Top Banner
Formation of Sub-10 nm width InGaAs finFETs of 200 nm Height by Atomic Layer Epitaxy *D. Cohen-Elias 1 , J.J.M. Law 1 , H.W. Chiang 1 , A. Sivananthan 1 , C. Zhang 1 , B. J. Thibeault 1 , W.J. Mitchell 1 , S. Lee 1 , A.D. Carter 1 , C.-Y. Huang 1 , V. Chobpattana 2 , S. Stemmer 2 , S. Keller 1 , M. J.W. Rodwell 1 IEEE Device Research Conference, June 24-27 2013, Notre Dame 1 ECE and 2 Materials Departments University of California, Santa Barbara, CA
25

Formation of Sub-10 nm width InGaAs finFETs of 200 nm Height by Atomic Layer Epitaxy *D. Cohen-Elias 1, J.J.M. Law 1, H.W. Chiang 1, A. Sivananthan 1,

Mar 31, 2015

Download

Documents

Edgardo Dearing
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Formation of Sub-10 nm width InGaAs finFETs of 200 nm Height by Atomic Layer Epitaxy *D. Cohen-Elias 1, J.J.M. Law 1, H.W. Chiang 1, A. Sivananthan 1,

Formation of Sub-10 nm width InGaAs finFETs of 200 nm Height by Atomic Layer Epitaxy*D. Cohen-Elias1, J.J.M. Law1, H.W. Chiang1, A. Sivananthan1, C. Zhang1, B. J. Thibeault1, W.J. Mitchell1, S. Lee1, A.D. Carter1, C.-Y. Huang1, V. Chobpattana2, S. Stemmer2, S. Keller1, M. J.W. Rodwell1

IEEE Device Research Conference, June 24-27 2013, Notre Dame

1ECE and 2Materials DepartmentsUniversity of California, Santa Barbara, CA

Page 2: Formation of Sub-10 nm width InGaAs finFETs of 200 nm Height by Atomic Layer Epitaxy *D. Cohen-Elias 1, J.J.M. Law 1, H.W. Chiang 1, A. Sivananthan 1,

Goal: FinFET with 2-4 nm Body Thickness

Intel Lg=60nm III-V FinFET (IEDM 2011)

30 nm fin: too thick at 60 nm gate length

For good electrostatics,need fin thickness ~ (gate length/2)S. H. Park et al., NNIN Symposium Feb 2012.

8nm gate length → need <4 nm thick fin

Page 3: Formation of Sub-10 nm width InGaAs finFETs of 200 nm Height by Atomic Layer Epitaxy *D. Cohen-Elias 1, J.J.M. Law 1, H.W. Chiang 1, A. Sivananthan 1,

Goal: Tall Fins for High Drive Current

Goal: fin height >> fin pitch (spacing)

Goal: large on-current from small transistor footprint.

pitch fin

height finJ

width transistor

currentsurface

Hei

ght

Pitch

S

D

Transistor Width

J surfJ su

rfJ surfJ su

rf

Page 4: Formation of Sub-10 nm width InGaAs finFETs of 200 nm Height by Atomic Layer Epitaxy *D. Cohen-Elias 1, J.J.M. Law 1, H.W. Chiang 1, A. Sivananthan 1,

Goal: Fins with Integrated N+ Source/Drain

regrowth→ small S/D pitch → High Integration Density

Page 5: Formation of Sub-10 nm width InGaAs finFETs of 200 nm Height by Atomic Layer Epitaxy *D. Cohen-Elias 1, J.J.M. Law 1, H.W. Chiang 1, A. Sivananthan 1,

Why Not Dry-Etch a 2nm Fin ?

serious process challenges

Goal: 2-4 nm thickness, 100+ nm height

*metallization-induced damage increases Dit: Burek et al, JVST B. 29,4, Jul/Aug 2011;Dry-etching may well do similar surface damage

Page 6: Formation of Sub-10 nm width InGaAs finFETs of 200 nm Height by Atomic Layer Epitaxy *D. Cohen-Elias 1, J.J.M. Law 1, H.W. Chiang 1, A. Sivananthan 1,

