Top Banner
Available online at www.worldscientificnews.com WSN 49(2) (2016) 381-404 EISSN 2392-2192 Gas chromatography mass spectrum and Fourier transform - infrared spectroscopy analysis of methanolic extract of Cressa cretica L. leaves Aseel Muhammed Omran, Nidaa Adnan Abu-seraj, Ibtihal Muiz Al Husaini Department of Biology, Babylon University, Hilla, Iraq E-mail address: [email protected] ABSTRACT Aims of this study were to investigation the presence of phytochemical compounds in the methanolic extract of Cressa cretica L. leaves by using GC-MS method and report the functional groups by using FT-IR spectroscopy. The identification of phytochemical compounds based on the peak area, retention time, molecular weight, molecular formula, MS fragment ions. Thirty four phytochemical compounds were identification in the methanolic extract of Cressa cretica leaves. The GC-MS analysis provide the existence of 5-Methyl-6-phenyltetrahydro-1,3-oxazine-2-thione, Lactose, 3-Deoxy-L-ribose-2,5-dibenzoate, Sarreroside, Pterin-6-carboxylic acid, Octadecadiynoic acid, methyl ester, d-Mannose, Dodecanoic acid, 3-hydroxy-, Geranyl isovalerate, Tetradecanoic acid , 6-epi- shyobunol, Paromomycin, Cis-9-Hexadecenoic acid, and others. The FT-IR analysis revealed the presence of Alkenes, aliphatic amines, nitro compounds, alkanes. These are chemical compounds are may be useful for various herbal formulation as antifungal, antibacterial, anti- inflammatory, anti- oxidant and others. Keywords: FT-IR; GC-MS analysis; Leaves; Methanol; Cressa cretica
24

Gas chromatography mass spectrum and Fourier transform ...

Dec 18, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Gas chromatography mass spectrum and Fourier transform ...

Available online at www.worldscientificnews.com

WSN 49(2) (2016) 381-404 EISSN 2392-2192

Gas chromatography mass spectrum and Fourier

transform - infrared spectroscopy analysis of methanolic extract of Cressa cretica L. leaves

Aseel Muhammed Omran, Nidaa Adnan Abu-seraj, Ibtihal Muiz Al Husaini

Department of Biology, Babylon University, Hilla, Iraq

E-mail address: [email protected]

ABSTRACT

Aims of this study were to investigation the presence of phytochemical compounds in the

methanolic extract of Cressa cretica L. leaves by using GC-MS method and report the functional

groups by using FT-IR spectroscopy. The identification of phytochemical compounds based on the

peak area, retention time, molecular weight, molecular formula, MS fragment ions. Thirty four

phytochemical compounds were identification in the methanolic extract of Cressa cretica leaves. The

GC-MS analysis provide the existence of 5-Methyl-6-phenyltetrahydro-1,3-oxazine-2-thione, Lactose,

3-Deoxy-L-ribose-2,5-dibenzoate, Sarreroside, Pterin-6-carboxylic acid, Octadecadiynoic acid, methyl

ester, d-Mannose, Dodecanoic acid, 3-hydroxy-, Geranyl isovalerate, Tetradecanoic acid , 6-epi-

shyobunol, Paromomycin, Cis-9-Hexadecenoic acid, and others. The FT-IR analysis revealed the

presence of Alkenes, aliphatic amines, nitro compounds, alkanes. These are chemical compounds are

may be useful for various herbal formulation as antifungal, antibacterial, anti- inflammatory, anti-

oxidant and others.

Keywords: FT-IR; GC-MS analysis; Leaves; Methanol; Cressa cretica

Page 2: Gas chromatography mass spectrum and Fourier transform ...

World Scientific News 49(2) (2016) 381-404

-382-

1. INTRODUCTION

Herbal medicines had usually used for treatment of diseases and for helth mentinance

[1], plant based drugs have been used since immemorial time, which interesting with herbal

products lead to grouth of medicinal plant industries [2]. Cressa cretica L. (convolvulaceae) is

a small, dwarf shrub [3], roots are horizontal, geminate with lateral branches leading upward

to produce above- ground parts. The leaf blade is 1-2 mm long, lanculate, ovate or elliptic to

scale like. Flowers are solitary, white or pink axillary, 5-8 mm long [4]. Seeds are 3-4 mm

long, glabrous, smooth and shining to reticulate, with dark, brown color [5]. Cressa cretica showed variation in productivity in response to environmental factors.

Net productivity and aboveground biomass were higher during the brief winter in comparison

to summer [6]. C. cretica used in all parts as a paste and decoction to treated fungus infection,

asthma, blood purifier and eczema [7]. Aqueous and alcoholic extracts of leaves of this plant

have a very good activity against some microbial pathogens such as gram – positive, gram

negative bacteria and some fungi species, such as Candida albicans, Aspergillus niger, and

Penicillium chrysogenum [8]. The plant can be used as anti-tubercular, expectorant [9].

Ethanolic extract of C. cretica significantly reduced blood glucose, serum cholesterol in rats

[4]. This plant also used to synthesis silver nanoparticles from silver nitrate using C. cretica

leaf extract [10].

