Top Banner
Table of Contents Cover Page 1 Title Page 2 Warnings and Errors : 3 Input Echo : 4 XY Coordinate Calculations : 9 Flg Calc [Int P] : FC COVER 10 Flg Calc [Int P] : FC#CV FLANGE 12 Flg Calc [Int P] : FC#SH FLANGE 15 Flg Calc [Int P] : SH#FC FLANGE 18 Flg Calc [Int P] : SH#RC FLANGE 21 Flg Calc [Int P] : RC#SH FLANGE 24 Internal Pressure Calculations : 27 External Pressure Calculations : 30 Element and Detail Weights : 32 Nozzle Flange MAWP : 34 Wind Load Calculation : 35 Earthquake Load Calculation : 37 Center of Gravity Calculation : 38 Horizontal Vessel Analysis (Ope.) 39 Horizontal Vessel Analysis (Test) 46 Nozzle Calcs. : T1 53 Nozzle Calcs. : T2 58 Nozzle Calcs. : S1 63 Nozzle Calcs. : S2A 68 Nozzle Calcs. : S2B 73 Nozzle Schedule : 78 Nozzle Summary : 79 MDMT Summary : 80 ASME TS Calc : NORMAL OPERATIO 81 ASME Fl-TS Calc : NORMAL OPERATIO 88 Flohead Analysis : FLOATING COVER 90 Vessel Design Summary : 93
95
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Floating Head HE

Table of Contents

Cover Page 1

Title Page 2

Warnings and Errors : 3

Input Echo : 4

XY Coordinate Calculations : 9

Flg Calc [Int P] : FC COVER 10

Flg Calc [Int P] : FC#CV FLANGE 12

Flg Calc [Int P] : FC#SH FLANGE 15

Flg Calc [Int P] : SH#FC FLANGE 18

Flg Calc [Int P] : SH#RC FLANGE 21

Flg Calc [Int P] : RC#SH FLANGE 24

Internal Pressure Calculations : 27

External Pressure Calculations : 30

Element and Detail Weights : 32

Nozzle Flange MAWP : 34

Wind Load Calculation : 35

Earthquake Load Calculation : 37

Center of Gravity Calculation : 38

Horizontal Vessel Analysis (Ope.) 39

Horizontal Vessel Analysis (Test) 46

Nozzle Calcs. : T1 53

Nozzle Calcs. : T2 58

Nozzle Calcs. : S1 63

Nozzle Calcs. : S2A 68

Nozzle Calcs. : S2B 73

Nozzle Schedule : 78

Nozzle Summary : 79

MDMT Summary : 80

ASME TS Calc : NORMAL OPERATIO 81

ASME Fl-TS Calc : NORMAL OPERATIO 88

Flohead Analysis : FLOATING COVER 90

Vessel Design Summary : 93

Page 2: Floating Head HE

Cover Page

DESIGN CALCULATION

In Accordance with ASME Section VIII Division 1

ASME Code Version : 2010 Edition, 2011a Addenda

Analysis Performed by : JACOBS H&G

Job File : C:\DOCUMENTS AND SETTINGS\PANCHALAS\DESKTOP\FLOA

Date of Analysis : Jul 11,2013

PV Elite 2012, January 2012

Page 3: Floating Head HE

Title Page

Note: PV Elite performs all calculations internally in Imperial Unitsto remain compliant with the ASME Code and any built in assumptionsin the ASME Code formulas. The customary Imperial database isused for consistency. The finalized results are reflected to showthe users set of selected units.

Page 4: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 3 of 94

Warnings and Errors : Step: 0 9:50a Jul 11,2013

Class From To : Basic Element Checks.

==========================================================================

Class From To: Check of Additional Element Data

==========================================================================

There were no geometry errors or warnings.

PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

Page 5: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 4 of 94

Input Echo : Step: 1 9:50a Jul 11,2013

PV Elite Vessel Analysis Program: Input Data

Exchanger Design Pressures and Temperatures

Shell Side Design Pressure 2.0000 MPa

Channel Side Design Pressure 0.5000 MPa

Shell Side Design Temperature 100 C

Channel Side Design Temperature 15 C

Type of Hydrotest UG99-b

Hydrotest Position Horizontal

Projection of Nozzle from Vessel Top 0.0000 mm

Projection of Nozzle from Vessel Bottom 0.0000 mm

Minimum Design Metal Temperature 0 C

Type of Construction Welded

Special Service None

Degree of Radiography RT 1

Miscellaneous Weight Percent 0.0

Use Higher Longitudinal Stresses (Flag) Y

Select t for Internal Pressure (Flag) N

Select t for External Pressure (Flag) N

Select t for Axial Stress (Flag) N

Select Location for Stiff. Rings (Flag) N

Consider Vortex Shedding N

Perform a Corroded Hydrotest N

Is this a Heat Exchanger Yes

User Defined Hydro. Press. (Used if > 0) 0.0000 MPa

User defined MAWP 0.0000 MPa

User defined MAPnc 0.0000 MPa

Load Case 1 NP+EW+WI+FW+BW

Load Case 2 NP+EW+EE+FS+BS

Load Case 3 NP+OW+WI+FW+BW

Load Case 4 NP+OW+EQ+FS+BS

Load Case 5 NP+HW+HI

Load Case 6 NP+HW+HE

Load Case 7 IP+OW+WI+FW+BW

Load Case 8 IP+OW+EQ+FS+BS

Load Case 9 EP+OW+WI+FW+BW

Load Case 10 EP+OW+EQ+FS+BS

Load Case 11 HP+HW+HI

Load Case 12 HP+HW+HE

Load Case 13 IP+WE+EW

Load Case 14 IP+WF+CW

Load Case 15 IP+VO+OW

Load Case 16 IP+VE+EW

Load Case 17 NP+VO+OW

Load Case 18 FS+BS+IP+OW

Load Case 19 FS+BS+EP+OW

Wind Design Code ASCE-7 93

Basic Wind Speed [V] 112.65 km/hr

Surface Roughness Category C: Open Terrain

Importance Factor 1.0

Type of Surface Moderately Smooth

Base Elevation 0.0000 mm

Percent Wind for Hydrotest 33.0

Using User defined Wind Press. Vs Elev. N

Damping Factor (Beta) for Wind (Ope) 0.0100

Damping Factor (Beta) for Wind (Empty) 0.0000

Damping Factor (Beta) for Wind (Filled) 0.0000

Seismic Design Code UBC 94

UBC Seismic Zone (1=1,2=2a,3=2b,4=3,5=4) 0.000

UBC Importance Factor 1.000

UBC Soil Type S1

UBC Horizontal Force Factor 3.000

UBC Percent Seismic for Hydrotest 0.000

Design Nozzle for Des. Press. + St. Head Y

Consider MAP New and Cold in Noz. Design N

Consider External Loads for Nozzle Des. Y

Use ASME VIII-1 Appendix 1-9 N

Material Database Year Current w/Addenda or Code Year

Configuration Directives:

Do not use Nozzle MDMT Interpretation VIII-1 01-37 No

Use Table G instead of exact equation for "A" Yes

Shell Head Joints are Tapered Yes

Compute "K" in corroded condition Yes

Use Code Case 2286 No

Use the MAWP to compute the MDMT Yes

Using Metric Material Databases, ASME II D No

Complete Listing of Vessel Elements and Details:

Element From Node 10

Element To Node 20

Element Type Flange

Description FC COVER

Page 6: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 5 of 94

Input Echo : Step: 1 9:50a Jul 11,2013

Distance "FROM" to "TO" 43.000 mm

Flange Inside Diameter 984.25 mm

Element Thickness 43.000 mm

Internal Corrosion Allowance 3.1750 mm

Nominal Thickness 0.0000 mm

External Corrosion Allowance 3.0000 mm

Design Internal Pressure 0.5000 MPa

Design Temperature Internal Pressure 15 C

Design External Pressure 0.1030 MPa

Design Temperature External Pressure 100 C

Effective Diameter Multiplier 1.2

Material Name SA-516 70

Allowable Stress, Ambient 137.90 MPa

Allowable Stress, Operating 137.90 MPa

Allowable Stress, Hydrotest 235.81 MPa

Material Density 0.007750 kg/cm³

P Number Thickness 31.750 mm

Yield Stress, Operating 262.01 MPa

UCS-66 Chart Curve Designation B

External Pressure Chart Name CS-2

UNS Number K02700

Product Form Plate

Perform Flange Stress Calculation (Y/N) Y

Weight of ANSI B16.5/B16.47 Flange 0.0000 N

Class of ANSI B16.5/B16.47 Flange

Grade of ANSI B16.5/B16.47 Flange

--------------------------------------------------------------------

Element From Node 20

Element To Node 30

Element Type Flange

Description FC#CV FLANGE

Distance "FROM" to "TO" 47.000 mm

Flange Inside Diameter 984.25 mm

Element Thickness 47.000 mm

Internal Corrosion Allowance 3.0000 mm

Nominal Thickness 0.0000 mm

External Corrosion Allowance 0.0000 mm

Design Internal Pressure 0.5000 MPa

Design Temperature Internal Pressure 15 C

Design External Pressure 0.1030 MPa

Design Temperature External Pressure 100 C

Effective Diameter Multiplier 1.2

Material Name SA-516 70

Perform Flange Stress Calculation (Y/N) Y

Weight of ANSI B16.5/B16.47 Flange 0.0000 N

Class of ANSI B16.5/B16.47 Flange

Grade of ANSI B16.5/B16.47 Flange

--------------------------------------------------------------------

Element From Node 30

Element To Node 40

Element Type Cylinder

Description FC SHELL

Distance "FROM" to "TO" 650.00 mm

Inside Diameter 635.00 mm

Element Thickness 10.000 mm

Internal Corrosion Allowance 3.0000 mm

Nominal Thickness 10.000 mm

External Corrosion Allowance 0.0000 mm

Design Internal Pressure 0.5000 MPa

Design Temperature Internal Pressure 15 C

Design External Pressure 0.1030 MPa

Design Temperature External Pressure 100 C

Effective Diameter Multiplier 1.2

Material Name SA-516 70

Efficiency, Longitudinal Seam 0.85

Efficiency, Circumferential Seam 0.85

Element From Node 30

Detail Type Nozzle

Detail ID T1

Dist. from "FROM" Node / Offset dist 325.00 mm

Nozzle Diameter 300.0 mm

Nozzle Schedule 40

Nozzle Class 300

Layout Angle -45.0

Blind Flange (Y/N) N

Weight of Nozzle ( Used if > 0 ) 556.16 N

Grade of Attached Flange GR 1.1

Nozzle Matl SA-106 B

Element From Node 30

Detail Type Nozzle

Detail ID T2

Dist. from "FROM" Node / Offset dist 325.00 mm

Nozzle Diameter 300.0 mm

Nozzle Schedule 40

Nozzle Class 300

Layout Angle 225.0

Blind Flange (Y/N) N

Weight of Nozzle ( Used if > 0 ) 556.16 N

Page 7: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 6 of 94

Input Echo : Step: 1 9:50a Jul 11,2013

Grade of Attached Flange GR 1.1

Nozzle Matl SA-106 B

--------------------------------------------------------------------

Element From Node 40

Element To Node 50

Element Type Flange

Description FC#SH FLANGE

Distance "FROM" to "TO" 76.000 mm

Flange Inside Diameter 0.0000 mm

Element Thickness 76.000 mm

Internal Corrosion Allowance 3.0000 mm

Nominal Thickness 0.0000 mm

External Corrosion Allowance 0.0000 mm

Design Internal Pressure 0.5000 MPa

Design Temperature Internal Pressure 15 C

Design External Pressure 0.1030 MPa

Design Temperature External Pressure 100 C

Effective Diameter Multiplier 1.2

Material Name SA-516 70

Perform Flange Stress Calculation (Y/N) Y

Weight of ANSI B16.5/B16.47 Flange 0.0000 N

Class of ANSI B16.5/B16.47 Flange

Grade of ANSI B16.5/B16.47 Flange

--------------------------------------------------------------------

Element From Node 50

Element To Node 60

Element Type Flange

Description SH#FC FLANGE

Distance "FROM" to "TO" 93.000 mm

Flange Inside Diameter 0.0000 mm

Element Thickness 60.000 mm

Internal Corrosion Allowance 3.0000 mm

Nominal Thickness 0.0000 mm

External Corrosion Allowance 0.0000 mm

Design Internal Pressure 2.0000 MPa

Design Temperature Internal Pressure 100 C

Design External Pressure 0.1030 MPa

Design Temperature External Pressure 100 C

Effective Diameter Multiplier 1.2

Material Name SA-516 70

Perform Flange Stress Calculation (Y/N) Y

Weight of ANSI B16.5/B16.47 Flange 0.0000 N

Class of ANSI B16.5/B16.47 Flange

Grade of ANSI B16.5/B16.47 Flange

--------------------------------------------------------------------

Element From Node 60

Element To Node 70

Element Type Cylinder

Description SHELL

Distance "FROM" to "TO" 3625.0 mm

Inside Diameter 635.00 mm

Element Thickness 10.000 mm

Internal Corrosion Allowance 3.0000 mm

Nominal Thickness 10.000 mm

External Corrosion Allowance 0.0000 mm

Design Internal Pressure 2.0000 MPa

Design Temperature Internal Pressure 100 C

Design External Pressure 0.1030 MPa

Design Temperature External Pressure 100 C

Effective Diameter Multiplier 1.2

Material Name SA-516 70

Efficiency, Longitudinal Seam 0.85

Efficiency, Circumferential Seam 0.85

Element From Node 60

Detail Type Saddle

Detail ID LEFT SADDLE

Dist. from "FROM" Node / Offset dist 600.00 mm

Width of Saddle 101.60 mm

Height of Saddle at Bottom 609.60 mm

Saddle Contact Angle 120.0

Height of Composite Ring Stiffener 0.0000 mm

Width of Wear Plate 152.40 mm

Thickness of Wear Plate 9.5250 mm

Contact Angle, Wear Plate (degrees) 130.0

Element From Node 60

Detail Type Saddle

Detail ID RIGHT SADDLE

Dist. from "FROM" Node / Offset dist 3025.0 mm

Width of Saddle 101.60 mm

Height of Saddle at Bottom 609.60 mm

Saddle Contact Angle 120.0

Height of Composite Ring Stiffener 0.0000 mm

Width of Wear Plate 152.40 mm

Thickness of Wear Plate 9.5250 mm

Contact Angle, Wear Plate (degrees) 130.0

Page 8: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 7 of 94

Input Echo : Step: 1 9:50a Jul 11,2013

Element From Node 60

Detail Type Nozzle

Detail ID S1

Dist. from "FROM" Node / Offset dist 1812.0 mm

Nozzle Diameter 200.0 mm

Nozzle Schedule 80

Nozzle Class 300

Layout Angle 270.0

Blind Flange (Y/N) N

Weight of Nozzle ( Used if > 0 ) 0.0000 N

Grade of Attached Flange GR 1.1

Nozzle Matl SA-106 B

Element From Node 60

Detail Type Nozzle

Detail ID S2A

Dist. from "FROM" Node / Offset dist 300.00 mm

Nozzle Diameter 150.0 mm

Nozzle Schedule 80

Nozzle Class 300

Layout Angle 180.0

Blind Flange (Y/N) N

Weight of Nozzle ( Used if > 0 ) 0.0000 N

Grade of Attached Flange GR 1.1

Nozzle Matl SA-106 B

Element From Node 60

Detail Type Nozzle

Detail ID S2B

Dist. from "FROM" Node / Offset dist 3300.0 mm

Nozzle Diameter 150.0 mm

Nozzle Schedule 80

Nozzle Class 300

Layout Angle 180.0

Blind Flange (Y/N) N

Weight of Nozzle ( Used if > 0 ) 0.0000 N

Grade of Attached Flange GR 1.1

Nozzle Matl SA-106 B

--------------------------------------------------------------------

Element From Node 70

Element To Node 80

Element Type Flange

Description SH#RC FLANGE

Distance "FROM" to "TO" 108.00 mm

Flange Inside Diameter 0.0000 mm

Element Thickness 75.000 mm

Internal Corrosion Allowance 3.0000 mm

Nominal Thickness 0.0000 mm

External Corrosion Allowance 0.0000 mm

Design Internal Pressure 2.0000 MPa

Design Temperature Internal Pressure 100 C

Design External Pressure 0.1030 MPa

Design Temperature External Pressure 100 C

Effective Diameter Multiplier 1.2

Material Name SA-516 70

Perform Flange Stress Calculation (Y/N) Y

Weight of ANSI B16.5/B16.47 Flange 0.0000 N

Class of ANSI B16.5/B16.47 Flange

Grade of ANSI B16.5/B16.47 Flange

--------------------------------------------------------------------

Element From Node 80

Element To Node 90

Element Type Flange

Description RC#SH FLANGE

Distance "FROM" to "TO" 90.000 mm

Flange Inside Diameter 0.0000 mm

Element Thickness 80.000 mm

Internal Corrosion Allowance 3.0000 mm

Nominal Thickness 0.0000 mm

External Corrosion Allowance 0.0000 mm

Design Internal Pressure 2.0000 MPa

Design Temperature Internal Pressure 100 C

Design External Pressure 0.1030 MPa

Design Temperature External Pressure 100 C

Effective Diameter Multiplier 1.2

Material Name SA-516 70

Perform Flange Stress Calculation (Y/N) Y

Weight of ANSI B16.5/B16.47 Flange 0.0000 N

Class of ANSI B16.5/B16.47 Flange

Grade of ANSI B16.5/B16.47 Flange

--------------------------------------------------------------------

Element From Node 90

Element To Node 100

Element Type Cylinder

Description RC SHELL

Distance "FROM" to "TO" 300.00 mm

Inside Diameter 724.00 mm

Element Thickness 10.000 mm

Page 9: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 8 of 94

Input Echo : Step: 1 9:50a Jul 11,2013

Internal Corrosion Allowance 3.0000 mm

Nominal Thickness 10.000 mm

External Corrosion Allowance 0.0000 mm

Design Internal Pressure 2.0000 MPa

Design Temperature Internal Pressure 100 C

Design External Pressure 0.1030 MPa

Design Temperature External Pressure 100 C

Effective Diameter Multiplier 1.2

Material Name SA-516 70

Efficiency, Longitudinal Seam 0.85

Efficiency, Circumferential Seam 0.85

--------------------------------------------------------------------

Element From Node 100

Element To Node 110

Element Type Elliptical

Description RC HEAD

Distance "FROM" to "TO" 50.000 mm

Inside Diameter 724.00 mm

Element Thickness 10.000 mm

Internal Corrosion Allowance 3.0000 mm

Nominal Thickness 12.000 mm

External Corrosion Allowance 0.0000 mm

Design Internal Pressure 2.0000 MPa

Design Temperature Internal Pressure 100 C

Design External Pressure 0.1030 MPa

Design Temperature External Pressure 100 C

Effective Diameter Multiplier 1.2

Material Name SA-516 70

Efficiency, Longitudinal Seam 0.85

Efficiency, Circumferential Seam 0.85

Elliptical Head Factor 2.0

PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

Page 10: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 9 of 94

XY Coordinate Calculations : Step: 2 9:50a Jul 11,2013

XY Coordinate Calculations

| | | | | |

From| To | X (Horiz.)| Y (Vert.) |DX (Horiz.)| DY (Vert.) |

| | mm | mm | mm | mm |

--------------------------------------------------------------

FC COVER| 43.0000 | ... | 43.0000 | ... |

FC#CV FLAN| 90.0000 | ... | 47.0000 | ... |

FC SHELL| 693.000 | ... | 650.000 | ... |

FC#SH FLAN| 693.000 | ... | -76.0000 | ... |

SH#FC FLAN| 840.000 | ... | 93.0000 | ... |

SHELL| 4465.00 | ... | 3625.00 | ... |

SH#RC FLAN| 4573.00 | ... | 108.000 | ... |

RC#SH FLAN| 4663.00 | ... | 90.0000 | ... |

RC SHELL| 4873.00 | ... | 300.000 | ... |

RC HEAD| 4923.00 | ... | 50.0000 | ... |

PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

Page 11: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 10 of 94

Flg Calc [Int P] : FC COVER Flng: 19 9:50a Jul 11,2013

Flange Input Data Values Description: FC COVER :

FC COVER

Description of Flange Geometry (Type) Blind

Design Pressure P 0.50 MPa

Design Temperature 15 C

Internal Corrosion Allowance ci 3.1750 mm

External Corrosion Allowance ce 3.0000 mm

Use Corrosion Allowance in Thickness Calcs. Yes

Flange Outside Diameter A 816.000 mm

Flange Thickness t 43.0000 mm

Flange Material SA-516 70

Flange Material UNS number K02700

Flange Allowable Stress At Temperature Sfo 137.90 MPa

Flange Allowable Stress At Ambient Sfa 137.90 MPa

Bolt Material SA-193 B7

Bolt Allowable Stress At Temperature Sb 172.38 MPa

Bolt Allowable Stress At Ambient Sa 172.38 MPa

Diameter of the Load Reaction, Long Span D 0.000 mm

Diameter of the Load Reaction, Short Span d 0.000 mm

Perimeter along the Center of the Bolts L 2393.894 mm

Diameter of Bolt Circle C 762.000 mm

Nominal Bolt Diameter dB 20.0000 mm

Type of Threads TEMA Metric

Number of Bolts 28

Flange Face Outside Diameter Fod 732.000 mm

Flange Face Inside Diameter Fid 632.000 mm

Flange Facing Sketch 1, Code Sketch 1a

Gasket Outside Diameter Go 728.000 mm

Gasket Inside Diameter Gi 684.000 mm

Gasket Factor m 2.0000

Gasket Design Seating Stress y 11.03 MPa

Column for Gasket Seating 2, Code Column II

Gasket Thickness tg 3.0000 mm

Length of Partition Gasket lp 1026.0000 mm

Width of Partition Gasket tp 10.0000 mm

Partition Gasket Factor mPart 2.0000

Partition Gasket Design Seating Stress yPart 11.03 MPa

ASME Code, Section VIII, Division 1, 2010, 2011a

Gasket Contact Width, N = (Go - Gi) / 2 22.000 mm

Basic Gasket Width, bo = N / 2 11.000 mm

Effective Gasket Width, b = Cb sqrt(bo) 8.358 mm

Gasket Reaction Diameter, G = Go - 2 * b 711.285 mm

Basic Flange and Bolt Loads:

Hydrostatic End Load due to Pressure [H]: = 0.785 * G² * Peq

= 0.785 * 711.2847² * 0.500

= 198659.766 N

Contact Load on Gasket Surfaces [Hp]: = 2 * b * Pi * G * m * P + 2 * lp * bPart * mPart * P

= 2 * 8.3576 * 3.1416 * 711.2847 * 2.0000 * 0.50

+ 2.0 * 1026.0000 * 5.0000 * 2.0000 * 0.5000

= 47607.312 N

Operating Bolt Load [Wm1]: = max( H + Hp + H'p, 0 )

