Top Banner
1 2 2 1 2
62

Backreaction in the relativistic Zel'dovich approximation · Backreaction in the relativistic Zel'dovich approximation Alexander Wiegand 1 with Thomas Buchert 2and Charly Nayet 1Fakultät

Jul 18, 2019

Download

Documents

trinhanh
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Backreaction in the relativistic Zel'dovich approximation · Backreaction in the relativistic Zel'dovich approximation Alexander Wiegand 1 with Thomas Buchert 2and Charly Nayet 1Fakultät

Backreaction in the relativistic Zel'dovich

approximation

Alexander Wiegand1

with Thomas Buchert2 and Charly Nayet2

1Fakultät für Physik, Universität Bielefeld

2CRAL Université Lyon 1

7. Kosmologietag,

Bielefeld

04.05.2012

A. Wiegand (Universität Bielefeld) Zel'dovich backreaction Kosmologietag 2012 1 / 32

Page 2: Backreaction in the relativistic Zel'dovich approximation · Backreaction in the relativistic Zel'dovich approximation Alexander Wiegand 1 with Thomas Buchert 2and Charly Nayet 1Fakultät

Outline

1 Averaging inhomogeneous universes

2 Newtonian vs. Relativistic Zel'dovich approximation

3 Results

4 Conclusion

A. Wiegand (Universität Bielefeld) Zel'dovich backreaction Kosmologietag 2012 2 / 32

Page 3: Backreaction in the relativistic Zel'dovich approximation · Backreaction in the relativistic Zel'dovich approximation Alexander Wiegand 1 with Thomas Buchert 2and Charly Nayet 1Fakultät

Outline

1 Averaging inhomogeneous universes

2 Newtonian vs. Relativistic Zel'dovich approximation

3 Results

4 Conclusion

A. Wiegand (Universität Bielefeld) Zel'dovich backreaction Kosmologietag 2012 3 / 32

Page 4: Backreaction in the relativistic Zel'dovich approximation · Backreaction in the relativistic Zel'dovich approximation Alexander Wiegand 1 with Thomas Buchert 2and Charly Nayet 1Fakultät

Why averaging?

Many measurements are averages

H0 ≡1N

N∑i=1

vi

di−→ H0 =

1V

∫vd

dV

Inhomogeneous evolution too complex

to follow ⇒ Average description

Standard cosmological approach: Implicit averaging ⇒Average is identied with the single exact homogeneous

and isotropic solution of the Einstein equations

Gµν(〈gµν〉) 6= 〈Gµν(gµν)〉

Friedmann Averaged

A. Wiegand (Universität Bielefeld) Zel'dovich backreaction Kosmologietag 2012 4 / 32

Page 5: Backreaction in the relativistic Zel'dovich approximation · Backreaction in the relativistic Zel'dovich approximation Alexander Wiegand 1 with Thomas Buchert 2and Charly Nayet 1Fakultät

Why averaging?

Many measurements are averages

H0 ≡1N

N∑i=1

vi

di−→ H0 =

1V

∫vd

dV

Inhomogeneous evolution too complex

to follow ⇒ Average description

Standard cosmological approach: Implicit averaging ⇒Average is identied with the single exact homogeneous

and isotropic solution of the Einstein equations

Gµν(〈gµν〉) 6= 〈Gµν(gµν)〉

Friedmann Averaged

A. Wiegand (Universität Bielefeld) Zel'dovich backreaction Kosmologietag 2012 4 / 32

Page 6: Backreaction in the relativistic Zel'dovich approximation · Backreaction in the relativistic Zel'dovich approximation Alexander Wiegand 1 with Thomas Buchert 2and Charly Nayet 1Fakultät

Why averaging?

Many measurements are averages

H0 ≡1N

N∑i=1

vi

di−→ H0 =

1V

∫vd

dV

Inhomogeneous evolution too complex

to follow ⇒ Average description

Standard cosmological approach: Implicit averaging ⇒Average is identied with the single exact homogeneous

and isotropic solution of the Einstein equations

Gµν(〈gµν〉) 6= 〈Gµν(gµν)〉

Friedmann Averaged

A. Wiegand (Universität Bielefeld) Zel'dovich backreaction Kosmologietag 2012 4 / 32

Page 7: Backreaction in the relativistic Zel'dovich approximation · Backreaction in the relativistic Zel'dovich approximation Alexander Wiegand 1 with Thomas Buchert 2and Charly Nayet 1Fakultät

Why averaging?

Many measurements are averages

H0 ≡1N

N∑i=1

vi

di−→ H0 =

1V

∫vd

dV

Inhomogeneous evolution too complex

to follow ⇒ Average description

Standard cosmological approach: Implicit averaging ⇒Average is identied with the single exact homogeneous

and isotropic solution of the Einstein equations

Gµν(〈gµν〉) 6= 〈Gµν(gµν)〉

Friedmann Averaged

A. Wiegand (Universität Bielefeld) Zel'dovich backreaction Kosmologietag 2012 4 / 32

Page 8: Backreaction in the relativistic Zel'dovich approximation · Backreaction in the relativistic Zel'dovich approximation Alexander Wiegand 1 with Thomas Buchert 2and Charly Nayet 1Fakultät

Averages of scalar quantities

Considered here: Averages of three-scalars in the ADM

3+1 split of the underlying dust universe

〈f 〉D (t) :=

∫D f (t,X)dµg∫D dµg

; dµg :=√

(3)g(t,X)d3X

Three metric of spatial slice (3)g(t,X) general andtherefore also local expansion rate θ (t,X) inhomogeneous

θ (t,X) =√

(3)g(t,X)−1∂t

(√(3)g(t,X)

)Time evolution and averaging do not commute

∂t 〈f 〉D = 〈∂t f 〉D+ 〈f θ〉D−〈f 〉D 〈θ〉D

A. Wiegand (Universität Bielefeld) Zel'dovich backreaction Kosmologietag 2012 5 / 32

Page 9: Backreaction in the relativistic Zel'dovich approximation · Backreaction in the relativistic Zel'dovich approximation Alexander Wiegand 1 with Thomas Buchert 2and Charly Nayet 1Fakultät

Averages of scalar quantities

Considered here: Averages of three-scalars in the ADM

3+1 split of the underlying dust universe

〈f 〉D (t) :=

∫D f (t,X)dµg∫D dµg

; dµg :=√

(3)g(t,X)d3X

Three metric of spatial slice (3)g(t,X) general andtherefore also local expansion rate θ (t,X) inhomogeneous