In the last few years gas chromatography – mass spectrometry has become firmly

established as a key technology plat form for phytochemical profiling in plant [11-13]. Gas

chromatography provides a very adequate technique for the separation of complex samples

because this technique give a combination of speed, sensitivity and a high resolving power

[14]. Fourier transform infrared spectrometry is a physico-chemical analytical technique and

one of the most widely used methods to identify the structure of unknown composition or its

functional group, and the intensity of the absorption spectra associated with molecular

composition or content of the chemical group [15]. The present study involves an assessment

using GC-MS and FT-IR spectroscopic techniques to investigate and determine the bioactive

compounds in the leaves of C. cretica.

2. MATERIALS AND METHODS

Collection and preparation of plant material

The leaves were purchased from the gardens of Babylone University, Hilla city, after

had cleaned and removal foreign materials, the leaves were washed twice with running tap

water and once with distilled water and dried under shade for ten days at room temperature.

Dried leaves stored in airtight container to avoid the effect of humidity and then stored at

room temperature until further use.

Preparation of sample about 20 gm of the plant sample powdered were soaked in 100 ml

methanol for 16 h in a rotatory shaker. What man No.1 filter paper was used to separate the

extract of plant. The supernatant were used for further phytochemical analysis [16]. It was

again filtered through sodium sulphate in order to remove the traces of moisture.

Page 3: Gas chromatography mass spectrum and Fourier transform ...

World Scientific News 49(2) (2016) 381-404

-383-

Gas chromatography mass spectrum analysis

The GC-MS analysis of the plant extract was made in a (QP 2010 Plus SHIMADZU)

instrument under computer control at 70 eV [17-19]. About 1 μl of the methanol extract was

injected into the GC-MS using a micro syringe , then the scanning was done for 45 min. As

the compounds were separated, and removed from the column and entered a detector which

was capable of creating an electronic signal whenever a compound was detected. The greater

concentration in the sample, bigger was the signal obtained which then processed by the

computer.

The time from when the injection was made (Initial time) to when elution occurred is

referred to as the Retention time (RT). While the instrument was run, the computer generated

a graph from the signal called chromatogram. Each of the peaks in the chromatogram

represented the signal created when a compound eluted from the Gas chromatography column

into the detector. The x-axis showed the RT and the y-axis measured the intensity of the

signal to quantify the component in the sample injected. As individual compounds removed

from the Gas chromatographic column, they entered the electron ionization (mass

spectroscopy) detector, where they were bombarded with a stream of electrons causing them

to break apart into fragments.

The fragments obtained were actually charged ions with a certain mass. The M/Z

(Mass/Charge) ratio obtained was calibrated from the graph obtained, which was called the

Mass spectrum graph which is the fingerprint of a molecule. Before analyzing the extract

using gas chromatography and mass spectroscopy , the temperature of the oven and the flow

rate of the gas used and electron gun were programmed initially. The temperature of the oven

was maintained at 100 °C. Helium gas was used as a carrier as well as an eluent. The flow

rate of helium was set to 1ml per minute. The electron gun of mass detector liberated

electrons having energy of about 70eV. The column employed here for the separation

siloxane). The identity of the components in the extracts was assigned by the comparison of

their retention indices and mass spectra fragmentation patterns with those stored on the

computer library and also with published literatures [19,20].

Fourier transform infrared spectrophotometer (FTIR)

The powdered sample of the plant specimen was treated for FTIR spectroscopy

(Shimadzu, IR Affinity 1, Japan). The sample was run at infrared region between 400 and

4000 nm [21,22].

3. RESULTS AND DISCUSSION

Gas Chromatography and Mass spectroscopy analysis of compounds was carried out in

methanolic extract of C. cretica leaves, shown in Table 1.and the components corresponding

to the peaks were determined as follows: 5-Methyl-6-phenyltetrahydro-1,3-oxazine-2-thione;

Eicosanoic acid, phenylmethyl ester; Lactose ; 3-Deoxy-L-ribose-2,5-dibenzoate; Adenosine ,

4'-methylaminoformyl-4'-deshydroxymethyl-N-[3-is; Benzenemethanol, 4-hydroxy-α-[1-

(methylamino) ethyl]; Benzenemethanol, 2-(2-aminopropoxy)-3-methyl-; Sarreroside; Pterin-

6-carboxylic acid; 12,15-Octadecadiynoic acid , methyl ester; d-Mannose; Dodecanoic acid,

3-hydroxy-; Cyclopenta[1,3] cyclopropa[1,2]cyclohepten-3(3Ah)-one, 1,2; Desulphosinigrin;

Page 4: Gas chromatography mass spectrum and Fourier transform ...

World Scientific News 49(2) (2016) 381-404

-384-

Geranyl isovalerate; Cyclopentanemethylamine, 2-isopropylidene-N,N,5-trimethyl-;

Tetradecanoic acid; Ppropiolic acid, 3-(1-hydroxy-2-isopropyl-5-methylcyclohexyl);

Acetamide, N-methyl-N-[4-(3-hydroxypyrrolidinyl)-2butynyl]; 6-epi-shyobunol; 2,7-

Diphenyl-1,6-dioxopyridazino[4,5:2',3']pyrrolo[4',5'-d]pyrid; 3,7,11,15-Tetramethyl-2-

hexadecan-1-ol; Paromomycin; Cis-9-Hexadecenoic acid; γ-Linolenic acid , methyl ester;

Estra-1,3,5(10)-trien-17β-ol; Ethyl iso-allocholate; 7,10-Octadecadienoic acid, methyl ester;

Cholestan-3-ol,2-methylene-,(3β,5α)-; Octadecanoic acid; Strychane, 1-acetyl-20α-hydroxy-

16-methylene-; 8,8'-Trimethoxy -3 -piperidyl-2,2'-binaphthalene-1,1',4,4'-tetra; Spirost-8-en-

11-one,3-hydroxy-,(3β,5α,14β,20β,22β,25R)-; Campesterol (Figer 1-34).