= max( 198659 + 47607 + 0 , 0 )

= 246267.078 N

Gasket Seating Bolt Load [Wm2]: = y * b * Pi * G + yPart * bPart * lp

= 11.03*8.3576*3.141*711.285+11.03*5.0000*1026.00

= 262601.938 N

Required Bolt Area [Am]: = Maximum of Wm1/Sb, Wm2/Sa

= Maximum of 246267/172 , 262601/172

= 1523.564 mm²

ASME Maximum Circumferential Spacing between Bolts per App. 2 eq. (3) [Bsmax]: = 2a + 6t/(m + 0.5)

= 2 * 20.000 + 6 * 33.825/(2.00 + 0.5)

= 121.180 mm

Actual Circumferential Bolt Spacing [Bs]: = C * sin( pi / n ) )

= 762.000 * sin( 3.142/28 )

= 85.317 mm

ASME Moment Multiplier for Bolt Spacing per App. 2 eq. (7) [Bsc]: = max( sqrt( Bs/( 2a + t )), 1 )

Page 12: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 11 of 94

Flg Calc [Int P] : FC COVER Flng: 19 9:50a Jul 11,2013

= max( sqrt( 85.317/( 2 * 20.000 + 33.825 )), 1 )

= 1.0750

Bolting Information for TEMA Metric Thread Series (Non Mandatory): -----------------------------------------------------------------------------

Minimum Actual Maximum

-----------------------------------------------------------------------------

Bolt Area, mm² 1523.564 6077.428

Radial distance bet. bolts and the edge 23.810 24.000

Circumferential spacing between bolts 52.390 85.317 121.180

-----------------------------------------------------------------------------

Min. Gasket Contact Width (Brownell Young) [Not an ASME Calc] [Nmin]: = Ab * Sa/( y * Pi * (Go + Gi) )

= 6077.428 * 172.38/(11.03 * 3.14 * (728.000 + 684.00 ) )

= 21.407 mm

Flange Design Bolt Load, Gasket Seating [W]: = Sa * ( Am + Ab ) / 2

= 172.38 * ( 1523.5636 + 6077.4277 )/2

= 655054.81 N

Gasket Load for the Operating Condition [HG]: = Wm1

= 246267.08 N

Moment Arm Calculations:Distance to Gasket Load Reaction [hg]:

= (C - G ) / 2

= ( 762.0000 - 711.2847 )/2

= 25.3576 mm

Tangential Flange Stress, Flat Head (UG-34), Operating [STo]: = 1.9 * Wm1 * hG * Bcor/(t² * G) + C * Z * Peq * G²/t²

= 1.9*246267*25.3576*1.0750/(33.8250²*711.2847)+

0.30*1.0000*0.50*711.2847²/33.8250²

= 82.00 MPa

Tangential Flange Stress, Flat Head (UG-34), Seating [STa]: = 1.9 * W * hG * Bcor / (t² * G)

= 1.9*655054*25.3576*1.075/(33.8250²*711.2847)

= 41.69 MPa

Bolt Stress, Operating [BSo]: = ( Wm1 / Ab )

= (246267/6077.4277)

= 40.53 MPa

Bolt Stress, Seating [BSa]: = ( Wm2 / Ab )

= (262601/6077.4277)

= 43.21 MPa

Stress Computation Results: Operating Gasket Seating

Actual Allowed Actual Allowed

Tangential Flange 82. 138. 42. 138. MPa

Bolting 41. 172. 43. 172. MPa

Reqd. Blind Flange Thickness at Center 35.259 mm

Reqd. Blind Flange Thickness at Gasket 27.774 mm

Estimated M.A.W.P. ( Operating ) 0.8 MPa

Estimated Finished Weight of Flange at given Thk. 174.3 kgm

Estimated Unfinished Weight of Forging at given Thk 174.3 kgm

Minimum Design Metal Temperature Results:Stress Ratio = 1.000 , Temperature Reduction per Fig. UCS 66.1 = 0 C

Min Metal Temp. w/o impact per UCS-66 -27 C

Min Metal Temp. w/o impact per UG-20(f) -29 C

PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

Page 13: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 12 of 94

Flg Calc [Int P] : FC#CV FLANGE Flng: 20 9:50a Jul 11,2013

Flange Input Data Values Description: FC#CV FLANGE :

FC#CV FLANGE

Description of Flange Geometry (Type) Lap Joint

Design Pressure P 0.50 MPa

Design Temperature 15 C

Internal Corrosion Allowance ci 3.0000 mm

External Corrosion Allowance ce 0.0000 mm

Use Corrosion Allowance in Thickness Calcs. Yes

Flange Inside Diameter B 660.000 mm

Flange Outside Diameter A 816.000 mm

Flange Thickness t 47.0000 mm

Flange Material SA-516 70

Flange Material UNS number K02700

Flange Allowable Stress At Temperature Sfo 137.90 MPa

Flange Allowable Stress At Ambient Sfa 137.90 MPa

Bolt Material SA-193 B7

Bolt Allowable Stress At Temperature Sb 172.38 MPa

Bolt Allowable Stress At Ambient Sa 172.38 MPa

Lap Joint Contact ID LjID 688.0000 mm

Lap Joint Contact OD LjOD 728.0000 mm

Diameter of Bolt Circle C 762.000 mm

Nominal Bolt Diameter dB 20.0000 mm

Type of Threads TEMA Metric

Number of Bolts 28

Flange Face Outside Diameter Fod 728.000 mm

Flange Face Inside Diameter Fid 680.000 mm

Flange Facing Sketch 1, Code Sketch 1a

Gasket Outside Diameter Go 728.000 mm

Gasket Inside Diameter Gi 684.000 mm

Gasket Factor m 2.0000

Gasket Design Seating Stress y 11.03 MPa

Column for Gasket Seating 2, Code Column II

Gasket Thickness tg 3.0000 mm

Length of Partition Gasket lp 1026.0000 mm

Width of Partition Gasket tp 10.0000 mm

Partition Gasket Factor mPart 2.0000

Partition Gasket Design Seating Stress yPart 11.03 MPa

Warning: The rigidity index calculation has been turned off andis required for ASME Code Stamped vessels (if Code Case 2547is not being cited). Please insure the check box is properly checked.

ASME Code, Section VIII, Division 1, 2010, 2011a

Code R Dimension, R = (C-B)/2 - g1 51.000 mm

Gasket Contact Width, N = (Go - Gi) / 2 22.000 mm

Basic Gasket Width, bo = N / 2 11.000 mm

Effective Gasket Width, b = Cb sqrt(bo) 8.358 mm

Gasket Reaction Diameter, G = (LPODC+LPIDC) / 2 708.000 mm

Note: For Lap Joints, the Flange Face OD cannot be greater than thelap joint contact OD.

Basic Flange and Bolt Loads:

Hydrostatic End Load due to Pressure [H]: = 0.785 * G² * Peq

= 0.785 * 708.0000² * 0.500

= 196829.172 N

Contact Load on Gasket Surfaces [Hp]: = 2 * b * Pi * G * m * P + 2 * lp * bPart * mPart * P

= 2 * 8.3576 * 3.1416 * 708.0000 * 2.0000 * 0.50

+ 2.0 * 1026.0000 * 5.0000 * 2.0000 * 0.5000

= 47434.836 N

Hydrostatic End Load at Flange ID [Hd]: = Pi * Bcor² * P / 4

= 3.1416 * 660.0000² *0.5000/4

= 171045.188 N

Pressure Force on Flange Face [Ht]: = H - Hd

= 196829 - 171045

= 25783.996 N

Operating Bolt Load [Wm1]: = max( H + Hp + H'p, 0 )

= max( 196829 + 47434 + 0 , 0 )

= 244264.000 N

Gasket Seating Bolt Load [Wm2]: = y * b * Pi * G + yPart * bPart * lp

= 11.03*8.3576*3.141*708.000+11.03*5.0000*1026.00

= 261650.562 N

Required Bolt Area [Am]:

Page 14: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 13 of 94

Flg Calc [Int P] : FC#CV FLANGE Flng: 20 9:50a Jul 11,2013

= Maximum of Wm1/Sb, Wm2/Sa

= Maximum of 244264/172 , 261650/172

= 1518.044 mm²

ASME Maximum Circumferential Spacing between Bolts per App. 2 eq. (3) [Bsmax]: = 2a + 6t/(m + 0.5)

= 2 * 20.000 + 6 * 47.000/(2.00 + 0.5)

= 152.800 mm

Actual Circumferential Bolt Spacing [Bs]: = C * sin( pi / n ) )

= 762.000 * sin( 3.142/28 )

= 85.317 mm

ASME Moment Multiplier for Bolt Spacing per App. 2 eq. (7) [Bsc]: = max( sqrt( Bs/( 2a + t )), 1 )

= max( sqrt( 85.317/( 2 * 20.000 + 47.000 )), 1 )

= 1.0000

Bolting Information for TEMA Metric Thread Series (Non Mandatory): -----------------------------------------------------------------------------

Minimum Actual Maximum

-----------------------------------------------------------------------------

Bolt Area, mm² 1518.044 6077.428

Radial distance bet. hub and bolts 31.750 51.000

Radial distance bet. bolts and the edge 23.810 27.000

Circumferential spacing between bolts 52.390 85.317 152.800

-----------------------------------------------------------------------------

Min. Gasket Contact Width (Brownell Young) [Not an ASME Calc] [Nmin]: = Ab * Sa/( y * Pi * (Go + Gi) )

= 6077.428 * 172.38/(11.03 * 3.14 * (728.000 + 684.00 ) )

= 21.407 mm

Note: Recommended Min. Width for Sheet and Composite Gaskets per table 2-4 : = 25.000 mm[Note: Exceeds actual gasket width, 22.000 ]

Flange Design Bolt Load, Gasket Seating [W]: = Sa * ( Am + Ab ) / 2

= 172.38 * ( 1518.0438 + 6077.4277 )/2

= 654579.06 N

Gasket Load for the Operating Condition [HG]: = Wm1 - H

= 244264 - 196829

= 47434.83 N

Moment Arm Calculations:Distance to Gasket Load Reaction [hg]:

= (C - G ) / 2

= ( 762.0000 - 708.0000 )/2

= 27.0000 mm

Distance to Face Pressure Reaction [ht]: = ( C - G ) / 2.0

= ( 762.0000 - 708.0000 )/2.0

= 27.0000 mm

Distance to End Pressure Reaction [hd]: = ( C - Bcor ) / 2

= ( 762.0000 - 660.0000 )/2

= 51.0000 mm

Summary of Moments for Internal Pressure: Loading Force Distance Bolt Corr Moment

End Pressure, Md 171045. 51.0000 1.0000 8726839. N-mm

Face Pressure, Mt 25784. 27.0000 1.0000 696450. N-mm

Gasket Load, Mg 47435. 27.0000 1.0000 1281260. N-mm

Gasket Seating, Matm 654579. 27.0000 1.0000 17680800. N-mm

Total Moment for Operation, Mop 10704549. N-mm

Total Moment for Gasket seating, Matm 17680800. N-mm

Effective Hub Length, ho = 0.000 mm

Hub Ratio, h/h0 = Defined as 0.0 0.000

Thickness Ratio, g1/g0 = Defined as 0.0 0.000

Factors from Figure 2-7.1 K = 1.236

T = 1.824 U = 10.190

Y = 9.273 Z = 4.784

Tangential Flange Stress, Operating [Sto]: = ( Y * Mo )/( t² * Bcor )

= (9.2731*10704549)/(47.0000²*660.0000)

= 68.06 MPa

Tangential Flange Stress, Seating [STa]: = ( Y * Matm )/( t² * Bcor )

= (9.2731*17680800)/(47.0000²*660.0000)

= 112.42 MPa

Bolt Stress, Operating [BSo]: = ( Wm1 / Ab )

= (244264/6077.4277)

= 40.20 MPa

Bolt Stress, Seating [BSa]: = ( Wm2 / Ab )

= (261650/6077.4277)

= 43.06 MPa

Page 15: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 14 of 94

Flg Calc [Int P] : FC#CV FLANGE Flng: 20 9:50a Jul 11,2013

Stress Computation Results: Operating Gasket Seating

Actual Allowed Actual Allowed

Tangential Flange 68. 138. 112. 138. MPa

Bolting 40. 172. 43. 172. MPa

Minimum Required Flange Thickness 42.774 mm

Estimated M.A.W.P. ( Operating ) 1.0 MPa

Estimated M.A.W.P. ( Gasket Seating ) 1.0 MPa

Estimated Finished Weight of Flange at given Thk. 65.9 kgm

Estimated Unfinished Weight of Forging at given Thk 65.9 kgm

Required Lap Thickness Calculations for Lap Joint Flanges:

Required Lap Thickness due to Shear Stress, Operating [trlo]: = Wm1 / ( pi * Gid * 0.8 * So )

= 244264.0/( pi * 684.000 * 110.32 )

= 1.030 mm

Required Lap Thickness due to Shear Stress, Seating [trla]: = W / ( pi * Gid * 0.8 * Sa )

= 654579/( pi * 684.000 * 110.32 )

= 2.761 mm

Flange Rigidity Based on Required Thickness [ASME]:

Flange Rigidity Index, Seating (rotation check) per APP. 2 [Js]: = 109.4 * Ma / Bsc * Cnv_fac / ( Eamb * t^(3) * ln(K) * Kl )

= 109.4 * 17680800/1.0152 * 1.000/( 202713 * 42.774^(3)

* 0.212 * 0.20 )

= 2.829 (should be <= 1)

Flange Rigidity Index Operating (rotation check) per APP. 2 [J]: = 109.4 * Mo / Bsc * Cnv_fac / ( Eop * tc^(3) * ln(K) * Kl )

= 109.4 * 10704548/1.0152 * 1.000/( 203114 * 42.774^(3)

* 0.212 * 0.20 )

= 1.710 (should be <= 1)

Flange Rigidity Based on Given Thickness [ASME]:

Flange Rigidity Index, Seating (rotation check) per APP. 2 [Js]: = 109.4 * Ma / Bsc * Cnv_fac / ( Eamb * t^(3) * ln(K) * Kl )

= 109.4 * 17680800/1.0000 * 1.000/( 202713 * 47.000^(3)

* 0.212 * 0.20 )

= 2.165 (should be <= 1)

Flange Rigidity Index Operating (rotation check) per APP. 2 [J]: = 109.4 * Mo / Bsc * Cnv_fac / ( Eop * tc^(3) * ln(K) * Kl )

= 109.4 * 10704548/1.0000 * 1.000/( 203114 * 47.000^(3)

* 0.212 * 0.20 )

= 1.308 (should be <= 1)

PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

Page 16: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 15 of 94

Flg Calc [Int P] : FC#SH FLANGE Flng: 21 9:50a Jul 11,2013

Flange Input Data Values Description: FC#SH FLANGE :

FC#SH FLANGE

Description of Flange Geometry (Type) Loose Ring

Design Pressure P 0.50 MPa

Design Temperature 15 C

Internal Corrosion Allowance ci 3.0000 mm

External Corrosion Allowance ce 0.0000 mm

Use Corrosion Allowance in Thickness Calcs. No

Flange Inside Diameter B 660.000 mm

Flange Outside Diameter A 776.000 mm

Flange Thickness t 76.0000 mm

Flange Material SA-516 70

Flange Material UNS number K02700

Flange Allowable Stress At Temperature Sfo 137.90 MPa

Flange Allowable Stress At Ambient Sfa 137.90 MPa

Bolt Material SA-193 B7

Bolt Allowable Stress At Temperature Sb 172.38 MPa

Bolt Allowable Stress At Ambient Sa 172.38 MPa

Length of Weld Leg at Back of Ring tw 0.0000 mm

Number of Splits in Ring Flange n 0

Diameter of Bolt Circle C 728.000 mm

Nominal Bolt Diameter dB 20.0000 mm

Type of Threads TEMA Metric

Number of Bolts 28

Flange Face Outside Diameter Fod 698.000 mm

Flange Face Inside Diameter Fid 660.000 mm

Flange Facing Sketch 1, Code Sketch 1a

Gasket Outside Diameter Go 695.000 mm

Gasket Inside Diameter Gi 651.000 mm

Gasket Factor m 2.0000

Gasket Design Seating Stress y 11.03 MPa

Column for Gasket Seating 2, Code Column II

Gasket Thickness tg 3.0000 mm

Length of Partition Gasket lp 1026.0000 mm

Width of Partition Gasket tp 10.0000 mm

Partition Gasket Factor mPart 0.0000

Partition Gasket Design Seating Stress yPart 0.00 MPa

ASME Code, Section VIII, Division 1, 2010, 2011a

Code R Dimension, R = (C-B)/2 - g1 34.000 mm

Gasket Contact Width, N = (Go - Gi) / 2 17.500 mm

Basic Gasket Width, bo = N / 2 8.750 mm

Effective Gasket Width, b = Cb sqrt(bo) 7.454 mm

Gasket Reaction Diameter, G = Go - 2 * b 680.092 mm

Basic Flange and Bolt Loads:

Hydrostatic End Load due to Pressure [H]: = 0.785 * G² * Peq

= 0.785 * 680.0920² * 0.500

= 181617.734 N

Contact Load on Gasket Surfaces [Hp]: = 2 * b * Pi * G * m * P + 2 * lp * bPart * mPart * P

= 2 * 7.4540 * 3.1416 * 680.0920 * 2.0000 * 0.50

+ 2.0 * 1026.0000 * 5.0000 * 0.0000 * 0.5000

= 31849.412 N

Hydrostatic End Load at Flange ID [Hd]: = Pi * Bcor² * P / 4

= 3.1416 * 660.0000² *0.5000/4

= 171045.188 N

Pressure Force on Flange Face [Ht]: = H - Hd

= 181617 - 171045

= 10572.549 N

Operating Bolt Load [Wm1]: = max( H + Hp + H'p, 0 )

= max( 181617 + 31849 + 0 , 0 )

= 213467.141 N

= 865076.938 N , Mating Flange Load Governs

Gasket Seating Bolt Load [Wm2]: = y * b * Pi * G + yPart * bPart * lp

= 11.03*7.4540*3.141*680.092+0.00*5.0000*1026.00

= 175681.344 N

= 196454.781 N , Mating Flange Load Governs

Required Bolt Area [Am]: = Maximum of Wm1/Sb, Wm2/Sa

= Maximum of 865076/172 , 196454/172

= 5019.002 mm²

ASME Maximum Circumferential Spacing between Bolts per App. 2 eq. (3) [Bsmax]:

Page 17: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 16 of 94

Flg Calc [Int P] : FC#SH FLANGE Flng: 21 9:50a Jul 11,2013

= 2a + 6t/(m + 0.5)

= 2 * 20.000 + 6 * 76.000/(2.00 + 0.5)

= 222.400 mm

Actual Circumferential Bolt Spacing [Bs]: = C * sin( pi / n ) )

= 728.000 * sin( 3.142/28 )

= 81.510 mm

ASME Moment Multiplier for Bolt Spacing per App. 2 eq. (7) [Bsc]: = max( sqrt( Bs/( 2a + t )), 1 )

= max( sqrt( 81.510/( 2 * 20.000 + 76.000 )), 1 )

= 1.0000

Bolting Information for TEMA Metric Thread Series (Non Mandatory): -----------------------------------------------------------------------------

Minimum Actual Maximum

-----------------------------------------------------------------------------

Bolt Area, mm² 5019.002 6077.428

Radial distance bet. hub and bolts 23.810 34.000

Radial distance bet. bolts and the edge 23.810 24.000

Circumferential spacing between bolts 52.390 81.510 222.400

-----------------------------------------------------------------------------

Min. Gasket Contact Width (Brownell Young) [Not an ASME Calc] [Nmin]: = Ab * Sa/( y * Pi * (Go + Gi) )

= 6077.428 * 172.38/(11.03 * 3.14 * (695.000 + 660.00 ) )

= 22.307 mm[Note: Exceeds actual gasket width, 17.500 ]

Note: Recommended Min. Width for Sheet and Composite Gaskets per table 2-4 : = 25.000 mm[Note: Exceeds actual gasket width, 17.500 ]

Flange Design Bolt Load, Gasket Seating [W]: = Sa * ( Am + Ab ) / 2

= 172.38 * ( 5019.0020 + 6077.4277 )/2

= 956292.25 N

Gasket Load for the Operating Condition [HG]: = Wm1 - H

= 865076 - 181617

= 683459.19 N

Moment Arm Calculations:Distance to Gasket Load Reaction [hg]:

= (C - G ) / 2

= ( 728.0000 - 680.0920 )/2

= 23.9540 mm

Distance to Face Pressure Reaction [ht]: = ( hD + hG ) / 2

= ( 34.0000 + 23.9540 )/2

= 28.9770 mm

Distance to End Pressure Reaction [hd]: = ( C - Bcor )/ 2

= ( 728.0000 - 660.0000 )/2

= 34.0000 mm

Summary of Moments for Internal Pressure: Loading Force Distance Bolt Corr Moment

End Pressure, Md 171045. 34.0000 1.0000 5817891. N-mm

Face Pressure, Mt 10573. 28.9770 1.0000 306485. N-mm

Gasket Load, Mg 683459. 23.9540 1.0000 16378227. N-mm

Gasket Seating, Matm 956292. 23.9540 1.0000 22916324. N-mm

Total Moment for Operation, Mop 22502604. N-mm

Total Moment for Gasket seating, Matm 22916324. N-mm

Effective Hub Length, ho = 0.000 mm

Hub Ratio, h/h0 = Defined as 0.0 0.000

Thickness Ratio, g1/g0 = Defined as 0.0 0.000

Factors from Figure 2-7.1 K = 1.176

T = 1.849 U = 13.266

Y = 12.072 Z = 6.230

Tangential Flange Stress, Operating [Sto]: = ( Y * Mo )/( t² * Bcor )

= (12.0717*22502604)/(76.0000²*660.0000)

= 71.23 MPa

Tangential Flange Stress, Seating [STa]: = ( Y * Matm )/( t² * Bcor )

= (12.0717*22916324)/(76.0000²*660.0000)

= 72.54 MPa

Bolt Stress, Operating [BSo]: = ( Wm1 / Ab )

= (865076/6077.4277)

= 142.35 MPa

Bolt Stress, Seating [BSa]: = ( Wm2 / Ab )

= (196454/6077.4277)

= 32.33 MPa

Stress Computation Results: Operating Gasket Seating

Actual Allowed Actual Allowed

Tangential Flange 71. 138. 73. 138. MPa

Bolting 142. 172. 32. 172. MPa

Page 18: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 17 of 94

Flg Calc [Int P] : FC#SH FLANGE Flng: 21 9:50a Jul 11,2013

Minimum Required Flange Thickness [Rigidity] 72.568 mm

Flange Rigidity Index, Seating (should be <= 1) 0.870

Flange Rigidity Index Oper. (should be <= 1) 0.852

Estimated M.A.W.P. ( Operating ) 0.6 MPa

Estimated M.A.W.P. ( Gasket Seating ) 0.5 MPa

Estimated Finished Weight of Flange at given Thk. 77.1 kgm

Estimated Unfinished Weight of Forging at given Thk 77.1 kgm

Flange Rigidity Based on Required Thickness [ASME]:

Flange Rigidity Index, Seating (rotation check) per APP. 2 [Js]: = 109.4 * Ma / Bsc * Cnv_fac / ( Eamb * t^(3) * ln(K) * Kl )

= 109.4 * 22916324/1.0000 * 1.000/( 202713 * 72.568^(3)

* 0.162 * 0.20 )

= 0.999 (should be <= 1)

Flange Rigidity Index Operating (rotation check) per APP. 2 [J]: = 109.4 * Mo / Bsc * Cnv_fac / ( Eop * tc^(3) * ln(K) * Kl )

= 109.4 * 22502604/1.0000 * 1.000/( 203114 * 72.568^(3)

* 0.162 * 0.20 )

= 0.979 (should be <= 1)

Flange Rigidity Based on Given Thickness [ASME]:

Flange Rigidity Index, Seating (rotation check) per APP. 2 [Js]: = 109.4 * Ma / Bsc * Cnv_fac / ( Eamb * t^(3) * ln(K) * Kl )

= 109.4 * 22916324/1.0000 * 1.000/( 202713 * 76.000^(3)

* 0.162 * 0.20 )

= 0.870 (should be <= 1)

Flange Rigidity Index Operating (rotation check) per APP. 2 [J]: = 109.4 * Mo / Bsc * Cnv_fac / ( Eop * tc^(3) * ln(K) * Kl )

= 109.4 * 22502604/1.0000 * 1.000/( 203114 * 76.000^(3)

* 0.162 * 0.20 )

= 0.852 (should be <= 1)

PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

Page 19: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 18 of 94

Flg Calc [Int P] : SH#FC FLANGE Flng: 22 9:50a Jul 11,2013

Flange Input Data Values Description: SH#FC FLANGE :

SH#FC FLANGE

Description of Flange Geometry (Type) Integral Weld Neck

Design Pressure P 2.00 MPa

Design Temperature 100 C

Internal Corrosion Allowance ci 3.0000 mm

External Corrosion Allowance ce 0.0000 mm

Use Corrosion Allowance in Thickness Calcs. No

Flange Inside Diameter B 635.000 mm

Flange Outside Diameter A 776.000 mm

Flange Thickness t 60.0000 mm

Thickness of Hub at Small End go 10.0000 mm

Thickness of Hub at Large End g1 13.0000 mm

Length of Hub h 33.0000 mm

Flange Material SA-516 70

Flange Material UNS number K02700

Flange Allowable Stress At Temperature Sfo 137.90 MPa

Flange Allowable Stress At Ambient Sfa 137.90 MPa

Bolt Material SA-193 B7

Bolt Allowable Stress At Temperature Sb 172.38 MPa

Bolt Allowable Stress At Ambient Sa 172.38 MPa

Diameter of Bolt Circle C 728.000 mm

Nominal Bolt Diameter dB 20.0000 mm

Type of Threads TEMA Metric

Number of Bolts 28

Flange Face Outside Diameter Fod 698.000 mm

Flange Face Inside Diameter Fid 635.000 mm

Flange Facing Sketch 1, Code Sketch 1a

Gasket Outside Diameter Go 695.000 mm

Gasket Inside Diameter Gi 651.000 mm

Gasket Factor m 2.0000

Gasket Design Seating Stress y 11.03 MPa

Column for Gasket Seating 2, Code Column II

Gasket Thickness tg 3.0000 mm

ASME Code, Section VIII, Division 1, 2010, 2011a

Hub Small End Required Thickness due to Internal Pressure: = (P*(D/2+Ca))/(S*E-0.6*P) per UG-27 (c)(1)

= (2.00*(635.0000/2+3.0000))/(137.90*1.00-0.6*2.00)+Ca

= 7.6891 mm

Hub Small End Hub MAWP: = (S*E*t)/(R+0.6*t) per UG-27 (c)(1)

= (137.90 * 1.00 * 7.0000 )/(320.5000 + 0.6 * 7.0000 )

= 2.973 MPa

Corroded Flange ID, Bcor = B+2*Fcor 641.000 mm

Corroded Large Hub, g1Cor = g1-ci 10.000 mm

Corroded Small Hub, g0Cor = go-ci 7.000 mm

Code R Dimension, R = ((C-Bcor)/2)-g1cor 33.500 mm

Gasket Contact Width, N = (Go - Gi) / 2 22.000 mm

Basic Gasket Width, bo = N / 2 11.000 mm

Effective Gasket Width, b = Cb sqrt(bo) 8.358 mm

Gasket Reaction Diameter, G = Go - 2 * b 678.285 mm

Basic Flange and Bolt Loads:

Hydrostatic End Load due to Pressure [H]: = 0.785 * G² * Peq

= 0.785 * 678.2847² * 2.000

= 722615.125 N

Contact Load on Gasket Surfaces [Hp]: = 2 * b * Pi * G * m * P

= 2 * 8.3576 * 3.1416 * 678.2847 * 2.0000 * 2.00

= 142461.766 N

Hydrostatic End Load at Flange ID [Hd]: = Pi * Bcor² * P / 4

= 3.1416 * 641.0000² *2.0000/4

= 645355.500 N

Pressure Force on Flange Face [Ht]: = H - Hd

= 722615 - 645355

= 77259.602 N

Operating Bolt Load [Wm1]: = max( H + Hp + H'p, 0 )

= max( 722615 + 142461 + 0 , 0 )

= 865076.938 N

Gasket Seating Bolt Load [Wm2]: = y * b * Pi * G + yPart * bPart * lp

= 11.03*8.3576*3.141*678.285+0.00*0.0000*0.00

= 196454.781 N

Required Bolt Area [Am]:

Page 20: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 19 of 94

Flg Calc [Int P] : SH#FC FLANGE Flng: 22 9:50a Jul 11,2013

= Maximum of Wm1/Sb, Wm2/Sa

= Maximum of 865076/172 , 196454/172

= 5019.002 mm²

ASME Maximum Circumferential Spacing between Bolts per App. 2 eq. (3) [Bsmax]: = 2a + 6t/(m + 0.5)

= 2 * 20.000 + 6 * 60.000/(2.00 + 0.5)

= 184.000 mm

Actual Circumferential Bolt Spacing [Bs]: = C * sin( pi / n ) )

= 728.000 * sin( 3.142/28 )

= 81.510 mm

ASME Moment Multiplier for Bolt Spacing per App. 2 eq. (7) [Bsc]: = max( sqrt( Bs/( 2a + t )), 1 )

= max( sqrt( 81.510/( 2 * 20.000 + 60.000 )), 1 )

= 1.0000

Bolting Information for TEMA Metric Thread Series (Non Mandatory): -----------------------------------------------------------------------------

Minimum Actual Maximum

-----------------------------------------------------------------------------

Bolt Area, mm² 5019.002 6077.428

Radial distance bet. hub and bolts 31.750 33.500

Radial distance bet. bolts and the edge 23.810 24.000

Circumferential spacing between bolts 52.390 81.510 184.000

-----------------------------------------------------------------------------

Min. Gasket Contact Width (Brownell Young) [Not an ASME Calc] [Nmin]: = Ab * Sa/( y * Pi * (Go + Gi) )

= 6077.428 * 172.38/(11.03 * 3.14 * (695.000 + 651.00 ) )

= 22.457 mm[Note: Exceeds actual gasket width, 22.000 ]

Note: Recommended Min. Width for Sheet and Composite Gaskets per table 2-4 : = 25.000 mm[Note: Exceeds actual gasket width, 22.000 ]

Flange Design Bolt Load, Gasket Seating [W]: = Sa * ( Am + Ab ) / 2

= 172.38 * ( 5019.0020 + 6077.4277 )/2

= 956292.25 N

Gasket Load for the Operating Condition [HG]: = Wm1 - H

= 865076 - 722615

= 142461.80 N

Moment Arm Calculations:Distance to Gasket Load Reaction [hg]:

= (C - G ) / 2

= ( 728.0000 - 678.2847 )/2

= 24.8576 mm

Distance to Face Pressure Reaction [ht]: = ( R + g1 + hg ) / 2

= ( 33.5000 + 10.0000 + 24.8576 )/2

= 34.1788 mm

Distance to End Pressure Reaction [hd]: = R + ( g1 / 2 )

= 33.5000 + ( 10.0000/2.0 )

= 38.5000 mm

Summary of Moments for Internal Pressure: Loading Force Distance Bolt Corr Moment

End Pressure, Md 645356. 38.5000 1.0000 24856250. N-mm

Face Pressure, Mt 77260. 34.1788 1.0000 2641711. N-mm

Gasket Load, Mg 142462. 24.8576 1.0000 3542696. N-mm

Gasket Seating, Matm 956292. 24.8576 1.0000 23780782. N-mm

Total Moment for Operation, Mop 31040658. N-mm

Total Moment for Gasket seating, Matm 23780782. N-mm

Effective Hub Length, ho = sqrt(Bcor*goCor) 66.985 mm

Hub Ratio, h/h0 = HL / H0 0.493

Thickness Ratio, g1/g0 = (g1Cor/goCor) 1.429

Flange Factors for Integral Flange: Factor F per 2-7.2 0.855

Factor V per 2-7.3 0.334

Factor f per 2-7.6 1.000

Factors from Figure 2-7.1 K = 1.211

T = 1.835 U = 11.282

Y = 10.266 Z = 5.296

d = .11079E+06 mm ³ e = 0.0128 mm ^-1

Stress Factors ALPHA = 1.766

BETA = 2.021 GAMMA = 0.962

DELTA = 1.950 Lamda = 2.912

Longitudinal Hub Stress, Operating [SHo]: = ( f * Mop / Bcor ) / ( L * g1² )

= (1.0000*31040658/641.0000)/(2.9121*10.0000²)

= 166.24 MPa

Longitudinal Hub Stress, Seating [SHa]: = ( f * Matm / Bcor ) / ( L * g1² )

= (1.0000*23780782/641.0000)/(2.9121*10.0000²)

= 127.36 MPa

Page 21: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 20 of 94

Flg Calc [Int P] : SH#FC FLANGE Flng: 22 9:50a Jul 11,2013

Radial Flange Stress, Operating [SRo]: = ( Beta * Mop / Bcor ) / ( L * t² )

= (2.0211*31040658/641.0000)/(2.9121*60.0000²)

= 9.33 MPa

Radial Flange Stress, Seating [SRa]: = ( Beta * Matm/Bcor ) / ( L * t² )

= (2.0211*23780782/641.0000)/(2.9121*60.0000²)

= 7.15 MPa

Tangential Flange Stress, Operating [STo]: = ( Y * Mo / (t² * Bcor) ) - Z * SRo

= (10.2664*31040658/(60.0000²*641.0000))-5.2958*9

= 88.63 MPa

Tangential Flange Stress, Seating [STa]: = ( y * Matm / (t² * Bcor) ) - Z * SRa

= (10.2664*23780782/(60.0000²*641.0000))-5.2958*7

= 67.90 MPa

Average Flange Stress, Operating [SAo]: = ( SHo + max( SRo, STo ) ) / 2

= (166+max(9,88))/2

= 127.43 MPa

Average Flange Stress, Seating [SAa]: = ( SHa + max( SRa, STa ) ) / 2

= (127+max(7,67))/2

= 97.63 MPa

Bolt Stress, Operating [BSo]: = ( Wm1 / Ab )

= (865076/6077.4277)

= 142.35 MPa

Bolt Stress, Seating [BSa]: = ( Wm2 / Ab )

= (196454/6077.4277)

= 32.33 MPa

Stress Computation Results: Operating Gasket Seating

Actual Allowed Actual Allowed

Longitudinal Hub 166. 207. 127. 207. MPa

Radial Flange 9. 138. 7. 138. MPa

Tangential Flange 89. 138. 68. 138. MPa

Maximum Average 127. 138. 98. 138. MPa

Bolting 142. 172. 32. 172. MPa

Minimum Required Flange Thickness [Rigidity] 58.649 mm

Estimated M.A.W.P. ( Operating ) 2.1 MPa

Estimated Finished Weight of Flange at given Thk. 78.6 kgm

Estimated Unfinished Weight of Forging at given Thk 112.6 kgm

Flange Rigidity Based on Required Thickness [ASME]:

Flange Rigidity Index, Seating (rotation check) per APP. 2 [Js]: = 52.14 * Ma / Bsc * Cnv_fac * V / ( Lambda * Eamb * go^(2) * ho * Ki )

= 52.14 * 23780782/1.0000 * 1.000 * 0.334/( 2.771 * 202713 *

7.000^(2) * 66.985 * 0.300 )

= 0.749 (should be <= 1)

Flange Rigidity Index Operating (rotation check) per APP. 2 [J]: = 52.14 * Mo / Bsc * Cnv_fac * V / ( Lambda * Eop * goc^(2) * ho * Ki )

= 52.14 * 31040656/1.0000 * 1.000 * 0.334/( 2.771 * 198162

* 7.000^(2) * 66.985 * 0.300 )

= 1.000 (should be <= 1)

Flange Rigidity Based on Given Thickness [ASME]:

Flange Rigidity Index, Seating (rotation check) per APP. 2 [Js]: = 52.14 * Ma / Bsc * Cnv_fac * V / ( Lambda * Eamb * go^(2) * ho * Ki )

= 52.14 * 23780782/1.0000 * 1.000 * 0.334/( 2.912 * 202713 *

7.000^(2) * 66.985 * 0.300 )

= 0.713 (should be <= 1)

Flange Rigidity Index Operating (rotation check) per APP. 2 [J]: = 52.14 * Mo / Bsc * Cnv_fac * V / ( Lambda * Eop * goc^(2) * ho * Ki )

= 52.14 * 31040656/1.0000 * 1.000 * 0.334/( 2.912 * 198162

* 7.000^(2) * 66.985 * 0.300 )

= 0.952 (should be <= 1)

Minimum Design Metal Temperature Results:Stress Ratio = 1.000 , Temperature Reduction per Fig. UCS 66.1 = 0 C

Min Metal Temp. w/o impact per UCS-66 -29 C

PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

Page 22: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 21 of 94

Flg Calc [Int P] : SH#RC FLANGE Flng: 23 9:50a Jul 11,2013

Flange Input Data Values Description: SH#RC FLANGE :

SH#RC FLANGE

Description of Flange Geometry (Type) Integral Weld Neck

Design Pressure P 2.00 MPa

Design Temperature 100 C

Internal Corrosion Allowance ci 3.0000 mm

External Corrosion Allowance ce 0.0000 mm

Use Corrosion Allowance in Thickness Calcs. No

Flange Inside Diameter B 641.000 mm

Flange Outside Diameter A 858.000 mm

Flange Thickness t 75.0000 mm

Thickness of Hub at Small End go 10.0000 mm

Thickness of Hub at Large End g1 18.0000 mm

Length of Hub h 33.0000 mm

Flange Material SA-516 70

Flange Material UNS number K02700

Flange Allowable Stress At Temperature Sfo 137.90 MPa

Flange Allowable Stress At Ambient Sfa 137.90 MPa

Bolt Material SA-193 B7

Bolt Allowable Stress At Temperature Sb 172.38 MPa

Bolt Allowable Stress At Ambient Sa 172.38 MPa

Diameter of Bolt Circle C 810.000 mm

Nominal Bolt Diameter dB 20.0000 mm

Type of Threads TEMA Metric

Number of Bolts 32

Flange Face Outside Diameter Fod 779.000 mm

Flange Face Inside Diameter Fid 641.000 mm

Flange Facing Sketch 1, Code Sketch 1a

Gasket Outside Diameter Go 776.000 mm

Gasket Inside Diameter Gi 730.000 mm

Gasket Factor m 2.0000

Gasket Design Seating Stress y 11.03 MPa

Column for Gasket Seating 2, Code Column II

Gasket Thickness tg 3.0000 mm

ASME Code, Section VIII, Division 1, 2010, 2011a

Hub Small End Required Thickness due to Internal Pressure: = (P*(D/2+Ca))/(S*E-0.6*P) per UG-27 (c)(1)

= (2.00*(641.0000/2+3.0000))/(137.90*1.00-0.6*2.00)+Ca

= 7.7330 mm

Hub Small End Hub MAWP: = (S*E*t)/(R+0.6*t) per UG-27 (c)(1)

= (137.90 * 1.00 * 7.0000 )/(323.5000 + 0.6 * 7.0000 )

= 2.946 MPa

Corroded Flange ID, Bcor = B+2*Fcor 647.000 mm

Corroded Large Hub, g1Cor = g1-ci 15.000 mm

Corroded Small Hub, g0Cor = go-ci 7.000 mm

Code R Dimension, R = ((C-Bcor)/2)-g1cor 66.500 mm

Gasket Contact Width, N = (Go - Gi) / 2 23.000 mm

Basic Gasket Width, bo = N / 2 11.500 mm

Effective Gasket Width, b = Cb sqrt(bo) 8.545 mm

Gasket Reaction Diameter, G = Go - 2 * b 758.909 mm

Basic Flange and Bolt Loads:

Hydrostatic End Load due to Pressure [H]: = 0.785 * G² * Peq

= 0.785 * 758.9091² * 2.000

= 904612.250 N

Contact Load on Gasket Surfaces [Hp]: = 2 * b * Pi * G * m * P

= 2 * 8.5455 * 3.1416 * 758.9091 * 2.0000 * 2.00

= 162977.812 N

Hydrostatic End Load at Flange ID [Hd]: = Pi * Bcor² * P / 4

= 3.1416 * 647.0001² *2.0000/4

= 657493.625 N

Pressure Force on Flange Face [Ht]: = H - Hd

= 904612 - 657493

= 247118.641 N

Operating Bolt Load [Wm1]: = max( H + Hp + H'p, 0 )

= max( 904612 + 162977 + 0 , 0 )

= 1067590.000 N

Gasket Seating Bolt Load [Wm2]: = y * b * Pi * G + yPart * bPart * lp

= 11.03*8.5455*3.141*758.909+0.00*0.0000*0.00

= 224746.391 N

Required Bolt Area [Am]:

Page 23: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 22 of 94

Flg Calc [Int P] : SH#RC FLANGE Flng: 23 9:50a Jul 11,2013

= Maximum of Wm1/Sb, Wm2/Sa

= Maximum of 1067590/172 , 224746/172

= 6193.942 mm²

ASME Maximum Circumferential Spacing between Bolts per App. 2 eq. (3) [Bsmax]: = 2a + 6t/(m + 0.5)

= 2 * 20.000 + 6 * 75.000/(2.00 + 0.5)

= 220.000 mm

Actual Circumferential Bolt Spacing [Bs]: = C * sin( pi / n ) )

= 810.000 * sin( 3.142/32 )

= 79.394 mm

ASME Moment Multiplier for Bolt Spacing per App. 2 eq. (7) [Bsc]: = max( sqrt( Bs/( 2a + t )), 1 )

= max( sqrt( 79.394/( 2 * 20.000 + 75.000 )), 1 )

= 1.0000

Bolting Information for TEMA Metric Thread Series (Non Mandatory): -----------------------------------------------------------------------------

Minimum Actual Maximum

-----------------------------------------------------------------------------

Bolt Area, mm² 6193.942 6945.631

Radial distance bet. hub and bolts 31.750 66.500

Radial distance bet. bolts and the edge 23.810 24.000

Circumferential spacing between bolts 52.390 79.394 220.000

-----------------------------------------------------------------------------

Min. Gasket Contact Width (Brownell Young) [Not an ASME Calc] [Nmin]: = Ab * Sa/( y * Pi * (Go + Gi) )

= 6945.631 * 172.38/(11.03 * 3.14 * (776.000 + 730.00 ) )

= 22.938 mm

Note: Recommended Min. Width for Sheet and Composite Gaskets per table 2-4 : = 25.000 mm[Note: Exceeds actual gasket width, 23.000 ]

Flange Design Bolt Load, Gasket Seating [W]: = Sa * ( Am + Ab ) / 2

= 172.38 * ( 6193.9419 + 6945.6313 )/2

= 1132370.75 N

Gasket Load for the Operating Condition [HG]: = Wm1 - H

= 1067590 - 904612

= 162977.78 N

Moment Arm Calculations:Distance to Gasket Load Reaction [hg]:

= (C - G ) / 2

= ( 810.0000 - 758.9091 )/2

= 25.5455 mm

Distance to Face Pressure Reaction [ht]: = ( R + g1 + hg ) / 2

= ( 66.5000 + 15.0000 + 25.5455 )/2

= 53.5227 mm

Distance to End Pressure Reaction [hd]: = R + ( g1 / 2 )

= 66.5000 + ( 15.0000/2.0 )

= 74.0000 mm

Summary of Moments for Internal Pressure: Loading Force Distance Bolt Corr Moment

End Pressure, Md 657494. 74.0000 1.0000 48674248. N-mm

Face Pressure, Mt 247119. 53.5227 1.0000 13231826. N-mm

Gasket Load, Mg 162978. 25.5455 1.0000 4165030. N-mm

Gasket Seating, Matm 1132371. 25.5455 1.0000 28938662. N-mm

Total Moment for Operation, Mop 66071104. N-mm

Total Moment for Gasket seating, Matm 28938662. N-mm

Effective Hub Length, ho = sqrt(Bcor*goCor) 67.298 mm

Hub Ratio, h/h0 = HL / H0 0.490

Thickness Ratio, g1/g0 = (g1Cor/goCor) 2.143

Flange Factors for Integral Flange: Factor F per 2-7.2 0.825

Factor V per 2-7.3 0.215

Factor f per 2-7.6 1.461

Factors from Figure 2-7.1 K = 1.326

T = 1.786 U = 7.727

Y = 7.031 Z = 3.636

d = .11830E+06 mm ³ e = 0.0123 mm ^-1

Stress Factors ALPHA = 1.919

BETA = 2.225 GAMMA = 1.074

DELTA = 3.566 Lamda = 4.640

Longitudinal Hub Stress, Operating [SHo]: = ( f * Mop / Bcor ) / ( L * g1² )

= (1.4609*66071104/647.0001)/(4.6404*15.0000²)

= 142.84 MPa

Longitudinal Hub Stress, Seating [SHa]: = ( f * Matm / Bcor ) / ( L * g1² )

= (1.4609*28938662/647.0001)/(4.6404*15.0000²)

= 62.56 MPa

Page 24: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 23 of 94

Flg Calc [Int P] : SH#RC FLANGE Flng: 23 9:50a Jul 11,2013

Radial Flange Stress, Operating [SRo]: = ( Beta * Mop / Bcor ) / ( L * t² )

= (2.2252*66071104/647.0001)/(4.6404*75.0000²)

= 8.70 MPa

Radial Flange Stress, Seating [SRa]: = ( Beta * Matm/Bcor ) / ( L * t² )

