Top Banner
G.C. Hurtt, S. Frolking, M.G. Fearon, B. Moore III Shevliakova, S. Malyshev, S.W. Pacala, R.A. Hought The Underpinnings of Land-Use History hree Centuries of Global Gridded Land-use Transitio ood Harvest Activity, and Resulting Secondary Lands Princeton University Woods Hole Research Ctr. QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.
30

G.C. Hurtt, S. Frolking, M.G. Fearon, B. Moore III E. Shevliakova, S. Malyshev, S.W. Pacala, R.A. Houghton The Underpinnings of Land-Use History Three.

Dec 14, 2015

Download

Documents

Cornelius Lund
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: G.C. Hurtt, S. Frolking, M.G. Fearon, B. Moore III E. Shevliakova, S. Malyshev, S.W. Pacala, R.A. Houghton The Underpinnings of Land-Use History Three.

G.C. Hurtt, S. Frolking, M.G. Fearon, B. Moore III

E. Shevliakova, S. Malyshev, S.W. Pacala, R.A. Houghton

The Underpinnings of Land-Use History

Three Centuries of Global Gridded Land-use TransitionsWood Harvest Activity, and Resulting Secondary Lands

PrincetonUniversity

Woods HoleResearch Ctr.

QuickTime™ and aTIFF (LZW) decompressor

are needed to see this picture.

Page 2: G.C. Hurtt, S. Frolking, M.G. Fearon, B. Moore III E. Shevliakova, S. Malyshev, S.W. Pacala, R.A. Houghton The Underpinnings of Land-Use History Three.

The Global Scale of Human Activities

• The concentrations of several greenhouse gases have substantially increased in the atmosphere.1

• Anthropogenic N fixation now exceeds natural N fixation.2

• More than 50% of available freshwater is appropriated for human purposes.3

• Approx. 65% of marine fish stocks are fully exploited, or over exploited.4

• We are now in the 6th great extinction event.5

(1) IPCC 2001 (2) Kaiser 2001 (3) Postel et al 1996 (4) FAO 2000 (5) Lawton and May 1995; Pimm et al 1995. See also Steffen et al. 2003.

Page 3: G.C. Hurtt, S. Frolking, M.G. Fearon, B. Moore III E. Shevliakova, S. Malyshev, S.W. Pacala, R.A. Houghton The Underpinnings of Land-Use History Three.

Land-use• Nearly 50% of the land surface has been transformed

by direct human action.1

• > 25% of forests have been cleared.2

• Habitat destruction is the primary risk for species extinctions.3

• Land-cover change affects regional and global climate.4

• Land-use change is an important and highly uncertain term in the global carbon budget.5

• Net re-growth on recovering “secondary” lands is the dominant carbon sink mechanism in some regions.6

(1) Vitousek et al 1986; Turner eet al 1990; Daily 1995 (2) Waring & Running 1998. (3) UNEP 2002; Sala et al 2000; (4) Pielke et al. 2002; Roy et al 2004 (5) IPCC 2001. (6) Caspersen et al., 2000; Pacala et al 2001; Hurtt et al, 2002. See also Steffen et al 2003.

Page 4: G.C. Hurtt, S. Frolking, M.G. Fearon, B. Moore III E. Shevliakova, S. Malyshev, S.W. Pacala, R.A. Houghton The Underpinnings of Land-Use History Three.

Understanding the Consequences of Land-use Activities

• Patterns of land-use

• Biogeochemistry on managed lands

• Management practices

• Fate of agricultural products

• Land-use transitions

• Earth System interactions

Page 5: G.C. Hurtt, S. Frolking, M.G. Fearon, B. Moore III E. Shevliakova, S. Malyshev, S.W. Pacala, R.A. Houghton The Underpinnings of Land-Use History Three.

Key Questions

• What are the patterns of the land-use transition events that produced the patterns of agriculture and logged forests?

• What are the spatial patterns and age of lands recovering from prior land-use activities?

• What is the net effect of land-use change events that release carbon, and the carbon sinks provided by recovering “secondary” lands?

Page 6: G.C. Hurtt, S. Frolking, M.G. Fearon, B. Moore III E. Shevliakova, S. Malyshev, S.W. Pacala, R.A. Houghton The Underpinnings of Land-Use History Three.

The Mathematical Structure of aLand-use History Reconstruction

l1

l2

l3

a11 a12 a13 …

a21 a22 a23 …

a31 a32 a33 …

… …

l(x,y,t+1) = A(x,y,t) l(x,y,t)

t+1 t

longitude

lati

tud

e

time

l1

l2

l3

Global, 1deg, 300 y, 4D: ~93x106 unknowns!