Fourier- transform infrared analysis of methanolic extract of cressa cretica leaves

proved the presence of Alkenes, aliphatic amines, nitro compounds, amines, alkanes, (Table

2; Figer 35). Among the identified phytocompounds have the property of antioxidant and

antimicrobial activities [23,24].

Plant based antimicrobials have enormous therapeutic potential as they can serve the

purpose with lesser side effects. Continued further exploration of plant derived antimicrobials

is needed today. [25] and [5] investigate the activity of alcoholic extract of cressa cretica as

anti fungul. Chaudhary reported that the ethanolic extract of C. cretica was significantly

reduced blood glucose and this extract have a high anti diabetic potential.

Figure 1. 5Methyl-6phenyltetrahydro1,3oxazine Figure 2. Eicosanoic acid , phenylmethyl

-2-thione in the leaf extract of C. cretica L. ester in the leaf extract of C. cretica L.

Page 5: Gas chromatography mass spectrum and Fourier transform ...

World Scientific News 49(2) (2016) 381-404

-385-

Figure 3. Lactose in the leaf extract Figure 4. 3-Deoxy-L-ribose-2,5-dibenzoate in

of C. cretica L. the leaf extract of C. cretica L.

Figure 5. Adenosine , 4'-methylaminoformy Figure 6. Benzenemethanol,4-hydroxy-α- l-4'-deshydroxymethyl-N-[3-is in the leaf -[1-(methylamino)ethyl]-,(R* in the leaf

extract of C. cretica L. extract of Cressa cretica L

Page 6: Gas chromatography mass spectrum and Fourier transform ...

World Scientific News 49(2) (2016) 381-404

-386-

Figure 7. Benzenemethanol , 2-(2-aminopropoxy) Figure 8. Sarreroside in the leaf 3-methyl- in the leaf extract of Cressa cretica L. extract of Cressa cretica L.

Figure 9. Pterin-6-carboxylic acid in Figure 10. 12,15-Octadecadiynoic acid, methyl

the leaf extract of C. cretica L. ester in the leaf extract of C. cretica L.

Page 7: Gas chromatography mass spectrum and Fourier transform ...

World Scientific News 49(2) (2016) 381-404

-387-

Figure 11. d-Mannose in the leaf extract Figure 12. Dodecanoic acid , 3-hydroxy

of C. cretica L. in the leaf extract of C.a cretic

Figure 13. Cyclopenta[1,3]cyclopropa[1,2 Figure 14. Desulphosinigrin in the

cyclohepten-3(3Ah)-one,1,2 in the leaf leaf extract of C. cretica L.

extract of C. cretica L.

Page 8: Gas chromatography mass spectrum and Fourier transform ...

World Scientific News 49(2) (2016) 381-404

-388-

Figure 15. Geranyl isovalerat Figure 16. Cyclopentanemethylamine.

in the leaf of C. cretica L. 2-isopropylidene- N,N,5-trimethyl-,

in the leaf of C.cretica L

Figure 17. Tetradecanoic acid in the leaf Figure 18. Ppropiolic acid ,3-(1-hydroxy-2-

extract of C. cretica L. isopropyl 5-methylcyclohexyl)- in the leaf extract of C. cretica L.

Page 9: Gas chromatography mass spectrum and Fourier transform ...

World Scientific News 49(2) (2016) 381-404

-389-

Figure 19. Acetamide , N-methyl-N-[4- Figure 20. 6-epi-shyobunol in the

(3-hydroxypyrrolidinyl)-2-butynyl]- in leaf extract of C. cretica L.

the leaf extract of C. critica L.

Figure 21. 2,7-Diphenyl-1,6-dioxopyridazino Figure 22. 3,7,11,15Tetramethyl-2hexadecan-

[4,5:2',3']pyrrolo[4',5'-d]pyrid in the leaf 1-ol in the leaf extract of C. cretica L.

extract of C. cretica L.

Page 10: Gas chromatography mass spectrum and Fourier transform ...

World Scientific News 49(2) (2016) 381-404

-390-

Figure 23. Paromomycin in the leaf Figure 24. Cis-9-Hexadecenoic acid

extract of C. cretica L. in the leaf extract of C. cretica L.

Figure 25. γ-Linolenic acid , methyl ester in Figure 26. Estra-1,3,5(10)-trien-17β-ol

the leaf extract of C. cretica L. in the leaf extract of C. cretica L.

Page 11: Gas chromatography mass spectrum and Fourier transform ...

World Scientific News 49(2) (2016) 381-404

-391-

Figure 27. Ethyl iso-allocholate in the leaf Figure 28. 7,10-Octadecadienoic acid, methyl

extract of C. cretica L. ester in the leaf extract of C. cretica L.