= (2.2252*28938662/647.0001)/(4.6404*75.0000²)

= 3.81 MPa

Tangential Flange Stress, Operating [STo]: = ( Y * Mo / (t² * Bcor) ) - Z * SRo

= (7.0313*66071104/(75.0000²*647.0001))-3.6364*8

= 95.96 MPa

Tangential Flange Stress, Seating [STa]: = ( y * Matm / (t² * Bcor) ) - Z * SRa

= (7.0313*28938662/(75.0000²*647.0001))-3.6364*3

= 42.03 MPa

Average Flange Stress, Operating [SAo]: = ( SHo + max( SRo, STo ) ) / 2

= (142+max(8,95))/2

= 119.40 MPa

Average Flange Stress, Seating [SAa]: = ( SHa + max( SRa, STa ) ) / 2

= (62+max(3,42))/2

= 52.30 MPa

Bolt Stress, Operating [BSo]: = ( Wm1 / Ab )

= (1067590/6945.6313)

= 153.72 MPa

Bolt Stress, Seating [BSa]: = ( Wm2 / Ab )

= (224746/6945.6313)

= 32.36 MPa

Stress Computation Results: Operating Gasket Seating

Actual Allowed Actual Allowed

Longitudinal Hub 143. 207. 63. 207. MPa

Radial Flange 9. 138. 4. 138. MPa

Tangential Flange 96. 138. 42. 138. MPa

Maximum Average 119. 138. 52. 138. MPa

Bolting 154. 172. 32. 172. MPa

Minimum Required Flange Thickness 69.723 mm

Estimated M.A.W.P. ( Operating ) 2.2 MPa

Estimated Finished Weight of Flange at given Thk. 155.9 kgm

Estimated Unfinished Weight of Forging at given Thk 213.8 kgm

Flange Rigidity Based on Required Thickness [ASME]:

Flange Rigidity Index, Seating (rotation check) per APP. 2 [Js]: = 52.14 * Ma / Bsc * Cnv_fac * V / ( Lambda * Eamb * go^(2) * ho * Ki )

= 52.14 * 28938662/1.0000 * 1.000 * 0.215/( 3.901 * 202713 *

7.000^(2) * 67.298 * 0.300 )

= 0.415 (should be <= 1)

Flange Rigidity Index Operating (rotation check) per APP. 2 [J]: = 52.14 * Mo / Bsc * Cnv_fac * V / ( Lambda * Eop * goc^(2) * ho * Ki )

= 52.14 * 66071104/1.0000 * 1.000 * 0.215/( 3.901 * 198162

* 7.000^(2) * 67.298 * 0.300 )

= 0.970 (should be <= 1)

Flange Rigidity Based on Given Thickness [ASME]:

Flange Rigidity Index, Seating (rotation check) per APP. 2 [Js]: = 52.14 * Ma / Bsc * Cnv_fac * V / ( Lambda * Eamb * go^(2) * ho * Ki )

= 52.14 * 28938662/1.0000 * 1.000 * 0.215/( 4.640 * 202713 *

7.000^(2) * 67.298 * 0.300 )

= 0.349 (should be <= 1)

Flange Rigidity Index Operating (rotation check) per APP. 2 [J]: = 52.14 * Mo / Bsc * Cnv_fac * V / ( Lambda * Eop * goc^(2) * ho * Ki )

= 52.14 * 66071104/1.0000 * 1.000 * 0.215/( 4.640 * 198162

* 7.000^(2) * 67.298 * 0.300 )

= 0.815 (should be <= 1)

Minimum Design Metal Temperature Results:Stress Ratio = 0.937 , Temperature Reduction per Fig. UCS 66.1 = 3 C

Min Metal Temp. w/o impact per UCS-66 -29 C

Min Metal Temp. at Required thickness (UCS 66.1) -32 C

PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

Page 25: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 24 of 94

Flg Calc [Int P] : RC#SH FLANGE Flng: 24 9:50a Jul 11,2013

Flange Input Data Values Description: RC#SH FLANGE :

RC#SH FLANGE

Description of Flange Geometry (Type) Integral Ring

Design Pressure P 2.00 MPa

Design Temperature 100 C

Internal Corrosion Allowance ci 3.0000 mm

External Corrosion Allowance ce 0.0000 mm

Use Corrosion Allowance in Thickness Calcs. No

Attached Shell Inside Diameter B 724.0000 mm

Integral Ring Inside Diameter 744.0000 mm

Flange Outside Diameter A 858.000 mm

Flange Thickness t 80.0000 mm

Thickness of Hub at Small End go 10.0000 mm

Thickness of Hub at Large End g1 20.0000 mm

Length of Hub h 10.0000 mm

Flange Material SA-516 70

Flange Material UNS number K02700

Flange Allowable Stress At Temperature Sfo 137.90 MPa

Flange Allowable Stress At Ambient Sfa 137.90 MPa

Bolt Material SA-193 B7

Bolt Allowable Stress At Temperature Sb 172.38 MPa

Bolt Allowable Stress At Ambient Sa 172.38 MPa

Length of Weld Leg at Back of Ring tw 0.0000 mm

Number of Splits in Ring Flange n 0

Diameter of Bolt Circle C 810.000 mm

Nominal Bolt Diameter dB 20.0000 mm

Type of Threads TEMA Metric

Number of Bolts 32

Flange Face Outside Diameter Fod 779.000 mm

Flange Face Inside Diameter Fid 744.000 mm

Flange Facing Sketch 1, Code Sketch 1a

Gasket Outside Diameter Go 776.000 mm

Gasket Inside Diameter Gi 730.000 mm

Gasket Factor m 2.0000

Gasket Design Seating Stress y 11.03 MPa

Column for Gasket Seating 2, Code Column II

Gasket Thickness tg 3.0000 mm

ASME Code, Section VIII, Division 1, 2010, 2011a

Corroded Flange ID, Bcor = B+2*Fcor 730.000 mm

Corroded Large Hub, g1Cor = g1-ci 17.000 mm

Corroded Small Hub, g0Cor = go-ci 7.000 mm

Code R Dimension, R = ((C-Bcor)/2)-g1cor 23.000 mm

Gasket Contact Width, N = (Go - Gi) / 2 16.000 mm

Basic Gasket Width, bo = N / 2 8.000 mm

Effective Gasket Width, b = Cb sqrt(bo) 7.127 mm

Gasket Reaction Diameter, G = Go - 2 * b 761.745 mm

Basic Flange and Bolt Loads:

Hydrostatic End Load due to Pressure [H]: = 0.785 * G² * Peq

= 0.785 * 761.7452² * 2.000

= 911386.062 N

Contact Load on Gasket Surfaces [Hp]: = 2 * b * Pi * G * m * P

= 2 * 7.1274 * 3.1416 * 761.7452 * 2.0000 * 2.00

= 136440.844 N

Hydrostatic End Load at Flange ID [Hd]: = Pi * Bcor² * P / 4

= 3.1416 * 730.0000² *2.0000/4

= 837006.188 N

Pressure Force on Flange Face [Ht]: = H - Hd

= 911386 - 837006

= 74379.875 N

Operating Bolt Load [Wm1]: = max( H + Hp + H'p, 0 )

= max( 911386 + 136440 + 0 , 0 )

= 1047826.938 N

Gasket Seating Bolt Load [Wm2]: = y * b * Pi * G + yPart * bPart * lp

= 11.03*7.1274*3.141*761.745+0.00*0.0000*0.00

= 188151.906 N

Required Bolt Area [Am]: = Maximum of Wm1/Sb, Wm2/Sa

= Maximum of 1047826/172 , 188151/172

= 6079.280 mm²

ASME Maximum Circumferential Spacing between Bolts per App. 2 eq. (3) [Bsmax]: = 2a + 6t/(m + 0.5)

Page 26: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 25 of 94

Flg Calc [Int P] : RC#SH FLANGE Flng: 24 9:50a Jul 11,2013

= 2 * 20.000 + 6 * 80.000/(2.00 + 0.5)

= 232.000 mm

Actual Circumferential Bolt Spacing [Bs]: = C * sin( pi / n ) )

= 810.000 * sin( 3.142/32 )

= 79.394 mm

ASME Moment Multiplier for Bolt Spacing per App. 2 eq. (7) [Bsc]: = max( sqrt( Bs/( 2a + t )), 1 )

= max( sqrt( 79.394/( 2 * 20.000 + 80.000 )), 1 )

= 1.0000

Bolting Information for TEMA Metric Thread Series (Non Mandatory): Distance Across Corners for Nuts 39.260 mm

Circular Wrench End Diameter a 0.000 mm

-----------------------------------------------------------------------------

Minimum Actual Maximum

-----------------------------------------------------------------------------

Bolt Area, mm² 6079.280 6945.631

Radial distance bet. hub and bolts 23.810 43.000

Radial distance bet. bolts and the edge 23.810 24.000

Circumferential spacing between bolts 52.390 79.394 232.000

-----------------------------------------------------------------------------

Min. Gasket Contact Width (Brownell Young) [Not an ASME Calc] [Nmin]: = Ab * Sa/( y * Pi * (Go + Gi) )

= 6945.631 * 172.38/(11.03 * 3.14 * (776.000 + 744.00 ) )

= 22.727 mm[Note: Exceeds actual gasket width, 16.000 ]

Note: Recommended Min. Width for Sheet and Composite Gaskets per table 2-4 : = 25.000 mm[Note: Exceeds actual gasket width, 16.000 ]

Flange Design Bolt Load, Gasket Seating [W]: = Sa * ( Am + Ab ) / 2

= 172.38 * ( 6079.2803 + 6945.6313 )/2

= 1122489.25 N

Gasket Load for the Operating Condition [HG]: = Wm1 - H

= 1047826 - 911386

= 136440.88 N

Moment Arm Calculations:Distance to Gasket Load Reaction [hg]:

= (C - G ) / 2

= ( 810.0000 - 761.7452 )/2

= 24.1274 mm

Distance to Face Pressure Reaction [ht]: = ( R + g1 + hg ) / 2

= ( 23.0000 + 17.0000 + 24.1274 )/2

= 32.0637 mm

Distance to End Pressure Reaction [hd]: = R + ( g1 / 2 )

= 23.0000 + ( 17.0000/2.0 )

= 31.5000 mm

Summary of Moments for Internal Pressure: Loading Force Distance Bolt Corr Moment

End Pressure, Md 837006. 31.5000 1.0000 26376390. N-mm

Face Pressure, Mt 74380. 32.0637 1.0000 2385861. N-mm

Gasket Load, Mg 136441. 24.1274 1.0000 3293298. N-mm

Gasket Seating, Matm 1122489. 24.1274 1.0000 27093730. N-mm

Total Moment for Operation, Mop 32055552. N-mm

Total Moment for Gasket seating, Matm 27093730. N-mm

Effective Hub Length, ho = sqrt(Bcor*goCor) 71.484 mm

Hub Ratio, h/h0 = HL / H0 0.140

Thickness Ratio, g1/g0 = (g1Cor/goCor) 2.429

Flange Factors for Integral Flange: Factor F per 2-7.2 0.900

Factor V per 2-7.3 0.388

Factor f per 2-7.6 4.451

Factors from Figure 2-7.1 K = 1.175

T = 1.849 U = 13.294

Y = 12.097 Z = 6.243

d = .12013E+06 mm ³ e = 0.0126 mm ^-1

Stress Factors ALPHA = 2.007

BETA = 2.343 GAMMA = 1.086

DELTA = 4.262 Lamda = 5.348

Longitudinal Hub Stress, Operating [SHo]: = ( f * Mop / Bcor ) / ( L * g1² )

= (4.4515*32055552/730.0000)/(5.3475*17.0000²)

= 126.44 MPa

Longitudinal Hub Stress, Seating [SHa]: = ( f * Matm / Bcor ) / ( L * g1² )

= (4.4515*27093730/730.0000)/(5.3475*17.0000²)

= 106.87 MPa

Radial Flange Stress, Operating [SRo]: = ( Beta * Mop / Bcor ) / ( L * t² )

= (2.3427*32055552/730.0000)/(5.3475*80.0000²)

Page 27: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 26 of 94

Flg Calc [Int P] : RC#SH FLANGE Flng: 24 9:50a Jul 11,2013

= 3.00 MPa

Radial Flange Stress, Seating [SRa]: = ( Beta * Matm/Bcor ) / ( L * t² )

= (2.3427*27093730/730.0000)/(5.3475*80.0000²)

= 2.54 MPa

Tangential Flange Stress, Operating [STo]: = ( Y * Mo / (t² * Bcor) ) - Z * SRo

= (12.0975*32055552/(80.0000²*730.0000))-6.2434*3

= 64.22 MPa

Tangential Flange Stress, Seating [STa]: = ( y * Matm / (t² * Bcor) ) - Z * SRa

= (12.0975*27093730/(80.0000²*730.0000))-6.2434*2

= 54.28 MPa

Average Flange Stress, Operating [SAo]: = ( SHo + max( SRo, STo ) ) / 2

= (126+max(3,64))/2

= 95.33 MPa

Average Flange Stress, Seating [SAa]: = ( SHa + max( SRa, STa ) ) / 2

= (106+max(2,54))/2

= 80.57 MPa

Bolt Stress, Operating [BSo]: = ( Wm1 / Ab )

= (1047826/6945.6313)

= 150.87 MPa

Bolt Stress, Seating [BSa]: = ( Wm2 / Ab )

= (188151/6945.6313)

= 27.09 MPa

Stress Computation Results: Operating Gasket Seating

Actual Allowed Actual Allowed

Longitudinal Hub 126. 207. 107. 207. MPa

Radial Flange 3. 138. 3. 138. MPa

Tangential Flange 64. 138. 54. 138. MPa

Maximum Average 95. 138. 81. 138. MPa

Bolting 151. 172. 27. 172. MPa

Minimum Required Flange Thickness 66.827 mm

Estimated M.A.W.P. ( Operating ) 2.3 MPa

Estimated Finished Weight of Flange at given Thk. 103.2 kgm

Estimated Unfinished Weight of Forging at given Thk 103.2 kgm

Flange Rigidity Based on Required Thickness [ASME]:

Flange Rigidity Index, Seating (rotation check) per APP. 2 [Js]: = 52.14 * Ma / Bsc * Cnv_fac * V / ( Lambda * Eamb * go^(2) * ho * Ki )

= 52.14 * 27093730/1.0000 * 1.000 * 0.388/( 3.480 * 202713 *

7.000^(2) * 71.484 * 0.300 )

= 0.738 (should be <= 1)

Flange Rigidity Index Operating (rotation check) per APP. 2 [J]: = 52.14 * Mo / Bsc * Cnv_fac * V / ( Lambda * Eop * goc^(2) * ho * Ki )

= 52.14 * 32055550/1.0000 * 1.000 * 0.388/( 3.480 * 198162

* 7.000^(2) * 71.484 * 0.300 )

= 0.894 (should be <= 1)

Flange Rigidity Based on Given Thickness [ASME]:

Flange Rigidity Index, Seating (rotation check) per APP. 2 [Js]: = 52.14 * Ma / Bsc * Cnv_fac * V / ( Lambda * Eamb * go^(2) * ho * Ki )

= 52.14 * 27093730/1.0000 * 1.000 * 0.388/( 5.348 * 202713 *

7.000^(2) * 71.484 * 0.300 )

= 0.481 (should be <= 1)

Flange Rigidity Index Operating (rotation check) per APP. 2 [J]: = 52.14 * Mo / Bsc * Cnv_fac * V / ( Lambda * Eop * goc^(2) * ho * Ki )

= 52.14 * 32055550/1.0000 * 1.000 * 0.388/( 5.348 * 198162

* 7.000^(2) * 71.484 * 0.300 )

= 0.582 (should be <= 1)

PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

Page 28: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 27 of 94

Internal Pressure Calculations : Step: 9 9:50a Jul 11,2013

Element Thickness, Pressure, Diameter and Allowable Stress :

| | Int. Press | Nominal | Total Corr| Element | Allowable |

From| To | + Liq. Hd | Thickness | Allowance | Diameter | Stress(SE)|

| | MPa | mm | mm | mm | MPa |

---------------------------------------------------------------------------

FC COVER| 0.5000 | ... | 6.1750 | 984.25 | 137.90 |

FC#CV FLAN| 0.5000 | ... | 3.0000 | 984.25 | 137.90 |

FC SHELL| 0.5000 | 10.000 | 3.0000 | 635.00 | 117.22 |

FC#SH FLAN| 0.5000 | ... | 3.0000 | ... | 137.90 |

SH#FC FLAN| 2.0000 | ... | 3.0000 | ... | 137.90 |

SHELL| 2.0000 | 10.000 | 3.0000 | 635.00 | 117.22 |

SH#RC FLAN| 2.0000 | ... | 3.0000 | ... | 137.90 |

RC#SH FLAN| 2.0000 | ... | 3.0000 | ... | 137.90 |

RC SHELL| 2.0000 | 10.000 | 3.0000 | 724.00 | 117.22 |

RC HEAD| 2.0000 | 12.000 | 3.0000 | 724.00 | 117.22 |

Element Required Thickness and MAWP :

| | Design | M.A.W.P. | M.A.P. | Minimum | Required |

From| To | Pressure | Corroded | New & Cold | Thickness | Thickness |

| | MPa | MPa | MPa | mm | mm |

----------------------------------------------------------------------------

FC COVER| 0.50000 | 0.84078 | 1.37369 | 43.0000 | 35.2589 |

FC#CV FLAN| 0.50000 | 1.01301 | 1.01301 | 47.0000 | 42.7736 |

FC SHELL| 0.50000 | 2.52696 | 3.62334 | 10.0000 | 4.50000 |

FC#SH FLAN| 0.50000 | 0.51706 | 2.45352 | 76.0000 | 72.5678 |

SH#FC FLAN| 2.00000 | 2.10153 | 2.42173 | 60.0000 | 58.6486 |

SHELL| 2.00000 | 2.52696 | 3.62334 | 10.0000 | 8.52515 |

SH#RC FLAN| 2.00000 | 2.24267 | 2.24267 | 75.0000 | 69.7230 |

RC#SH FLAN| 2.00000 | 2.28500 | 2.28500 | 80.0000 | 66.8274 |

RC SHELL| 2.00000 | 2.22239 | 3.18519 | 10.0000 | 9.29229 |

RC HEAD| 2.00000 | 2.26816 | 3.22906 | 10.0000 | 9.17098 |

Summary of Heat Exchanger Maximum Allowable Working Pressures :

Note: For ASME UHX designs, the following values include MAWPs thatconsider the tubesheet, tubes, tube/tubesheet joint etc. Thesevalues were determined by iteration. Review the tubesheet analysisreport for more information.

Shell Side MAWP = 2.102 MPa

Shell Side MAPnc = 2.243 MPa

Channel Side MAWP = 0.517 MPa

Channel Side MAPnc = 1.013 MPa

Internal Pressure Calculation Results :

ASME Code, Section VIII, Division 1, 2010, 2011a

Cylindrical Shell From 30 To 40 SA-516 70 , UCS-66 Crv. B at 15 C

FC SHELL

Longitudinal Joint: Spot Radiography per UW-11(b) Type 1Circumferential Joint: Spot Radiography per UW-11(b) Type 1

Material UNS Number: K02700

Required Thickness due to Internal Pressure [tr]: = (P*R)/(S*E-0.6*P) per UG-27 (c)(1)

= (0.500*320.5000)/(137.90*0.85-0.6*0.500)

= 1.3707 + 3.0000 = 4.3707 mm

Note: The thickness required was less than the Code Minimum, thereforethe Code Minimum value of 1.5000 mm per UG-16 will be used.