Page 7: G.C. Hurtt, S. Frolking, M.G. Fearon, B. Moore III E. Shevliakova, S. Malyshev, S.W. Pacala, R.A. Houghton The Underpinnings of Land-Use History Three.

gridded (1°x1°) land-use states

1700-2000

gridded (1°x1°) potential biomass density

and recovery rate

national annual wood harvest

1700-2000

gridded (1°x1°) land-use transitions 1700-2000

INPUT OUTPUTMODEL

• residency time of agriculture

• inclusiveness of wood harvest statistics

• prioritization of land for conversion/logging

• spatial pattern of wood harvesting within countries

gridded (1°x1°) secondary land areaand age 1700-2000

Page 8: G.C. Hurtt, S. Frolking, M.G. Fearon, B. Moore III E. Shevliakova, S. Malyshev, S.W. Pacala, R.A. Houghton The Underpinnings of Land-Use History Three.

Klein Goldewijk, 2001

Page 9: G.C. Hurtt, S. Frolking, M.G. Fearon, B. Moore III E. Shevliakova, S. Malyshev, S.W. Pacala, R.A. Houghton The Underpinnings of Land-Use History Three.
Page 10: G.C. Hurtt, S. Frolking, M.G. Fearon, B. Moore III E. Shevliakova, S. Malyshev, S.W. Pacala, R.A. Houghton The Underpinnings of Land-Use History Three.
Page 11: G.C. Hurtt, S. Frolking, M.G. Fearon, B. Moore III E. Shevliakova, S. Malyshev, S.W. Pacala, R.A. Houghton The Underpinnings of Land-Use History Three.
Page 12: G.C. Hurtt, S. Frolking, M.G. Fearon, B. Moore III E. Shevliakova, S. Malyshev, S.W. Pacala, R.A. Houghton The Underpinnings of Land-Use History Three.

QuickTime™ and aTIFF (LZW) decompressor

are needed to see this picture.

Page 13: G.C. Hurtt, S. Frolking, M.G. Fearon, B. Moore III E. Shevliakova, S. Malyshev, S.W. Pacala, R.A. Houghton The Underpinnings of Land-Use History Three.

a)

c) d)

b)

Page 14: G.C. Hurtt, S. Frolking, M.G. Fearon, B. Moore III E. Shevliakova, S. Malyshev, S.W. Pacala, R.A. Houghton The Underpinnings of Land-Use History Three.
Page 15: G.C. Hurtt, S. Frolking, M.G. Fearon, B. Moore III E. Shevliakova, S. Malyshev, S.W. Pacala, R.A. Houghton The Underpinnings of Land-Use History Three.
Page 16: G.C. Hurtt, S. Frolking, M.G. Fearon, B. Moore III E. Shevliakova, S. Malyshev, S.W. Pacala, R.A. Houghton The Underpinnings of Land-Use History Three.
Page 17: G.C. Hurtt, S. Frolking, M.G. Fearon, B. Moore III E. Shevliakova, S. Malyshev, S.W. Pacala, R.A. Houghton The Underpinnings of Land-Use History Three.

Region secondary forest area

FAO (1998)a Rangeb

N. & C. America 4.6 0.6 – 3.7

S. America 3.2 0.1 – 2.3

Africa 2.5 0.2 – 1.6

Eurasia 4.2 0.8 – 14.0

Oceania 0.5 0.0 – 0.3

Global 15.0 2.1 – 21.9

1 a FAO (1988) total values do not include all countries, but are estimated to be within <10% of FAO total global forest area.b Ranges from data-based runs.

Page 18: G.C. Hurtt, S. Frolking, M.G. Fearon, B. Moore III E. Shevliakova, S. Malyshev, S.W. Pacala, R.A. Houghton The Underpinnings of Land-Use History Three.

Additional Results• Estimates of wood harvest including slash (1850-1990)

– This Study: 100 Pg– Houghton (1999): 106 Pg

• Estimates of wood clearing for agriculture (1850-1990)– This study: 105-158 Pg– Houghton (1999): 149 Pg

• Area of forest land in shifting-cultivation fallow (2000)– This study: 4.56-6.19 x 106 km2

– FAO: 4.42 x 106 km2

• Rates of clearing land in shifting cultivation– This study: 0.48-0.65 x 106 km2 y-1

– Rojstaczer et al. (2001): 0.6-0.09 x 106 km2 y-1

• U.S. Forests – This study: Secondary 94-99% – This study: Mean age of Eastern forests 33-42y – FIA based estimate: Mean age of Eastern forests 38y

Page 19: G.C. Hurtt, S. Frolking, M.G. Fearon, B. Moore III E. Shevliakova, S. Malyshev, S.W. Pacala, R.A. Houghton The Underpinnings of Land-Use History Three.

