Top Banner
“Graphene Nanoplatelet (xGnP TM ) Additives for Multifunctional Composite Additives for Multifunctional Composite Materials” Lawrence T. Drzal Lawrence T. Drzal Lawrence T. Drzal Lawrence T. Drzal Dept of Chemical Engineering and Materials Science Composite Materials and Structures Center Composite Materials and Structures Center Michigan State University East Lansing, MI-48824 [email protected] Copyright 2010, Professor Lawrence T. Drzal, Michigan State University [email protected]
41

“Graphene Nanoplatelet(xGnPTM Additives for ...

Nov 30, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: “Graphene Nanoplatelet(xGnPTM Additives for ...

“Graphene Nanoplatelet (xGnPTM) Additives for Multifunctional Composite Additives for Multifunctional Composite 

Materials”

Lawrence T. DrzalLawrence T. DrzalLawrence T. DrzalLawrence T. Drzal

Dept of Chemical Engineering and Materials ScienceComposite Materials and Structures CenterComposite Materials and Structures Center

Michigan State UniversityEast Lansing, [email protected]

Copyright 2010, Professor Lawrence T. Drzal, Michigan State University

[email protected]

Page 2: “Graphene Nanoplatelet(xGnPTM Additives for ...

Various Forms of CarbonVarious Forms of Carbon

•Fullerene •Single Walled Carbon Nanotube •Multi Walled Carbon Nanotube

AA singlesingle layerlayer twotwo dimensionaldimensional aromaticaromaticmacromoleculemacromolecule withwith spsp22 bondedbonded networknetwork ofofcarboncarbon atomsatoms

ZeroZero bandband gapgap electronicelectronic structurestructure withwith lowlowZeroZero bandband gapgap electronicelectronic structurestructure withwith lowlowelectricalelectrical resistivityresistivity 5050 XX 1010--66 ohmohm cmcm..

HighlyHighly thermallythermally conductiveconductive 30003000 W/W/mmooKK

OneOne ofof thethe mostmost abundantabundant elementelement onon earthearth

Copyright 2010, Professor Lawrence T. Drzal, Michigan State University•Image source:www.photon.t.u-tokyo.ac.jp

•Graphene – The basic building block

Page 3: “Graphene Nanoplatelet(xGnPTM Additives for ...

Why the Interest in Why the Interest in Graphene?Graphene?pp–– Mass Reduction (low density, low concentration)Mass Reduction (low density, low concentration)–– Increased Stiffness (high aspect ratio)Increased Stiffness (high aspect ratio)( g p )( g p )–– Increased Toughness (engineered adhesion)Increased Toughness (engineered adhesion)–– Electrical Electrical Conductivity (electrostatic dissipation, Conductivity (electrostatic dissipation, electrostatic painting,  electromagnetic shielding)electrostatic painting,  electromagnetic shielding)

–– Thermal Conductivity, lower C.T.E., higher Thermal Conductivity, lower C.T.E., higher TTultultReduced Flammability (less combustible material)Reduced Flammability (less combustible material)–– Reduced Flammability (less combustible material)Reduced Flammability (less combustible material)

–– Barrier to Barrier to PermeantsPermeants (platelet morphology(platelet morphology))

Copyright 2010, Professor Lawrence T. Drzal, Michigan State University

Page 4: “Graphene Nanoplatelet(xGnPTM Additives for ...

Properties Properties of of Graphitic MaterialsGraphitic MaterialsVGCFVGCF CARBONCARBON GRAPHENEGRAPHENEVGCFVGCF CARBON CARBON 

NANOTUBENANOTUBEGRAPHENEGRAPHENE

Physical Physical StructureStructure

~20nm X 100um~20nm X 100um CylinderCylinder1 nm X 100nm1 nm X 100nm

PlateletPlatelet1 nm X 100nm1 nm X 100nmStructureStructure ~1 nm X 100nm~1 nm X 100nm ~1 nm X 100nm~1 nm X 100nm

Chemical Chemical StructureStructure

Concentric Concentric Graphene sheetsGraphene sheets

GrapheneGraphene(chair, zigzag, (chair, zigzag, chiralchiral))

ParallelParallelGraphene sheetsGraphene sheets

Tensile ModulusTensile Modulus 0.250.25‐‐0.5 TPa0.5 TPa 1.01.0‐‐1.7 TPa1.7 TPa ~1.0 TPa~1.0 TPaTensile ModulusTensile Modulus 0.250.25 0.5 TPa0.5 TPa 1.01.0 1.7 TPa1.7 TPa 1.0 TPa1.0 TPa

Tensile StrengthTensile Strength 33‐‐7 GPa7 GPa 180 GPa180 GPa ~(10~(10‐‐20 GPa)20 GPa)

ElectricalElectricalR i ti itR i ti it

55‐‐100 x 10100 x 10‐‐33 Ω cmΩ cm ~ 50 x 10~ 50 x 10‐‐66 Ω cmΩ cm ~ 50 x 10~ 50 x 10‐‐66 Ω cm Ω cm  1 Ω   (C 1 Ω   (C i )i )ResistivityResistivity ~ 1 Ω cm (C~ 1 Ω cm (C‐‐axis)axis)

Thermal Thermal ConductivityConductivity

2020‐‐2000 W/m K2000 W/m K 3000 W/m K 3000 W/m K  3000 W/m K (Plane)3000 W/m K (Plane)6 W/m K (C6 W/m K (C‐‐axis)axis)

Coef. Thermal Coef. Thermal  ‐‐1 x 101 x 10‐‐66 ‐‐1 x 101 x 10‐‐66 ‐‐1 x 101 x 10‐‐6 6 (plane)(plane)Coef. Thermal Coef. Thermal Exp.Exp.

