186|1|,0)1(241

23 32

42

MpppppppM

N

M

ww

HG

w

HH

Classical branch

1. Quantum branch

3/H

INSET

3/H

2

3

Page 15: GRAVITON BACKREACTION & COSMOLOGICAL CONSTANT

DYNAMICS NEAR THE MATTER ERA POLE II

►Hubble parameter vs time (εp~3/2, <0):

˚15˚

● Late time dynamics: asymptotes the near-pole classical attractor:

Classical (de Sitter) attractor Quantum corrected attractor

3/H

t3/

tH

3

2

Page 16: GRAVITON BACKREACTION & COSMOLOGICAL CONSTANT

DYNAMICS NEAR THE 5/4 POLE

►near the ε=5/4 pole (>0): secular growth and large quantum effects

˚16˚

● Late time dynamics: asymptotes the near-pole classical attractor:

0)(

)1(241

23

42

p

p

M

N

M w

HG

w

HH

Classical branch

Quantum branch

3/H

4

5

INSET

3/H

Page 17: GRAVITON BACKREACTION & COSMOLOGICAL CONSTANT

DYNAMICS NEAR THE 5/4 POLE II

►Hubble parameter vs time (εp~5/4, >0):

˚17˚

● Late time dynamics: asymptotes the near-pole classical attractor:

Classical (de Sitter) attractor Quantum attractor

3/H

t3/

tH

5

4

Page 18: GRAVITON BACKREACTION & COSMOLOGICAL CONSTANT

DARK ENERGY AND COSMOLOGICAL CONSTANT

Dark energy has the characteristics of a cosmological constant Λeff, yet its origin is not known

˚18˚

But why is Λeff so small?

UNKNOWN SYMMETRY?

GRAVITATIONAL BACKREACTION!?

EXPLANATION?

This work suggests that it may be the gravitational backreaction of gravitons (plus matter).

Page 19: GRAVITON BACKREACTION & COSMOLOGICAL CONSTANT

SUMMARY AND DISCUSSION

Scalar matter and graviton VACUUM fluctuations in a near de Sitter universe induce a weak quantum backreaction at 1 loop order (also at 2 loops?).

˚19˚

We considered the quantum backreaction from massless scalar and graviton 1 loop vacuum fluctuations in expanding backgrounds

► What is the quantum backreaction of other quantum fields (fermions, photons)?

1 loop backreaction can be strong when = 3/2, 4/3, 5/4,.., 1,.. 4/5, 3/4, 2/3, 1/2 (-2/3≤w≤0)

OPEN QUESTIONS:► we calculated in the approximation ε=(dH/dt)/H²=const. What is the effect of dε/dt 0 (mode mixing)? ► is the backreaction gauge dependent? (Exact gauge?)

Janssen & Prokopec 2008

Koksma & Prokopec 2008

Miao & Woodard 2008, ..► what happens at 2 loop?