Figure 29. Cholestan-3-ol,2-methylene-,(3β,5α)- Figure 30. Octadecanoic acid in the

in the leaf extract of C.cretica L. leaf extract of C. cretica L.

Page 12: Gas chromatography mass spectrum and Fourier transform ...

World Scientific News 49(2) (2016) 381-404

-392-

Figure 31. Strychane, 1-acetyl-20α-hydroxy-16 Figure 32. 3',8,8'-Trimethoxy-3-piperidyl-2

-methylene- in the leaf extract of C. cretica L. 2'-binaphthalene-1,1',4,4'-tetra,

in the leaf extract of C. cretica L.

Figure 33. Spirost-8-en-11-one,3-hydroxy-, Figure 34. Campesterol in the leaf

(3β,5α,14β,20β,22β,25R)- in the leaf extract extract of C. cretica L.

of C. cretica L.

Page 13: Gas chromatography mass spectrum and Fourier transform ...

World Scientific News 49(2) (2016) 381-404

-393-

Table 1. Major phytochemical compounds identified in methanolic extract of

Cressa ctretica Linn Leaves.

Ph

arm

aco

log

-ica

l

act

ion

s

MS

Fra

gm

ent-

io

ns

Chemical structure

Ex

act

Ma

ss

Mo

lecu

lar

Wei

gh

t

RT

(m

in)

Ph

yto

chem

ica

l

com

po

un

d

Ser

ial

No

.

57

,77,9

1,9

7,

11

7,1

32

,14

7,

17

4,2

07

20

7.0

71

78

5

20

7

3.3

67

5-M

eth

yl-

6-

ph

eny

ltet

rahy

dro

-1,3

-

ox

azin

e-2-t

hio

ne

1.

No

act

ive

rep

ort

57

,71,9

1,1

08,1

26

,1

47

,167

,20

7,2

81

40

2.3

49

78

1

40

2

3.9

68

Eic

osa

no

ic a

cid

,

ph

eny

lmet

hy

l es

ter

2.

Pre

serv

ativ

e

[26

]

60

,73,8

5,9

1,9

7,1

26

,14

5,1

6

3,1

91

34

2.1

16

21

34

2

4.7

35

Lac

tose

3.

No

act

ive

rep

ort

51

,77,9

2,1

05,1

22

,13

6,1

65,2

07

34

2.1

10

33

8

34

2

4.8

49

3-D

eox

y-L

-rib

ose

-

2,5

-dib

enzo

ate

4.

Page 14: Gas chromatography mass spectrum and Fourier transform ...

World Scientific News 49(2) (2016) 381-404

-394-

No

act

ive

rep

ort

58

,76,8

5,9

7,1

20

,14

8,1

6

3,2

06,2

40

,282

44

1.1

21

92

3

44

1

6.2

74

Ad

eno

sin

e ,

4'-

met

hy

lam

ino

form

yl-

4'-

des

hy

dro

xy

met

hy

l-N

-

[3-i

s

5.

No

act

ive

rep

ort

58

,65,7

7,9

5,1

21

,14

7,1

81

18

1.1

10

27

9

18

1

6.9

03

Ben

zen

emet

han

ol,

4-h

yd

rox

y-

α-[

1-(

met

hy

lam

ino

)eth

yl]

-

,(R

*

6.

An

ti-n

oci

cep

tiv

e ef

fect

.

[21

]

58

,65,7

7,9

1,1

05

,12

1,1

35

,1

52

,178

,19

5

19

5.1

25

92

9

19

5

8.1

68

Ben

zen

emet

han

ol

, 2

-(2

-

amin

op

rop

ox

y)-

3-m

ethy

l-

7.

No

act

ive

rep

ort

57

,74,1

13

,191

,22

9,2

71

,35

4,4

01,4

45

56

2.2

77

79

8

56

2

8.6

31

Sar

rero

sid

e

8.

An

ti-p

sych

oti

c, m

oo

d-

stab

iliz

er a

nd

an

ti-

par

asit

e

[21

]

57

,69,9

3,1

05,1

22

,149

,1

63

,177

,20

7

20

7.0

39

23

9

20

7

9.0

72

Pte

rin

-6-c

arbo

xy

lic

acid

9.

Page 15: Gas chromatography mass spectrum and Fourier transform ...

World Scientific News 49(2) (2016) 381-404

-395-

No

act

ive

rep

ort

55

,67,7

4,7

9,9

1,1

19

,13

3,1

47

,16

1,1

78

,2

05

,220

29

0.2

24

58

29

0

9.5

64

12

,15-

Oct

adec

adiy

no

ic

acid

, m

eth

yl

este

r

10

.

An

ti-a

ller

gic

an

d

anti

-bac

teri

al

[22

]

60

,73,1

03

,149

18

0.0

63

38

8

18

0

10

.714

d-M

ann

ose

11

.

No

act

ive

rep

ort

55

,69,8

3,9

6,1

12

,12

3,1

38,1

51

,180

,20

0

21

6.1

72

54

45

21

6

10

.960

Do

dec

ano

ic a

cid ,

3-h

yd

roxy

-

12

An

ti -

pai

n e

ffec

t.