θ (t,X) =√

(3)g(t,X)−1∂t

(√(3)g(t,X)

)Time evolution and averaging do not commute

∂t 〈f 〉D = 〈∂t f 〉D+ 〈f θ〉D−〈f 〉D 〈θ〉D

A. Wiegand (Universität Bielefeld) Zel'dovich backreaction Kosmologietag 2012 5 / 32

Page 10: Backreaction in the relativistic Zel'dovich approximation · Backreaction in the relativistic Zel'dovich approximation Alexander Wiegand 1 with Thomas Buchert 2and Charly Nayet 1Fakultät

Averages of scalar quantities

Considered here: Averages of three-scalars in the ADM

3+1 split of the underlying dust universe

〈f 〉D (t) :=

∫D f (t,X)dµg∫D dµg

; dµg :=√

(3)g(t,X)d3X

Three metric of spatial slice (3)g(t,X) general andtherefore also local expansion rate θ (t,X) inhomogeneous

θ (t,X) =√

(3)g(t,X)−1∂t

(√(3)g(t,X)

)Time evolution and averaging do not commute

∂t 〈f 〉D = 〈∂t f 〉D+ 〈f θ〉D−〈f 〉D 〈θ〉D

A. Wiegand (Universität Bielefeld) Zel'dovich backreaction Kosmologietag 2012 5 / 32

Page 11: Backreaction in the relativistic Zel'dovich approximation · Backreaction in the relativistic Zel'dovich approximation Alexander Wiegand 1 with Thomas Buchert 2and Charly Nayet 1Fakultät

The Buchert equations

Averaging the local equations directly yields

3H2D = 8πG〈%〉D−

12〈R〉D−

12QD+ Λ

3aDaD

= −4πG〈%〉D+QD+ Λ

0 = ∂t 〈%〉D+ 3HD 〈%〉DThese are evolution equations for the average scale

factor or Hubble rate

aD (t) :=

(VDVDi

) 13

; HD :=aDaD

=13〈θ〉D

New component: Kinematical backreaction QD

QD :=23

(⟨θ2⟩D−〈θ〉

2D

)−2⟨σ2⟩

D =⟨

K2−KijKij⟩D−

23〈K〉2D

A. Wiegand (Universität Bielefeld) Zel'dovich backreaction Kosmologietag 2012 6 / 32

Page 12: Backreaction in the relativistic Zel'dovich approximation · Backreaction in the relativistic Zel'dovich approximation Alexander Wiegand 1 with Thomas Buchert 2and Charly Nayet 1Fakultät

The Buchert equations

Averaging the local equations directly yields

3H2D = 8πG〈%〉D−

12〈R〉D−

12QD+ Λ

3aDaD

= −4πG〈%〉D+QD+ Λ

0 = ∂t 〈%〉D+ 3HD 〈%〉DThese are evolution equations for the average scale

factor or Hubble rate

aD (t) :=

(VDVDi

) 13

; HD :=aDaD

=13〈θ〉D

New component: Kinematical backreaction QD

QD :=23

(⟨θ2⟩D−〈θ〉

2D

)−2⟨σ2⟩

D =⟨

K2−KijKij⟩D−

23〈K〉2D

A. Wiegand (Universität Bielefeld) Zel'dovich backreaction Kosmologietag 2012 6 / 32

Page 13: Backreaction in the relativistic Zel'dovich approximation · Backreaction in the relativistic Zel'dovich approximation Alexander Wiegand 1 with Thomas Buchert 2and Charly Nayet 1Fakultät

The Buchert equations

Averaging the local equations directly yields

3H2D = 8πG〈%〉D−

12〈R〉D−

12QD+ Λ

3aDaD

= −4πG〈%〉D+QD+ Λ

0 = ∂t 〈%〉D+ 3HD 〈%〉DThese are evolution equations for the average scale

factor or Hubble rate

aD (t) :=

(VDVDi

) 13

; HD :=aDaD

=13〈θ〉D

New component: Kinematical backreaction QD

QD :=23

(⟨θ2⟩D−〈θ〉

2D

)−2⟨σ2⟩

D =⟨

K2−KijKij⟩D−

23〈K〉2D

A. Wiegand (Universität Bielefeld) Zel'dovich backreaction Kosmologietag 2012 6 / 32

Page 14: Backreaction in the relativistic Zel'dovich approximation · Backreaction in the relativistic Zel'dovich approximation Alexander Wiegand 1 with Thomas Buchert 2and Charly Nayet 1Fakultät

Uncommon properties

1 Backreaction can lead to accelerated expansion in a dust

universe

3aDaD

=−4πG〈%〉D+QD+ Λ ⇒aDaD

> 0 if 4πG〈%〉D <QD

Physical explanation: Volume fraction of fasterexpanding regions rises so that there can be volumeacceleration without positive Λ

2 Backreaction triggers dynamical curvature

a−2D ∂t

(a2D〈R〉D

)=−a−6

D ∂t(

a6DQD

)⇒ Additional degree of freedom. Coupling is generic.Substantial scalar curvature today consistent with CMB(see Räsänen arXiv:0812.2872)

A. Wiegand (Universität Bielefeld) Zel'dovich backreaction Kosmologietag 2012 7 / 32

Page 15: Backreaction in the relativistic Zel'dovich approximation · Backreaction in the relativistic Zel'dovich approximation Alexander Wiegand 1 with Thomas Buchert 2and Charly Nayet 1Fakultät

Uncommon properties

1 Backreaction can lead to accelerated expansion in a dust

universe

3aDaD

=−4πG〈%〉D+QD+ Λ ⇒aDaD

> 0 if 4πG〈%〉D <QD

Physical explanation: Volume fraction of fasterexpanding regions rises so that there can be volumeacceleration without positive Λ

2 Backreaction triggers dynamical curvature

a−2D ∂t

(a2D〈R〉D

)=−a−6

D ∂t(

a6DQD

)⇒ Additional degree of freedom. Coupling is generic.Substantial scalar curvature today consistent with CMB(see Räsänen arXiv:0812.2872)

A. Wiegand (Universität Bielefeld) Zel'dovich backreaction Kosmologietag 2012 7 / 32

Page 16: Backreaction in the relativistic Zel'dovich approximation · Backreaction in the relativistic Zel'dovich approximation Alexander Wiegand 1 with Thomas Buchert 2and Charly Nayet 1Fakultät

