Top Banner
Functional Brain Signal Processing: EEG & fMRI Lesson 15 Kaushik Majumdar Indian Statistical Institute Bangalore Center [email protected] .in M.Tech. (CS), Semester III, Course B50
19

Functional Brain Signal Processing: EEG & fMRI Lesson 15

Jan 01, 2016

Download

Documents

hashim-reed

M.Tech. (CS), Semester III, Course B50. Functional Brain Signal Processing: EEG & fMRI Lesson 15. Kaushik Majumdar Indian Statistical Institute Bangalore Center [email protected]. Poldrack et al., 2011, Section 6.1. Group Statistics: An Example. Fixed Effect vs. Mixed Effect Model. - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Functional Brain Signal Processing: EEG & fMRI Lesson 15

Functional Brain Signal Processing: EEG & fMRI

Lesson 15

Kaushik Majumdar

Indian Statistical Institute Bangalore Center

[email protected]

M.Tech. (CS), Semester III, Course B50

Page 2: Functional Brain Signal Processing: EEG & fMRI Lesson 15

Group Statistics: An Example

Poldrack et al., 2011, Section 6.1

Page 3: Functional Brain Signal Processing: EEG & fMRI Lesson 15

Fixed Effect vs. Mixed Effect Model

2 210.25

4FFX w is fixed effect variance in average hair length in a gender group. is within group variance, which is assumed to be 1 here.

FFXw

2 22 1 49

12.54 4 4 4w B

MFX

is the average mixed effect variance, where is the between the groups variance.

MFXB

Page 4: Functional Brain Signal Processing: EEG & fMRI Lesson 15

Mixed Effect Model in fMRI

Poldrack et al., 2011

Here β = a.

Page 5: Functional Brain Signal Processing: EEG & fMRI Lesson 15

Linear Regression Analysis

http://en.wikipedia.org/wiki/File:Linear_regression.svg

Page 6: Functional Brain Signal Processing: EEG & fMRI Lesson 15

Multilevel GLM for Group Analysis

k k k k Y M a e Yk is a vector of T time points. k є {1,…..,N},

where N is the number of subjects in the group.Mk is the design matrix of model functions andek is the error vector (for the kth subject with one

element in the vector for each time point. ( ) 0,cov( )k k kE V e e

1 1 1 1

2 2

0 0 . . .

0 0 . . . . .

. 0 0 . . . . . ., , ,

. . . . . . . . .

. . . . . . . . .

0 0 . . .N N N N

Y M a e

Y M

Y M a e

Y M a e

Page 7: Functional Brain Signal Processing: EEG & fMRI Lesson 15

Two Level Model

Level 1: individual analysis

Level 2: group analysis

Y Ma e

G G a M a dMG is the group level design matrix, aG is a vector of group level parameters d is the residual vector of group level parameters.

( ) 0

cov( )

cov( )G

E

d

d V

e V

Beckmann et al., 2003

(1)

Page 8: Functional Brain Signal Processing: EEG & fMRI Lesson 15

Two Level Model as A Single Level Model

, ( ) 0, cov( )

G G

TGE

Y MM a f

f Md e f f W MV M V

This is equivalent to the two level model described in the previous slide.

Page 9: Functional Brain Signal Processing: EEG & fMRI Lesson 15

Parameter Estimation at Two Levels

Linear spaces generated by the columns of M and MTM are the same (Rao, 1974, p. 222).

Proof: Let λ be an eigenvalue of M. Then there is an eigenvector v such that Mv = λv or M = λI MT = λI. So, MTMv = MTλv = λ2v. In other words M and MTM have same eigenvectors and therefore generate the same eigen space.

Page 10: Functional Brain Signal Processing: EEG & fMRI Lesson 15

Parameter Estimation (cont)

In general Y = Ma may be inconsistent (may not have unique solution), but MTMa = MTY always has a unique solution in a, because MTY is in the space generated by columns of MTM. Let â be a solution of MTMa = MTY, then (Y – Ma)T(Y – Ma) = [Y – Mâ + M(â – a)]T[Y – Mâ + M(â – a)] = (Y – Mâ)T(Y – Mâ) + (â – a)TMTM(â – a) ≥ (Y – Mâ)T(Y – Mâ).

This shows that the minimum of (Y – Ma)T(Y – Ma) is (Y – Mâ)T(Y – Mâ) and is attained for

Page 11: Functional Brain Signal Processing: EEG & fMRI Lesson 15

Parameter Estimation (cont)

a = â, which is unique for all solutions â of MTMa = MTY.

Page 12: Functional Brain Signal Processing: EEG & fMRI Lesson 15

Solution for Two Level GL Model

1 1 1

2 1 1

ˆ ( )

ˆ ˆ ( )

T T

T T

a M V M M V Y

aa M V M For individual.

1 1 1

2 1 1

ˆ ˆ( )

ˆ ˆ ( )

T TG G G G G G

T TG G G G G G

a M V M M M a

a a M V M For group.

1ˆ ˆ

G G a M a f This together with (1) gives the second level estimation of the parameters.

Page 13: Functional Brain Signal Processing: EEG & fMRI Lesson 15

Inference of BOLD Activation

Poldrack et al., 2011

Page 14: Functional Brain Signal Processing: EEG & fMRI Lesson 15

Nature of BOLD Signal

Buxton, 2009

CBF = Cerebral blood flow.CMRO2 = Cerebral metabolic rate of O2.CBV = Cerebral blood volume.

Page 15: Functional Brain Signal Processing: EEG & fMRI Lesson 15

BOLD Components

BOLD response is primarily driven by CBF, but also strongly modulated by two other factors:

, and

M, which reflects level of deoxyhemoglobin at the baseline.

2

Fractional CBF changen

Fractional CMRO change

Page 16: Functional Brain Signal Processing: EEG & fMRI Lesson 15

BOLD is Best Captured in Gradient Recall Echo (GRE) Imaging

Buxton, 2009

Page 17: Functional Brain Signal Processing: EEG & fMRI Lesson 15

References

R. A. Poldrack, J. A. Mumford and T. E. Nichols, Handbook of Functional MRI Data Analysis, Cambridge University Press, Cambridge, New York, 2011. Chapter 6.

C. F. Beckmann, M. Jenkinson and S. M. Smith, General multilevel linear modeling for group analysis in fMRI, NeuroImage, 20: 1052 – 1063, 2003.

Page 18: Functional Brain Signal Processing: EEG & fMRI Lesson 15

References (cont)

C. R. Rao, Linear Statistical Inference and Its Applications, 2e, Wiley Eastern Ltd., New Delhi, 1974, Chapter 4 (Theory of least squares and analysis of variance).

Page 19: Functional Brain Signal Processing: EEG & fMRI Lesson 15

THANK YOU

This lecture is available at http://www.isibang.ac.in/~kaushik