1 x 101 x 10 1 x 101 x 10 1 x 101 x 10 (plane)(plane)29 x29 x 1010‐‐6 6 (C(C‐‐axis)axis)

DensityDensity 1.81.8‐‐2.1 g/cm2.1 g/cm33 1.2 1.2 –– 1.4 g/cm1.4 g/cm33 ~2.0 g/cm~2.0 g/cm33

Copyright 2010, Professor Lawrence T. Drzal, Michigan State University

Page 5: “Graphene Nanoplatelet(xGnPTM Additives for ...

ffSynthesis of GrapheneSynthesis of Graphene

•• Cleavage of Graphite Single crystalsCleavage of Graphite Single crystals•• Vapor Phase SynthesisVapor Phase Synthesis•• Vapor Phase SynthesisVapor Phase Synthesis•• Oxidation to graphite oxide; reduction Oxidation to graphite oxide; reduction to grapheneto grapheneto grapheneto graphene

•• Intercalation and Intercalation and exfoliation to exfoliation to hhggrapheneraphene

Copyright 2010, Professor Lawrence T. Drzal, Michigan State University

Page 6: “Graphene Nanoplatelet(xGnPTM Additives for ...

CleavageCleavageCleavageCleavage“Geim's group essentially rubbed tiny pieces of graphite against a hard silicon dioxide surface to detach flakes of the carbon materialsilicon dioxide surface to detach flakes of the carbon material.

Novoselov et al., Science Novoselov et al., Science 306306, 666 (2004), 666 (2004)

Copyright 2010, Professor Lawrence T. Drzal, Michigan State University

GeimGeim, A. K. and , A. K. and NovoselovNovoselov, K. S., Nat. Mater. , K. S., Nat. Mater. 66, 183 (2007) , 183 (2007)

Page 7: “Graphene Nanoplatelet(xGnPTM Additives for ...

Vapor Phase SynthesisVapor Phase SynthesisVapor Phase SynthesisVapor Phase SynthesisGraphene via heating the surface of a wafer of silicon carbide so that

the silicon atoms evaporated, leaving behind a few layers of p g ycarbon atoms that assembled into graphene.

STM topographs (0.8 V sample bias, 100 pA) of nominally 1 ML epitaxialgraphene on SiC(0001). Top: Image showing large flat regions of 6p3 × 6p3 re-g ap e e o S C(000 ) op age s o g a ge a eg o s o 6p3 6p3 econstruction and regions where the reconstruction has not fully formed. Next-layerislands are also seen. Bottom: A region of 6p3×6p3 reconstruction, imaged throughthe overlying graphene layer.

Copyright 2010, Professor Lawrence T. Drzal, Michigan State University

Walt A. de Heer, et al., Solid State Communications 143 (1-2), 92-100 (2007)

Page 8: “Graphene Nanoplatelet(xGnPTM Additives for ...

Gas Phase SynthesisGas Phase SynthesisGas Phase SynthesisGas Phase Synthesis

Atmospheric pressure Atmospheric pressure microwave (2.45 GHz) plasma microwave (2.45 GHz) plasma reactor created an argon reactor created an argon plasma. plasma.

Ethanol Ethanol droplets were injected droplets were injected directly into the argondirectly into the argonplasma (residence time 10plasma (residence time 10--11 s.s.

Ethanol Ethanol dissociated in the dissociated in the plasma, rapid cooling and plasma, rapid cooling and collected downstream as collected downstream as graphene sheetsgraphene sheets

Copyright 2010, Professor Lawrence T. Drzal, Michigan State University

A. A. DatoDato et al,   et al,   NanoLettersNanoLetters ((nlnl 8011566)8011566)

Page 9: “Graphene Nanoplatelet(xGnPTM Additives for ...

Graphite Oxide           Graphene Graphite Oxide           Graphene p O pp O pStaudenmaierStaudenmaier methodmethod::•• Graphite (Graphite (5g5g)+ )+ concconc HNOHNO33 ((45ml45ml) + ) + HH22SOSO44 (89 (89 mLmL) with ) with KClOKClO33 (55 g)  (55 g)  HH22SOSO44 (89 (89 mLmL) with ) with KClOKClO33 (55 g). (55 g). 

•• Ice Ice bath bath to avoid to avoid sudden increases in sudden increases in temperature.temperature.

•• Repetitive washings to neutral Repetitive washings to neutral pH.pH.•• SpraySpray­­dried dried at 300 at 300 °°C. C. •• Thermal exfoliation Thermal exfoliation under under Argon Argon at at 1050 1050 °°C C for for 30 s.30 s.R d i   i h H d i  h d  i  R d i   i h H d i  h d  i  •• Reduction with Hydrazine hydrate in Reduction with Hydrazine hydrate in water at 100C for 24 hours.water at 100C for 24 hours.

[Caution! Addition of the potassium chlorate results in the formation of[Caution! Addition of the potassium chlorate results in the formation of[Caution! Addition of the potassium chlorate results in the formation of [Caution! Addition of the potassium chlorate results in the formation of chlorine dioxide gas, which is chlorine dioxide gas, which is explosive at highexplosive at highconcentrationsconcentrations.Purging.Purging the head space of the reaction vessel with an the head space of the reaction vessel with an inert inert gas,keepinggas,keeping the reaction vessel cool, and adding the potassium the reaction vessel cool, and adding the potassium chlorate slowly can help minimize the risk of explosion]chlorate slowly can help minimize the risk of explosion]

Copyright 2010, Professor Lawrence T. Drzal, Michigan State University

M. Hirata et al., Carbon 42(14), 2929‐2937, 2004 

Page 10: “Graphene Nanoplatelet(xGnPTM Additives for ...