Cosmological implications

Standard cosmology

described by 3 parameters

ΩDm :=8πG3H2D〈%〉D ΩDΛ :=

Λ

3H2D

ΩDk :=−k

a2H2ΩDQ :=−

QD6H2D

Cosmic triangle

ΩDm + ΩDΛ + ΩDk +ΩDQ = 1

A. Wiegand (Universität Bielefeld) Zel'dovich backreaction Kosmologietag 2012 8 / 32

Page 17: Backreaction in the relativistic Zel'dovich approximation · Backreaction in the relativistic Zel'dovich approximation Alexander Wiegand 1 with Thomas Buchert 2and Charly Nayet 1Fakultät

Cosmological implications

Average cosmology described

by 4 parameters

ΩDm :=8πG3H2D〈%〉D ΩDΛ :=

Λ

3H2D

ΩDR :=−〈R〉D6H2D

ΩDQ :=−QD6H2D

Cosmic quartet (Roy et al. 2011)

ΩDm + ΩDΛ + ΩDR+ ΩDQ = 1

A. Wiegand (Universität Bielefeld) Zel'dovich backreaction Kosmologietag 2012 8 / 32

Page 18: Backreaction in the relativistic Zel'dovich approximation · Backreaction in the relativistic Zel'dovich approximation Alexander Wiegand 1 with Thomas Buchert 2and Charly Nayet 1Fakultät

Outline

1 Averaging inhomogeneous universes

2 Newtonian vs. Relativistic Zel'dovich approximation

3 Results

4 Conclusion

A. Wiegand (Universität Bielefeld) Zel'dovich backreaction Kosmologietag 2012 9 / 32

Page 19: Backreaction in the relativistic Zel'dovich approximation · Backreaction in the relativistic Zel'dovich approximation Alexander Wiegand 1 with Thomas Buchert 2and Charly Nayet 1Fakultät

Newtonian backreaction

Backreaction in terms of kinematical variables

QD = 23

(⟨θ2⟩D−〈θ〉

2D

)+ 2⟨ω2−σ2⟩

D

becomes dependent on derivatives of the peculiar

velocity eld

QD = 2〈II(vi,j)〉D−23 〈I(vi,j)〉2D

which means that it is a surface term (Buchert&Ehlers 1997)

QD=1a2

21

Vq

∫∂Dq

dS · (u(∇q ·u)− (u ·∇q)u)−23

(1

Vq

∫∂Dq

dS ·u)2

A. Wiegand (Universität Bielefeld) Zel'dovich backreaction Kosmologietag 2012 10 / 32

Page 20: Backreaction in the relativistic Zel'dovich approximation · Backreaction in the relativistic Zel'dovich approximation Alexander Wiegand 1 with Thomas Buchert 2and Charly Nayet 1Fakultät

Newtonian Zel'dovich approximation

Lagrangian picture: express the Eularian position and

velocity of a uid element by f(·, t) : X 7→ xThe Zel'dovich approximation implies perturbing this

function by the gravitational potential

fZ(X, t) = a(t)(

X + ξ(t)∇0ψ(X))

QD may be expressed by this function f, if we replace theinvariants of the gradient of the velocity eld in

BKSQD = 21〈J〉Di

〈J II(vi,j)〉Di−

23

(1〈J〉Di

〈J I(vi,j)〉Di

)2

by

I(vi,j) = 12J εabcε

ijk f |ai f |bj f |ck

II(vi,j) = 12J εabcε

ijk f |ai f |bj f |ck

A. Wiegand (Universität Bielefeld) Zel'dovich backreaction Kosmologietag 2012 11 / 32

Page 21: Backreaction in the relativistic Zel'dovich approximation · Backreaction in the relativistic Zel'dovich approximation Alexander Wiegand 1 with Thomas Buchert 2and Charly Nayet 1Fakultät

Newtonian Zel'dovich approximation

Lagrangian picture: express the Eularian position and

velocity of a uid element by f(·, t) : X 7→ xThe Zel'dovich approximation implies perturbing this

function by the gravitational potential

fZ(X, t) = a(t)(

X + ξ(t)∇0ψ(X))

QD may be expressed by this function f, if we replace theinvariants of the gradient of the velocity eld in

BKSQD = 21〈J〉Di

〈J II(vi,j)〉Di−

23

(1〈J〉Di

〈J I(vi,j)〉Di

)2

by

I(vi,j) = 12J εabcε

ijk f |ai f |bj f |ck

II(vi,j) = 12J εabcε

ijk f |ai f |bj f |ck

A. Wiegand (Universität Bielefeld) Zel'dovich backreaction Kosmologietag 2012 11 / 32

Page 22: Backreaction in the relativistic Zel'dovich approximation · Backreaction in the relativistic Zel'dovich approximation Alexander Wiegand 1 with Thomas Buchert 2and Charly Nayet 1Fakultät

Newtonian Zel'dovich approximation

Lagrangian picture: express the Eularian position and

velocity of a uid element by f(·, t) : X 7→ xThe Zel'dovich approximation implies perturbing this

function by the gravitational potential

fZ(X, t) = a(t)(

X + ξ(t)∇0ψ(X))

QD may be expressed by this function f, if we replace theinvariants of the gradient of the velocity eld in

BKSQD = 21〈J〉Di

〈J II(vi,j)〉Di−

23

(1〈J〉Di

〈J I(vi,j)〉Di

)2

by

I(vi,j) = 12J εabcε

ijk f |ai f |bj f |ck

II(vi,j) = 12J εabcε

ijk f |ai f |bj f |ck

A. Wiegand (Universität Bielefeld) Zel'dovich backreaction Kosmologietag 2012 11 / 32

Page 23: Backreaction in the relativistic Zel'dovich approximation · Backreaction in the relativistic Zel'dovich approximation Alexander Wiegand 1 with Thomas Buchert 2and Charly Nayet 1Fakultät

Backreaction in the NZA

Result for the backreaction term in the NZA

NZAQD =ξ2 (t)

(γ1 + ξ (t)γ2 + ξ2 (t)γ3

)(1 + ξ (t)〈Ii〉Di + ξ2 (t)〈IIi〉Di + ξ3 (t)〈IIIi〉Di)

2

γ1 := 2〈IIi〉Di−

23〈Ii〉2Di

γ2 := 6〈IIIi〉Di−23〈IIi〉Di〈Ii〉Di

γ3 := 2〈Ii〉Di〈IIIi〉Di−23〈IIi〉2Di

with the initial values

Ii := I(ψ|i|j), IIi := II(ψ|i|j), IIIi := III(ψ|i|j)

For an EdS background ξ (t) = a(t)−1 and therefore

ξ2 (t)∝ 1/a(t)

