Top Banner
Functional Brain Signal Processing: EEG & fMRI Lesson 13 Kaushik Majumdar Indian Statistical Institute Bangalore Center [email protected] .in M.Tech. (CS), Semester III, Course B50
15

Functional Brain Signal Processing: EEG & fMRI Lesson 13 Kaushik Majumdar Indian Statistical Institute Bangalore Center [email protected] M.Tech.

Jan 03, 2016

Download

Documents

Doreen Hoover
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Functional Brain Signal Processing: EEG & fMRI Lesson 13 Kaushik Majumdar Indian Statistical Institute Bangalore Center kmajumdar@isibang.ac.in M.Tech.

Functional Brain Signal Processing: EEG & fMRI

Lesson 13

Kaushik Majumdar

Indian Statistical Institute Bangalore Center

[email protected]

M.Tech. (CS), Semester III, Course B50

Page 2: Functional Brain Signal Processing: EEG & fMRI Lesson 13 Kaushik Majumdar Indian Statistical Institute Bangalore Center kmajumdar@isibang.ac.in M.Tech.

Different MRI Image Types

Poldrack et al., 2011

Page 3: Functional Brain Signal Processing: EEG & fMRI Lesson 13 Kaushik Majumdar Indian Statistical Institute Bangalore Center kmajumdar@isibang.ac.in M.Tech.

Flow Chart of fMRI Processing Steps

Poldrack et al., 2011

Spatial normalization in case of group analysis of fMRI

Page 4: Functional Brain Signal Processing: EEG & fMRI Lesson 13 Kaushik Majumdar Indian Statistical Institute Bangalore Center kmajumdar@isibang.ac.in M.Tech.

Spatial Smoothing: Filtering out High-Frequency Components

Removal of high-frequency components enhances SNR at the larger spatial scale. Most fMRI analyses are performed across multiple neighboring voxels.

Noisy acquisition in smaller voxels can be smoothed out by spatial smoothing (performed, for example, by convolution with a suitable window function).

Page 5: Functional Brain Signal Processing: EEG & fMRI Lesson 13 Kaushik Majumdar Indian Statistical Institute Bangalore Center kmajumdar@isibang.ac.in M.Tech.

Spatial Smoothing (cont)

During group analysis of fMRI data spatial smoothing helps even out small individual differences, which interfere with the general (group) trend to be studied. All of these are not taken care of in usual spatial normalization.

Some analysis methods (like, Gaussian random field) require smoothing.

Page 6: Functional Brain Signal Processing: EEG & fMRI Lesson 13 Kaushik Majumdar Indian Statistical Institute Bangalore Center kmajumdar@isibang.ac.in M.Tech.

Amount of Spatial Smoothing

Spatial smoothing is often achieved by convolution with a Gaussian kernel function with standard deviation σ. In that case the amount of spatial smoothing is “Full width at half maximum” (FWHM) = σ√(2ln2) = 2.55σ.

Also FWHM = √(FWHMintrinsic2 + FWHMqpplied

2).

Page 7: Functional Brain Signal Processing: EEG & fMRI Lesson 13 Kaushik Majumdar Indian Statistical Institute Bangalore Center kmajumdar@isibang.ac.in M.Tech.

Effect of Smoothing with Different Applied FWHM Values

Poldrack et al., 2011

Page 8: Functional Brain Signal Processing: EEG & fMRI Lesson 13 Kaushik Majumdar Indian Statistical Institute Bangalore Center kmajumdar@isibang.ac.in M.Tech.

Spatial Normalization or Intersubject Registration

There is considerable variation in minute detail, shape and size of the brain across individuals. In order to locate functional activities to specific regions of the brain, irrespective of individual differences, intersubject 3D fMR image registration need to be performed. This is called spatial normalization.

See for detail Chapter 4 of Poldrack et al., 2011.

Page 9: Functional Brain Signal Processing: EEG & fMRI Lesson 13 Kaushik Majumdar Indian Statistical Institute Bangalore Center kmajumdar@isibang.ac.in M.Tech.

Talairach Coordinate

Poldrack et al., 2011

Page 10: Functional Brain Signal Processing: EEG & fMRI Lesson 13 Kaushik Majumdar Indian Statistical Institute Bangalore Center kmajumdar@isibang.ac.in M.Tech.

Anatomical Landmarks

http://ja.m.wikipedia.org/wiki/%E3%83%95%E3%82%A1%E3%82%A4%E3%83%AB:Gray726_central_sulcus.svg

Page 11: Functional Brain Signal Processing: EEG & fMRI Lesson 13 Kaushik Majumdar Indian Statistical Institute Bangalore Center kmajumdar@isibang.ac.in M.Tech.

Automated Registration

MNI305 template – created by anatomical registration of 305 brains in Talairach atlas and then taking the average across all 305 brains.

MNI305 is the most widely used template in use today. Activities of a brain under study are directly mapped on this template.

This template is based on white Caucasian brains and therefore not ideal in shape and size for many other brains, such as south-east Asian brains.

Page 12: Functional Brain Signal Processing: EEG & fMRI Lesson 13 Kaushik Majumdar Indian Statistical Institute Bangalore Center kmajumdar@isibang.ac.in M.Tech.

Spatial Normalization Steps

Poldrack et al., 2011

Page 13: Functional Brain Signal Processing: EEG & fMRI Lesson 13 Kaushik Majumdar Indian Statistical Institute Bangalore Center kmajumdar@isibang.ac.in M.Tech.

Parametric Transformations

Poldrack et al., 2011

Page 14: Functional Brain Signal Processing: EEG & fMRI Lesson 13 Kaushik Majumdar Indian Statistical Institute Bangalore Center kmajumdar@isibang.ac.in M.Tech.

References

R. A. Poldrack, J. A. Mumford and T. E. Nichols, Handbook of Functional MRI Data Analysis, Cambridge University Press, Cambridge, New York, 2011.

Page 15: Functional Brain Signal Processing: EEG & fMRI Lesson 13 Kaushik Majumdar Indian Statistical Institute Bangalore Center kmajumdar@isibang.ac.in M.Tech.

THANK YOU

This lecture is available at http://www.isibang.ac.in/~kaushik