Top Banner
Dong-han Yeom Fuzzy Euclidean wormholes in de Sitter space Leung Center for Cosmology and Particle Astrophysics, National Taiwan University
33

Fuzzy Euclidean wormholes in de Sitter space

Nov 01, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Fuzzy Euclidean wormholes in de Sitter space

Dong-han Yeom

Fuzzy Euclidean wormholes in

de Sitter space

Leung Center for Cosmology and Particle Astrophysics, National Taiwan University

Page 2: Fuzzy Euclidean wormholes in de Sitter space

Quantum cosmology

We want to understand the initial singularity

Page 3: Fuzzy Euclidean wormholes in de Sitter space

Two approaches

1. The resolved initial singularity induces an effective classical

geometry, e.g., a big-bounce.

2. The resolved initial singularity becomes a wave function and

the initial condition is a superposition of various initial

conditions.

Page 4: Fuzzy Euclidean wormholes in de Sitter space

Question

1. Typical interpretation of LQC corresponds a big bounce model.

2. Typical interpretation of WDW wave function, e.g., Hartle-

Hawking wave function, corresponds a superposition model.

Is there any correspondence between both pictures?

Page 5: Fuzzy Euclidean wormholes in de Sitter space

In case of HH wave function

Usually interpreted by superposition

Hartle and Hertog, 2015

Page 6: Fuzzy Euclidean wormholes in de Sitter space

In case of HH wave function

However, what if there is a conspiracy?

Page 7: Fuzzy Euclidean wormholes in de Sitter space

Euclidean wormhole as a clue

Euclidean wormhole can give a conspiracy between a

contracting phase and a specific expanding phase

Chen, Hu and Yeom, 2016

Page 8: Fuzzy Euclidean wormholes in de Sitter space

Euclidean quantum cosmology

The Hartle-Hawking wave function

minisuperspace:

eqns of motion:

Page 9: Fuzzy Euclidean wormholes in de Sitter space

Classicality

Due to the analyticity, all functions can be complexified.

However, after a sufficient Lorentzian time, every

functions should be realized: classicality.

Within this classicality, we are allowed to use complex-

valued functions.

Page 10: Fuzzy Euclidean wormholes in de Sitter space

Euclidean wormhole

Initial conditions (2 x 2 x 2 conditions)

Page 11: Fuzzy Euclidean wormholes in de Sitter space

Euclidean wormhole

An example of the wormhole solution

Page 12: Fuzzy Euclidean wormholes in de Sitter space

Euclidean wormhole

An example of the wormhole solution

poles

classicalizeddirections

Page 13: Fuzzy Euclidean wormholes in de Sitter space

Euclidean wormhole

Along a certain Euclidean and Lorentzian contour

Page 14: Fuzzy Euclidean wormholes in de Sitter space

Interpretations

Duality between β€˜two time arrows’ and β€˜one time arrow’

Page 15: Fuzzy Euclidean wormholes in de Sitter space

Probability

Sometimes, more probable than the Hawking-Moss instantons

Page 16: Fuzzy Euclidean wormholes in de Sitter space

Bridge between two interpretations

If we interpret this as two arrows, then it corresponds the

superposition picture.

If we interpret this as one arrow, then it corresponds the quantum

big bounce.

Page 17: Fuzzy Euclidean wormholes in de Sitter space

Question 1

Can this duality between the quantum big bounce and the

superposition picture be applied for LQC?

Page 18: Fuzzy Euclidean wormholes in de Sitter space

Question 2

Can this big bounce or conspiracy between the contracting and

the bouncing phase be applied for black hole cases?