A. Wiegand (Universität Bielefeld) Zel'dovich backreaction Kosmologietag 2012 12 / 32

Page 24: Backreaction in the relativistic Zel'dovich approximation · Backreaction in the relativistic Zel'dovich approximation Alexander Wiegand 1 with Thomas Buchert 2and Charly Nayet 1Fakultät

Backreaction in the NZA

Result for the backreaction term in the NZA

NZAQD =ξ2 (t)

(γ1 + ξ (t)γ2 + ξ2 (t)γ3

)(1 + ξ (t)〈Ii〉Di + ξ2 (t)〈IIi〉Di + ξ3 (t)〈IIIi〉Di)

2

γ1 := 2〈IIi〉Di−

23〈Ii〉2Di

γ2 := 6〈IIIi〉Di−23〈IIi〉Di〈Ii〉Di

γ3 := 2〈Ii〉Di〈IIIi〉Di−23〈IIi〉2Di

with the initial values

Ii := I(ψ|i|j), IIi := II(ψ|i|j), IIIi := III(ψ|i|j)

For an EdS background ξ (t) = a(t)−1 and therefore

ξ2 (t)∝ 1/a(t)

A. Wiegand (Universität Bielefeld) Zel'dovich backreaction Kosmologietag 2012 12 / 32

Page 25: Backreaction in the relativistic Zel'dovich approximation · Backreaction in the relativistic Zel'dovich approximation Alexander Wiegand 1 with Thomas Buchert 2and Charly Nayet 1Fakultät

Relativistic Zel'dovich approximation (RZA)

To evaluate backreaction eects on void and cluster

scales use Relativistic Zel'dovich approximation (RZA)

Motivation

Quantitative estimate of the importance ofinhomogeneitiesInitialization of Nbody simulationsComparison to Newtonian theorySuccessful interpolation between exact solutions in theNewtonian case

A. Wiegand (Universität Bielefeld) Zel'dovich backreaction Kosmologietag 2012 13 / 32

Page 26: Backreaction in the relativistic Zel'dovich approximation · Backreaction in the relativistic Zel'dovich approximation Alexander Wiegand 1 with Thomas Buchert 2and Charly Nayet 1Fakultät

Relativistic Zel'dovich approximation (RZA)

To evaluate backreaction eects on void and cluster

scales use Relativistic Zel'dovich approximation (RZA)

Motivation

Quantitative estimate of the importance ofinhomogeneitiesInitialization of Nbody simulationsComparison to Newtonian theorySuccessful interpolation between exact solutions in theNewtonian case

A. Wiegand (Universität Bielefeld) Zel'dovich backreaction Kosmologietag 2012 13 / 32

Page 27: Backreaction in the relativistic Zel'dovich approximation · Backreaction in the relativistic Zel'dovich approximation Alexander Wiegand 1 with Thomas Buchert 2and Charly Nayet 1Fakultät

Relativistic case

The coframe decomposition

gij = Gabηa

iηb

j

allows for a generalization of the Zel'dovich approxima-

tion to GR (Kasai 1995,Matarrese&Terranova 1996, Buchert&Ostermann 2012)

RZAηai(t,Xk) := a(t)

(δa

i + ξ(t)Pai

)Pa

i = Pai(

ti,Xk) ; ξ (ti) = 0 ; a(ti) = 1

Time evolution given by

ξ(t) + 2a(t)a(t)

ξ(t) +

(3

a(t)a(t)−Λ

)(ξ(t) + 1) = 0

Initial values of the perturbation one form

Ii := I(

Pai

); IIi := II

(Pa

i

); IIIi := III

(Pa

i

)A. Wiegand (Universität Bielefeld) Zel'dovich backreaction Kosmologietag 2012 14 / 32

Page 28: Backreaction in the relativistic Zel'dovich approximation · Backreaction in the relativistic Zel'dovich approximation Alexander Wiegand 1 with Thomas Buchert 2and Charly Nayet 1Fakultät

Relativistic case

The coframe decomposition

gij = Gabηa

iηb

j

allows for a generalization of the Zel'dovich approxima-

tion to GR (Kasai 1995,Matarrese&Terranova 1996, Buchert&Ostermann 2012)

RZAηai(t,Xk) := a(t)

(δa

i + ξ(t)Pai

)Pa

i = Pai(

ti,Xk) ; ξ (ti) = 0 ; a(ti) = 1

Time evolution given by

ξ(t) + 2a(t)a(t)

ξ(t) +

(3

a(t)a(t)−Λ

)(ξ(t) + 1) = 0

Initial values of the perturbation one form

Ii := I(

Pai

); IIi := II

(Pa

i

); IIIi := III

(Pa

i

)A. Wiegand (Universität Bielefeld) Zel'dovich backreaction Kosmologietag 2012 14 / 32

Page 29: Backreaction in the relativistic Zel'dovich approximation · Backreaction in the relativistic Zel'dovich approximation Alexander Wiegand 1 with Thomas Buchert 2and Charly Nayet 1Fakultät

Outline

1 Averaging inhomogeneous universes

2 Newtonian vs. Relativistic Zel'dovich approximation

3 Results

4 Conclusion

A. Wiegand (Universität Bielefeld) Zel'dovich backreaction Kosmologietag 2012 15 / 32

Page 30: Backreaction in the relativistic Zel'dovich approximation · Backreaction in the relativistic Zel'dovich approximation Alexander Wiegand 1 with Thomas Buchert 2and Charly Nayet 1Fakultät

Backreaction in the RZA

Result for the backreaction term in the RZA

RZAQD =ξ2(γ1 + ξγ2 + ξ2γ3

)(1 + ξ〈Ii〉CD + ξ2〈IIi〉CD + ξ3〈IIIi〉CD)2

γ1 := 2〈IIi〉CD −

23〈Ii〉2CD

γ2 := 6〈IIIi〉CD −23〈IIi〉CD〈Ii〉CD

γ3 := 2〈Ii〉CD〈IIIi〉CD −23〈IIi〉2CD

Expression has the same form as in Newtonian theory

⇒If one starts with at initial conditions, the evolution

of QD is basically Newtonian

However: In GR QD triggers nontrivial curvature

A. Wiegand (Universität Bielefeld) Zel'dovich backreaction Kosmologietag 2012 16 / 32

Page 31: Backreaction in the relativistic Zel'dovich approximation · Backreaction in the relativistic Zel'dovich approximation Alexander Wiegand 1 with Thomas Buchert 2and Charly Nayet 1Fakultät