Key Findings

• 42-68% of land surface was impacted by human land-use activities (agriculture + wood harvest) 1700-2000.

• Total secondary land area increased 10-44 x 106 km2 during this period; about half is forested.

• Wood harvesting and shifting cultivation generated 70-90% of secondary land; permanent agriculture changes generated the rest.

Page 20: G.C. Hurtt, S. Frolking, M.G. Fearon, B. Moore III E. Shevliakova, S. Malyshev, S.W. Pacala, R.A. Houghton The Underpinnings of Land-Use History Three.
Page 21: G.C. Hurtt, S. Frolking, M.G. Fearon, B. Moore III E. Shevliakova, S. Malyshev, S.W. Pacala, R.A. Houghton The Underpinnings of Land-Use History Three.

Differences Between Reconstructions

Page 22: G.C. Hurtt, S. Frolking, M.G. Fearon, B. Moore III E. Shevliakova, S. Malyshev, S.W. Pacala, R.A. Houghton The Underpinnings of Land-Use History Three.

U.S. Forest Inventory Plots

http://www.fia.fs.fed.us/

Page 23: G.C. Hurtt, S. Frolking, M.G. Fearon, B. Moore III E. Shevliakova, S. Malyshev, S.W. Pacala, R.A. Houghton The Underpinnings of Land-Use History Three.

QuickTime™ and aTIFF (LZW) decompressor

are needed to see this picture.

Page 24: G.C. Hurtt, S. Frolking, M.G. Fearon, B. Moore III E. Shevliakova, S. Malyshev, S.W. Pacala, R.A. Houghton The Underpinnings of Land-Use History Three.

0

40

He

igh

t (m

)

0 100Intensity

Cumulative Intensity0 1.0

25 m

8 km

1 km

Lidar Remote Sensing of Vegetation Height

Page 25: G.C. Hurtt, S. Frolking, M.G. Fearon, B. Moore III E. Shevliakova, S. Malyshev, S.W. Pacala, R.A. Houghton The Underpinnings of Land-Use History Three.

http://icesat.gsfc.nasa.gov/intro.html

Page 26: G.C. Hurtt, S. Frolking, M.G. Fearon, B. Moore III E. Shevliakova, S. Malyshev, S.W. Pacala, R.A. Houghton The Underpinnings of Land-Use History Three.

Multi-angle Imaging SpectroRadiometer (MISR)

http://www-misr.jpl.nasa.gov

Page 27: G.C. Hurtt, S. Frolking, M.G. Fearon, B. Moore III E. Shevliakova, S. Malyshev, S.W. Pacala, R.A. Houghton The Underpinnings of Land-Use History Three.

Global C Budget (PgC/y)

1980s 1990s

Atm. Increase 3.3+/-0.1 3.2+/-0.1

Emissions 5.4+/-0.3 6.3+/-0.4

Ocean-Atm. Flux -1.9+/-0.6 -1.7+/-0.5

Land-Atm. Flux* -0.2+/-0.7 -1.4+/-0.7

Land Use 1.7(0.6-2.5) NA

Residual Terrestrial Sink

-1.9(-3.8-0.3) NA

IPCC, 2001

Page 28: G.C. Hurtt, S. Frolking, M.G. Fearon, B. Moore III E. Shevliakova, S. Malyshev, S.W. Pacala, R.A. Houghton The Underpinnings of Land-Use History Three.

Hurtt et al, 2002

U.S. Net Carbon Flux From Land-use Changes

Page 29: G.C. Hurtt, S. Frolking, M.G. Fearon, B. Moore III E. Shevliakova, S. Malyshev, S.W. Pacala, R.A. Houghton The Underpinnings of Land-Use History Three.

Biomass kg C/m2 Undisturbed Fraction

1900

1800

2000

0 26 0 1

Shevliakova et al, Submitted

Page 30: G.C. Hurtt, S. Frolking, M.G. Fearon, B. Moore III E. Shevliakova, S. Malyshev, S.W. Pacala, R.A. Houghton The Underpinnings of Land-Use History Three.

QuickTime™ and aTIFF (LZW) decompressor

are needed to see this picture.

Summary/Conclusion• This study provides the first global gridded estimates of land-use

transitions (land conversions), wood harvesting, and resulting secondary lands annually, for the period 1700-2000

• Major results are consistent with large sets of input data, and compare favorably to aggregated independent estimates.

• To best refine these estimates, new efforts are needed to characterize vegetation structure globally using remote sensing and field data.

• Additional future challenges include: understanding the dynamics on agriculture lands (including management), creating integrated models capable of tracking land-use activities and estimating their consequences, and developing consistent models of land-use in the future.