Graphite Intercalated Compounds Graphite Intercalated Compounds Graphite Intercalated Compounds Graphite Intercalated Compounds 

• Graphite can be a host material for chemicals

• Typical intercalates include:BrodieBrodie BC. Ann BC. Ann ChimChim Phys;Phys;4545:351:351––3, 18553, 1855

yp– alkali metals (Li, Na, K, Rb, Cs), – metal halides (FeCl3, CrO3, TiCL3, PtCl4, etc.),

acids (nitric acid sulfuric acids phosphoric acid perchloric– acids (nitric acid, sulfuric acids, phosphoric acid, perchloricacid, chromic acid, etc)

– combinations of alkali metal/organic molecule (K/THF, Cs/benzene Cs/ethylene Cs/styrene Cs/butadiene etc )Cs/benzene, Cs/ethylene, Cs/styrene, Cs/butadiene, etc.)

• Some of the GICs can be exfoliated by rapid heating.

SchafhaeutlSchafhaeutl C. J C. J PraktChemPraktChem; ; 2121:129:129––57, 184057, 1840

Copyright 2010, Professor Lawrence T. Drzal, Michigan State University

;; ,,

Page 11: “Graphene Nanoplatelet(xGnPTM Additives for ...

‘Ex‘Ex‐‐Situ’ Exfoliation and Situ’ Exfoliation and Size Size ExEx Situ  Exfoliation and Situ  Exfoliation and Size Size Reduction into Reduction into NanoPlateletsNanoPlatelets

MilledMilledLightly Lightly Fully Fully IntercalatedIntercalated ExpandedExpandedGraphiteGraphite(1 um)(1 um)

pulverizedpulverizedGraphiteGraphite

(50(50--100 um)100 um)

pulverizedpulverizedGraphiteGraphite(15 um)(15 um)

GraphiteGraphite(300(300--500 um)500 um)

ppGraphiteGraphite(300(300--500 500

um)um)

Copyright 2010, Professor Lawrence T. Drzal, Michigan State University

Page 12: “Graphene Nanoplatelet(xGnPTM Additives for ...

G PG P M h l gM h l gxGnPxGnP MorphologyMorphology

Copyright 2010, Professor Lawrence T. Drzal, Michigan State University

Page 13: “Graphene Nanoplatelet(xGnPTM Additives for ...

•• Layers Layers can be intercalated and exfoliated into can be intercalated and exfoliated into platelets platelets with high with high aspect aspect ratiosratiospp

•• Basal Plane is inert (Basal Plane is inert (spsp22+ + ππ) ) –– hydrophobic hydrophobic •• Existence of functional groups at the edges can lead Existence of functional groups at the edges can lead to hydrogen to hydrogen or or 

covalent covalent bonding bonding with polymer matrixwith polymer matrixcovalent covalent bonding bonding with polymer matrixwith polymer matrix•• Nanocomposite propertiesNanocomposite properties mechanical, electrical, thermal and mechanical, electrical, thermal and 

barrier barrier propertiesproperties

Copyright 2010, Professor Lawrence T. Drzal, Michigan State University

ref. H. Aso et al. Energy & Fuels 2004, 18, 1309-1314

Page 14: “Graphene Nanoplatelet(xGnPTM Additives for ...

AromaticityAromaticity of Gof Graphene Nanoplateletsraphene Nanoplateletsh

t (%

)

••< 96 % retention< 96 % retention

weig

Thermo gravimetric analysis at 5 C/min in air

XPSXPS C/O C/O atomic ratio 25.7atomic ratio 25.7

Temperature (C)

1577 cm-1G band peak

••Graphitic crystalline domain Graphitic crystalline domain

••LLaa = (2.4 X 10= (2.4 X 10--1010) ) λλlaserlaser44 ( ( IIGG / I/ IDD))

Raman Raman analysisanalysis

nsi

ty

sity

X-ray diffraction analysis•26.2o graphitic peak

26.2o graphitic peak

1346 cm-1

D band peak

Inte

n

Inte

ns

2D band peak

2700 cm-1

Copyright 2010, Professor Lawrence T. Drzal, Michigan State University

Raman shift (cm-1)

p

2 theta

Page 15: “Graphene Nanoplatelet(xGnPTM Additives for ...

ffSynthesis of GrapheneSynthesis of GrapheneCleavageCleavage monolayer geometric $$$$

Vapor  or GasVapor  or Gas monolayer to ltil

geometric $$$$SynthesisSynthesis multilayer

Graphite OxideGraphite Oxide monolayer to multilayer

800­2500 m2/g1

$$$multilayer ~1µm

Intercalation/Intercalation/ExfoliationExfoliation

multilayer 20­500 m2/g1 100

$ExfoliationExfoliation ~1µm ­ 100µ

Copyright 2010, Professor Lawrence T. Drzal, Michigan State University

Page 16: “Graphene Nanoplatelet(xGnPTM Additives for ...

G h  G h  NN P i l    P i l    M lM lGraphene: Graphene: NanoNano‐‐Particle to Particle to MacroscaleMacroscale•• Translate particle properties (nano) to Translate particle properties (nano) to polymers polymers

and compositesand composites–– Functionalize graphene on basal plane Functionalize graphene on basal plane

surface or edgessurface or edgessurface or edgessurface or edges–– Vary graphene platelet dimensionsVary graphene platelet dimensions–– Dispersion Dispersion of of graphenegraphenespe s ospe s o oo g ap e eg ap e e–– Organize into 2D Organize into 2D or 3D or 3D structuresstructures

Copyright 2010, Professor Lawrence T. Drzal, Michigan State University

Page 17: “Graphene Nanoplatelet(xGnPTM Additives for ...