Backreaction in the RZA

Result for the backreaction term in the RZA

RZAQD =ξ2(γ1 + ξγ2 + ξ2γ3

)(1 + ξ〈Ii〉CD + ξ2〈IIi〉CD + ξ3〈IIIi〉CD)2

γ1 := 2〈IIi〉CD −

23〈Ii〉2CD

γ2 := 6〈IIIi〉CD −23〈IIi〉CD〈Ii〉CD

γ3 := 2〈Ii〉CD〈IIIi〉CD −23〈IIi〉2CD

Expression has the same form as in Newtonian theory

⇒If one starts with at initial conditions, the evolution

of QD is basically Newtonian

However: In GR QD triggers nontrivial curvature

A. Wiegand (Universität Bielefeld) Zel'dovich backreaction Kosmologietag 2012 16 / 32

Page 32: Backreaction in the relativistic Zel'dovich approximation · Backreaction in the relativistic Zel'dovich approximation Alexander Wiegand 1 with Thomas Buchert 2and Charly Nayet 1Fakultät

Backreaction in the RZA

Result for the backreaction term in the RZA

RZAQD =ξ2(γ1 + ξγ2 + ξ2γ3

)(1 + ξ〈Ii〉CD + ξ2〈IIi〉CD + ξ3〈IIIi〉CD)2

γ1 := 2〈IIi〉CD −

23〈Ii〉2CD

γ2 := 6〈IIIi〉CD −23〈IIi〉CD〈Ii〉CD

γ3 := 2〈Ii〉CD〈IIIi〉CD −23〈IIi〉2CD

Expression has the same form as in Newtonian theory

⇒If one starts with at initial conditions, the evolution

of QD is basically Newtonian

However: In GR QD triggers nontrivial curvature

A. Wiegand (Universität Bielefeld) Zel'dovich backreaction Kosmologietag 2012 16 / 32

Page 33: Backreaction in the relativistic Zel'dovich approximation · Backreaction in the relativistic Zel'dovich approximation Alexander Wiegand 1 with Thomas Buchert 2and Charly Nayet 1Fakultät

LTB solutions

Evaluation of the backreaction for an LTB metric

ds2 =−dt2 +R′2(t, r)

1 + 2E(r)dr2 + R2(t, r)dΩ2

shows that the RZA is an exact solution for the case

E (r) = E

⟨I(Θi

j)⟩

LTB=

4πVLTB

∫ rD

0

∂r(

RR2)

√1 + 2E

dr

⟨II(Θi

j)⟩

LTB=

4πVLTB

∫ rD

0

∂r(

R2R)

√1 + 2E

dr =13

⟨I(Θi

j)⟩2

LTB

because in both cases QD is exactly zero

QD := 2〈II〉D−23〈I〉2D⇒QLTB = 0 , WLTB = 0

A. Wiegand (Universität Bielefeld) Zel'dovich backreaction Kosmologietag 2012 17 / 32

Page 34: Backreaction in the relativistic Zel'dovich approximation · Backreaction in the relativistic Zel'dovich approximation Alexander Wiegand 1 with Thomas Buchert 2and Charly Nayet 1Fakultät

LTB solutions

Evaluation of the backreaction for an LTB metric

ds2 =−dt2 +R′2(t, r)

1 + 2E(r)dr2 + R2(t, r)dΩ2

shows that the RZA is an exact solution for the case

E (r) = E

⟨I(Θi

j)⟩

LTB=

4πVLTB

∫ rD

0

∂r(

RR2)

√1 + 2E

dr

⟨II(Θi

j)⟩

LTB=

4πVLTB

∫ rD

0

∂r(

R2R)

√1 + 2E

dr =13

⟨I(Θi

j)⟩2

LTB

because in both cases QD is exactly zero

QD := 2〈II〉D−23〈I〉2D⇒QLTB = 0 , WLTB = 0

A. Wiegand (Universität Bielefeld) Zel'dovich backreaction Kosmologietag 2012 17 / 32

Page 35: Backreaction in the relativistic Zel'dovich approximation · Backreaction in the relativistic Zel'dovich approximation Alexander Wiegand 1 with Thomas Buchert 2and Charly Nayet 1Fakultät

Deviations from background parameters

0 50 100 150 200 250 3000

1

2

3

4

5

6

7

Scale in Mpc

Var

HWQ

L12

in%

EdS, h=0.5

L CDM, h=0.7

∆WRD

∆WmD

∆HD H0

0.05 0.10 0.15 0.20 0.25 0.30 0.35

0.1

0.5

1.0

5.0

10

redshift z

∆in

%

2dFSDSS

fullsky

Fluctuations of QD only interesting below 100 Mpc

Other parameters uctuate more strongly for even

bigger domains

A. Wiegand (Universität Bielefeld) Zel'dovich backreaction Kosmologietag 2012 18 / 32

Page 36: Backreaction in the relativistic Zel'dovich approximation · Backreaction in the relativistic Zel'dovich approximation Alexander Wiegand 1 with Thomas Buchert 2and Charly Nayet 1Fakultät

Collapsing domains

0 2 4 6 8 10 12

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

time t in Gyrs

W

0 2 4 6 8 10 12 14-0.5

0.0

0.5

1.0

time t in Gyrs

W

On scales of 50 Mpc in regions with an overdensity,

backreaction enhances the collapse

For even smaller scales we nd the analogue of the

pancake collapse in Newtonian structure formation

A. Wiegand (Universität Bielefeld) Zel'dovich backreaction Kosmologietag 2012 19 / 32

Page 37: Backreaction in the relativistic Zel'dovich approximation · Backreaction in the relativistic Zel'dovich approximation Alexander Wiegand 1 with Thomas Buchert 2and Charly Nayet 1Fakultät

Outline

1 Averaging inhomogeneous universes

2 Newtonian vs. Relativistic Zel'dovich approximation

3 Results

4 Conclusion

A. Wiegand (Universität Bielefeld) Zel'dovich backreaction Kosmologietag 2012 20 / 32

Page 38: Backreaction in the relativistic Zel'dovich approximation · Backreaction in the relativistic Zel'dovich approximation Alexander Wiegand 1 with Thomas Buchert 2and Charly Nayet 1Fakultät

