Top Banner
Fundamentals of Photonics Bahaa E. A. Saleh, Malvin Carl Teich 송석호 Physics Department (Room #36-401) 2220-0923, 010-4546-1923, [email protected] http://optics.hanyang.ac.kr/~shsong Midterm Exam 30%, Final Exam 30%, Homework 20%, Attend 10%
31

Fundamentals of Photonics...(Fresnel) Transverse Wave, Polarization Interference (Young) Light & Magnetism (Faraday) EM Theory (Maxwell) Rejection of Ether, Early QM (Poincare, Einstein)

Jan 27, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • Fundamentals of PhotonicsBahaa E. A. Saleh, Malvin Carl Teich

    송 석 호

    Physics Department (Room #36-401)2220-0923, 010-4546-1923, [email protected]

    http://optics.hanyang.ac.kr/~shsong

    Midterm Exam 30%, Final Exam 30%, Homework 20%, Attend 10%

  • < 1/4> Course outline

  • (Supplements)

    From Maxwell Eqs to wave equations

    Optical properties of materials

    Optical properties of metals

    < 2/4> Course outline

  • < 3/4> Course outline

  • < 4/4> Course outline

  • Optics

  • Also, see Figure 2-1, Pedrotti

  • (Genesis 1-3) And God said, "Let there be light," and there was light.

  • A Bit of History

    1900180017001600 200010000-1000

    “...and the foot of it of brass, of the lookingglasses of the women

    assembling,” (Exodus 38:8)

    Rectilinear Propagation(Euclid)

    Shortest Path (Almost Right!)(Hero of Alexandria)

    Plane of IncidenceCurved Mirrors(Al Hazen)

    Empirical Law of Refraction (Snell)

    Light as PressureWave (Descartes)

    Law of LeastTime (Fermat)

    v

  • More Recent History

    2000199019801970196019501940193019201910

    Laser(Maiman)

    Quantum Mechanics

    Optical Fiber(Lamm)

    SM Fiber(Hicks)

    HeNe(Javan)

    Polaroid Sheets (Land)Phase Contrast (Zernicke)

    Holography (Gabor)

    Optical Maser(Schalow, Townes)

    GaAs(4 Groups)

    CO2(Patel)

    FEL(Madey)

    Hubble Telescope

    Speed/Light (Michaelson)

    Spont. Emission (Einstein)

    Many New Lasers

    Erbium Fiber Amp

    Commercial Fiber Link (Chicago)

    (Chuck DiMarzio, Northeastern University)

  • Let’s warm-up

    일반물리

    전자기학

  • Question

    How does the light propagate through a glass medium?

    (1) through the voids inside the material.(2) through the elastic collision with matter, like as for a sound.(3) through the secondary waves generated inside the medium.

    Construct the wave front tangent to the wavelets

    Secondaryon-going wave

    Primary incident wave

    What about –r direction?

  • Electromagnetic Waves

    0εQAdE =⋅∫

    rr

    0=⋅∫ AdBrr

    dtdsdE BΦ−=⋅∫

    rr

    dtdisdB EΦμε+μ=⋅∫ 000

    rr

    Gauss’s Law

    No magnetic monopole

    Faraday’s Law (Induction)

    Ampere-Maxwell’s Law

    Maxwell’s Equation

  • Maxwell’s Equation

    Gauss’s Law

    No magnetic monopole

    Faraday’s Law (Induction)