Graphene Edge FunctionalizationGraphene Edge Functionalization( )( )(not Basal Plane)(not Basal Plane)

HNO3, O2 Plasma, or UV/O3

COOH

C C

CO-HN-CH2-NH-CH2-NH2n

H2N-C2H4-NH-C2H2-NH2n

CH2 CHCO

CO

Benzene

COOH

CH CH NH2m

BenzeneCH2 CHCONH2

Copyright 2010, Professor Lawrence T. Drzal, Michigan State University

Page 18: “Graphene Nanoplatelet(xGnPTM Additives for ...

Graphene Graphene NanoplateletNanoplatelet DispersionDispersion

•• WaterWater•• ThermosetThermoset ResinResinThermosetThermoset Resin Resin •• Thermoplastic resinThermoplastic resin

M t lM t l N ti lN ti l D tiD ti•• Metal Metal NanoparticleNanoparticle DecorationDecoration

Copyright 2010, Professor Lawrence T. Drzal, Michigan State University

Page 19: “Graphene Nanoplatelet(xGnPTM Additives for ...

SurfactantsSurfactants

C H 3(C H 2 )10 C H 2 NC H 3

C H 3

C H 3 B r DTAB(Dodecyltrimethylammonium bromide)Cationic

C8H17 (O CH 2CH 2)5 O H Triton X-45

C8H17 (O CH 2CH 2)8 O H Triton X-114Nonionic

CH 3(CH2)10CH2O S ONaO

SDS (Sodium dodecyl sulfate)

C8H17 (OCH 2CH 2)10~11 OH Triton X-100

3( 2)10 2

O

O

SDBS(Sodium dodecylbenzene sulfonate)CH 3(CH2)10CH2 S ONa

O

OAnionic

CO

O (CH 2CH 2O)nCH 2C9H19 O HGAENPE

(Glycolic acid ethyoxylate 4-nonylphenyl ether)

CH 3(C H 2)9C H 2 CN

CH 3CH 2 CH 2 C O Na

OLSS

(n-Lauroylsarcosinate)

Copyright 2010, Professor Lawrence T. Drzal, Michigan State University

3( 2 )9 2

O(n Lauroylsarcosinate)

Page 20: “Graphene Nanoplatelet(xGnPTM Additives for ...

PolyelectrolytesPolyelectrolytes

CH 2CH 2n

NHCH2CH2 N CH2CH2

NCH 3 CH 3

Cln

PDAC Poly(diallydimethylammonium chloride)

PEI : PolyethyleneimineCH2CH2NH2

x y

Poly(diallydimethylammonium chloride)

CH 2 CH

O

CHC

CHCx y z

CH CH 2

C O H n

O OO OHO O OCH3

ma-PS: Poly(styrene-alt-maleic anhydride

OPAA : Polyacrylic acid

N OCH CH 2

n√ PVP is known to interact noncovalently with

carbon nanotube, wrapping around it

Copyright 2010, Professor Lawrence T. Drzal, Michigan State University

PVP : Polyvinylpyrrolidone

Page 21: “Graphene Nanoplatelet(xGnPTM Additives for ...

Thermoset NanoComposite FabricationThermoset NanoComposite FabricationEpon 828 Epon 828 

Jeffamine T403

Reinforcement

Outgasin 

vacuum

Cure

85°C for 2hrs150°C f  2h

Pourintomold

Outgas    in 

vacuumvacuum 150°C for 2hrsmold vacuumUltrasonicate & Mix

Mixing & Dispersion Mixing & Dispersion ‐‐‐‐NanocompositesNanocompositesg pg p ppINTERCALATION EXFOLIATION

Conventional  Intercalated  Long Range  Disordered 

Copyright 2010, Professor Lawrence T. Drzal, Michigan State University

Conventional Composite

Intercalated Composite

Long Range Ordering 

(LRO) Composite

Disordered Composite

Page 22: “Graphene Nanoplatelet(xGnPTM Additives for ...

Flexural Properties: Size and Surface Flexural Properties: Size and Surface Flexural Properties: Size and Surface Flexural Properties: Size and Surface Chemistry of NanoGraphite PlateletsChemistry of NanoGraphite Platelets

Effect of Size on Flexural StrengthEffect of Size on Flexural Modulus Effect of Size on Flexural Strength

70

80

90

100

110

tren

gth

(MPa

)

Effect of Size on Flexural Modulus

3200

3400

3600

3800

4000

odul

us (M

Pa)

40

50

60

70

0 0.5 1 1.5 2 2.5 3 3.5Reinforcement Content (Vol%)

Flex

ural

St

Heat-exfoliated Gr.(15um)Heat Milled Gr.(1.1um)MW-exfoliated Gr.(15um)MW Milled Gr.(0.86um)

2600

2800

3000

3200

0 0.5 1 1.5 2 2.5 3 3.5

Flex

ural

Mo

Heat-exfoliated Gr.(15um)Heat Milled Gr.(1.1um)MW-exfoliated Gr.(15um)MW Milled Gr.(0.86um)

Effect of Surface Treatments on Modulus

3800

4000

MPa

)

Reinforcement Content (Vol%)Reinforcement Content (Vol%)

Effect of Surface Treatments on Strength

110

120

MPa

)

2800

3000

3200

3400

3600

Flex

ural

Mod

ulus

(

No TreatmentP2 PlasmaAmine GraftingAcrylamide Grafting

60

70

80

90

100Fl

exur

al S

tren

gth

(

No TreatmentP2 PlasmaAmine GraftingAcrylamide Grafting

Copyright 2010, Professor Lawrence T. Drzal, Michigan State University

26000 0.5 1 1.5 2 2.5 3 3.5

Reinforcement Content (Vol%)

y g50

0 0.5 1 1.5 2 2.5 3 3.5Reinforcement Content (Vol%)

Page 23: “Graphene Nanoplatelet(xGnPTM Additives for ...