Conclusion

In the relativistic Zel'dovich approximation, backreaction

is close to its Newtonian counterpart

Therefore only small scale modication of cosmic

evolution

However: breakdown of the approximation for late times

Gradient expansion (Enqvist et al. 2011) and nonperturbative toy

models (Räsänen 2008) point to a larger eect

A. Wiegand (Universität Bielefeld) Zel'dovich backreaction Kosmologietag 2012 21 / 32

Page 39: Backreaction in the relativistic Zel'dovich approximation · Backreaction in the relativistic Zel'dovich approximation Alexander Wiegand 1 with Thomas Buchert 2and Charly Nayet 1Fakultät

Conclusion

In the relativistic Zel'dovich approximation, backreaction

is close to its Newtonian counterpart

Therefore only small scale modication of cosmic

evolution

However: breakdown of the approximation for late times

Gradient expansion (Enqvist et al. 2011) and nonperturbative toy

models (Räsänen 2008) point to a larger eect

A. Wiegand (Universität Bielefeld) Zel'dovich backreaction Kosmologietag 2012 21 / 32

Page 40: Backreaction in the relativistic Zel'dovich approximation · Backreaction in the relativistic Zel'dovich approximation Alexander Wiegand 1 with Thomas Buchert 2and Charly Nayet 1Fakultät

Conclusion

In the relativistic Zel'dovich approximation, backreaction

is close to its Newtonian counterpart

Therefore only small scale modication of cosmic

evolution

However: breakdown of the approximation for late times

Gradient expansion (Enqvist et al. 2011) and nonperturbative toy

models (Räsänen 2008) point to a larger eect

A. Wiegand (Universität Bielefeld) Zel'dovich backreaction Kosmologietag 2012 21 / 32

Page 41: Backreaction in the relativistic Zel'dovich approximation · Backreaction in the relativistic Zel'dovich approximation Alexander Wiegand 1 with Thomas Buchert 2and Charly Nayet 1Fakultät

Conclusion

In the relativistic Zel'dovich approximation, backreaction

is close to its Newtonian counterpart

Therefore only small scale modication of cosmic

evolution

However: breakdown of the approximation for late times

Gradient expansion (Enqvist et al. 2011) and nonperturbative toy

models (Räsänen 2008) point to a larger eect

A. Wiegand (Universität Bielefeld) Zel'dovich backreaction Kosmologietag 2012 21 / 32

Page 42: Backreaction in the relativistic Zel'dovich approximation · Backreaction in the relativistic Zel'dovich approximation Alexander Wiegand 1 with Thomas Buchert 2and Charly Nayet 1Fakultät

Thank you for your attention

Questions?

Remarques?

Objections?

A. Wiegand (Universität Bielefeld) Zel'dovich backreaction Kosmologietag 2012 22 / 32

Page 43: Backreaction in the relativistic Zel'dovich approximation · Backreaction in the relativistic Zel'dovich approximation Alexander Wiegand 1 with Thomas Buchert 2and Charly Nayet 1Fakultät

Newtonian limit

Sending the coframes to integrable ones

ηai→ Nηa

i = f a|i

leads to the Newtonian equivalent of the perturbation

one forms which are second derivatives of the Newtonian

potentialNPa

i = ψ|a|i

and therefore the invariants become

Ii := I(ψ|i|j), IIi := II(ψ|i|j), IIIi := III(ψ|i|j)

A. Wiegand (Universität Bielefeld) Zel'dovich backreaction Kosmologietag 2012 23 / 32

Page 44: Backreaction in the relativistic Zel'dovich approximation · Backreaction in the relativistic Zel'dovich approximation Alexander Wiegand 1 with Thomas Buchert 2and Charly Nayet 1Fakultät

Newtonian limit

Sending the coframes to integrable ones

ηai→ Nηa

i = f a|i

leads to the Newtonian equivalent of the perturbation

one forms which are second derivatives of the Newtonian

potentialNPa

i = ψ|a|i

and therefore the invariants become

Ii := I(ψ|i|j), IIi := II(ψ|i|j), IIIi := III(ψ|i|j)

A. Wiegand (Universität Bielefeld) Zel'dovich backreaction Kosmologietag 2012 23 / 32

Page 45: Backreaction in the relativistic Zel'dovich approximation · Backreaction in the relativistic Zel'dovich approximation Alexander Wiegand 1 with Thomas Buchert 2and Charly Nayet 1Fakultät

Newtonian limit

Sending the coframes to integrable ones

ηai→ Nηa

i = f a|i

leads to the Newtonian equivalent of the perturbation

one forms which are second derivatives of the Newtonian

potentialNPa

i = ψ|a|i

and therefore the invariants become

Ii := I(ψ|i|j), IIi := II(ψ|i|j), IIIi := III(ψ|i|j)

A. Wiegand (Universität Bielefeld) Zel'dovich backreaction Kosmologietag 2012 23 / 32

Page 46: Backreaction in the relativistic Zel'dovich approximation · Backreaction in the relativistic Zel'dovich approximation Alexander Wiegand 1 with Thomas Buchert 2and Charly Nayet 1Fakultät

Plane symmetric solutions

Example for dierences in the Newtonian vs. GR

description: Plane symmetry

ds2 =−dt2 + a(t)2(

dx2 + dy2 + (1 + P(z, t))2 dz2)

In the Newtonian case only the Raychaudhuri equation

Θ +Θkl Θ

lk =−4πG%+ Λ⇒ P(z, t) = aC1 (z) +

C2 (z)a3/2

In the GR case also the Hamilton constraint

⇒ P(z, t) =C (z)a3/2

A. Wiegand (Universität Bielefeld) Zel'dovich backreaction Kosmologietag 2012 24 / 32

Page 47: Backreaction in the relativistic Zel'dovich approximation · Backreaction in the relativistic Zel'dovich approximation Alexander Wiegand 1 with Thomas Buchert 2and Charly Nayet 1Fakultät

Plane symmetric solutions

Example for dierences in the Newtonian vs. GR

description: Plane symmetry

ds2 =−dt2 + a(t)2(

dx2 + dy2 + (1 + P(z, t))2 dz2)

In the Newtonian case only the Raychaudhuri equation

Θ +Θkl Θ

lk =−4πG%+ Λ⇒ P(z, t) = aC1 (z) +

C2 (z)a3/2

In the GR case also the Hamilton constraint

⇒ P(z, t) =C (z)a3/2

A. Wiegand (Universität Bielefeld) Zel'dovich backreaction Kosmologietag 2012 24 / 32

Page 48: Backreaction in the relativistic Zel'dovich approximation · Backreaction in the relativistic Zel'dovich approximation Alexander Wiegand 1 with Thomas Buchert 2and Charly Nayet 1Fakultät