[21

]

55

,69,7

8,9

1,1

05

,11

9,1

33,1

47

,162

,19

0

19

0.1

35

76

5

19

0

11

.538

Cy

clo

pen

ta[1

,3]c

yc

lop

rop

a[1

,2]c

ycl

oh

epte

n-3

(3A

h)-

on

e

,1,2

13

anti

can

cer

acti

vit

y

[27

]

60

,73,8

5,1

03,1

27

,145

,16

3,2

13

,262

27

9.0

77

65

8

27

9

11

.567

Des

ulp

ho

sin

igri

n

14

anti

fun

gal

act

ivit

y

[28

]

57

,69,8

5,9

3,1

03

,12

1,1

29,1

36

,154

,16

8,

18

3,1

98

,21

9

23

8.1

93

28

23

8

12

.253

Ger

any

l is

ov

aler

ate

15

Page 16: Gas chromatography mass spectrum and Fourier transform ...

World Scientific News 49(2) (2016) 381-404

-396-

No

act

ive

rep

ort

58

,79,1

07

,136

,16

4

18

1.1

83

05

18

1

12

.580

Cy

clo

pen

tan

emet

hy

lam

ine

, 2

-iso

pro

py

lid

ene-

N,N

,5-

trim

eth

yl-

,

16

An

tio

xid

ant,

can

cer

pre

ven

tiv

e,n

emat

icid

e,hy

po

cho

lest

ero

lem

ic,

lub

rica

nt

[27

]

55

,60,7

3,8

3,9

7,1

15

,12

9,

14

3,1

57

,17

1,1

85,1

99

,21

1,2

28

22

8.2

08

93

22

8

12

.911

Tet

rad

ecan

oic

aci

d

17

No

act

ive

rep

ort

55

,69,8

1,9

5,1

09

,12

1,1

3

5,1

50,1

63

,178

,19

1,2

06

22

4.1

41

24

5

22

4

13

.209

Pp

rop

ioli

c ac

id , 3

-(1

-

hy

dro

xy

-2-i

sop

rop

yl-

5-

met

hy

lcy

clo

hex

yl)

-

18

No

act

ive

rep

ort

56

,68,1

24

,137

,16

7,1

92

21

0.1

36

82

7

21

0

13

.432

Ace

tam

ide

, N

-met

hy

l-

N-[

4-(

3-

hy

dro

xyp

yrr

oli

din

yl)

-2-

bu

tyn

yl]

-

19

No

act

ive

rep

ort

55

,67,8

1,9

3,1

09

,12

1

,13

6,1

61

,20

7,2

22

22

2.1

98

36

5

22

2

13

.787

6-e

pi-

shyo

bun

ol

20

Page 17: Gas chromatography mass spectrum and Fourier transform ...

World Scientific News 49(2) (2016) 381-404

-397-

An

ti-

ang

iog

enic

eff

ect

and

anti

-

tum

or

effi

cacy

[22

]

51

,65,7

7,9

3,1

05

,11

9,1

49

,165

,18

7,2

1

1,2

24,2

38

,267

,28

1,3

27

,35

5

35

5.1

06

92

4

35

5

14

.170

2,7

-Dip

hen

yl-

1,6

-

dio

xo

py

rid

azin

o[4

,5:2

',3']

pyrr

olo

[4',

5'-

d]p

yri

d

21

An

tim

icro

bia

l an

ti-

infl

amm

ato

ry

[29

]

55

,71,8

1,9

5,1

09

,12

3,

13

7,1

51

,17

9,2

78

29

6.3

07

91

7

29

6

14

.113

3,7

,11

,15

-

Tet

ram

eth

yl-

2-

hex

adec

an-1

-ol

22

An

ti-b

acte

rial

Ag

ents

.

[22

]

57

,67,8

0,9

4,1

09

,12

4,1

45

,

22

7,2

52

,27

7,3

03

61

5.2

96

30

3

61

5

14

.359

Par

om

om

yci

n

23

Fla

vo

rin

g a

gen

t ,

An

ti-

ox

idan

t .

[24

]

55

,69,8

3,9

7,1

11

,12

3,

13

7,1

92

,23

6,2

54

25

4.2

24

58

25

4

14

.502

Cis

-9-H

exad

ecen

oic

acid

24

An

tih

ista

min

ic,

An

tico

ron

ary

,

Inse

ctif

ug

e

,An

tiec

zem

ic,

[29

]

55

,67,7

9,9

3,1

07

,12

1,1

35,1

50

,163

,17

5,

19

4,2

07

,23

5,2

60

29

2.2

40

23

29

2

14

.748

γ-L

ino

len

ic a

cid ,

met

hy

l es

ter

25

Page 18: Gas chromatography mass spectrum and Fourier transform ...