Max. Allowable Working Pressure at given Thickness, corroded [MAWP]: = (S*E*t)/(R+0.6*t) per UG-27 (c)(1)

= (137.90*0.85*7.0000)/(320.5000+0.6*7.0000)

= 2.527 MPa

Maximum Allowable Pressure, New and Cold [MAPNC]: = (S*E*t)/(R+0.6*t) per UG-27 (c)(1)

= (137.90*0.85*10.0000)/(317.5000+0.6*10.0000)

= 3.623 MPa

Actual stress at given pressure and thickness, corroded [Sact]: = (P*(R+0.6*t))/(E*t)

= (0.500*(320.5000+0.6*7.0000))/(0.85*7.0000)

= 27.286 MPa

Percent Elongation per UCS-79 (50*tnom/Rf)*(1-Rf/Ro) 1.550 %

Minimum Design Metal Temperature Results:

Govrn. thk, tg = 10.000 , tr = 2.309 , c = 3.0000 mm , E* = 0.85Stress Ratio = tr * (E*)/(tg - c) = 0.280 , Temp. Reduction = 78 C

Min Metal Temp. w/o impact per UCS-66 -29 C

Min Metal Temp. at Required thickness (UCS 66.1) -104 C

Cylindrical Shell From 60 To 70 SA-516 70 , UCS-66 Crv. B at 100 C

Page 29: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 28 of 94

Internal Pressure Calculations : Step: 9 9:50a Jul 11,2013

SHELL

Longitudinal Joint: Spot Radiography per UW-11(b) Type 1Circumferential Joint: Spot Radiography per UW-11(b) Type 1

Material UNS Number: K02700

Required Thickness due to Internal Pressure [tr]: = (P*R)/(S*E-0.6*P) per UG-27 (c)(1)

= (2.000*320.5000)/(137.90*0.85-0.6*2.000)

= 5.5251 + 3.0000 = 8.5251 mm

Max. Allowable Working Pressure at given Thickness, corroded [MAWP]: = (S*E*t)/(R+0.6*t) per UG-27 (c)(1)

= (137.90*0.85*7.0000)/(320.5000+0.6*7.0000)

= 2.527 MPa

Maximum Allowable Pressure, New and Cold [MAPNC]: = (S*E*t)/(R+0.6*t) per UG-27 (c)(1)

= (137.90*0.85*10.0000)/(317.5000+0.6*10.0000)

= 3.623 MPa

Actual stress at given pressure and thickness, corroded [Sact]: = (P*(R+0.6*t))/(E*t)

= (2.000*(320.5000+0.6*7.0000))/(0.85*7.0000)

= 109.143 MPa

Percent Elongation per UCS-79 (50*tnom/Rf)*(1-Rf/Ro) 1.550 %

Minimum Design Metal Temperature Results:

Govrn. thk, tg = 10.000 , tr = 5.809 , c = 3.0000 mm , E* = 0.85Stress Ratio = tr * (E*)/(tg - c) = 0.705 , Temp. Reduction = 16 C

Min Metal Temp. w/o impact per UCS-66 -29 C

Min Metal Temp. at Required thickness (UCS 66.1) -45 C

Cylindrical Shell From 90 To 100 SA-516 70 , UCS-66 Crv. B at 100 C

RC SHELL

Longitudinal Joint: Spot Radiography per UW-11(b) Type 1Circumferential Joint: Spot Radiography per UW-11(a,5,b) Type 1

Material UNS Number: K02700

Required Thickness due to Internal Pressure [tr]: = (P*R)/(S*E-0.6*P) per UG-27 (c)(1)

= (2.000*365.0000)/(137.90*0.85-0.6*2.000)

= 6.2923 + 3.0000 = 9.2923 mm

Max. Allowable Working Pressure at given Thickness, corroded [MAWP]: = (S*E*t)/(R+0.6*t) per UG-27 (c)(1)

= (137.90*0.85*7.0000)/(365.0000+0.6*7.0000)

= 2.222 MPa

Maximum Allowable Pressure, New and Cold [MAPNC]: = (S*E*t)/(R+0.6*t) per UG-27 (c)(1)

= (137.90*0.85*10.0000)/(362.0000+0.6*10.0000)

= 3.185 MPa

Actual stress at given pressure and thickness, corroded [Sact]: = (P*(R+0.6*t))/(E*t)

= (2.000*(365.0000+0.6*7.0000))/(0.85*7.0000)

= 124.101 MPa

Percent Elongation per UCS-79 (50*tnom/Rf)*(1-Rf/Ro) 1.362 %

Minimum Design Metal Temperature Results:

Govrn. thk, tg = 10.000 , tr = 6.615 , c = 3.0000 mm , E* = 0.85Stress Ratio = tr * (E*)/(tg - c) = 0.803 , Temp. Reduction = 11 C

Min Metal Temp. w/o impact per UCS-66 -29 C

Min Metal Temp. at Required thickness (UCS 66.1) -40 C

Elliptical Head From 100 To 110 SA-516 70 , UCS-66 Crv. B at 100 C

RC HEAD

Longitudinal Joint: SeamlessCircumferential Joint: Spot Radiography per UW-11(b) Type 1

Material UNS Number: K02700

Required Thickness due to Internal Pressure [tr]: = (P*D*Kcor)/(2*S*E-0.2*P) Appendix 1-4(c)

= (2.000*730.0000*0.989)/(2*137.90*0.85-0.2*2.000)

= 6.1710 + 3.0000 = 9.1710 mm

Max. Allowable Working Pressure at given Thickness, corroded [MAWP]: = (2*S*E*t)/(Kcor*D+0.2*t) per Appendix 1-4 (c)

= (2*137.90*0.85*7.0000)/(0.989*730.0000+0.2*7.0000)

Page 30: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 29 of 94

Internal Pressure Calculations : Step: 9 9:50a Jul 11,2013

= 2.268 MPa

Maximum Allowable Pressure, New and Cold [MAPNC]: = (2*S*E*t)/(K*D+0.2*t) per Appendix 1-4 (c)

= (2*137.90*0.85*10.0000)/(1.000*724.0000+0.2*10.0000)

= 3.229 MPa

Actual stress at given pressure and thickness, corroded [Sact]: = (P*(Kcor*D+0.2*t))/(2*E*t)

= (2.000*(0.989*730.0000+0.2*7.0000))/(2*0.85*7.0000)

= 121.596 MPa

Straight Flange Required Thickness: = (P*R)/(S*E-0.6*P) + c per UG-27 (c)(1)

= (2.000*365.0000)/(137.90*0.85-0.6*2.000)+3.000

= 9.292 mm

Straight Flange Maximum Allowable Working Pressure: = (S*E*t)/(R+0.6*t) per UG-27 (c)(1)

= (137.90 * 0.85 * 9.0000 )/(365.0000 + 0.6 * 9.0000 )

= 2.848 MPa

Factor K, corroded condition [Kcor]: = ( 2 + ( Inside Diameter/( 2 * Inside Head Depth ))^(2))/6

= ( 2 + ( 730.000/( 2 * 184.000 ))^(2))/6

= 0.989175

Percent Elong. per UCS-79, VIII-1-01-57 (75*tnom/Rf)*(1-Rf/Ro) 6.972 %

Note: Please Check Requirements of UCS-79 as Elongation is > 5%.

MDMT Calculations in the Knuckle Portion:

Govrn. thk, tg = 10.000 , tr = 6.485 , c = 3.0000 mm , E* = 0.85Stress Ratio = tr * (E*)/(tg - c) = 0.787 , Temp. Reduction = 12 C

Min Metal Temp. w/o impact per UCS-66 -29 C

Min Metal Temp. at Required thickness (UCS 66.1) -41 C

MDMT Calculations in the Head Straight Flange:

Govrn. thk, tg = 12.000 , tr = 6.615 , c = 3.0000 mm , E* = 0.85Stress Ratio = tr * (E*)/(tg - c) = 0.625 , Temp. Reduction = 21 C

Min Metal Temp. w/o impact per UCS-66 -23 C

Min Metal Temp. at Required thickness (UCS 66.1) -44 C

Min Metal Temp. w/o impact per UG-20(f) -29 C

Note: Heads and Shells Exempted to -20F (-29C) by paragraph UG-20F

Hydrostatic Test Pressure Results:

Exchanger Shell Side Hydrostatic Test Pressures:

Pressure per UG99b = 1.3 * M.A.W.P. * Sa/S 2.732 MPa

Pressure per UG99b[34] = 1.3 * Design Pres * Sa/S 2.600 MPa

Pressure per UG99c = 1.3 * M.A.P. - Head(Hyd) 2.915 MPa

Pressure per UG100 = 1.1 * M.A.W.P. * Sa/S 2.312 MPa

Pressure per PED = 1.43 * MAWP 3.005 MPa

Exchanger Channel Side Hydrostatic Test Pressures:

Pressure per UG99b = 1.3 * M.A.W.P. * Sa/S 0.672 MPa

Pressure per UG99b[34] = 1.3 * Design Pres * Sa/S 0.650 MPa

Pressure per UG99c = 1.3 * M.A.P. - Head(Hyd) 1.317 MPa

Pressure per UG100 = 1.1 * M.A.W.P. * Sa/S 0.569 MPa

Pressure per PED = 1.43 * MAWP 0.739 MPa

Horizontal Test performed per: UG-99b

Please note that Nozzle, Shell, Head, Flange, etc MAWPs are all consideredwhen determining the hydrotest pressure for those test types that are basedon the MAWP of the vessel.

Stresses on Elements due to Hydrostatic Test Pressure:

From To Stress Allowable Ratio Pressure

FC SHELL 25.8 235.8 0.109 0.68

SHELL 104.2 235.8 0.442 2.74

RC SHELL 118.6 235.8 0.503 2.74

RC HEAD 117.0 235.8 0.496 2.74

Elements Suitable for Internal Pressure.

PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

Page 31: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 30 of 94

External Pressure Calculations : Step: 10 9:50a Jul 11,2013

External Pressure Calculation Results :

ASME Code, Section VIII, Division 1, 2010, 2011a

Cylindrical Shell From 30 to 40 Ext. Chart: CS-2 at 100 C

FC SHELL

Elastic Modulus from Chart: CS-2 at 100 C : 0.200E+06 MPa

Results for Maximum Allowable External Pressure (MAEP): Tca OD SLEN D/t L/D Factor A B

7.000 655.00 650.00 93.57 0.9924 0.0015102 96.96

EMAP = (4*B)/(3*(D/t)) = (4*96.9644 )/(3*93.5714 ) = 1.3817 MPa

Results for Required Thickness (Tca): Tca OD SLEN D/t L/D Factor A B

2.091 655.00 650.00 313.26 0.9924 0.0002421 24.20

EMAP = (4*B)/(3*(D/t)) = (4*24.2006 )/(3*313.2550 ) = 0.1030 MPa

Results for Maximum Stiffened Length (Slen): Tca OD SLEN D/t L/D Factor A B

7.000 655.00 14759.37 93.57 22.5334 0.0001287 12.87

EMAP = (4*B)/(3*(D/t)) = (4*12.8690 )/(3*93.5714 ) = 0.1834 MPa

Cylindrical Shell From 60 to 70 Ext. Chart: CS-2 at 100 C

SHELL

Elastic Modulus from Chart: CS-2 at 100 C : 0.200E+06 MPa

Results for Maximum Allowable External Pressure (MAEP): Tca OD SLEN D/t L/D Factor A B

7.000 655.00 3625.00 93.57 5.5344 0.0002369 23.68

EMAP = (4*B)/(3*(D/t)) = (4*23.6810 )/(3*93.5714 ) = 0.3374 MPa

Results for Required Thickness (Tca): Tca OD SLEN D/t L/D Factor A B

4.333 655.00 3625.00 151.16 5.5344 0.0001168 11.68

EMAP = (4*B)/(3*(D/t)) = (4*11.6781 )/(3*151.1646 ) = 0.1030 MPa

Results for Maximum Stiffened Length (Slen): Tca OD SLEN D/t L/D Factor A B

7.000 655.00 91925.30 93.57 50.0000 0.0001278 12.78

EMAP = (4*B)/(3*(D/t)) = (4*12.7766 )/(3*93.5714 ) = 0.1821 MPa

Cylindrical Shell From 90 to 100 Ext. Chart: CS-2 at 100 C

RC SHELL

Elastic Modulus from Chart: CS-2 at 100 C : 0.200E+06 MPa

Results for Maximum Allowable External Pressure (MAEP): Tca OD SLEN D/t L/D Factor A B

7.000 744.00 410.33 106.29 0.5515 0.0023388 107.13

EMAP = (4*B)/(3*(D/t)) = (4*107.1335 )/(3*106.2857 ) = 1.3440 MPa

Results for Required Thickness (Tca): Tca OD SLEN D/t L/D Factor A B

1.867 744.00 410.33 398.57 0.5515 0.0003080 30.79

EMAP = (4*B)/(3*(D/t)) = (4*30.7915 )/(3*398.5727 ) = 0.1030 MPa

Results for Maximum Stiffened Length (Slen): Tca OD SLEN D/t L/D Factor A B

7.000 744.00 9050.47 106.29 12.1646 0.0001063 10.63

EMAP = (4*B)/(3*(D/t)) = (4*10.6295 )/(3*106.2857 ) = 0.1333 MPa

Elliptical Head From 100 to 110 Ext. Chart: CS-2 at 100 C

RC HEAD

Elastic Modulus from Chart: CS-2 at 100 C : 0.200E+06 MPa

Results for Maximum Allowable External Pressure (MAEP): Tca OD D/t Factor A B

7.000 744.00 106.29 0.0013068 93.10

EMAP = B/(K0*D/t) = 93.1003/(0.9000 *106.2857 ) = 0.9733 MPa

Results for Required Thickness (Tca): Tca OD D/t Factor A B

1.922 744.00 387.01 0.0003589 35.88

EMAP = B/(K0*D/t) = 35.8792/(0.9000 *387.0145 ) = 0.1030 MPa

Check the requirements of UG-33(a)(1) using P = 1.67 * External Designpressure for this head.

Material UNS Number: K02700

Required Thickness due to Internal Pressure [tr]: = (P*D*Kcor)/(2*S*E-0.2*P) Appendix 1-4(c)

= (0.172*730.0000*0.989)/(2*137.90*1.00-0.2*0.172)

= 0.4504 + 3.0000 = 3.4504 mm

Page 32: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 31 of 94

External Pressure Calculations : Step: 10 9:50a Jul 11,2013

Max. Allowable Working Pressure at given Thickness, corroded [MAWP]: = ((2*S*E*t)/(Kcor*D+0.2*t))/1.67 per Appendix 1-4 (c)

= ((2*137.90*1.00*7.0000)/(0.989*730.0000+0.2*7.0000))/1.67

= 1.598 MPa

Maximum Allowable External Pressure [MAEP]: = min( MAEP, MAWP )

= min( 0.97 , 1.5979 )

= 0.973 MPa

Thickness requirements per UG-33(a)(1) do not govern the requiredthickness of this head.

External Pressure Calculations

| | Section | Outside | Corroded | Factor | Factor |

From| To | Length | Diameter | Thickness | A | B |

| | mm | mm | mm | | MPa |

---------------------------------------------------------------------------

10| 20| No Calc | ... | 36.8250 | No Calc | No Calc |

20| 30| No Calc | ... | 44.0000 | No Calc | No Calc |

30| 40| 650.000 | 655.000 | 7.00000 | 0.0015102 | 96.9644 |

40| 50| No Calc | ... | 73.0000 | No Calc | No Calc |

50| 60| No Calc | ... | 57.0000 | No Calc | No Calc |

60| 70| 3625.00 | 655.000 | 7.00000 | 0.00023686 | 23.6810 |

70| 80| No Calc | ... | 72.0000 | No Calc | No Calc |

80| 90| No Calc | ... | 77.0000 | No Calc | No Calc |

90| 100| 410.333 | 744.000 | 7.00000 | 0.0023388 | 107.133 |

100| 110| No Calc | 744.000 | 7.00000 | 0.0013068 | 93.1003 |

External Pressure Calculations

| | External | External | External | External |

From| To | Actual T. | Required T.|Des. Press. | M.A.W.P. |

| | mm | mm | MPa | MPa |

----------------------------------------------------------------

10| 20| 43.0000 | 28.8036 | 0.10300 | No Calc |

20| 30| 47.0000 | 42.7736 | 0.10300 | No Calc |

30| 40| 10.0000 | 5.09095 | 0.10300 | 1.38168 |

40| 50| 76.0000 | 62.5094 | 0.10300 | No Calc |

50| 60| 60.0000 | 38.4302 | 0.10300 | No Calc |

60| 70| 10.0000 | 7.33302 | 0.10300 | 0.33744 |

70| 80| 75.0000 | 28.4480 | 0.10300 | No Calc |

80| 90| 80.0000 | 46.6852 | 0.10300 | No Calc |

90| 100| 10.0000 | 4.86666 | 0.10300 | 1.34397 |

100| 110| 10.0000 | 4.92241 | 0.10300 | 0.97327 |

Minimum 0.337

External Pressure Calculations

| | Actual Len.| Allow. Len.| Ring Inertia | Ring Inertia |

From| To | Bet. Stiff.| Bet. Stiff.| Required | Available |

| | mm | mm | mm**4 | mm**4 |

-------------------------------------------------------------------

10| 20| No Calc | No Calc | No Calc | No Calc |

20| 30| No Calc | No Calc | No Calc | No Calc |

30| 40| 650.000 | 14759.4 | No Calc | No Calc |

40| 50| No Calc | No Calc | No Calc | No Calc |

50| 60| No Calc | No Calc | No Calc | No Calc |

60| 70| 3625.00 | 91925.3 | No Calc | No Calc |

70| 80| No Calc | No Calc | No Calc | No Calc |

80| 90| No Calc | No Calc | No Calc | No Calc |

90| 100| 410.333 | 9050.47 | No Calc | No Calc |

100| 110| No Calc | No Calc | No Calc | No Calc |

Elements Suitable for External Pressure.

PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

Page 33: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 32 of 94

Element and Detail Weights : Step: 11 9:50a Jul 11,2013

Element and Detail Weights

| | Element | Element | Corroded | Corroded | Extra due |

From| To | Metal Wgt. | ID Volume |Metal Wgt. | ID Volume | Misc % |

| | kgm | ltr | kgm | ltr | kgm |

---------------------------------------------------------------------------

10| 20| 174.288 | ... | 174.288 | ... | ... |

20| 30| 65.8762 | ... | 65.8762 | ... | ... |

30| 40| 102.083 | 205.887 | 71.7903 | 209.796 | ... |

40| 50| 77.0630 | ... | 77.0630 | ... | ... |

50| 60| 78.6376 | 29.8185 | 74.3034 | 30.0170 | ... |

60| 70| 569.307 | 664.587 | 400.368 | 686.388 | ... |

70| 80| 155.874 | 35.3137 | 150.793 | 35.5140 | ... |

80| 90| 103.234 | ... | 103.234 | ... | ... |

90| 100| 53.6164 | 106.718 | 37.6848 | 108.774 | ... |

100| 110| 71.0511 | 70.2738 | 53.2883 | 71.8620 | ... |

---------------------------------------------------------------------------

Total 1451 1112.60 1208 1142.35 0

For elements specified as shell side elements, the volume(s) shownabove for those elements, reflects the displacement of the tubes.

Weight of Details

| | Weight of | X Offset, | Y Offset, |

From|Type| Detail | Dtl. Cent. |Dtl. Cent. | Description

| | kgm | mm | mm |

-------------------------------------------------

30|Nozl| 56.7164 | 325.000 | 469.113 | T1

30|Nozl| 56.7164 | 325.000 | 469.113 | T2

60|Sadl| 31.6460 | 600.000 | 453.787 | LEFT SADDLE

60|Sadl| 31.6460 | 3025.00 | 453.787 | RIGHT SADDLE

60|Nozl| 43.0006 | 1812.00 | 414.337 | S1

60|Nozl| 28.7396 | 300.000 | 390.665 | S2A

60|Nozl| 28.7396 | 3300.00 | 390.665 | S2B

40|FTsh| 102.948 | 97.0000 | ... | STATIONARY TUBE

40|Tube| 1653.67 | 2100.00 | ... |

40|FlTs| 72.5749 | 4130.00 | ... |

40|FlHd| 68.5092 | 4162.50 | ... |

Total Weight of Each Detail Type

Total Weight of Saddles 63.3

Total Weight of Nozzles 213.9

Total Weight of Exchanger Components 1897.7

Total Weight of Liquid in Tubes 328.1

---------------------------------------------------------------

Sum of the Detail Weights 2503.0 kgm

Weight Summation

Fabricated Shop Test Shipping Erected Empty Operating

------------------------------------------------------------------------------

1451.0 3625.9 1451.0 3625.9 1451.0 3625.9

63.3 1111.9 63.3 ... 63.3 ...

213.9 ... 213.9 ... ... ...

... 328.1 ... ... ... ...

... ... ... ... ... ...

... ... ... ... ... ...

... ... ... ... 213.9 328.1

1897.7 ... 1897.7 ... ... ...

... ... ... ... 1897.7 ...

------------------------------------------------------------------------------

3625.9 5065.9 3625.9 3625.9 3625.9 3954.0 kgm

Note: The shipping total has been modified because some items havebeen specified as being installed in the shop.

Weight Summary

Fabricated Wt. - Bare Weight W/O Removable Internals 3625.9 kgm

Shop Test Wt. - Fabricated Weight + Water ( Full ) 5065.9 kgm

Shipping Wt. - Fab. Wt + Rem. Intls.+ Shipping App. 3625.9 kgm

Erected Wt. - Fab. Wt + Rem. Intls.+ Insul. (etc) 3625.9 kgm

Ope. Wt. no Liq - Fab. Wt + Intls. + Details + Wghts. 3625.9 kgm

Operating Wt. - Empty Wt + Operating Liq. Uncorroded 3954.0 kgm

Oper. Wt. + CA - Corr Wt. + Operating Liquid 3711.7 kgm

Field Test Wt. - Empty Weight + Water (Full) 5065.9 kgm

Exchanger Tube Data Volume of Exchanger tubes : 328.3 ltr

Weight of Ope Liq in tubes : 328.1 kgm

Weight of Water in tubes : 328.1 kgm

Note: The Corroded Weight and thickness are used in the HorizontalVessel Analysis (Ope Case) and Earthquake Load Calculations.

Outside Surface Areas of Elements

| | Surface |

Page 34: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 33 of 94

Element and Detail Weights : Step: 11 9:50a Jul 11,2013

From| To | Area |

| | mm² |

----------------------------

10| 20| 633194. |

20| 30| 301329. |

30| 40| 1.338E+06 |

40| 50| 316107. |

50| 60| 371056. |

60| 70| 7.459E+06 |

70| 80| 527825. |

80| 90| 382134. |

90| 100| 701204. |

100| 110| 723990. |

------------------------------

Total 12753689.000 mm²

PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

Page 35: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 34 of 94

Nozzle Flange MAWP : Step: 12 9:50a Jul 11,2013

Nozzle Flange MAWP Results :

Nozzle ----- Flange Rating

Description Operating Ambient Temperature Class Grade|Group

MPa MPa C

----------------------------------------------------------------------------

T1 5.1 5.1 15 300 GR 1.1

T2 5.1 5.1 15 300 GR 1.1

S1 4.7 5.1 100 300 GR 1.1

S2A 4.7 5.1 100 300 GR 1.1

S2B 4.7 5.1 100 300 GR 1.1

Shellside Flange Rating Lowest Flange Pressure Rating was (Ope)[ShellSide]: 4.660 MPa

Lowest Flange Pressure Rating was (Amb)[ShellSide]: 5.110 MPa

Channelside Flange Rating Lowest Flange Pressure Rating was (Ope)[TubeSide ]: 5.110 MPa

Lowest Flange Pressure Rating was (Amb)[TubeSide ]: 5.110 MPa

Note: ANSI Ratings are per ANSI/ASME B16.5 2009 Metric Edition

PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

Page 36: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 35 of 94

Wind Load Calculation : Step: 13 9:50a Jul 11,2013

Wind Analysis Results

User Entered Importance Factor is 1.000

Gust Factor (Gh, Gbar) Static Dynamic 1.392

Shape Factor (Cf) for the Vessel is 0.606

User Entered Basic Wind Speed 112.7 km/hr

Exposure Category C

Table Lookup Value Alpha from Table C6 7.0000

Table Lookup Value Zg from Table C6 900.0000

Table Lookup Value Do from Table C6 0.0050

Wind Load Results per ASCE-7 93:

Sample Calculation for the First Element:

Rougness Factor = 1.000

Values [cf1] and [cf2] Because RoughFact = 1 and DQZ > 2.5 and H/D > 7.0

Interpolating to find the final cf:

Because H / D < 25.0

CF = CF1 + (CF2-CF1) * ( H/D - 7.0 )/( 25.0 - 7.0 )

= 0.600 + (0.700 -0.600 ) * ( 8.021 - 7.0 )/( 25.0 - 7.0 )

= 0.606

Value of Alpha, Zg is taken from Table C6-2 [Alpha, Zg] For Exposure Category C:

Alpha = 7.000 , Zg = 274320.000 mm

Height of Interest for First Element [z] = Centroid Hgt + Base Height

= 609.600 + 0.000 = 609.600 mm

but: z = Max(4572.000 , 609.600 ) = 4572.000 mm

Note: Because z < 15 feet, use 15 feet to compute kz.