Plane symmetric solutions

Example for dierences in the Newtonian vs. GR

description: Plane symmetry

ds2 =−dt2 + a(t)2(

dx2 + dy2 + (1 + P(z, t))2 dz2)

In the Newtonian case only the Raychaudhuri equation

Θ +Θkl Θ

lk =−4πG%+ Λ⇒ P(z, t) = aC1 (z) +

C2 (z)a3/2

In the GR case also the Hamilton constraint

⇒ P(z, t) =C (z)a3/2

A. Wiegand (Universität Bielefeld) Zel'dovich backreaction Kosmologietag 2012 24 / 32

Page 49: Backreaction in the relativistic Zel'dovich approximation · Backreaction in the relativistic Zel'dovich approximation Alexander Wiegand 1 with Thomas Buchert 2and Charly Nayet 1Fakultät

Template metrics

(Picture by Mauro Carfora)

RW metric incompatible with the

average properties of the universe ⇒use template metric as average metric

3gD = γDij dXi⊗dXj =

(dr2

1−κD (t) r2+ dΩ2

)Testable by Clarkson's C test

(arXiv:0712.3457): D = (1 + z)dA

C (z) = 1 + H2 (DD′′−D′2)

+ HH′DD′

C (z)≡ 0 for FLRW, but for template:

C (zD) =−HD (zD) r (zD)κ′D (zD)

2HD0

√1−κD (zD) r2 (zD)

A. Wiegand (Universität Bielefeld) Zel'dovich backreaction Kosmologietag 2012 25 / 32

Page 50: Backreaction in the relativistic Zel'dovich approximation · Backreaction in the relativistic Zel'dovich approximation Alexander Wiegand 1 with Thomas Buchert 2and Charly Nayet 1Fakultät

Template metrics

(Picture by Mauro Carfora)

RW metric incompatible with the

average properties of the universe ⇒use template metric as average metric

3gD = γDij dXi⊗dXj =

(dr2

1−κD (t) r2+ dΩ2

)Testable by Clarkson's C test

(arXiv:0712.3457): D = (1 + z)dA

C (z) = 1 + H2 (DD′′−D′2)

+ HH′DD′

C (z)≡ 0 for FLRW, but for template:

C (zD) =−HD (zD) r (zD)κ′D (zD)

2HD0

√1−κD (zD) r2 (zD)

A. Wiegand (Universität Bielefeld) Zel'dovich backreaction Kosmologietag 2012 25 / 32

Page 51: Backreaction in the relativistic Zel'dovich approximation · Backreaction in the relativistic Zel'dovich approximation Alexander Wiegand 1 with Thomas Buchert 2and Charly Nayet 1Fakultät

Perturbative corrections to the background

100

101

102

103

104

z

10-8

10-7

10-6

10-5

10-4

Ωe

ffΛCDM, n

s=0.96

ΛCDM, ns=1.04

EdS, h=0.45

EdS, h=0.70

Brown, Robbers, Behrend arXiv:0811.4495 Clarkson, Ananda, Larena arXiv:0907.3377

Perturbation theory in Newtonian gauge gives a globally

modied background of about 10−5 today

On smaller scales where the Newtonian terms are

important the contribution is higher

A. Wiegand (Universität Bielefeld) Zel'dovich backreaction Kosmologietag 2012 26 / 32

Page 52: Backreaction in the relativistic Zel'dovich approximation · Backreaction in the relativistic Zel'dovich approximation Alexander Wiegand 1 with Thomas Buchert 2and Charly Nayet 1Fakultät

Why perturbation theory might not be the full

answer

General form of corrections to the average expansion

rate (Räsänen 2010)

〈θ〉= 3Hτ

(1 +

1

(aH)2 〈∂iΦ∂iΦ〉0∞∑

n=0

λn⟨δ2⟩n

0 + . . .

)

If perturbations become of order unity on any scale the

sum∑∞

n=0λn may be important

Has been found to be large in LTB models even if Φ is

small and one would expect the perturbed FRW metric

to apply

A. Wiegand (Universität Bielefeld) Zel'dovich backreaction Kosmologietag 2012 27 / 32

Page 53: Backreaction in the relativistic Zel'dovich approximation · Backreaction in the relativistic Zel'dovich approximation Alexander Wiegand 1 with Thomas Buchert 2and Charly Nayet 1Fakultät

Why perturbation theory might not be the full

answer

General form of corrections to the average expansion

rate (Räsänen 2010)

〈θ〉= 3Hτ

(1 +

1

(aH)2 〈∂iΦ∂iΦ〉0∞∑

n=0

λn⟨δ2⟩n

0 + . . .

)

If perturbations become of order unity on any scale the

sum∑∞

n=0λn may be important

Has been found to be large in LTB models even if Φ is

small and one would expect the perturbed FRW metric

to apply

A. Wiegand (Universität Bielefeld) Zel'dovich backreaction Kosmologietag 2012 27 / 32

Page 54: Backreaction in the relativistic Zel'dovich approximation · Backreaction in the relativistic Zel'dovich approximation Alexander Wiegand 1 with Thomas Buchert 2and Charly Nayet 1Fakultät

Why perturbation theory might not be the full

answer

General form of corrections to the average expansion

rate (Räsänen 2010)

〈θ〉= 3Hτ

(1 +

1

(aH)2 〈∂iΦ∂iΦ〉0∞∑

n=0

λn⟨δ2⟩n

0 + . . .

)

If perturbations become of order unity on any scale the

sum∑∞

n=0λn may be important

Has been found to be large in LTB models even if Φ is

small and one would expect the perturbed FRW metric

to apply

A. Wiegand (Universität Bielefeld) Zel'dovich backreaction Kosmologietag 2012 27 / 32

Page 55: Backreaction in the relativistic Zel'dovich approximation · Backreaction in the relativistic Zel'dovich approximation Alexander Wiegand 1 with Thomas Buchert 2and Charly Nayet 1Fakultät

The rst coecient seems to be large

Already second order terms comparably in magnitude

with the rst order terms (Clarkson, Umeh 2011)

∂2Φ∂2Φ∼∆2R

(keq

kH

)2

ln3(

kUV

keq

)because the suppression of the second order by ∆R is

overcome by the particular size of the equality scale

∆2R

(keq

kH

)2

≈ 2.4Ω2mh2⇒O (1)

This seems to continue and leads to important fourth

order corrections

A. Wiegand (Universität Bielefeld) Zel'dovich backreaction Kosmologietag 2012 28 / 32

Page 56: Backreaction in the relativistic Zel'dovich approximation · Backreaction in the relativistic Zel'dovich approximation Alexander Wiegand 1 with Thomas Buchert 2and Charly Nayet 1Fakultät