World Scientific News 49(2) (2016) 381-404

-398-

An

ti-

arrh

yth

mic

acti

vit

ies

[22

]

57

,73,8

5,9

7,1

07

,12

9,

15

7,1

85

,21

3,2

41,2

56

25

6.1

82

71

4

25

6

14

.994

Est

ra-1

,3,5

(10

)-tr

ien

-

17

β-o

l

26

An

tim

icro

bia

l D

iure

tic

An

ti-

infl

amm

ato

ry A

nti

asth

ma

[30

;31]

55

,69,8

1,9

5,2

53

,36

7,4

00

,418

4

36

.31

887

4

43

6

15

.704

Eth

yl

iso

-all

och

ola

te

27

No

act

ive

rep

ort

55

,67,8

1,9

5,1

09

,12

1,1

50

,164

,20

5,2

20

,23

4,2

6

3,2

94

29

4.2

55

88

29

4

16

.173

7,1

0-O

ctad

ecad

ien

oic

acid

, m

eth

yl

este

r

28

No

act

ive

rep

ort

69

,81,9

5,1

05,1

21

,133

,16

1,1

75,2

03

,227

40

0.3

70

51

6

40

0

16

.310

Ch

ole

stan

-3-o

l,2

-

met

hy

len

e-,(

,5α

)-

29

Can

cer

pre

ven

tiv

e In

sect

ifu

ge

[32

]

60

,73,8

3,9

7,1

15

,12

9,1

43

,157

,

17

1,1

85

,19

9,2

27,2

41

,255

,28

4

28

4.2

71

53

28

4

16

.802

Oct

adec

ano

ic a

cid

30

Page 19: Gas chromatography mass spectrum and Fourier transform ...

World Scientific News 49(2) (2016) 381-404

-399-

No

act

ive

rep

ort

57

,70,8

8,1

30,1

66

,239

,28

1,3

38

33

8.1

99

42

9

33

8

19

.543

Str

ych

ane

, 1

-ace

tyl-

20

α-h

ydro

xy

-16

-

met

hy

len

e-

31

An

tica

nce

r, a

nti

arth

riti

c an

d

anti

-

infl

amm

ato

ry

[22

]

57

,71,1

12

,149

,16

7,2

23

,27

9,3

13

,32

8

48

7.1

63

10

1

48

7

20

.012

3',8

,8'-

Tri

met

hox

y-3

-pip

erid

yl-

2,2

'-

bin

aph

thal

ene-

1,1

',4,4

'-te

tra

32

Est

rog

enic

,

pro

ges

tero

gen

ic a

nd

an

ti-

infl

amm

ato

ry e

ffec

ts

[21

]

57

,69,9

5,1

35,1

87

,207

,22

9,

28

1,2

99

,31

4,3

56,3

95

,428

42

8.2

92

66

42

8

19

.761

Sp

iro

st-8

-en

-11

-on

e,3-

hy

dro

xy

-

,(3

β,5

α,1

,20

β,2

,25

R)

33

No

act

ive

rep

ort

55

,81,1

45

,161

,21

3,2

55

,

28

9,3

15

,38

2,4

00

40

0.3

70

51

6

40

0

27

.359

Cam

pes

tero

l

34

Page 20: Gas chromatography mass spectrum and Fourier transform ...

World Scientific News 49(2) (2016) 381-404

-400-

Table 2. FT-IR peak values of solid analysis of methanolic extract of Cressa cretica l.

Gro

up

fre

qu

ency

Fu

nct

ion

al

gro

up

ass

ign

men

t

Ty

pe

of

Vib

rati

on

Bo

nd

Ty

pe

of

Inte

nsi

ty

Co

rr.

Are

a

Are

a

Ba

se (

L)

Ba

se (

H)

Co

rr.

Inte

nsi

ty

Inte

nsi

ty

Pea

k (

Wa

ve

Nu

mb

er c

m-ˡ)

No.

65

0-1

000

Alk

enes

Ben

din

g

=C

–H

Str

on

g

0.2

58

5.5

35

64

8.6

8

68

6.6

6

2.5

13

70

.544

66

7.3

7

1.

65

0-1

000

Alk

enes

Ben

din

g

=C

–H

Str

on

g

0.1

96

5.5

77

70

5.9

5

75

0.3

1

2.1

56

72

.699

71

9.4

5

2.

65

0-1

000

Alk

enes

Ben

din

g

=C

–H

Str

on

g

0.1

02

1.9

67

86

0.2

5

88

5.3

3

1.8

79

82

.145

87

5.6

8

3.

10

20-1

25

0

alip

hat

ic

amin

es

Str

etch

C–

N

Med

ium

8.0

40

26

.632

92

7.7

6

08

3.9

9

15

.580

58

.525

10

26

.13

4.

10

20-1

25

0

alip

hat

ic

amin

es

Str

etch

C–

N

Med

ium

0.4

29

7.5

59

10

85

.92

13

9.9

3

2.5

04

68

.167

10

95

.57

5.

10

20-1

25

0

alip

hat

ic

amin

es

Str

etch

C–

N

Med

ium

0.2

43

4.2

58

11

41

.86

19

2.0

1

1.3

33

78

.651

11

47

.65

6.

10

20-1

25

0

alip

hat

ic

amin

es

Str

etch

C–

N

Med

ium

0.1

68

2.5

44

12

13

.23

1

25

3.7

3

1.2

10

85

.359

12

44

.95

7.

Page 21: Gas chromatography mass spectrum and Fourier transform ...

World Scientific News 49(2) (2016) 381-404

-401-

4. CONCLUSION

Cressa cretica Linn. is a native plant of Iraq. Thus the GC-MS analysis of methanolic

extract of leaves of this plant showed a highly complex profile containing approximately

thirty four components. It contain phytochemicals which may be useful for various herbal

formulation as anti-inflamatory, anti-bacterial, anti-fungal and others.