Velocity Pressure Coefficient [kZ]: = 2.58( z/zg )^(2/Alpha) : z is Elevation of First Element

= 2.58( 4572.000/900 )^(2/7.0 )

= 0.801

Determine if Static or Dynamic Gust Factor Applies

Height to Diameter ratio : = Maximum Height(length)^2 / Sum of Area of the Elements

= 5114.000 (^2)/3260715

= 8.021

Vibration Frequency = 33.000 HzBecause H/D > 5 Or Freqency < 1.0: Dynamic Analysis Implemented

Element O/Dia = 3 mm

Vibration Damping Factor (Operating) Beta = 0.01000

For Terrain Category C

S = 1.000 , Gamma = 0.230 , Drag Coeff. = 0.005 , Alpha = 7.000

Compute [fbar] = 10.5 * Frequency(Hz) * Vessel Height(ft) / (S * Vr(mph))

= 10.5 * 33.000 (Hz) * 16.778 (ft)/S * 1.000 (mph)

= 83.052

Because FBAR > 40: FBAR = 40.000

Wind Pressure - (performed in Imperial Units) [qz] Importance Factor: I = 1.000

Wind Speed = 112.651 km/hr Converts to 70.000 mph

qz = 0.00256 * kZ * (I * Vr)²

= 0.00256 * 0.801 *(1.000 * 70.000 )² = 10.046 psf

Converts to: 0.481 kPa

Force on the First Element [Fz] = qz * Gh * CF * Wind Area

= 0.481 * 1.392 * 0.606 * 50787.305

= 20.593 N

Element z GH Area qz Force

mm mm² kPa N

------------------------------------------------------------------------

FC COVER 609.6 1.392 50787.3 0.5 20.6

FC#CV FLANGE 609.6 1.392 55511.7 0.5 22.5

FC SHELL 609.6 1.392 510900.0 0.5 207.2

FC#SH FLANGE 609.6 1.392 0.0 0.5 0.0

SH#FC FLANGE 609.6 1.392 0.0 0.5 0.0

SHELL 609.6 1.392 2849250.2 0.5 1155.3

SH#RC FLANGE 609.6 1.392 0.0 0.5 0.0

RC#SH FLANGE 609.6 1.392 0.0 0.5 0.0

RC SHELL 609.6 1.392 267840.0 0.5 108.6

RC HEAD 609.6 1.392 156248.2 0.5 63.4

Wind Load Calculation

| | Wind | Wind | Wind | Wind | Element |

From| To | Height | Diameter | Area | Pressure | Wind Load |

| | mm | mm | mm² | kPa | N |

Page 37: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 36 of 94

Wind Load Calculation : Step: 13 9:50a Jul 11,2013

---------------------------------------------------------------------------

10| 20| 609.600 | 1181.10 | 50787.3 | 0.48101 | 20.5927 |

20| 30| 609.600 | 1181.10 | 55511.7 | 0.48101 | 22.5082 |

30| 40| 609.600 | 786.000 | 510900. | 0.48101 | 207.154 |

40| 50| 609.600 | ... | ... | 0.48101 | ... |

50| 60| 609.600 | ... | ... | 0.48101 | ... |

60| 70| 609.600 | 786.000 | 2.849E+06 | 0.48101 | 1155.28 |

70| 80| 609.600 | ... | ... | 0.48101 | ... |

80| 90| 609.600 | ... | ... | 0.48101 | ... |

90| 100| 609.600 | 892.800 | 267840. | 0.48101 | 108.601 |

100| 110| 609.600 | 892.800 | 156248. | 0.48101 | 63.3537 |

PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

Page 38: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 37 of 94

Earthquake Load Calculation : Step: 14 9:50a Jul 11,2013

Earthquake Analysis Results

The UBC Zone Factor for the Vessel is ............. 0.0000

The Importance Factor as Specified by the User is . 1.000

The UBC Frequency and Soil Factor (C) is ......... 2.750

The UBC Force Factor as Specified by the User is .. 3.000

The UBC Total Weight (W) for the Vessel is ........ 36396.4 N

The UBC Total Shear (V) for the Vessel is ......... 0.0 N

The UBC Top Shear (Ft) for the Vessel is .......... 0.0 N

Earthquake Load Calculation

| | Earthquake | Earthquake | Element |

From| To | Height | Weight | Ope Load |

| | mm | N | N |

-------------------------------------------------

10| 20| 492.125 | 3033.04 | ... |

20| 30| 492.125 | 3033.04 | ... |

30| 40| 317.500 | 3033.04 | ... |

40| 50| ... | 3033.04 | ... |

50| 60| ... | 3033.04 | ... |

60|Sadl| 317.500 | 3033.04 | ... |

Sadl| 70| 317.500 | 3033.04 | ... |

60| 70| 317.500 | 3033.04 | ... |

70| 80| ... | 3033.04 | ... |

80| 90| ... | 3033.04 | ... |

90| 100| 362.000 | 3033.04 | ... |

100| 110| 362.000 | 3033.04 | ... |

PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

Page 39: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 38 of 94

Center of Gravity Calculation : Step: 15 9:50a Jul 11,2013

Shop/Field Installation Options :

Note : The CG is computed from the first Element From Node

Center of Gravity of Saddles 2652.500 mm

Center of Gravity of Nozzles 1437.624 mm

Center of Gravity of Tubesheet(s) 2533.560 mm

Center of Gravity of Tubes 2869.000 mm

Center of Gravity of the Floating Head 4931.500 mm

Center of Gravity of Bare Shell New and Cold 2383.005 mm

Center of Gravity of Bare Shell Corroded 2323.352 mm

Vessel CG in the Operating Condition 2603.901 mm

Vessel CG in the Fabricated (Shop/Empty) Condition 2609.022 mm

PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

Page 40: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 39 of 94

Horizontal Vessel Analysis (Ope.) : Step: 16 9:50a Jul 11,2013

ASME Horizontal Vessel Analysis: Stresses for the Left Saddle(per ASME Sec. VIII Div. 2 based on the Zick method.)

Horizontal Vessel Stress Calculations : Operating Case

Note: Wear Pad Width (152.40) is less than 1.56*sqrt(rm*t)and less than 2a. The wear plate will be ignored.

Minimum Wear Plate Width to be considered in analysis [b1]: = min( b + 1.56*sqrt( Rm * t ), 2a )

= min( 101.600 + 1.56*sqrt( 324.0000 * 7.0000 ), 2 * 209.550 )

= 175.8927 mm

Input and Calculated Values:

Vessel Mean Radius Rm 324.00 mm

Stiffened Vessel Length per 4.15.6 L 3625.00 mm

Distance from Saddle to Vessel tangent a 209.55 mm

Saddle Width b 101.60 mm

Saddle Bearing Angle theta 120.00 degrees

Shell Allowable Stress used in Calculation 137.90 MPa

Head Allowable Stress used in Calculation 137.90 MPa

Circumferential Efficiency in Plane of Saddle 1.00

Circumferential Efficiency at Mid-Span 1.00

Saddle Force Q, Operating Case 19632.12 N

Horizontal Vessel Analysis Results: Actual Allowable

-------------------------------------------------------------------

Long. Stress at Top of Midspan 40.24 137.90 MPa

Long. Stress at Bottom of Midspan 52.33 137.90 MPa

Long. Stress at Top of Saddles 46.10 137.90 MPa

Long. Stress at Bottom of Saddles 46.39 137.90 MPa

Tangential Shear in Shell 8.96 110.32 MPa

Circ. Stress at Horn of Saddle 18.92 172.38 MPa

Circ. Compressive Stress in Shell 1.21 137.90 MPa

Intermediate Results: Saddle Reaction Q due to Wind or Seismic

Saddle Reaction Force due to Wind Ft [Fwt]: = Ftr * ( Ft/Num of Saddles + Z Force Load ) * B / E

= 3.00 * ( 1577.5/2 + 0 ) * 609.6000/561.1845

= 2570.4 N

Saddle Reaction Force due to Wind Fl or Friction [Fwl]: = Max( Fl, Friction Load, Sum of X Forces) * B / Ls

= Max( 194.49 , 0.00 , 0 ) * 609.6000/2425.0002

= 48.9 N

Load Combination Results for Q + Wind or Seismic [Q]: = Saddle Load + Max( Fwl, Fwt, Fsl, Fst )

= 17061 + Max( 48 , 2570 , 0 , 0 )

= 19632.1 N

Summary of Loads at the base of this Saddle: Vertical Load (including saddle weight) 19942.44 N

Transverse Shear Load Saddle 788.75 N

Longitudinal Shear Load Saddle 194.49 N

Formulas and Substitutions for Horizontal Vessel Analysis:

Note: Wear Plate is Welded to the Shell, k = 0.1

The Computed K values from Table 4.15.1: K1 = 0.1066 K2 = 1.1707 K3 = 0.8799 K4 = 0.4011

K5 = 0.7603 K6 = 0.0529 K7 = 0.0248 K8 = 0.3405

K9 = 0.2711 K10 = 0.0581 K1* = 0.1923

Note: Dimension a is greater than or equal to Rm / 2.

Moment per Equation 4.15.3 [M1]: = -Q*a [1 - (1- a/L + (R²-h2²)/(2a*L))/(1+(4h2)/3L)]

= -19632*209.55[1-(1-209.55/3625.00+(324.000²-0.000²)/

(2*209.55*3625.00))/(1+(4*0.00)/(3*3625.00))]

= 46468.7 N-mm

Moment per Equation 4.15.4 [M2]: = Q*L/4(1+2(R²-h2²)/(L²))/(1+(4h2)/( 3L))-4a/L

= 19632*3625/4(1+2(323²-0²)/(3625²))/(1+(4*0)/

(3*3625))-4*209/3625

= 13967619.0 N-mm

Longitudinal Stress at Top of Shell (4.15.6) [Sigma1]: = P * Rm/(2t) - M2/(pi*Rm²t)

= 2.00 * 324.000/(2*7.000 ) - 13967619/(pi*324.0²*7.000 )

= 40.24 MPa

Longitudinal Stress at Bottom of Shell (4.15.7) [Sigma2]: = P * Rm/(2t) + M2/(pi * Rm² * t)

= 2.00 * 324.000/(2 * 7.000 ) + 13967619/(pi * 324.0² * 7.000 )

Page 41: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 40 of 94

Horizontal Vessel Analysis (Ope.) : Step: 16 9:50a Jul 11,2013

= 52.33 MPa

Longitudinal Stress at Top of Shell at Support (4.15.10) [Sigma*3]: = P * Rm/(2t) - M1/(K1*pi*Rm²t)

= 2.00*324.000/(2*7.000)-46468.7/(0.1066*pi*324.0²*7.000)

= 46.10 MPa

Longitudinal Stress at Bottom of Shell at Support (4.15.11) [Sigma*4]: = P * Rm/(2t) + M1/(K1* * pi * Rm² * t)

= 2.00*324.000/(2*7.000)+46468.7/(0.1923*pi*324.0²*7.000)

= 46.39 MPa

Maximum Shear Force in the Saddle (4.15.5) [T]: = Q(L-2a)/(L+(4*h2/3))

= 19632 ( 3625.00 - 2 * 209.55 )/(3625.00 + ( 4 * 0.00/3))

= 17362.4 N

Shear Stress in the shell no rings, not stiffened (4.15.14) [tau2]: = K2 * T / ( Rm * t )

= 1.1707 * 17362.37/( 324.0000 * 7.0000 )

= 8.96 MPa

Decay Length (4.15.22) [x1,x2]: = 0.78 * sqrt( Rm * t )

= 0.78 * sqrt( 324.000 * 7.000 )

= 37.146 mm

Circumferential Stress in shell, no rings (4.15.23) [sigma6]: = -K5 * Q * k / ( t * ( b + X1 + X2 ) )

= -0.7603 * 19632 * 0.1/( 7.000 * ( 101.60 + 37.15 + 37.15 ) )

= -1.21 MPa

Circ. Comp. Stress at Horn of Saddle, L>=8Rm (4.15.24) [sigma7]: = -Q/(4*t*(b+X1+X2)) - 3*K7*Q/(2*t²)

= -19632/(4*7.000 *(101.600 +37.146 +37.146 )) -

3*0.0248 *19632/(2*7.000²)

= -18.92 MPa

Effective reinforcing plate width (4.15.1) [B1]: = min( b + 1.56 * sqrt( Rm * t ), 2a )

= min( 101.60 + 1.56 * sqrt( 324.000 * 7.000 ), 2 * 209.550 )

= 175.89 mm

Free Un-Restrained Thermal Expansion between the Saddles [Exp]: = Alpha * Ls * ( Design Temperature - Ambient Temperature )

= 0.121E-04 * 2425.000 * ( 100.0 - 21.1 )

= 2.315 mm

Results for Vessel Ribs, Web and Base: Baseplate Length Bplen 685.8000 mm

Baseplate Thickness Bpthk 12.7000 mm

Baseplate Width Bpwid 101.6000 mm

Number of Ribs ( inc. outside ribs ) Nribs 4

Rib Thickness Ribtk 6.3500 mm

Web Thickness Webtk 6.3500 mm

Web Location Webloc Center

Moment of Inertia of Saddle - Lateral Direction

Y A AY Io

Shell 3. 1584. 5544. 25872.

Wearplate 12. 1452. 17075. 211814.

Web 116. 1266. 147129. 21291940.

BasePlate 222. 1290. 286774. 63752716.

Totals 354. 5592. 456521. 85282344.

Value C1 = Sumof(Ay)/Sumof(A) = 82. mm

Value I = Sumof(Io) - C1*Sumof(Ay) = 48012772. mm**4

Value As = Sumof(A) - Ashell = 4008. mm²

K1 = (1+Cos(beta)-.5*Sin(beta)² )/(pi-beta+Sin(beta)*Cos(beta)) = 0.2035

Fh = K1 * Q = 0.2035 * 19632.117 = 3995.5620 N

Tension Stress, St = ( Fh/As ) = 0.9970 MPa

Allowed Stress, Sa = 0.6 * Yield Str = 143.9676 MPa

d = B - R*Sin(theta) / theta = 284.0486 mm

Bending Moment, M = Fh * d = 1135394.0000 N-mm

Bending Stress, Sb = ( M * C1 / I ) = 1.9299 MPa

Allowed Stress, Sa = 2/3 * Yield Str = 159.9640 MPa

Minimum Thickness of Baseplate per Moss : = ( 3 * ( Q + Saddle_Wt ) * BasePlateWidth / ( 4 * BasePlateLength *

AllStress ))½

= ( 3 * (19632 + 310 ) * 101.60/( 4 * 685.800 * 159.964 ))½

= 3.722 mm

Calculation of Axial Load, Intermediate Values and Compressive Stress

Effective Baseplate Length [e]: = ( Bplen - Clearance ) / ( Nribs - 1)

= ( 685.8000 - 25.4 )/( 4 - 1 ) = 220.1333 mm

Page 42: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 41 of 94

Horizontal Vessel Analysis (Ope.) : Step: 16 9:50a Jul 11,2013

Baseplate Pressure Area [Ap]: = e * Bpwid / 2

= 220.1333 * 101.6000/2 = 11182.7734 mm²

Axial Load [P]: = Ap * Bp

= 11182.8 * 0.28 = 3150.8 N

Area of the Rib and Web [Ar]: = ( Bpwid - Clearance - Webtk ) * Ribtk + e/2 * Webtk

= ( 101.600 - 25.4 - 6.350 ) * 6.350 + 220.1333/2 * 6.350

= 1142.471 mm²

Compressive Stress [Sc]: = P/Ar

= 3150.8/1142.4708 = 2.7581 MPa

Check of Outside Ribs:Inertia of Saddle, Outer Ribs - Longitudinal Direction

Y A AY Ay² Io

Rib 50.8 524.2 26629.0 0.0 371789.7

Web 50.8 698.9 35505.3 0.0 4697.1

Values 50.8 1223.1 62134.3 0.0 376486.7

Bending Moment [Rm]: = Fl /( 2 * Bplen ) * e * rl / 2

= 194.5/( 2 * 685.80 ) * 220.133 * 385.35/2

= 6016.734 N-mm

KL/R < Cc ( 21.2277 < 128.2550 ) per AISC E2-1

Sca = (1-(Klr)²/(2*Cc²))*Fy/(5/3+3*(Klr)/(8*Cc)-(Klr³)/(8*Cc³)

Sca = ( 1-( 21.23 )²/(2 * 128.25² )) * 239/

( 5/3+3*(21.23 )/(8* 128.25 )-( 21.23³)/(8*128.25³)

Sca = 136.94 MPa

AISC Unity Check on Outside Ribs ( must be <= 1.0 ) Check = Sc/Sca + (Rm/Z)/Sba

Check = 2.76/136.94 + (6016.73/7411.156 )/159.96

Check = 0.03

Check of Inside RibsInertia of Saddle, Inner Ribs - Axial Direction

Y A AY Ay² Io

Rib 38.1 443.5 16899.2 0.0 234129.9

Web 38.1 1397.8 53258.0 0.0 4697.1

Values 38.1 1841.4 70157.1 0.0 238827.0

KL/R < Cc ( 20.2444 < 128.2550 ) per AISC E2-1

Sca = (1-(Klr)²/(2*Cc²))*Fy/(5/3+3*(Klr)/(8*Cc)-(Klr³)/(8*Cc³)

Sca = ( 1-( 20.24 )²/(2 * 128.25² )) * 239/

( 5/3+3*(20.24 )/(8* 128.25 )-( 20.24³)/(8*128.25³)

Sca = 137.34 MPa

AISC Unity Check on Inside Ribs ( must be <= 1.0 ) Check = Sc/Sca + (Rm/Z)/Sba

Check = 3.42/137.34 + ( 7199.61/6268.425 )/159.96

Check = 0.03

Input Data for Base Plate Bolting Calculations:

Total Number of Bolts per BasePlate Nbolts 2

Total Number of Bolts in Tension/Baseplate Nbt 1

Bolt Material Specification SA-193 B7

Bolt Allowable Stress Stba 172.38 MPa

Bolt Corrosion Allowance Bca 0.0000 mm

Distance from Bolts to Edge Edgedis 101.6000 mm

Nominal Bolt Diameter Bnd 25.4000 mm

Thread Series Series TEMA

BasePlate Allowable Stress S 95.15 MPa

Area Available in a Single Bolt BltArea 355.4832 mm²

Saddle Load QO (Weight) QO 17372.1 N

Saddle Load QL (Wind/Seismic contribution) QL 48.9 N

Maximum Transverse Force Ft 788.7 N

Maximum Longitudinal Force Fl 194.5 N

Saddle Bolted to Steel Foundation No

Bolt Area Calculation per Dennis R. Moss

Bolt Area Requirement Due to Longitudinal Load [Bltarearl]: = 0.0 (QO > QL --> No Uplift in Longitudinal direction)

Bolt Area due to Shear Load [Bltarears]: = Fl / (Stba * Nbolts)

= 194.49/(172.38 * 2.00 )

= 0.5642 mm²

Bolt Area due to Transverse Load

Moment on Baseplate Due to Transverse Load [Rmom]: = B * Ft + Sum of X Moments

= 609.60 * 788.75 + 0.00

Page 43: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 42 of 94

Horizontal Vessel Analysis (Ope.) : Step: 16 9:50a Jul 11,2013

= 481014.09 N-mm

Eccentricity (e): = Rmom / QO

= 481014.09/17372.06

= 27.68 mm < Bplen/6 --> No Uplift in Transverse direction

Bolt Area due to Transverse Load [Bltareart]: = 0 (No Uplift)

Required of a Single Bolt [Bltarear] = max[Bltarearl, Bltarears, Bltareart]

= max[0.0000 , 0.5642 , 0.0000 ]

= 0.5642 mm²

ASME Horizontal Vessel Analysis: Stresses for the Right Saddle(per ASME Sec. VIII Div. 2 based on the Zick method.)

Note: Wear Pad Width (152.40) is less than 1.56*sqrt(rm*t)and less than 2a. The wear plate will be ignored.

Minimum Wear Plate Width to be considered in analysis [b1]: = min( b + 1.56*sqrt( Rm * t ), 2a )

= min( 101.600 + 1.56*sqrt( 324.0000 * 7.0000 ), 2 * 209.550 )

= 175.8927 mm

Input and Calculated Values:

Vessel Mean Radius Rm 324.00 mm

Stiffened Vessel Length per 4.15.6 L 3625.00 mm

Distance from Saddle to Vessel tangent a 209.55 mm

Saddle Width b 101.60 mm

Saddle Bearing Angle theta 120.00 degrees

Shell Allowable Stress used in Calculation 137.90 MPa

Head Allowable Stress used in Calculation 137.90 MPa

Circumferential Efficiency in Plane of Saddle 1.00

Circumferential Efficiency at Mid-Span 1.00

Saddle Force Q, Operating Case 21284.45 N

Horizontal Vessel Analysis Results: Actual Allowable

-------------------------------------------------------------------

Long. Stress at Top of Midspan 39.73 137.90 MPa

Long. Stress at Bottom of Midspan 52.84 137.90 MPa

Long. Stress at Top of Saddles 46.08 137.90 MPa

Long. Stress at Bottom of Saddles 46.40 137.90 MPa

Tangential Shear in Shell 9.72 110.32 MPa

Circ. Stress at Horn of Saddle 20.51 172.38 MPa

Circ. Compressive Stress in Shell 1.31 137.90 MPa

Intermediate Results: Saddle Reaction Q due to Wind or Seismic

Saddle Reaction Force due to Wind Ft [Fwt]: = Ftr * ( Ft/Num of Saddles + Z Force Load ) * B / E

= 3.00 * ( 1577.5/2 + 0 ) * 609.6000/561.1845

= 2570.4 N

Saddle Reaction Force due to Wind Fl or Friction [Fwl]: = Max( Fl, Friction Load, Sum of X Forces) * B / Ls

= Max( 194.49 , 0.00 , 0 ) * 609.6000/2425.0002

= 48.9 N

Load Combination Results for Q + Wind or Seismic [Q]: = Saddle Load + Max( Fwl, Fwt, Fsl, Fst )

= 18714 + Max( 48 , 2570 , 0 , 0 )

= 21284.5 N

Summary of Loads at the base of this Saddle: Vertical Load (including saddle weight) 21594.77 N

Transverse Shear Load Saddle 788.75 N

Longitudinal Shear Load Saddle 194.49 N

Formulas and Substitutions for Horizontal Vessel Analysis:

Note: Wear Plate is Welded to the Shell, k = 0.1

The Computed K values from Table 4.15.1: K1 = 0.1066 K2 = 1.1707 K3 = 0.8799 K4 = 0.4011

K5 = 0.7603 K6 = 0.0529 K7 = 0.0248 K8 = 0.3405

K9 = 0.2711 K10 = 0.0581 K1* = 0.1923

Note: Dimension a is greater than or equal to Rm / 2.