The rst coecient seems to be large

Already second order terms comparably in magnitude

with the rst order terms (Clarkson, Umeh 2011)

∂2Φ∂2Φ∼∆2R

(keq

kH

)2

ln3(

kUV

keq

)because the suppression of the second order by ∆R is

overcome by the particular size of the equality scale

∆2R

(keq

kH

)2

≈ 2.4Ω2mh2⇒O (1)

This seems to continue and leads to important fourth

order corrections

A. Wiegand (Universität Bielefeld) Zel'dovich backreaction Kosmologietag 2012 28 / 32

Page 57: Backreaction in the relativistic Zel'dovich approximation · Backreaction in the relativistic Zel'dovich approximation Alexander Wiegand 1 with Thomas Buchert 2and Charly Nayet 1Fakultät

Inhomogeneous metric

If we want to describe the

inuence of structures on the

expansion we rst of all need

to describe structure.

Therefore more general

metric.

In cosmology we are interested in the temporal evolution

of the universe. ⇒ 3+1 split into spatial hypersurfaces

4g =−dt2 + 3g ; 3g = gab dXa⊗dXb

⇒ Foliation into space and time similar to RW, but

general spatial metric

A. Wiegand (Universität Bielefeld) Zel'dovich backreaction Kosmologietag 2012 29 / 32

Page 58: Backreaction in the relativistic Zel'dovich approximation · Backreaction in the relativistic Zel'dovich approximation Alexander Wiegand 1 with Thomas Buchert 2and Charly Nayet 1Fakultät

Inhomogeneous metric

If we want to describe the

inuence of structures on the

expansion we rst of all need

to describe structure.

Therefore more general

metric.

In cosmology we are interested in the temporal evolution

of the universe. ⇒ 3+1 split into spatial hypersurfaces

4g =−dt2 + 3g ; 3g = gab dXa⊗dXb

⇒ Foliation into space and time similar to RW, but

general spatial metric

A. Wiegand (Universität Bielefeld) Zel'dovich backreaction Kosmologietag 2012 29 / 32

Page 59: Backreaction in the relativistic Zel'dovich approximation · Backreaction in the relativistic Zel'dovich approximation Alexander Wiegand 1 with Thomas Buchert 2and Charly Nayet 1Fakultät

Rewriting Einstein's equations

For dust source choose comoving frame:nµ = uµ = (−1,0,0,0). Split symmetric part of the expansiontensor uµ;ν = u(µ;ν) + u[µ;ν] into trace and tracefree part:

Kij :=−uµ;νhµihν j → −Kij = Θij = σij +13θgij

The system of ADM equations becomes

12R+

13θ2−σ2 = 8πG%+ Λ

σij‖i =

23θ|j

% = −θ%

∂tgij = 2gikσk

j +23θgij

∂tσij = −θσi

j−Rij +

(4πG%−

13θ2−

13θ+ Λ

)δi

j

⇒ ADM system completely equivalent to Einsteins

equations (for comoving dust)A. Wiegand (Universität Bielefeld) Zel'dovich backreaction Kosmologietag 2012 30 / 32

Page 60: Backreaction in the relativistic Zel'dovich approximation · Backreaction in the relativistic Zel'dovich approximation Alexander Wiegand 1 with Thomas Buchert 2and Charly Nayet 1Fakultät

Rewriting Einstein's equations

For dust source choose comoving frame:nµ = uµ = (−1,0,0,0). Split symmetric part of the expansiontensor uµ;ν = u(µ;ν) + u[µ;ν] into trace and tracefree part:

Kij :=−uµ;νhµihν j → −Kij = Θij = σij +13θgij

The system of ADM equations becomes

12R+

13θ2−σ2 = 8πG%+ Λ

σij‖i =

23θ|j

% = −θ%

∂tgij = 2gikσk

j +23θgij

∂tσij = −θσi

j−Rij +

(4πG%−

13θ2−

13θ+ Λ

)δi

j

⇒ ADM system completely equivalent to Einsteins

equations (for comoving dust)A. Wiegand (Universität Bielefeld) Zel'dovich backreaction Kosmologietag 2012 30 / 32

Page 61: Backreaction in the relativistic Zel'dovich approximation · Backreaction in the relativistic Zel'dovich approximation Alexander Wiegand 1 with Thomas Buchert 2and Charly Nayet 1Fakultät

Literature

T. Buchert: Dark Energy from structure a status report.Gen. Rel. Grav. 40, 467 (2008)

Buchert, T.: On average properties of inhomogeneous uids ingeneral relativity: 1. dust cosmologies. Gen. Rel. Grav. 32, 105(2000)

Räsänen, S.: Dark Energy from backreaction. JCAP 0402,003 (2004)

Räsänen, S.: Accelerated expansion from structure formation.JCAP 0611, 003 (2006)

Räsänen, S.: Applicability of the linearly perturbed FRWmetric and Newtonian cosmology. arXiv:1002.4779 (2010)

G.F.R. Ellis: Relativistic cosmology: its nature, aims andproblems. (D. Reidel Publishing Company, Dordrecht, 1984),pp. 215288

A. Wiegand (Universität Bielefeld) Zel'dovich backreaction Kosmologietag 2012 31 / 32

Page 62: Backreaction in the relativistic Zel'dovich approximation · Backreaction in the relativistic Zel'dovich approximation Alexander Wiegand 1 with Thomas Buchert 2and Charly Nayet 1Fakultät

Literature

Clarkson, C., Bassett, B. and Lu, T.~H.-C.: A General Test ofthe Copernican Principle. PRL 101, 001 (2008)

T. Buchert, M. Kerscher and C. Sicka: Back reaction ofinhomogeneities on the expansion: The evolution ofcosmological parameters. Phys. Rev. D 62, 043525 (2000)

N. Li and D. J. Schwarz: Scale dependence of cosmologicalbackreaction. Phys. Rev. D 78, 083531 (2008)

S. Räsänen: Light propagation in statistically homogeneousand isotropic dust universes. JCAP 2, 011 (2009)

Larena et al.: Testing backreaction eects with observations.Phys. Rev. D 79, 083011 (2009)

Buchert, T et al.: Correspondence between kinematicalbackreaction and scalar eld cosmologies\mdashthe'morphon eld'. CQG 23, 6379 (2006)

A. Wiegand (Universität Bielefeld) Zel'dovich backreaction Kosmologietag 2012 32 / 32