References

[1] Sahito, S.R.;Memon, M.A., Kazi, T.G. and Gazi, G.H. Evaluation of mineral Contents

in medicinal plant Azadirachta indica (neem). J. Chem. Soc. Pak. 25(2): 139-143, 2003.

[2] Barnes, J., Anderson, L.A. and Philipson, J.D. Herbal Medicines. A guide for

Healthcare Professionals, thirded. Pharmaceutical Press, London, 2007.

[3] Rani, S., Chaudhary, S., Singh, P., Mishra, G., Jha, K.K., and Khosa, R.L. Cressa

cretica Linn: An Important Medecinal Plant- A Review on Its Traditional Uses,

Phytochemical and Pharmacological Properties. J. Nat. Prod. Plant Resour., 1(1): 91-

100, 2011.

[4] Chaudhary, S., Khosa, R.L., Jha, K.K. and Verma, N. Evaluation of Activity of Cressa

cretica Linn in Alloxan Induced Diabetes in Rats. Pharmacology online 3: 181-188,

2010.

12

90-1

36

0

nit

ro c

om

po

un

ds

Sy

mm

etri

c st

retc

h

N–

O

Med

ium

0.2

03

2.3

94

12

94

.24

13

32

.81

2.7

53

84

.823

13

17

.83

8.

15

80

-1

65

0

amin

es

Ben

din

g

N–

H

Med

ium

0.0

22

2.3

94

15

81

.63

16

18

.28

1.1

93

82

.524

16

16

.35

9.

28

50-3

00

0

alk

anes

Str

etch

C-H

Med

ium

0.7

33

2.3

50

27

85

.21

28

73

.94

11

.744

82

.796

28

48

.86

10.

28

50-3

00

0

alk

anes

Str

etch

C-H

Med

ium

2.7

02

5.3

97

28

75

.86

29

83

.88

17

.023

77

.067

29

18

.30

11.

Page 22: Gas chromatography mass spectrum and Fourier transform ...

World Scientific News 49(2) (2016) 381-404

-402-

[5] Sunita, P., Jha, S. and Pattanayak, S.P. Anti-inflamatory and In-vivo Antioxidant

Activities of Cressa cretica Linn. A Halophytic Plant. Middle East Journal of Scientific

Research, 8(1): 129-140, 2011.

[6] Agha, F. Seasonal Variation in Productivity of Cressa cretica from costal Population

along the Arabian SEA. Pak. J. Bot., 41(6): 2883-2892, 2009.

[7] Ahmad, S.; Wariss, H.M.; Alam, K.; Anjum, S. and Mukhtar, M. Ethnobotanical

Studies of Plant Resources of Cholistan Desert, Pakistan, International Journal of

Science and Research (IJSR). Volume 3 Issue 6, 1782-1788, 2012.

[8] Thirunavukkarasu, P.; Ramanathan, T.; Manigandan, V.; Dinesh, P and Vasanthkumar,

A. and Kathiresan, K. Antimicrobial Effect of Costal Sand Dune Plant of Cressa cretica

.Inventi Journal. Vol. 2013, Issue 4, 3, 2013.

[9] Rizk A.M. and El-Ghazaly, G.A. Medicinal and Poisonou Plants of Qatar (Univercity of

Qatar, Scientific and Applied Research Center, Qatar, UAE. Robertson DG (2005).

Metabonomics in toxicology: A review. Toxicol. Sci. 85:809-822. 1995.

[10] Balasubramanian, S., Eyapaul, U., Bosco, A.J. and Kala, S.M. Green Synthesisof Silver

Nanoparticles Using Cressa Cretica Leaf Extract and its Antibacterial Efficacy.

International Journal of Advanced Chemical Science and Applications (IJACSA).

Volume 3, Issue 1, 65-71, 2015.

[11] Fernie, A.R.; Trethewey, R.N.; Krotzky, A.J. And W illmitzer, L. Innovation –

Metabolite profiling: from diagnostics to systems biology. Nat. Rev. Mol. Cell Biol. 5:

763-769, 2004.

[12] Kell, D.B.; Brown, M.; Davey H.M.; Dunn W. B.;Spasic I.;Oliver, S.G; Metabolic

footprinting and systems biology: The medium is the message. Nat. Rev. Microbiol. 3:

557-565, 2005.

[13] Robertson, D.G. Metabonomics in toxicology: A review. Toxicol. Sci. 85: 809-822,

2005.

[14] Kayarohanam, S. and Kavimani, S. (2015). Quantitative Phytochemical and GC-MS

analysis of Leaf and Bark Extract of Dolichandrone Atrovirens. International Reaserch

Journal of Pharmacy, 6(4). 219-222.

[15] Surewicz ,W. K.; Mantsch H.H and Chapman, D (1993). Determination of protein

secondary structure by fourier transform infrared spectroscopy: A Critical Assessment.

Biochemistry 32(2): 389-393.

[16] Imad, H.H.; Huda J, Muhanned A. Kand Ameera, O.H. Alkaloid constitution of

Nerium oleander by using gas chromatography- mass specroscopy (GC-MS). J. Med.

Plants Res. 9(9): 326-334. 2015a.