Moment per Equation 4.15.3 [M1]: = -Q*a [1 - (1- a/L + (R²-h2²)/(2a*L))/(1+(4h2)/3L)]

= -21284*209.55[1-(1-209.55/3625.00+(324.000²-0.000²)/

(2*209.55*3625.00))/(1+(4*0.00)/(3*3625.00))]

= 50379.7 N-mm

Moment per Equation 4.15.4 [M2]:

Page 44: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 43 of 94

Horizontal Vessel Analysis (Ope.) : Step: 16 9:50a Jul 11,2013

= Q*L/4(1+2(R²-h2²)/(L²))/(1+(4h2)/( 3L))-4a/L

= 21284*3625/4(1+2(323²-0²)/(3625²))/(1+(4*0)/

(3*3625))-4*209/3625

= 15143204.0 N-mm

Longitudinal Stress at Top of Shell (4.15.6) [Sigma1]: = P * Rm/(2t) - M2/(pi*Rm²t)

= 2.00 * 324.000/(2*7.000 ) - 15143204/(pi*324.0²*7.000 )

= 39.73 MPa

Longitudinal Stress at Bottom of Shell (4.15.7) [Sigma2]: = P * Rm/(2t) + M2/(pi * Rm² * t)

= 2.00 * 324.000/(2 * 7.000 ) + 15143204/(pi * 324.0² * 7.000 )

= 52.84 MPa

Longitudinal Stress at Top of Shell at Support (4.15.10) [Sigma*3]: = P * Rm/(2t) - M1/(K1*pi*Rm²t)

= 2.00*324.000/(2*7.000)-50379.7/(0.1066*pi*324.0²*7.000)

= 46.08 MPa

Longitudinal Stress at Bottom of Shell at Support (4.15.11) [Sigma*4]: = P * Rm/(2t) + M1/(K1* * pi * Rm² * t)

= 2.00*324.000/(2*7.000)+50379.7/(0.1923*pi*324.0²*7.000)

= 46.40 MPa

Maximum Shear Force in the Saddle (4.15.5) [T]: = Q(L-2a)/(L+(4*h2/3))

= 21284 ( 3625.00 - 2 * 209.55 )/(3625.00 + ( 4 * 0.00/3))

= 18823.7 N

Shear Stress in the shell no rings, not stiffened (4.15.14) [tau2]: = K2 * T / ( Rm * t )

= 1.1707 * 18823.68/( 324.0000 * 7.0000 )

= 9.72 MPa

Decay Length (4.15.22) [x1,x2]: = 0.78 * sqrt( Rm * t )

= 0.78 * sqrt( 324.000 * 7.000 )

= 37.146 mm

Circumferential Stress in shell, no rings (4.15.23) [sigma6]: = -K5 * Q * k / ( t * ( b + X1 + X2 ) )

= -0.7603 * 21284 * 0.1/( 7.000 * ( 101.60 + 37.15 + 37.15 ) )

= -1.31 MPa

Circ. Comp. Stress at Horn of Saddle, L>=8Rm (4.15.24) [sigma7]: = -Q/(4*t*(b+X1+X2)) - 3*K7*Q/(2*t²)

= -21284/(4*7.000 *(101.600 +37.146 +37.146 )) -

3*0.0248 *21284/(2*7.000²)

= -20.51 MPa

Effective reinforcing plate width (4.15.1) [B1]: = min( b + 1.56 * sqrt( Rm * t ), 2a )

= min( 101.60 + 1.56 * sqrt( 324.000 * 7.000 ), 2 * 209.550 )

= 175.89 mm

Results for Vessel Ribs, Web and Base

Baseplate Length Bplen 685.8000 mm

Baseplate Thickness Bpthk 12.7000 mm

Baseplate Width Bpwid 101.6000 mm

Number of Ribs ( inc. outside ribs ) Nribs 4

Rib Thickness Ribtk 6.3500 mm

Web Thickness Webtk 6.3500 mm

Web Location Webloc Center

Moment of Inertia of Saddle - Lateral Direction

Y A AY Io

Shell 3. 1584. 5544. 25872.

Wearplate 12. 1452. 17075. 211814.

Web 116. 1266. 147129. 21291940.

BasePlate 222. 1290. 286774. 63752716.

Totals 354. 5592. 456521. 85282344.

Value C1 = Sumof(Ay)/Sumof(A) = 82. mm

Value I = Sumof(Io) - C1*Sumof(Ay) = 48012772. mm**4

Value As = Sumof(A) - Ashell = 4008. mm²

K1 = (1+Cos(beta)-.5*Sin(beta)² )/(pi-beta+Sin(beta)*Cos(beta)) = 0.2035

Fh = K1 * Q = 0.2035 * 21284.453 = 4331.8481 N

Tension Stress, St = ( Fh/As ) = 1.0809 MPa

Allowed Stress, Sa = 0.6 * Yield Str = 143.9676 MPa

d = B - R*Sin(theta) / theta = 284.0486 mm

Bending Moment, M = Fh * d = 1230954.3750 N-mm

Bending Stress, Sb = ( M * C1 / I ) = 2.0924 MPa

Allowed Stress, Sa = 2/3 * Yield Str = 159.9640 MPa

Minimum Thickness of Baseplate per Moss : = ( 3 * ( Q + Saddle_Wt ) * BasePlateWidth / ( 4 * BasePlateLength *

Page 45: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 44 of 94

Horizontal Vessel Analysis (Ope.) : Step: 16 9:50a Jul 11,2013

AllStress ))½

= ( 3 * (21284 + 310 ) * 101.60/( 4 * 685.800 * 159.964 ))½

= 3.873 mm

Calculation of Axial Load, Intermediate Values and Compressive Stress

Effective Baseplate Length [e]: = ( Bplen - Clearance ) / ( Nribs - 1)

= ( 685.8000 - 25.4 )/( 4 - 1 ) = 220.1333 mm

Baseplate Pressure Area [Ap]: = e * Bpwid / 2

= 220.1333 * 101.6000/2 = 11182.7734 mm²

Axial Load [P]: = Ap * Bp

= 11182.8 * 0.31 = 3416.0 N

Area of the Rib and Web [Ar]: = ( Bpwid - Clearance - Webtk ) * Ribtk + e/2 * Webtk

= ( 101.600 - 25.4 - 6.350 ) * 6.350 + 220.1333/2 * 6.350

= 1142.471 mm²

Compressive Stress [Sc]: = P/Ar

= 3416.0/1142.4708 = 2.9903 MPa

Check of Outside Ribs:Inertia of Saddle, Outer Ribs - Longitudinal Direction

Y A AY Ay² Io

Rib 50.8 524.2 26629.0 0.0 371789.7

Web 50.8 698.9 35505.3 0.0 4697.1

Values 50.8 1223.1 62134.3 0.0 376486.7

Bending Moment [Rm]: = Fl /( 2 * Bplen ) * e * rl / 2

= 194.5/( 2 * 685.80 ) * 220.133 * 385.35/2

= 6016.734 N-mm

KL/R < Cc ( 21.2277 < 128.2550 ) per AISC E2-1

Sca = (1-(Klr)²/(2*Cc²))*Fy/(5/3+3*(Klr)/(8*Cc)-(Klr³)/(8*Cc³)

Sca = ( 1-( 21.23 )²/(2 * 128.25² )) * 239/

( 5/3+3*(21.23 )/(8* 128.25 )-( 21.23³)/(8*128.25³)

Sca = 136.94 MPa

AISC Unity Check on Outside Ribs ( must be <= 1.0 ) Check = Sc/Sca + (Rm/Z)/Sba

Check = 2.99/136.94 + (6016.73/7411.156 )/159.96

Check = 0.03

Check of Inside RibsInertia of Saddle, Inner Ribs - Axial Direction

Y A AY Ay² Io

Rib 38.1 443.5 16899.2 0.0 234129.9

Web 38.1 1397.8 53258.0 0.0 4697.1

Values 38.1 1841.4 70157.1 0.0 238827.0

KL/R < Cc ( 20.2444 < 128.2550 ) per AISC E2-1

Sca = (1-(Klr)²/(2*Cc²))*Fy/(5/3+3*(Klr)/(8*Cc)-(Klr³)/(8*Cc³)

Sca = ( 1-( 20.24 )²/(2 * 128.25² )) * 239/

( 5/3+3*(20.24 )/(8* 128.25 )-( 20.24³)/(8*128.25³)

Sca = 137.34 MPa

AISC Unity Check on Inside Ribs ( must be <= 1.0 ) Check = Sc/Sca + (Rm/Z)/Sba

Check = 3.71/137.34 + ( 7199.61/6268.425 )/159.96

Check = 0.03

Input Data for Base Plate Bolting Calculations:

Total Number of Bolts per BasePlate Nbolts 2

Total Number of Bolts in Tension/Baseplate Nbt 1

Bolt Material Specification SA-193 B7

Bolt Allowable Stress Stba 172.38 MPa

Bolt Corrosion Allowance Bca 0.0000 mm

Distance from Bolts to Edge Edgedis 101.6000 mm

Nominal Bolt Diameter Bnd 25.4000 mm

Thread Series Series TEMA

BasePlate Allowable Stress S 95.15 MPa

Area Available in a Single Bolt BltArea 355.4832 mm²

Saddle Load QO (Weight) QO 19024.4 N

Saddle Load QL (Wind/Seismic contribution) QL 48.9 N

Maximum Transverse Force Ft 788.7 N

Maximum Longitudinal Force Fl 194.5 N

Saddle Bolted to Steel Foundation No

Bolt Area Calculation per Dennis R. Moss

Bolt Area Requirement Due to Longitudinal Load [Bltarearl]: = 0.0 (QO > QL --> No Uplift in Longitudinal direction)

Bolt Area due to Shear Load [Bltarears]:

Page 46: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 45 of 94

Horizontal Vessel Analysis (Ope.) : Step: 16 9:50a Jul 11,2013

= Fl / (Stba * Nbolts)

= 194.49/(172.38 * 2.00 )

= 0.5642 mm²

Bolt Area due to Transverse Load

Moment on Baseplate Due to Transverse Load [Rmom]: = B * Ft + Sum of X Moments

= 609.60 * 788.75 + 0.00

= 481014.09 N-mm

Eccentricity (e): = Rmom / QO

= 481014.09/19024.39

= 25.27 mm < Bplen/6 --> No Uplift in Transverse direction

Bolt Area due to Transverse Load [Bltareart]: = 0 (No Uplift)

Required of a Single Bolt [Bltarear] = max[Bltarearl, Bltarears, Bltareart]

= max[0.0000 , 0.5642 , 0.0000 ]

= 0.5642 mm²

PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

Page 47: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 46 of 94

Horizontal Vessel Analysis (Test) : Step: 17 9:50a Jul 11,2013

ASME Horizontal Vessel Analysis: Stresses for the Left Saddle(per ASME Sec. VIII Div. 2 based on the Zick method.)

Horizontal Vessel Stress Calculations : Test Case

Note: Wear Pad Width (152.40) is less than 1.56*sqrt(rm*t)and less than 2a. The wear plate will be ignored.

Minimum Wear Plate Width to be considered in analysis [b1]: = min( b + 1.56*sqrt( Rm * t ), 2a )

= min( 101.600 + 1.56*sqrt( 322.5000 * 10.0000 ), 2 * 209.550 )

= 190.1910 mm

Input and Calculated Values:

Vessel Mean Radius Rm 322.50 mm

Stiffened Vessel Length per 4.15.6 L 3625.00 mm

Distance from Saddle to Vessel tangent a 209.55 mm

Saddle Width b 101.60 mm

Saddle Bearing Angle theta 120.00 degrees

Shell Allowable Stress used in Calculation 137.90 MPa

Head Allowable Stress used in Calculation 137.90 MPa

Circumferential Efficiency in Plane of Saddle 1.00

Circumferential Efficiency at Mid-Span 1.00

Saddle Force Q, Test Case, no Ext. Forces 24752.28 N

Horizontal Vessel Analysis Results: Actual Allowable

-------------------------------------------------------------------

Long. Stress at Top of Midspan 38.72 137.90 MPa

Long. Stress at Bottom of Midspan 49.49 137.90 MPa

Long. Stress at Top of Saddles 43.95 137.90 MPa

Long. Stress at Bottom of Saddles 44.19 137.90 MPa

Tangential Shear in Shell 7.95 110.32 MPa

Circ. Stress at Horn of Saddle 12.57 172.38 MPa

Circ. Compressive Stress in Shell 0.99 137.90 MPa

Intermediate Results: Saddle Reaction Q due to Wind or Seismic

Saddle Reaction Force due to Wind Ft [Fwt]: = Ftr * ( Ft/Num of Saddles + Z Force Load ) * B / E

= 3.00 * ( 520.6/2 + 0 ) * 609.6000/558.5864

= 852.2 N

Saddle Reaction Force due to Wind Fl or Friction [Fwl]: = Max( Fl, Friction Load, Sum of X Forces) * B / Ls

= Max( 194.49 , 0.00 , 0 ) * 609.6000/2425.0002

= 16.1 N

Load Combination Results for Q + Wind or Seismic [Q]: = Saddle Load + Max( Fwl, Fwt, Fsl, Fst )

= 23900 + Max( 16 , 852 , 0 , 0 )

= 24752.3 N

Summary of Loads at the base of this Saddle: Vertical Load (including saddle weight) 25062.60 N

Transverse Shear Load Saddle 260.29 N

Longitudinal Shear Load Saddle 64.18 N

Hydrostatic Test Pressure at center of Vessel: 2.735 MPa

Formulas and Substitutions for Horizontal Vessel Analysis:

Note: Wear Plate is Welded to the Shell, k = 0.1

The Computed K values from Table 4.15.1: K1 = 0.1066 K2 = 1.1707 K3 = 0.8799 K4 = 0.4011

K5 = 0.7603 K6 = 0.0529 K7 = 0.0251 K8 = 0.3405

K9 = 0.2711 K10 = 0.0581 K1* = 0.1923

Note: Dimension a is greater than or equal to Rm / 2.

Moment per Equation 4.15.3 [M1]: = -Q*a [1 - (1- a/L + (R²-h2²)/(2a*L))/(1+(4h2)/3L)]

= -24752*209.55[1-(1-209.55/3625.00+(322.500²-0.000²)/

(2*209.55*3625.00))/(1+(4*0.00)/(3*3625.00))]

= 55275.7 N-mm

Moment per Equation 4.15.4 [M2]: = Q*L/4(1+2(R²-h2²)/(L²))/(1+(4h2)/( 3L))-4a/L

= 24752*3625/4(1+2(322²-0²)/(3625²))/(1+(4*0)/

(3*3625))-4*209/3625

= 17607140.0 N-mm

Longitudinal Stress at Top of Shell (4.15.6) [Sigma1]: = P * Rm/(2t) - M2/(pi*Rm²t)

= 2.74 * 322.500/(2*10.000 ) - 17607140/(pi*322.5²*10.000 )

= 38.72 MPa

Longitudinal Stress at Bottom of Shell (4.15.7) [Sigma2]:

Page 48: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 47 of 94

Horizontal Vessel Analysis (Test) : Step: 17 9:50a Jul 11,2013

= P * Rm/(2t) + M2/(pi * Rm² * t)

= 2.74 * 322.500/(2 * 10.000 ) + 17607140/(pi * 322.5² * 10.000 )

= 49.49 MPa

Longitudinal Stress at Top of Shell at Support (4.15.10) [Sigma*3]: = P * Rm/(2t) - M1/(K1*pi*Rm²t)

= 2.74*322.500/(2*10.000)-55275.7/(0.1066*pi*322.5²*10.000)

= 43.95 MPa

Longitudinal Stress at Bottom of Shell at Support (4.15.11) [Sigma*4]: = P * Rm/(2t) + M1/(K1* * pi * Rm² * t)

= 2.74*322.500/(2*10.000)+55275.7/(0.1923*pi*322.5²*10.000)

= 44.19 MPa

Maximum Shear Force in the Saddle (4.15.5) [T]: = Q(L-2a)/(L+(4*h2/3))

= 24752 ( 3625.00 - 2 * 209.55 )/(3625.00 + ( 4 * 0.00/3))

= 21890.6 N

Shear Stress in the shell no rings, not stiffened (4.15.14) [tau2]: = K2 * T / ( Rm * t )

= 1.1707 * 21890.58/( 322.5000 * 10.0000 )

= 7.95 MPa

Decay Length (4.15.22) [x1,x2]: = 0.78 * sqrt( Rm * t )

= 0.78 * sqrt( 322.500 * 10.000 )

= 44.295 mm

Circumferential Stress in shell, no rings (4.15.23) [sigma6]: = -K5 * Q * k / ( t * ( b + X1 + X2 ) )

= -0.7603 * 24752 * 0.1/( 10.000 * ( 101.60 + 44.30 + 44.30 ) )

= -0.99 MPa

Circ. Comp. Stress at Horn of Saddle, L>=8Rm (4.15.24) [sigma7]: = -Q/(4*t*(b+X1+X2)) - 3*K7*Q/(2*t²)

= -24752/(4*10.000 *(101.600 +44.295 +44.295 )) -

3*0.0251 *24752/(2*10.000²)

= -12.57 MPa

Effective reinforcing plate width (4.15.1) [B1]: = min( b + 1.56 * sqrt( Rm * t ), 2a )

= min( 101.60 + 1.56 * sqrt( 322.500 * 10.000 ), 2 * 209.550 )

= 190.19 mm

Results for Vessel Ribs, Web and Base: Baseplate Length Bplen 685.8000 mm

Baseplate Thickness Bpthk 12.7000 mm

Baseplate Width Bpwid 101.6000 mm

Number of Ribs ( inc. outside ribs ) Nribs 4

Rib Thickness Ribtk 6.3500 mm

Web Thickness Webtk 6.3500 mm

Web Location Webloc Center

Moment of Inertia of Saddle - Lateral Direction

Y A AY Io

Shell 5. 2403. 12015. 80100.

Wearplate 15. 1452. 21429. 327326.

Web 118. 1247. 146785. 21285732.

BasePlate 222. 1290. 286774. 63752716.

Totals 360. 6392. 467003. 85445872.

Value C1 = Sumof(Ay)/Sumof(A) = 73. mm

Value I = Sumof(Io) - C1*Sumof(Ay) = 51325968. mm**4

Value As = Sumof(A) - Ashell = 3989. mm²

K1 = (1+Cos(beta)-.5*Sin(beta)² )/(pi-beta+Sin(beta)*Cos(beta)) = 0.2035

Fh = K1 * Q = 0.2035 * 24752.281 = 5037.6265 N

Tension Stress, St = ( Fh/As ) = 1.2630 MPa

Allowed Stress, Sa = 0.6 * Yield Str = 143.9676 MPa

d = B - R*Sin(theta) / theta = 283.5296 mm

Bending Moment, M = Fh * d = 1428895.3750 N-mm

Bending Stress, Sb = ( M * C1 / I ) = 2.0333 MPa

Allowed Stress, Sa = 2/3 * Yield Str = 159.9640 MPa

Minimum Thickness of Baseplate per Moss : = ( 3 * ( Q + Saddle_Wt ) * BasePlateWidth / ( 4 * BasePlateLength *

AllStress ))½

= ( 3 * (24752 + 310 ) * 101.60/( 4 * 685.800 * 159.964 ))½

= 4.173 mm

Calculation of Axial Load, Intermediate Values and Compressive Stress

Effective Baseplate Length [e]: = ( Bplen - Clearance ) / ( Nribs - 1)

= ( 685.8000 - 25.4 )/( 4 - 1 ) = 220.1333 mm

Baseplate Pressure Area [Ap]: = e * Bpwid / 2

Page 49: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 48 of 94

Horizontal Vessel Analysis (Test) : Step: 17 9:50a Jul 11,2013

= 220.1333 * 101.6000/2 = 11182.7734 mm²

Axial Load [P]: = Ap * Bp

= 11182.8 * 0.36 = 3972.6 N

Area of the Rib and Web [Ar]: = ( Bpwid - Clearance - Webtk ) * Ribtk + e/2 * Webtk

= ( 101.600 - 25.4 - 6.350 ) * 6.350 + 220.1333/2 * 6.350

= 1142.471 mm²

Compressive Stress [Sc]: = P/Ar

= 3972.6/1142.4708 = 3.4775 MPa

Check of Outside Ribs:Inertia of Saddle, Outer Ribs - Longitudinal Direction

Y A AY Ay² Io

Rib 50.8 524.2 26629.0 0.0 371789.7

Web 50.8 698.9 35505.3 0.0 4697.1

Values 50.8 1223.1 62134.3 0.0 376486.7

Bending Moment [Rm]: = Fl /( 2 * Bplen ) * e * rl / 2

= 64.2/( 2 * 685.80 ) * 220.133 * 382.35/2

= 1970.065 N-mm

KL/R < Cc ( 21.0624 < 128.2550 ) per AISC E2-1

Sca = (1-(Klr)²/(2*Cc²))*Fy/(5/3+3*(Klr)/(8*Cc)-(Klr³)/(8*Cc³)

Sca = ( 1-( 21.06 )²/(2 * 128.25² )) * 239/

( 5/3+3*(21.06 )/(8* 128.25 )-( 21.06³)/(8*128.25³)

Sca = 137.01 MPa

AISC Unity Check on Outside Ribs ( must be <= 1.0 ) Check = Sc/Sca + (Rm/Z)/Sba

Check = 3.48/137.01 + (1970.06/7411.156 )/159.96

Check = 0.03

Check of Inside RibsInertia of Saddle, Inner Ribs - Axial Direction

Y A AY Ay² Io

Rib 38.1 443.5 16899.2 0.0 234129.9

Web 38.1 1397.8 53258.0 0.0 4697.1

Values 38.1 1841.4 70157.1 0.0 238827.0

KL/R < Cc ( 19.9810 < 128.2550 ) per AISC E2-1

Sca = (1-(Klr)²/(2*Cc²))*Fy/(5/3+3*(Klr)/(8*Cc)-(Klr³)/(8*Cc³)

Sca = ( 1-( 19.98 )²/(2 * 128.25² )) * 239/

( 5/3+3*(19.98 )/(8* 128.25 )-( 19.98³)/(8*128.25³)

Sca = 137.44 MPa

AISC Unity Check on Inside Ribs ( must be <= 1.0 ) Check = Sc/Sca + (Rm/Z)/Sba

Check = 4.32/137.44 + ( 2344.96/6268.425 )/159.96

Check = 0.03

Input Data for Base Plate Bolting Calculations:

Total Number of Bolts per BasePlate Nbolts 2

Total Number of Bolts in Tension/Baseplate Nbt 1

Bolt Material Specification SA-193 B7

Bolt Allowable Stress Stba 172.38 MPa

Bolt Corrosion Allowance Bca 0.0000 mm

Distance from Bolts to Edge Edgedis 101.6000 mm

Nominal Bolt Diameter Bnd 25.4000 mm

Thread Series Series TEMA

BasePlate Allowable Stress S 95.15 MPa

Area Available in a Single Bolt BltArea 355.4832 mm²

Saddle Load QO (Weight) QO 24210.4 N

Saddle Load QL (Wind/Seismic contribution) QL 16.1 N

Maximum Transverse Force Ft 260.3 N

Maximum Longitudinal Force Fl 64.2 N

Saddle Bolted to Steel Foundation No

Bolt Area Calculation per Dennis R. Moss

Bolt Area Requirement Due to Longitudinal Load [Bltarearl]: = 0.0 (QO > QL --> No Uplift in Longitudinal direction)

Bolt Area due to Shear Load [Bltarears]: = Fl / (Stba * Nbolts)

= 64.18/(172.38 * 2.00 )

= 0.1862 mm²

Bolt Area due to Transverse Load

Moment on Baseplate Due to Transverse Load [Rmom]: = B * Ft + Sum of X Moments

= 609.60 * 260.29 + 0.00

= 158734.66 N-mm

Eccentricity (e):

Page 50: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 49 of 94

Horizontal Vessel Analysis (Test) : Step: 17 9:50a Jul 11,2013

= Rmom / QO

= 158734.66/24210.43

= 6.55 mm < Bplen/6 --> No Uplift in Transverse direction

Bolt Area due to Transverse Load [Bltareart]: = 0 (No Uplift)

Required of a Single Bolt [Bltarear] = max[Bltarearl, Bltarears, Bltareart]

= max[0.0000 , 0.1862 , 0.0000 ]

= 0.1862 mm²

ASME Horizontal Vessel Analysis: Stresses for the Right Saddle(per ASME Sec. VIII Div. 2 based on the Zick method.)