    Ampere-Maxwell’s Law

    ∫∫∫ ερ

    =⋅∇=⋅ dvdvEAdE0

    rrrr

    0=⋅∇=⋅ ∫∫ dvBAdBrrrr

    ∫∫∫ ⋅−=⋅×∇=⋅ AdBdtdAdEsdE

    rrrrrrr

    ∫∫

    ∫∫

    ⋅εμ+⋅μ=

    Φεμ+μ=⋅×∇=⋅

    AdEdtdAdj

    dtdiAdBsdB E

    rrrr

    rrrrr

    000

    000

    tEjB∂∂

    εμ+μ=×∇r

    rrr000

    djtE rr

    =∂∂

    ε0 ( )djjBrrrr

    +μ=×∇ 0

    0ερ

    =⋅∇ Err

    0=⋅∇ Brr

    tBE∂∂

    −=×∇r

    rr⇒

  • Wave equations

    tBE∂∂

    −=×∇r

    rr

    tEB∂∂

    =×∇r

    rr00εμ

    ( ) ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛∂∂

    −∂∂

    =×∇∂∂

    =×∇×∇tB

    tE

    tB

    rrrrrr

    0000 εμεμ

    ( ) BB rrrr 2−∇=×∇×∇ kzjyix ˆˆˆ ∂∂

    +∂∂

    +∂∂

    =∇r

    ( ) ( ) BBBB rrrrrrrr 22 −∇=∇−⋅∇∇=×∇×∇( ) ( ) ( )CBABCACBA rrrrrrrrr ⋅−⋅=××

    2

    2

    002

    tBB

    ∂∂

    =∇r

    rεμ

    2

    2

    002

    tEE

    ∂∂

    =∇r

    rεμ

    022

    002

    2

    =∂∂

    −∂∂

    tB

    xB εμ

    022

    002

    2

    =∂∂

    −∂∂

    tE

    xE εμ

    Wave equations

    In vacuum

  • Scalar wave equation

    2 2

    0 02 2 0x tμ ε∂ Ψ ∂ Ψ− =

    ∂ ∂

    0 cos( )kx tωΨ = Ψ −

    02002 =ωεμ−k cvk

    ≡==00

    1εμ

    ωSpeed of Light

    smmc /103sec/1099792.2 88 ×≈×=

  • Transverse Electro-Magnetic (TEM) waves

    BEtEB

    rrr

    rr⊥⇒

    ∂∂

    εμ−=×∇ 00

    Electromagnetic Wave

  • Energy carried by Electromagnetic Waves

    Poynting Vector : Intensity of an electromagnetic wave

    BESrrr

    ×=0

    2

    0

    2

    0

    0

    1

    1

    BcEc

    EBS

    μ=

    μ=

    μ=

    (Watt/m2)

    ⎟⎠⎞

    ⎜⎝⎛ = c

    EB

    202

    1 EuE ε=Energy density associated with an Electric field :

    2

    021 BuB μ

    =Energy density associated with a Magnetic field :

  • n1n2

    Reflection and Refraction

    11 θ′=θReflected ray

    Refracted ray 2211 sinsin θθ nn =

    Smooth surface Rough surface

  • Reflection and Refraction

    00

    )()(

    )(εμλμε

    λλ ==

    vcnIn dielectric media,

    (Material) Dispersion

  • Interference & Diffraction

  • Reflection and Interference in Thin Films

    • 180 º Phase changeof the reflected light by a media with a larger n

    • No Phase changeof the reflected light by a media with a smaller n

  • Interference in Thin Films

    tn1

    Phase change: π

    n2 Phase change: π

    n2 > n1

    λ=λ==δ1

    12

    nmmt n

    Bright ( m = 1, 2, 3, ···)

    ( ) ( )λ+=λ+==δ1

    21

    21

    12

    nmmt n

    Bright ( m = 0, 1, 2, 3, ···)

    tnPhase change: π

    No Phase change

    ( ) ( )λ+=λ+==δn

    mmt n 21

    212

    λ=λ==δnmmt n2

    Bright ( m = 0, 1, 2, 3, ···)

    Dark ( m = 1, 2, 3, ···)

  • Interference Young’s Double-Slit Experiment

  • Interference

    The path difference

    λ=θ=δ msind( )λ+=θ=δ 21msind

    ⇒ Bright fringes m = 0, 1, 2, ····

    ⇒ Dark fringes m = 0, 1, 2, ····

    The phase differenceλ

    θπ=π⋅

    λδ

    =φsind22

    θ=−=δ sindrr 12

  • Hecht, Optics, Chapter 10

    Diffraction

  • Diffraction

  • Diffraction Grating

  • Diffraction of X-rays by Crystals

    d

    θθ

    θ

    dsinθ

    Incidentbeam

    Reflectedbeam

    λθ md =sin2 : Bragg’s Law

  • Regimes of Optical Diffraction

    d > λ

    Far-fieldFraunhofer

    Near-fieldFresnel

    Evanescent-fieldVector diffraction