Micromechanical Theories for Micromechanical Theories for NanocompositesNanocompositesNanocompositesNanocomposites

Halpin-Tsai Theory pl

pl

VV

EE

ηαη−

+=

121

0

22

( ) 1EEwhere

( )( ) 2

1

01

01

αη

+−

=EE

EE

Modified Rule of Mixture ( ) ( ) 0122 1 EVMRFEVE plpl −+=

Padawer & Beecher ( ) ( )⎟⎟⎠

⎞⎜⎜⎝

⎛−=

μμtanh1MRF

h pl GV1 0where ( )pl

pl

VE −=

11

1

0

εμ

Riley ( ) ( )⎟⎟⎠

⎞⎜⎜⎝

⎛ +−=

μμ 1ln1MRFy ⎠⎝ μ

MoriMori--Tanaka Theory and Tanaka Theory and Eshelby’s EquationEshelby’s Equation

0~ =+ ptijplij V σσ

ptklplkl

oklkl V εεεε ++= ~

Copyright 2010, Professor Lawrence T. Drzal, Michigan State University

( ) ( )[ ] 01 0001 =++−+− ∗∗∗klijklklplmnklmnplklijklijkl CVSVCC εεεε

Page 24: “Graphene Nanoplatelet(xGnPTM Additives for ...

Electrical ResistivityElectrical Resistivityyy

12.00

14.00

)

Control Epoxy1.0Vol% xGnP2.0Vol% xGnP

1 E+101.E+111.E+121.E+13

]

VGCFCarbon BlackPAN CF

6.00

8.00

10.00

og(Z

/ohm

*cm

)

3.0Vol% xGnPStatic

Dissipation

Electrostatic Painting

1 E+041.E+051.E+061.E+071.E+081.E+091.E+10

sist

ivity

[ohm

*cm

]

Exfoliated GraphiteMilled Graphite

0.00

2.00

4.00

-1.00 0.00 1.00 2.00 3.00 4.00 5.00

Lo

EMI/RFIShielding

1.E+001.E+011.E+021.E+031.E+04

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30Weight %

Re

Log(Freq/Hz)Weight %

Percolation Analysis Percolation Analysis 

( ) t( ) tceff pp −−= 0ρρ

Reinforcement pc (Vol%) pc (Wt%) ρ0 (ohm*cm) tCF 5 90 9 76 0 4 3 26

Copyright 2010, Professor Lawrence T. Drzal, Michigan State University

CF 5.90 9.76 0.4 3.26VGCF 1.09 1.87 0.03 3.03

Carbon Black 1.29 2.00 0.01 3.03Exfoliated Gr. 1.13 1.93 0.001 3.12

Page 25: “Graphene Nanoplatelet(xGnPTM Additives for ...

Thermal Conductivity and CTEThermal Conductivity and CTEo yo y

Thermal Conductivity Thermal Conductivity1

0 40.5

0.60.70.8

0.91

W/m

*K

0.40.50.60.70.80.9

(W/m

*K)

00.1

0.20.30.4

0 1 2 3 4 5 6

Exfoliated Graphite Content (Wt%)

W

00.10.20.3

ControlEpoxy

3 vol% MWEx.Gr

3 vol% CF 3 vol%VGCF

3 vol% CB

CTE below Tg

80859095

C]

Exfoliated Graphite Content (Wt%)

505560657075

[um

/m*C

Copyright 2010, Professor Lawrence T. Drzal, Michigan State University

Con

trol

Epox

y CF

VGC

F

Car

bon

Bla

ck

Acr

ylam

ide

Gra

fted

Nan

ogra

phite

Page 26: “Graphene Nanoplatelet(xGnPTM Additives for ...

Th  N C i  F b i iTh  N C i  F b i iThermoset NanoComposite FabricationThermoset NanoComposite Fabrication

Epon 828 Epon 828 Epon 828 Epon 828 

Jeffamine T403Jeffamine T403

ReinforcementReinforcement

OutgasOutgasin in 

vacuumvacuum

CureCure

8585°°C for 2hrsC for 2hrs150150°°C f  2hC f  2h

PourPourintointomoldmold

Outgas    Outgas    in in 

vacuumvacuumvacuumvacuum 150150°°C for 2hrsC for 2hrsmoldmold vacuumvacuumUltrasonicate & MixUltrasonicate & Mix

Th l ti  N C it  F b i tiTh l ti  N C it  F b i tiThermoplastic NanoComposite FabricationThermoplastic NanoComposite Fabrication

ExtrudeExtrudeInjection Injection MoldMold

xGnPxGnP

TPTP

xGnPxGnPCoat Coat PowderPowder

TPTPdd

Compression Compression MoldMold

P MiP MiE /I jM ldE /I jM ld

Copyright 2010, Professor Lawrence T. Drzal, Michigan State University

PowderPowder PreMixPreMixExtr/InjMoldExtr/InjMold

Page 27: “Graphene Nanoplatelet(xGnPTM Additives for ...