FinFETs by Atomic Layer Epitaxy

Fin thickness defined by Atomic layer epitaxy (ALE)

thin, tall fins → few-nm Lg , high currents

Fin~8nm

HfO2→ nm thickness control

→ 200 nm high fins

Fin height defined by sidewall growth

TiN

Page 7: Formation of Sub-10 nm width InGaAs finFETs of 200 nm Height by Atomic Layer Epitaxy *D. Cohen-Elias 1, J.J.M. Law 1, H.W. Chiang 1, A. Sivananthan 1,

ALE-Defined finFET: Process Flow

Fin Template Channel ALE Dummy Gate

S/D RegrowthRelease Fins

Gate DielectricGate MetalS/D Metal

Page 8: Formation of Sub-10 nm width InGaAs finFETs of 200 nm Height by Atomic Layer Epitaxy *D. Cohen-Elias 1, J.J.M. Law 1, H.W. Chiang 1, A. Sivananthan 1,

Fin Template

(011)

SiN hard mask: Ridges oriented along [011]

H3PO4 : HCL etch: facet-selective, material-selective forms vertical (011) sidewalls stops on InGaAs etch-stop

InGaAs etch-stop: defines template height→ defines fin height

Page 9: Formation of Sub-10 nm width InGaAs finFETs of 200 nm Height by Atomic Layer Epitaxy *D. Cohen-Elias 1, J.J.M. Law 1, H.W. Chiang 1, A. Sivananthan 1,

Channel Growth by Atomic Layer Epitaxy

Using UCSB MOCVD :1.7 Monolayer of InGaAs / Cycle(Not true ALE mode)

1 monolayer growth per cycle.

30 31 32 33100

102

104

106

Angle

Inte

ns

ity

100 cycles of 10sec pulse InGaAs growth @ 450C Thickness~50nm

TBA flow H2 flow TMI+ TMGa flow

H2 flow→ → →

InGaAs monolayer ~ 2.9A

→S.P. DenBaars, P.D. Dapkus Journal of Crystal Growth, 98 (1989)

Page 10: Formation of Sub-10 nm width InGaAs finFETs of 200 nm Height by Atomic Layer Epitaxy *D. Cohen-Elias 1, J.J.M. Law 1, H.W. Chiang 1, A. Sivananthan 1,

Channel Growth by Atomic Layer Epitaxy

Growth: lattice-matched InGaAs 20 ALE cycles → <10 nm channel

Details: one ALE cycle = 10 sec TMGa/TMI, 10 sec H2 , 10 sec TBAs, 10 sec H2

450 C growth

Masked growth: no InGaAs growth on top of template

Page 11: Formation of Sub-10 nm width InGaAs finFETs of 200 nm Height by Atomic Layer Epitaxy *D. Cohen-Elias 1, J.J.M. Law 1, H.W. Chiang 1, A. Sivananthan 1,

Dummy Gate: Patterns Source and Drain

HSQ

Mask HSQ* : E-beam definable SiO2

ALD Al2O3 mask sub-layer: adhesion

*HSQ: Hydrogen silsesquioxane

Page 12: Formation of Sub-10 nm width InGaAs finFETs of 200 nm Height by Atomic Layer Epitaxy *D. Cohen-Elias 1, J.J.M. Law 1, H.W. Chiang 1, A. Sivananthan 1,

Source Drain Regrowth

So

urc

eD

rain

HSQ

MOCVD Regrowth 600C lattice-matched N+ InGaAs, 5*1019/cm3 doping

Page 13: Formation of Sub-10 nm width InGaAs finFETs of 200 nm Height by Atomic Layer Epitaxy *D. Cohen-Elias 1, J.J.M. Law 1, H.W. Chiang 1, A. Sivananthan 1,

S/D Regrowth: Filling vs. Sidewall Regrowth

Present process: S/D regrowth partly fills spaces between fins

Target process: S/D sidewall regrowth by ALE → large contact area → low access resistance

Page 14: Formation of Sub-10 nm width InGaAs finFETs of 200 nm Height by Atomic Layer Epitaxy *D. Cohen-Elias 1, J.J.M. Law 1, H.W. Chiang 1, A. Sivananthan 1,

Source Drain Regrowth

So

urc

eD

rain

HSQ

Page 15: Formation of Sub-10 nm width InGaAs finFETs of 200 nm Height by Atomic Layer Epitaxy *D. Cohen-Elias 1, J.J.M. Law 1, H.W. Chiang 1, A. Sivananthan 1,