[17] Imad, H.;Muhanned, A.;Aamera, J and Cheah Y . Analysis of eleven Y- chromosomal

STR markers in middle and south of Iraq. African J. Biotechnol. 13(38): 3860-3871,

2014.

[18] Imad, H.H.; Mohammed, A.J.and Muhanned, A.K . Forensic analysis of mitochondrial

DNA hypervariable region HVII (encompassing nucleotide positions 37 to 340) and

HVIII (encompassing nucleotide positions 438-574) and evaluate the importance of

Page 23: Gas chromatography mass spectrum and Fourier transform ...

World Scientific News 49(2) (2016) 381-404

-403-

these variable positions for forensic genetic purposes. Afr. J. Biotechnol. 14(5): 365-

375, 2015b.

[19] Mohammed A.J.; Imad H.H and Muhanned, A.K . Detection of New Variant “Off-

ladder” at the (D12S391, D19S433 and D1S1656 loci) and Tri-allelic Pattern at the

D16S539 Locus in a 21 Locus Autosomal Short Tandem Repeat Database of 400 Iraqi

Individuals. Afr. J. Biotechnol. 14(5): 375-399, 2015.

[20] Imad, H.H.; Muhanned, A.K. and Rafid H.H . X-chromosome short tandem repeat,

advantages and typing technology review. Afr. J. Biotechnol. 14(7): 535-541, 2015c.

[21] Hussein, J.H.; Hadi M. Y.; Hameed, I. H. Study of chemical composition of Foeniculum

vulgare using Fourier transform infrared spectrophotometer and Gas chromatography -

mass spectrometry. Journal of Pharmacognosy and Phytotherapy, Vol. 8(3), pp. 60-89,

2016.

[22] Al-Tameme, H.J.; Hameed, I.H; Idan, S.A. and Hadi, M.Y. Biochemical analysis of

Origanum vulgare seeds by fourier-transform infrared (FT-IR) spectroscopy and gas

chromatography-mass spectrometry (GC-MS). Journal of Pharmacognosy and

Phytotherapy. Vol. 7(9), pp. 221-237, 2015.

[23] Hussein, A.O.; Mohammed GJ, Hadi MY, and Hameed IH Phytochemical screening of

methanolic dried galls extract of Quercus infectoria using gaschromatography-mass

spectrometry (GC-MS) and Fourier transform-infrared (FT-IR). Journal of

Pharmacognosy and Phytotherapy , Vol. 8(3), pp. 49-59, 2016.

[24] Kumar S., Samydurai P.; Ramakrishnan, R. and Nagarajan, N. Gaschromatography and

Mass spectrometry Analysis of Bioactive Constuents of Adiantum Capillus-Veneris L.

Int J Pharm Pharm Sci, Vol. 6, Issue 4, 60-63, 2014.

[25] Pirzada, A.J.; Shaikh, W.; Ghani, K.U. and Laghari, K.A. Study of antifungal activity

and some basic elements of medicinal plant Cressa cretica Linn against fungi causing

skin dieseases. Sindh Univ. Res. Jour. (Sci. Ser.) Vol. 41(2) 15-20, 2009.

[26] Gopalakrishnan S. GC-MS analysis of some bioactive constituents of mussaenda

frondosa Lnn. International Journal of Pharma and BioSciences .Vol. 2. Issue 1, 313-

320, 2011.

[27] Krishnaveni, M. Docking, Simulation Studies of Desulphosinigrin – Cyclin Dependent

Kinase 2, an Anticancer Drug Target Int. J. Pharm. Sci. Rev. Res., 30(2); Article No.

19, Pages: 115-118, 2016.

[28] Espinoza, L., Taborga, L., Díaz,L. Olea, A.F. and Peña-Cortés. H. Synthesis of Linear

Geranylphenols and Their Effect on Mycelial Growth of Plant Pathogen Botrytis

cinerea. Molecules, 19, 1512-1526, 2014.

[29] Sudha, T.; Chidambarampillai, S. and Mohan, V.R. GC-MS Analysis of Bioactive

Components of Aerial parts of Fluggea leucopyrus Willd. (Euphorbiaceae) Journal of

Applied Pharmaceutical Science Vol. 3(05), pp. 126-130, 2013.

[30] Muthulakshmi, A., Jothibai Margret, R .and Mohan, V.R. GC-MS Analysis of Bioactive

Components of Feronia elephantum Correa (Rutaceae). Journal of Applied

Pharmaceutical Science 02 (02); 2012: 69-74, 2012.

Page 24: Gas chromatography mass spectrum and Fourier transform ...

World Scientific News 49(2) (2016) 381-404

-404-

[31] Idan, S.A.; Al-Marzoqi, A.H. and Hameed, I.H. Spectral analysis and anti-bacterial

activity of methanolic fruit extract of Citrullus colocynthis using gas chromatography-

mass spectrometry. African Journal of Biotechnology. Vol. 14(46), pp. 3131-3158,

2015.

[32] Ananthi, P and Kumari, B.D. GC – MS Determination of Bioactiv Components of

Rorippa indica L.. International Journal of ChemTech Research. Vol. 5, No. 4, pp.

2027-2033, 2013.

( Received 23 May 2016; accepted 11 June 2016 )