Fl l  d I t P ti   f  G P/PP Fl l  d I t P ti   f  G P/PP Flexural and Impact Properties of xGnP/PP Flexural and Impact Properties of xGnP/PP Modulus of Elasticity of xGnP-PP Nanocomposites

2xGnP-1G P 15

1.2

1.4

1.6

1.8

GPa

xGnP-15

10 0.01 0.05 0.1 1 2 3vol%

Flexural Strength of xGnP-PP Composites

4

50

55

Pa

xGnP-1xGnP-15

35

40

45

0 0.01 0.05 0.1 1 2 3vol %

MP

Impact Strength of xGnP-PP Nanocomposites

28

33

38xGnP-1xGnP-15

8

13

18

23

28

J/m

Copyright 2010, Professor Lawrence T. Drzal, Michigan State University

0% 0.01% 0.05% 0.10% 1% 2% 3%

Page 28: “Graphene Nanoplatelet(xGnPTM Additives for ...

Effect of xGnP on Crystallinity of PPEffect of xGnP on Crystallinity of PPPP

XRD Pattern of xGnP1/PP

80000

1000000 vol%0 01 l%

α <040>

20000

40000

60000

80000 0.01vol%0.1vol%1vol%

α <060>β <301>

β <300>

0 01vol% xGnP-1/PP

130oC 10min 50μm 010 12 14 16 18 20 22 24 26 28 30

xGnP promotes the formationxGnP promotes the formationf f ββ h t l ( t l %)h t l ( t l %)0.01vol% xGnP 1/PP of of ββ phase crystals (at low %)phase crystals (at low %)

ββ--phase crystals of PP havephase crystals of PP havehigher impact strength andhigher impact strength and

toughness toughness

0.01% xGnP

toughness toughness

No change in the degree of No change in the degree of crystallinity crystallinity

130oC 10 i50μm

Copyright 2010, Professor Lawrence T. Drzal, Michigan State University

Tc increases by 10Tc increases by 10--20 20 ooC C (1 to 10vol% of xGnP)(1 to 10vol% of xGnP)

130oC 10min

Page 29: “Graphene Nanoplatelet(xGnPTM Additives for ...

Reduce Percolation Point Reduce Percolation Point Premixing by Coating of PP Powder with xGnP Premixing by Coating of PP Powder with xGnP 

xGnP is dispersed in IPA; add PP; remove IPA; xGnP is dispersed in IPA; add PP; remove IPA; compression mold compression mold ------ percolation to ~percolation to ~0.1%0.1%

Premixing by Coating of PP Powder with xGnP Premixing by Coating of PP Powder with xGnP 

15μm

Copyright 2010, Professor Lawrence T. Drzal, Michigan State University

μ

Page 30: “Graphene Nanoplatelet(xGnPTM Additives for ...

Nylon NanocompositesNylon NanocompositesNylon NanocompositesNylon NanocompositesNylon 66 : Zytel101 NC010 [DuPont]

Tm=262°C

NH CH2 NH CO CH2 CO6 4 n

Nylon 6 : Durethan B40SK [Bayer]Nylon 6 : Durethan B40SK [Bayer]

Tm=222°C

CNH H2 COn 6 • Mini-extruder

– Temperature : 290°C [N66], 260°C [N6]Tm=222 C p [ ] [ ]– Rotation speed : 200rpm– Mixing time : 3min

– Injection Moldingj g– Mold Temperature : 90°C [N66], 80°C [N6]

Copyright 2010, Professor Lawrence T. Drzal, Michigan State University

Page 31: “Graphene Nanoplatelet(xGnPTM Additives for ...

Nylon 6 and Nylon 66 NanocompositeNylon 6 and Nylon 66 NanocompositeNylon 6 and Nylon 66 Nanocomposite Nylon 6 and Nylon 66 Nanocomposite Flexural Modulus and StrengthFlexural Modulus and Strength

Flexural Modulus of N66 Composites

8000

10000

12000

14000

Pa]

xGnP-1xGnP-15CFVGCFCBNanomer I34.TCNCloisite 93A

Flexural Modulus of Nylon 6 Composites

8000

10000

12000

14000

MPa

]

xGnP-1xGnP-15CFGFVGCFNanomer I34.TCNCloisite 93A

0

2000

4000

6000

0 5 10 15 20 25[V l%]

[MP

0

2000

4000

6000

0 5 10 15 20 25[Vol%]

[M

[Vol%]Flexural Strength of N66 Composites

100

150

200

250

[MPa

]

xGnP-1xGnP-15CFVGCFCBNanomer I34.TCNCloisite 93A

[Vol%]Flexural Strength of Nylon 6 Composites

100

150

200

250

[MPa

]

xGnP-1xGnP-15CFGFVGCFNanomer I34.TCNCloisite 93A

0

50

100

0 5 10 15 20 25 [Vol%]

0

50

100

0 5 10 15 20 25[Vol%]

Copyright 2010, Professor Lawrence T. Drzal, Michigan State University

Page 32: “Graphene Nanoplatelet(xGnPTM Additives for ...

El t i l d Th l C d ti itEl t i l d Th l C d ti itElectrical and Thermal ConductivityElectrical and Thermal Conductivityof Nylon 66 Nanocomposites of Nylon 66 Nanocomposites

Electrical Conductivity of Nylon 66 Composites

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E-10

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

S/m

In-situ Gr.xGnP-1xGnP-15CFVGCFCB

Thermal Conductivity of Nylon 66 Composites

2.5

3

3.5

4

4.5

mK

]

1.E-110 5 10 15 20 25

[Vol%]

0

0.5

1

1.5

2

N66 20v% 20v% 20v% 20v% 15v% 10v%[W

/mN66 20v%

xGnP-120v%

xGnP-15 20v% In-situ

20v% CF

15v%VGCF

10v% CB

Copyright 2010, Professor Lawrence T. Drzal, Michigan State University

Page 33: “Graphene Nanoplatelet(xGnPTM Additives for ...