Page 19: Fuzzy Euclidean wormholes in de Sitter space

Euclidean path-integral

𝒇 π’Š = π’Šβ†’π’‡π’‹π‘«π’ˆπ‘«π“π’†π’Šπ‘Ί path integral as a propagator

|π’‡βŸ© =

𝒋

𝒂𝒋|π’‡π’‹βŸ©

Page 20: Fuzzy Euclidean wormholes in de Sitter space

Euclidean path-integral

𝒇 π’Š = π’Šβ†’π’‡π’‹π‘«π’ˆπ‘«π“π’†βˆ’π‘Ίπ‘¬ Euclidean analytic continuation

|π’‡βŸ© =

𝒋

𝒂𝒋|π’‡π’‹βŸ©

Page 21: Fuzzy Euclidean wormholes in de Sitter space

Euclidean path-integral

𝒇 π’Š = π’Šβ†’π’‡π’‹π‘«π’ˆπ‘«π“π’†βˆ’π‘Ίπ‘¬

β‰… π’Šβ†’π’‡π’‹ π’†βˆ’π‘Ίπ‘¬π¨π§βˆ’π¬π‘πžπ₯π₯

steepest-descent approximation

need to find/sum instantons

|π’‡βŸ© =

𝒋

𝒂𝒋|π’‡π’‹βŸ©

Page 22: Fuzzy Euclidean wormholes in de Sitter space

Understanding black hole evolution

|π’ŠβŸ©

𝒇 π’Š = π’Šβ†’π’‡π’‹π‘«π’ˆπ‘«π“π’†βˆ’π‘Ίπ‘¬

Page 23: Fuzzy Euclidean wormholes in de Sitter space

Understanding black hole evolution

|π’ŠβŸ©

|π’‡πŸβŸ©π’‡ π’Š = π’Šβ†’π’‡π’‹π‘«π’ˆπ‘«π“π’†

βˆ’π‘Ίπ‘¬

Page 24: Fuzzy Euclidean wormholes in de Sitter space

Understanding black hole evolution

|π’ŠβŸ©

|π’‡π’‹βŸ©β€¦

|π’‡βŸ© =

𝒋

𝒂𝒋|π’‡π’‹βŸ©

𝒇 π’Š = π’Šβ†’π’‡π’‹π‘«π’ˆπ‘«π“π’†βˆ’π‘Ίπ‘¬

Hartle and Hertog, 2015

|π’‡πŸβŸ©

Page 25: Fuzzy Euclidean wormholes in de Sitter space

Understanding black hole evolution

|π’ŠβŸ©

|π’‡π’‹βŸ©β€¦

|π’‡πŸβŸ©π’‡ π’Š = π’Šβ†’π’‡π’‹π‘«π’ˆπ‘«π“π’†

βˆ’π‘Ίπ‘¬

|π’‡βŸ© =

𝒋

𝒂𝒋|π’‡π’‹βŸ©

Page 26: Fuzzy Euclidean wormholes in de Sitter space

Understanding black hole evolution

𝒇 π’Š β‰… π’Šβ†’π’‡π’‹ π’†βˆ’π‘Ίπ‘¬π¨π§βˆ’π¬π‘πžπ₯π₯

|π’ŠβŸ©

|π’‡π’‹βŸ©β€¦

|π’‡πŸβŸ©

Euclidean

Lorentzian

Lorentzian

|π’‡βŸ© =

𝒋

𝒂𝒋|π’‡π’‹βŸ©

Page 27: Fuzzy Euclidean wormholes in de Sitter space

Understanding black hole evolution

|π’‡βŸ© =

𝒋

𝒂𝒋|π’‡π’‹βŸ©

𝒇 π’Š β‰… π’Šβ†’π’‡π’‹ π’†βˆ’π‘Ίπ‘¬π¨π§βˆ’π¬π‘πžπ₯π₯ |π’‡π’‹βŸ©

…|π’‡πŸβŸ©

Euclidean

Lorentzian

Lorentzian

If there is a trivial geometry,

then every correlations will be recovered by

the geometry.

Information exists in the wave function.

|π’ŠβŸ©

Page 28: Fuzzy Euclidean wormholes in de Sitter space

Understanding black hole evolution

𝒇 π’Š β‰… π’Šβ†’π’‡π’‹ π’†βˆ’π‘Ίπ‘¬π¨π§βˆ’π¬π‘πžπ₯π₯

|π’ŠβŸ©

|π’‡πŸβŸ©If one follows only one dominant history,

then information cannot be recovered,

though GR and local QFT can be satisfied.

β€œEffective loss of information”

Page 29: Fuzzy Euclidean wormholes in de Sitter space

Asymptotic picture of LQG?

|π’ŠβŸ©

|π’‡π’‹βŸ©β€¦

|π’‡βŸ© =

𝒋

𝒂𝒋|π’‡π’‹βŸ©

|π’‡πŸβŸ©

Christodoulou, Rovelli, Speziale and Vilensky, 2016

Page 30: Fuzzy Euclidean wormholes in de Sitter space

Interior picture of instantons

Christodoulou, Rovelli, Speziale and Vilensky, 2016

Page 31: Fuzzy Euclidean wormholes in de Sitter space

Interior picture of instantons

In the Euclidean picture, such an instanton is not well-behaved, and hence it is not easy to give a proper tunneling rate.

However, what if there is a conspiracy? Then it can explain the internal bounce picture!

Page 32: Fuzzy Euclidean wormholes in de Sitter space

Question 3

Non-unitarity of the entire universe, if there are two arrows of time.

Page 33: Fuzzy Euclidean wormholes in de Sitter space

Conclusion

1. There are various kind of Euclidean wormhole solutions that

may be more important than the Hawking-Moss instantons.

2. Euclidean wormholes can be interpreted both ways, either

quantum big bounce (one arrow) or superposition (two

arrows).

3. If this β€˜duality’ of time arrows are very fundamental, then it will

have very profound implications.