Fin Release

fin release: H3PO4:HCl selective wet-etch etches InP stops on InGaAs

Page 16: Formation of Sub-10 nm width InGaAs finFETs of 200 nm Height by Atomic Layer Epitaxy *D. Cohen-Elias 1, J.J.M. Law 1, H.W. Chiang 1, A. Sivananthan 1,

Fin Release

fin with N+ regrowth

fin without N+ regrowth

N+

N+

Page 17: Formation of Sub-10 nm width InGaAs finFETs of 200 nm Height by Atomic Layer Epitaxy *D. Cohen-Elias 1, J.J.M. Law 1, H.W. Chiang 1, A. Sivananthan 1,

Why Not Release Fins Before S/D Regrowth ?

Images of released ~10 nm fins:

S/D regrowth provides mechanical support

Page 18: Formation of Sub-10 nm width InGaAs finFETs of 200 nm Height by Atomic Layer Epitaxy *D. Cohen-Elias 1, J.J.M. Law 1, H.W. Chiang 1, A. Sivananthan 1,

ALD Gate Dielectric, ALD Gate Metal

HfO2 and TiN ALD gate Stack

Source

Drain

Page 19: Formation of Sub-10 nm width InGaAs finFETs of 200 nm Height by Atomic Layer Epitaxy *D. Cohen-Elias 1, J.J.M. Law 1, H.W. Chiang 1, A. Sivananthan 1,

Source and Drain Metal

Source Metal

Drain M

etal

Gate

Page 20: Formation of Sub-10 nm width InGaAs finFETs of 200 nm Height by Atomic Layer Epitaxy *D. Cohen-Elias 1, J.J.M. Law 1, H.W. Chiang 1, A. Sivananthan 1,

TEM Images

Fin~8nm

HfO2

TiN

Page 21: Formation of Sub-10 nm width InGaAs finFETs of 200 nm Height by Atomic Layer Epitaxy *D. Cohen-Elias 1, J.J.M. Law 1, H.W. Chiang 1, A. Sivananthan 1,

Where is the DC Data ?

Present finFETs: very high leakage

Planar FET: thermal Ni gatefinFET: ALD TiN gate

interface damage ?

Planar FET: 100 interfacefinFET: 011 interfaces

ALD surface preparation ?-0.2 0.0 0.2 0.4 0.6

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Gm

(mS

/m)

Curr

ent D

ensi

ty (m

A/

m)

Gate Bias (V)

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8 40 nm 70 nm 90 nm

VDS

= 0.5 V

Planar InAs/InGaAs MOSFETLee et al, 2013 VLSI symposium

Page 22: Formation of Sub-10 nm width InGaAs finFETs of 200 nm Height by Atomic Layer Epitaxy *D. Cohen-Elias 1, J.J.M. Law 1, H.W. Chiang 1, A. Sivananthan 1,

3-D Transistors to Extend Moore's Law

Lundstrom: high S/D tunneling @ 4-7 nm Lg

→ increase m* as Lg decreases

Implication: FETs won’t improve with scaling increased m* → decreased vinj

→ decreased Ion , increased CV/I

Alternative: 3-D integration

If we scale only to increase the IC packing density, why reduce Lg ?

height>> pitch

...or other geometries...

Page 23: Formation of Sub-10 nm width InGaAs finFETs of 200 nm Height by Atomic Layer Epitaxy *D. Cohen-Elias 1, J.J.M. Law 1, H.W. Chiang 1, A. Sivananthan 1,

FinFETs by Atomic Layer Epitaxy

ALE-defined fin → few-nm thick channels → scaling to 8nm gate length

S

D

pitchfin

heightfin J

widthtransistor

currentsurface

J surfJ su

rfJ surfJ su

rf

Fin~8nm

HfO2

TiN

200 nm fin height →enhance drive current

Page 24: Formation of Sub-10 nm width InGaAs finFETs of 200 nm Height by Atomic Layer Epitaxy *D. Cohen-Elias 1, J.J.M. Law 1, H.W. Chiang 1, A. Sivananthan 1,

Thank You

Page 25: Formation of Sub-10 nm width InGaAs finFETs of 200 nm Height by Atomic Layer Epitaxy *D. Cohen-Elias 1, J.J.M. Law 1, H.W. Chiang 1, A. Sivananthan 1,