Oxygen Permeability of Oxygen Permeability of xGnP/Nylon NanocompositesxGnP/Nylon NanocompositesxGnP/Nylon NanocompositesxGnP/Nylon Nanocomposites

1.071

3.19661 2.3965921.56378 3.062669 1.0611

Permeability of Nylon 6 Films51.56378 3.062669 1.0611

3.192134 2.83434 2.382352

1.576644 3.078792 1.07553.198848 2.85568 2.348176

3.184282 3.098421 584684 3 206308 1 143 2 3325123

3.5

4

4.5

5

*atm

] Control N63v%xGnP-15um/N63v%xGnP-1um/N6

1.584684 3.206308 1.143 2.3325122.88284

3.168694 3.1019251.598352 3.231672 1.0737 2.309728

2.9391 3.1082343.176488 3.198848 2.2905041.5

2

2.5

3

[cm

3/m

2*da

y* 3v%CF/N63v%GF3v%VGCF/N63v%Nanomer®/N63v%Cloisite®/N6

3.176488 3.198848 2.2905041.605588 1.0728

2.98275 3.1222543.185148 3.201832 2.267008

1.614432 3.160108 1.09443.21153 3.007 2.247072

3 096816

0

0.5

1

5 10 15 20 25 30 35 403.096816 [Hour]

Copyright 2010, Professor Lawrence T. Drzal, Michigan State University

Page 34: “Graphene Nanoplatelet(xGnPTM Additives for ...

Effective Utilization of graphene Effective Utilization of graphene Effective Utilization of graphene Effective Utilization of graphene nanoplatelets (xGnP) requires nanoplatelets (xGnP) requires 

fabrication of individual particles fabrication of individual particles into 1D  2D into 1D  2D and 3D and 3D Morphologies Morphologies into 1D, 2D into 1D, 2D and 3D and 3D Morphologies Morphologies 

without loss of desirable propertieswithout loss of desirable properties

Copyright 2010, Professor Lawrence T. Drzal, Michigan State University

Page 35: “Graphene Nanoplatelet(xGnPTM Additives for ...

11‐‐D Morphology   ED Morphology   E‐‐Field Field AlignmentAlignmentp gyp gy gg

High voltage sourceVoltage detectorVV

Copper platesPlastic dish

Voltage dividerD

E field Intensity: ~10-25KV/cmE field Intensity: 10 25KV/cm

(a) (b) (c)

Copyright 2010, Professor Lawrence T. Drzal, Michigan State University

Page 36: “Graphene Nanoplatelet(xGnPTM Additives for ...

2D 2D ‐‐ Transparent Transparent Conductive Conductive Monolayer Monolayer Film   Film   ‐‐ ITO ReplacementITO ReplacementFilm   Film    ITO ReplacementITO Replacement

AdvantagesAdvantages80% T80% T

IndiumIndium tintin oxideoxide (ITO)(ITO) andand fluorinefluorine tintin oxideoxide ((FTOFTO))

~80% Transparent ~80% Transparent from 500 nm from 500 nm –– 2000 nm2000 nm1000+ S/cm1000+ S/cmSimple to ProduceSimple to Produce

90

IndiumIndium tintin oxideoxide (ITO)(ITO) andand fluorinefluorine tintin oxideoxide ((FTOFTO))transparenttransparent andand electricallyelectrically conductiveconductive coatingscoatingsCRT,CRT, LCD,LCD, plasmaplasma displays,displays, solarsolar cellscells andand sensorsensor devicesdevicesDiminishingDiminishing availabilityavailability andand increasinglyincreasingly costlycostly..

Simple to ProduceSimple to ProduceITO and FTO ITO and FTO

replacementreplacement

50

60

70

80

90

ttanc

e (%

)

4 nm

20 nm

10 nm

0

10

20

30

40

Tra

nsm

it

Copyright 2010, Professor Lawrence T. Drzal, Michigan State University

0500 700 900 1100 1300 1500 1700 1900

Wavelength (nm)

xGnP

Biswas, S., Drzal, L.T, Nano Letters, 9, 167-172, 2009

Page 37: “Graphene Nanoplatelet(xGnPTM Additives for ...

2D Multilayer Graphene  Graphene  ‘Paper‘Paper’’2D Multilayer Graphene  Graphene   PaperPaperElectrical and Thermal ConductivityElectrical and Thermal Conductivity

••Highly Aligned xGnPHighly Aligned xGnP••Controllable sizeControllable size••Controllable thicknessControllable thicknessS l bl  t  l   h tS l bl  t  l   h t El i l  d i i  2128 S/El i l  d i i  2128 S/

Properties of xGnP Paper••Scalable to large sheetsScalable to large sheets

••Simple process Simple process •• Electrical conductivity: 2128 S/cmElectrical conductivity: 2128 S/cm•• Thickness: 47 micronThickness: 47 micron•• Surface resistivity: 0.1 ohm/sqSurface resistivity: 0.1 ohm/sq•• Graphite: ~Graphite: ~2x102x1033 S/cm S/cm OFHC C  5 8*10OFHC C  5 8*1055 S/S/

Paper

•• OFHC Copper: 5.8*10OFHC Copper: 5.8*1055 S/cmS/cm

•• xGnPxGnP paper is ~ paper is ~ 100x100x < Cu in < Cu in electrical conductivityelectrical conductivityG PG P  d it   d it   22 // 33•• xGnPxGnP paper density ~paper density ~2g2g//cmcm33

•• Cu density ~8.9 g/Cu density ~8.9 g/cmcm33

•• xGnPxGnP paper is ~ 175 W/paper is ~ 175 W/mmooKK ­­inin­­planeplane

G PG P  i    3 W/ i    3 W/ ooKK

Copyright 2010, Professor Lawrence T. Drzal, Michigan State University

•• xGnPxGnP paper is ~ 3 W/paper is ~ 3 W/mmooKK ––thruthru­­planeplane

•• Cu is ~ 401 W/Cu is ~ 401 W/mmooKK

Page 38: “Graphene Nanoplatelet(xGnPTM Additives for ...

3D 3D ‐‐ xGnP xGnP Nanoparticles Applied to Nanoparticles Applied to CF CF Surfaces Surfaces ( 2%) in ( 2%) in Epoxy CompositesEpoxy CompositesSurfaces Surfaces (~2%) in (~2%) in Epoxy CompositesEpoxy Composites

Short Beam Shear Strength

90

100

30

40

50

60

70

80

[MPa

]

0

10

20

Control xGnP Coated sample

Flexural Strength in Transverse Direction

60

70

80

90

100

Flexural Modulus in Transverse Direction

7

8

9

10

11

0

10

20

30

40

50[M

Pa]

0

1

2

3

4

5

6

[GPa

Copyright 2010, Professor Lawrence T. Drzal, Michigan State University

Control xGnP Coated sampleControl xGnP Coated sample

Page 39: “Graphene Nanoplatelet(xGnPTM Additives for ...

Apply xGnP toApply xGnP to

3D 3D ‐‐ xGnP Modified SMCxGnP Modified SMCApply xGnP to Apply xGnP to fibers and filler fibers and filler

with a sizingwith a sizingMix fibers and Mix fibers and filler with filler with UPEUPE

Add Initiator Add Initiator and Promoter and Promoter UltrasonicateUltrasonicate

Cast and CureCast and Cure

• Strength• Modulus

exur

al s

tren

gth

8

10

hms.

m)

8

10

12

Ohm

s/sq

)

Volume resistivitySurface resistivity

•Fl

e

0

2

4

6

log

(Res

istiv

ity) (

R in

Oh

0

2

4

6

8

log

(Res

istiv

ity) (

R in

753 728649692

417

665

400

600

800

1000

stre

ngth

(J/m

)

28%( l  fib ) + 47% 28%( l  fib ) + 47%  0 1 2 3 4xGnP-1 wt.%

0

200

400

A B C D E F

Impa

ct s••28%(glass fiber) + 47% 28%(glass fiber) + 47% 

((CaCOCaCO33) + ) + 23%(UPE)=composite 23%(UPE)=composite 

••A= (A= (xGnPxGnP™ 0%)                                                   ™ 0%)                                                   

••B= (B= (xGnPxGnP™ 0.3%) ™ 0.3%) 

D= 28% (glass fiber) + 47% (D= 28% (glass fiber) + 47% (CaCOCaCO33 /3.2% xGnP™/3.2% xGnP™­­1) +23%(1) +23%(UPEUPE)= )= composite (xGnP™ 1.5%) composite (xGnP™ 1.5%) 

••C= (C= (xGnPxGnP™ 1.0%) ™ 1.0%) 

••D= (D= (xGnPxGnP™ 1.5%) ™ 1.5%) 

••E= (E= (xGnPxGnP™ 2.0%) ™ 2.0%) 

••F= (F= (xGnPxGnP™ 3.8%) ™ 3.8%) 

Copyright 2010, Professor Lawrence T. Drzal, Michigan State University

Page 40: “Graphene Nanoplatelet(xGnPTM Additives for ...

Graphene Graphene NanoPlateletsNanoPlatelets ((xGnPxGnPTMTM))pp (( ))

–– Multiple Synthesis Routes and CostMultiple Synthesis Routes and Cost­­EffectiveEffective–– Platelet Platelet Morphology: NanoMorphology: Nano­­Thickness; MicroThickness; Micro­­Diameter Diameter 

•• High ModulusHigh Modulus•• High Electrical High Electrical ConductivityConductivity•• Optically Transparent Optically Transparent •• High Thermal High Thermal ConductivityConductivityHigh Thermal High Thermal ConductivityConductivity•• ThermoThermo­­Oxidative ResistanceOxidative Resistance•• Barrier Properties Barrier Properties 

M ltif ti l Additi  f  P l   d C itM ltif ti l Additi  f  P l   d C it–– Multifunctional Additive for Polymers and CompositesMultifunctional Additive for Polymers and Composites•• Dispersible Dispersible in Polymers and Waterin Polymers and Water•• Variable size Variable size •• Low Low Percolation ThresholdPercolation Threshold•• Fabrication for Controlled Fabrication for Controlled Anisotropy Anisotropy ((1D1D, , 2D2D or or 3D3D))•• Platform  Platform  for Nanofor Nano­­EngineeringEngineering

Copyright 2010, Professor Lawrence T. Drzal, Michigan State University

Page 41: “Graphene Nanoplatelet(xGnPTM Additives for ...

Graphene Graphene NanoPlateletNanoPlatelet ((xGnPxGnPTMTM))Graphene Graphene NanoPlateletNanoPlatelet ((xGnPxGnPTMTM))

–– Michigan Research Excellence Fund; Michigan Research Excellence Fund; MEDCMEDC2121stst Century Jobs Fund;Century Jobs Fund;y J ;y J ;

–– NASANASA­­Langley; ONR; ARO; Ford; Boeing; Langley; ONR; ARO; Ford; Boeing; Johns Manville; Nissan; Aisin; Johns Manville; Nissan; Aisin; HexionHexion; GDLS; ; GDLS; KurarayKurarayKurarayKuraray

–– XG Sciences, Inc. XG Sciences, Inc. www.xgsciences.comwww.xgsciences.com,, gg

Copyright 2010, Professor Lawrence T. Drzal, Michigan State University