Note: Wear Pad Width (152.40) is less than 1.56*sqrt(rm*t)and less than 2a. The wear plate will be ignored.

Minimum Wear Plate Width to be considered in analysis [b1]: = min( b + 1.56*sqrt( Rm * t ), 2a )

= min( 101.600 + 1.56*sqrt( 322.5000 * 10.0000 ), 2 * 209.550 )

= 190.1910 mm

Input and Calculated Values:

Vessel Mean Radius Rm 322.50 mm

Stiffened Vessel Length per 4.15.6 L 3625.00 mm

Distance from Saddle to Vessel tangent a 209.55 mm

Saddle Width b 101.60 mm

Saddle Bearing Angle theta 120.00 degrees

Shell Allowable Stress used in Calculation 137.90 MPa

Head Allowable Stress used in Calculation 137.90 MPa

Circumferential Efficiency in Plane of Saddle 1.00

Circumferential Efficiency at Mid-Span 1.00

Saddle Force Q, Test Case, no Ext. Forces 26007.74 N

Horizontal Vessel Analysis Results: Actual Allowable

-------------------------------------------------------------------

Long. Stress at Top of Midspan 38.44 137.90 MPa

Long. Stress at Bottom of Midspan 49.76 137.90 MPa

Long. Stress at Top of Saddles 43.94 137.90 MPa

Long. Stress at Bottom of Saddles 44.20 137.90 MPa

Tangential Shear in Shell 8.35 110.32 MPa

Circ. Stress at Horn of Saddle 13.21 172.38 MPa

Circ. Compressive Stress in Shell 1.04 137.90 MPa

Intermediate Results: Saddle Reaction Q due to Wind or Seismic

Saddle Reaction Force due to Wind Ft [Fwt]: = Ftr * ( Ft/Num of Saddles + Z Force Load ) * B / E

= 3.00 * ( 520.6/2 + 0 ) * 609.6000/558.5864

= 852.2 N

Saddle Reaction Force due to Wind Fl or Friction [Fwl]: = Max( Fl, Friction Load, Sum of X Forces) * B / Ls

= Max( 194.49 , 0.00 , 0 ) * 609.6000/2425.0002

= 16.1 N

Load Combination Results for Q + Wind or Seismic [Q]: = Saddle Load + Max( Fwl, Fwt, Fsl, Fst )

= 25155 + Max( 16 , 852 , 0 , 0 )

= 26007.7 N

Summary of Loads at the base of this Saddle: Vertical Load (including saddle weight) 26318.06 N

Transverse Shear Load Saddle 260.29 N

Longitudinal Shear Load Saddle 64.18 N

Hydrostatic Test Pressure at center of Vessel: 2.735 MPa

Formulas and Substitutions for Horizontal Vessel Analysis:

Note: Wear Plate is Welded to the Shell, k = 0.1

The Computed K values from Table 4.15.1: K1 = 0.1066 K2 = 1.1707 K3 = 0.8799 K4 = 0.4011

K5 = 0.7603 K6 = 0.0529 K7 = 0.0251 K8 = 0.3405

K9 = 0.2711 K10 = 0.0581 K1* = 0.1923

Note: Dimension a is greater than or equal to Rm / 2.

Moment per Equation 4.15.3 [M1]: = -Q*a [1 - (1- a/L + (R²-h2²)/(2a*L))/(1+(4h2)/3L)]

= -26007*209.55[1-(1-209.55/3625.00+(322.500²-0.000²)/

(2*209.55*3625.00))/(1+(4*0.00)/(3*3625.00))]

= 58079.4 N-mm

Moment per Equation 4.15.4 [M2]: = Q*L/4(1+2(R²-h2²)/(L²))/(1+(4h2)/( 3L))-4a/L

Page 51: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 50 of 94

Horizontal Vessel Analysis (Test) : Step: 17 9:50a Jul 11,2013

= 26007*3625/4(1+2(322²-0²)/(3625²))/(1+(4*0)/

(3*3625))-4*209/3625

= 18500192.0 N-mm

Longitudinal Stress at Top of Shell (4.15.6) [Sigma1]: = P * Rm/(2t) - M2/(pi*Rm²t)

= 2.74 * 322.500/(2*10.000 ) - 18500192/(pi*322.5²*10.000 )

= 38.44 MPa

Longitudinal Stress at Bottom of Shell (4.15.7) [Sigma2]: = P * Rm/(2t) + M2/(pi * Rm² * t)

= 2.74 * 322.500/(2 * 10.000 ) + 18500192/(pi * 322.5² * 10.000 )

= 49.76 MPa

Longitudinal Stress at Top of Shell at Support (4.15.10) [Sigma*3]: = P * Rm/(2t) - M1/(K1*pi*Rm²t)

= 2.74*322.500/(2*10.000)-58079.4/(0.1066*pi*322.5²*10.000)

= 43.94 MPa

Longitudinal Stress at Bottom of Shell at Support (4.15.11) [Sigma*4]: = P * Rm/(2t) + M1/(K1* * pi * Rm² * t)

= 2.74*322.500/(2*10.000)+58079.4/(0.1923*pi*322.5²*10.000)

= 44.20 MPa

Maximum Shear Force in the Saddle (4.15.5) [T]: = Q(L-2a)/(L+(4*h2/3))

= 26007 ( 3625.00 - 2 * 209.55 )/(3625.00 + ( 4 * 0.00/3))

= 23000.9 N

Shear Stress in the shell no rings, not stiffened (4.15.14) [tau2]: = K2 * T / ( Rm * t )

= 1.1707 * 23000.89/( 322.5000 * 10.0000 )

= 8.35 MPa

Decay Length (4.15.22) [x1,x2]: = 0.78 * sqrt( Rm * t )

= 0.78 * sqrt( 322.500 * 10.000 )

= 44.295 mm

Circumferential Stress in shell, no rings (4.15.23) [sigma6]: = -K5 * Q * k / ( t * ( b + X1 + X2 ) )

= -0.7603 * 26007 * 0.1/( 10.000 * ( 101.60 + 44.30 + 44.30 ) )

= -1.04 MPa

Circ. Comp. Stress at Horn of Saddle, L>=8Rm (4.15.24) [sigma7]: = -Q/(4*t*(b+X1+X2)) - 3*K7*Q/(2*t²)

= -26007/(4*10.000 *(101.600 +44.295 +44.295 )) -

3*0.0251 *26007/(2*10.000²)

= -13.21 MPa

Effective reinforcing plate width (4.15.1) [B1]: = min( b + 1.56 * sqrt( Rm * t ), 2a )

= min( 101.60 + 1.56 * sqrt( 322.500 * 10.000 ), 2 * 209.550 )

= 190.19 mm

Results for Vessel Ribs, Web and Base

Baseplate Length Bplen 685.8000 mm

Baseplate Thickness Bpthk 12.7000 mm

Baseplate Width Bpwid 101.6000 mm

Number of Ribs ( inc. outside ribs ) Nribs 4

Rib Thickness Ribtk 6.3500 mm

Web Thickness Webtk 6.3500 mm

Web Location Webloc Center

Moment of Inertia of Saddle - Lateral Direction

Y A AY Io

Shell 5. 2403. 12015. 80100.

Wearplate 15. 1452. 21429. 327326.

Web 118. 1247. 146785. 21285732.

BasePlate 222. 1290. 286774. 63752716.

Totals 360. 6392. 467003. 85445872.

Value C1 = Sumof(Ay)/Sumof(A) = 73. mm

Value I = Sumof(Io) - C1*Sumof(Ay) = 51325968. mm**4

Value As = Sumof(A) - Ashell = 3989. mm²

K1 = (1+Cos(beta)-.5*Sin(beta)² )/(pi-beta+Sin(beta)*Cos(beta)) = 0.2035

Fh = K1 * Q = 0.2035 * 26007.742 = 5293.1401 N

Tension Stress, St = ( Fh/As ) = 1.3271 MPa

Allowed Stress, Sa = 0.6 * Yield Str = 143.9676 MPa

d = B - R*Sin(theta) / theta = 283.5296 mm

Bending Moment, M = Fh * d = 1501370.3750 N-mm

Bending Stress, Sb = ( M * C1 / I ) = 2.1365 MPa

Allowed Stress, Sa = 2/3 * Yield Str = 159.9640 MPa

Minimum Thickness of Baseplate per Moss : = ( 3 * ( Q + Saddle_Wt ) * BasePlateWidth / ( 4 * BasePlateLength *

AllStress ))½

Page 52: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 51 of 94

Horizontal Vessel Analysis (Test) : Step: 17 9:50a Jul 11,2013

= ( 3 * (26007 + 310 ) * 101.60/( 4 * 685.800 * 159.964 ))½

= 4.276 mm

Calculation of Axial Load, Intermediate Values and Compressive Stress

Effective Baseplate Length [e]: = ( Bplen - Clearance ) / ( Nribs - 1)

= ( 685.8000 - 25.4 )/( 4 - 1 ) = 220.1333 mm

Baseplate Pressure Area [Ap]: = e * Bpwid / 2

= 220.1333 * 101.6000/2 = 11182.7734 mm²

Axial Load [P]: = Ap * Bp

= 11182.8 * 0.37 = 4174.1 N

Area of the Rib and Web [Ar]: = ( Bpwid - Clearance - Webtk ) * Ribtk + e/2 * Webtk

= ( 101.600 - 25.4 - 6.350 ) * 6.350 + 220.1333/2 * 6.350

= 1142.471 mm²

Compressive Stress [Sc]: = P/Ar

= 4174.1/1142.4708 = 3.6539 MPa

Check of Outside Ribs:Inertia of Saddle, Outer Ribs - Longitudinal Direction

Y A AY Ay² Io

Rib 50.8 524.2 26629.0 0.0 371789.7

Web 50.8 698.9 35505.3 0.0 4697.1

Values 50.8 1223.1 62134.3 0.0 376486.7

Bending Moment [Rm]: = Fl /( 2 * Bplen ) * e * rl / 2

= 64.2/( 2 * 685.80 ) * 220.133 * 382.35/2

= 1970.065 N-mm

KL/R < Cc ( 21.0624 < 128.2550 ) per AISC E2-1

Sca = (1-(Klr)²/(2*Cc²))*Fy/(5/3+3*(Klr)/(8*Cc)-(Klr³)/(8*Cc³)

Sca = ( 1-( 21.06 )²/(2 * 128.25² )) * 239/

( 5/3+3*(21.06 )/(8* 128.25 )-( 21.06³)/(8*128.25³)

Sca = 137.01 MPa

AISC Unity Check on Outside Ribs ( must be <= 1.0 ) Check = Sc/Sca + (Rm/Z)/Sba

Check = 3.65/137.01 + (1970.06/7411.156 )/159.96

Check = 0.03

Check of Inside RibsInertia of Saddle, Inner Ribs - Axial Direction

Y A AY Ay² Io

Rib 38.1 443.5 16899.2 0.0 234129.9

Web 38.1 1397.8 53258.0 0.0 4697.1

Values 38.1 1841.4 70157.1 0.0 238827.0

KL/R < Cc ( 19.9810 < 128.2550 ) per AISC E2-1

Sca = (1-(Klr)²/(2*Cc²))*Fy/(5/3+3*(Klr)/(8*Cc)-(Klr³)/(8*Cc³)

Sca = ( 1-( 19.98 )²/(2 * 128.25² )) * 239/

( 5/3+3*(19.98 )/(8* 128.25 )-( 19.98³)/(8*128.25³)

Sca = 137.44 MPa

AISC Unity Check on Inside Ribs ( must be <= 1.0 ) Check = Sc/Sca + (Rm/Z)/Sba

Check = 4.53/137.44 + ( 2344.96/6268.425 )/159.96

Check = 0.04

Input Data for Base Plate Bolting Calculations:

Total Number of Bolts per BasePlate Nbolts 2

Total Number of Bolts in Tension/Baseplate Nbt 1

Bolt Material Specification SA-193 B7

Bolt Allowable Stress Stba 172.38 MPa

Bolt Corrosion Allowance Bca 0.0000 mm

Distance from Bolts to Edge Edgedis 101.6000 mm

Nominal Bolt Diameter Bnd 25.4000 mm

Thread Series Series TEMA

BasePlate Allowable Stress S 95.15 MPa

Area Available in a Single Bolt BltArea 355.4832 mm²

Saddle Load QO (Weight) QO 25465.9 N

Saddle Load QL (Wind/Seismic contribution) QL 16.1 N

Maximum Transverse Force Ft 260.3 N

Maximum Longitudinal Force Fl 64.2 N

Saddle Bolted to Steel Foundation No

Bolt Area Calculation per Dennis R. Moss

Bolt Area Requirement Due to Longitudinal Load [Bltarearl]: = 0.0 (QO > QL --> No Uplift in Longitudinal direction)

Bolt Area due to Shear Load [Bltarears]: = Fl / (Stba * Nbolts)

Page 53: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 52 of 94

Horizontal Vessel Analysis (Test) : Step: 17 9:50a Jul 11,2013

= 64.18/(172.38 * 2.00 )

= 0.1862 mm²

Bolt Area due to Transverse Load

Moment on Baseplate Due to Transverse Load [Rmom]: = B * Ft + Sum of X Moments

= 609.60 * 260.29 + 0.00

= 158734.66 N-mm

Eccentricity (e): = Rmom / QO

= 158734.66/25465.89

= 6.23 mm < Bplen/6 --> No Uplift in Transverse direction

Bolt Area due to Transverse Load [Bltareart]: = 0 (No Uplift)

Required of a Single Bolt [Bltarear] = max[Bltarearl, Bltarears, Bltareart]

= max[0.0000 , 0.1862 , 0.0000 ]

= 0.1862 mm²

PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

Page 54: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 53 of 94

Nozzle Calcs. : T1 Nozl: 6 9:50a Jul 11,2013

INPUT VALUES, Nozzle Description: T1 From : 30

Pressure for Reinforcement Calculations P 0.5000 MPa

Temperature for Internal Pressure Temp 15 C

Design External Pressure Pext 0.10 MPa

Temperature for External Pressure Tempex 100 C

Shell Material SA-516 70

Shell Allowable Stress at Temperature S 137.90 MPa

Shell Allowable Stress At Ambient Sa 137.90 MPa

Inside Diameter of Cylindrical Shell D 635.00 mm

Design Length of Section L 650.0000 mm

Shell Finished (Minimum) Thickness t 10.0000 mm

Shell Internal Corrosion Allowance c 3.0000 mm

Shell External Corrosion Allowance co 0.0000 mm

Physical Maximum for Diameter Limit Dmax 500.0000 mm

Physical Maximum for Thickness Limit Tmax 0.0000 mm

Distance from Bottom/Left Tangent 415.0000 mm

User Entered Minimum Design Metal Temperature 0.00 C

Type of Element Connected to the Shell : Nozzle

Material SA-106 B

Material UNS Number K03006

Material Specification/Type Smls. pipe

Allowable Stress at Temperature Sn 117.90 MPa

Allowable Stress At Ambient Sna 117.90 MPa

Diameter Basis (for tr calc only) ID

Layout Angle -45.00 deg

Diameter 300.0000 mm.

Size and Thickness Basis Nominal

Nominal Thickness tn 40

Flange Material SA-105

Flange Type Weld Neck Flange

Corrosion Allowance can 3.0000 mm

Joint Efficiency of Shell Seam at Nozzle E1 1.00

Joint Efficiency of Nozzle Neck En 1.00

Outside Projection ho 200.0000 mm

Weld leg size between Nozzle and Pad/Shell Wo 9.5250 mm

Groove weld depth between Nozzle and Vessel Wgnv 6.0000 mm

Inside Projection h 0.0000 mm

Weld leg size, Inside Element to Shell Wi 0.0000 mm

Pad Material SA-516 70

Pad Allowable Stress at Temperature Sp 137.90 MPa

Pad Allowable Stress At Ambient Spa 137.90 MPa

Diameter of Pad along vessel surface Dp 523.8500 mm

Thickness of Pad te 10.0000 mm

Weld leg size between Pad and Shell Wp 10.0000 mm

Groove weld depth between Pad and Nozzle Wgpn 10.0000 mm

Reinforcing Pad Width 100.0000 mm

ASME Code Weld Type per UW-16 None

Class of attached Flange 300

Grade of attached Flange GR 1.1

The Pressure Design option was Design Pressure + static head.

Nozzle Sketch (may not represent actual weld type/configuration) | |

| |

| |

| |

__________/| |

____/|__________\| |

| \ | |

| \ | |

|________________\|__|

Insert Nozzle With Pad, no Inside projection

Reinforcement CALCULATION, Description: T1

ASME Code, Section VIII, Division 1, 2010, 2011a, UG-37 to UG-45

Actual Inside Diameter Used in Calculation 303.225 mm.

Actual Thickness Used in Calculation 10.312 mm

Nozzle input data check completed without errors.

Reqd thk per UG-37(a)of Cylindrical Shell, Tr [Int. Press] = (P*R)/(S*E-0.6*P) per UG-27 (c)(1)

= (0.50*320.5000)/(137*1.00-0.6*0.50)

= 1.1646 mm

Page 55: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 54 of 94

Nozzle Calcs. : T1 Nozl: 6 9:50a Jul 11,2013

Reqd thk per UG-37(a)of Nozzle Wall, Trn [Int. Press] = (P*R)/(S*E-0.6*P) per UG-27 (c)(1)

= (0.50*154.61)/(117*1.00-0.6*0.50)

= 0.6573 mm

Required Nozzle thickness under External Pressure per UG-28 : 0.8481 mm

UG-40, Limits of Reinforcement : [External Pressure] Parallel to Vessel Wall (Diameter Limit) Dl 500.0000 mm

Parallel to Vessel Wall, opening length d 250.0000 mm

Normal to Vessel Wall (Thickness Limit), pad side Tlwp 17.5000 mm

Note : The Pad diameter is greater than the Diameter Limit, theexcess will not be considered .

Weld Strength Reduction Factor [fr1]: = min( 1, Sn/S )

= min( 1, 117.9/137.9 )

= 0.855

Weld Strength Reduction Factor [fr2]: = min( 1, Sn/S )

= min( 1, 117.9/137.9 )

= 0.855

Weld Strength Reduction Factor [fr4]: = min( 1, Sp/S )

= min( 1, 137.9/137.9 )

= 1.000

Weld Strength Reduction Factor [fr3]: = min( fr2, fr4 )

= min( 0.9 , 1.0 )

= 0.855

Results of Nozzle Reinforcement Area Calculations: AREA AVAILABLE, A1 to A5 Design External Mapnc

Area Required Ar NA 325.504 NA mm²

Area in Shell A1 NA 926.113 NA mm²

Area in Nozzle Wall A2 NA 193.443 NA mm²

Area in Inward Nozzle A3 NA 0.000 NA mm²

Area in Welds A41+A42+A43 NA 74.064 NA mm²

Area in Element A5 NA 1321.125 NA mm²

TOTAL AREA AVAILABLE Atot NA 2514.745 NA mm²

Nozzle Angle Used in Area Calculations 90.00 Degs.

The area available without a pad is Sufficient.The area available with the given pad is Sufficient.

Area Required [A]: = 0.5( d * tr*F + 2 * tn * tr*F * (1-fr1) ) per UG-37(d) or UG-39

= 0.5(309.2252*2.0909*1+2*7.3124*2.0909*1*(1-0.86))

= 325.504 mm²

Reinforcement Areas per Figure UG-37.1

Area Available in Shell [A1]: = d( E1*t - F*tr ) - 2 * tn( E1*t - F*tr ) * ( 1 - fr1 )

= 190.775 ( 1.00 * 7.0000 - 1.0 * 2.091 ) - 2 * 7.312

( 1.00 * 7.0000 - 1.0 * 2.0909 ) * ( 1 - 0.855 )

= 926.113 mm²

Area Available in Nozzle Wall Projecting Outward [A2]: = ( 2 * Tlwp ) * ( tn - trn ) * fr2

= ( 2 * 17.50 ) * ( 7.31 - 0.85 ) * 0.8550

= 193.443 mm²

Area Available in Welds [A41 + A42 + A43]: = (Wo² - Ar Lost)*Fr3+((Wi-can/0.707)² - Ar Lost)*fr2 + Wp²*fr4

= (86.6250 ) * 0.86 + (0.0000 ) * 0.86 + 0.0000² * 1.00

= 74.064 mm²

Area Available in Element [A5]: = (min(Dp,DL)-(Nozzle OD))*(min(tp,Tlwp,te))*fr4

= ( 500.0000 - 323.8500 ) * 10.0000 * 1.0000

= 1321.125 mm²

Note: Per user request, A5 multiplied by 0.75, see UG-37(h).

UG-45 Minimum Nozzle Neck Thickness Requirement: [Int. Press.] Wall Thickness for Internal/External pressures ta = 3.8481 mm

Wall Thickness per UG16(b), tr16b = 4.5000 mm

Wall Thickness, shell/head, internal pressure trb1 = 4.1646 mm

Wall Thickness tb1 = max(trb1, tr16b) = 4.5000 mm

Wall Thickness tb2 = max(trb2, tr16b) = 4.5000 mm

Wall Thickness per table UG-45 tb3 = 11.3312 mm

Determine Nozzle Thickness candidate [tb]: = min[ tb3, max( tb1,tb2) ]

= min[ 11.331 , max( 4.500 , 4.500 ) ]

= 4.5000 mm

Page 56: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 55 of 94

Nozzle Calcs. : T1 Nozl: 6 9:50a Jul 11,2013

Minimum Wall Thickness of Nozzle Necks [tUG-45]: = max( ta, tb )

= max( 3.8481 , 4.5000 )

= 4.5000 mm

Available Nozzle Neck Thickness = 0.875 * 10.312 = 9.023 mm --> OK

Nozzle Junction Minimum Design Metal Temperature (MDMT) Calculations:

MDMT of the Nozzle Neck to Flange Weld, ���Curve: B ----------------------------------------------------------------------

Govrn. thk, tg = 9.023 , tr = 0.657 , c = 3.0000 mm , E* = 1.00Stress Ratio = tr * (E*)/(tg - c) = 0.109 , Temp. Reduction = 78 C

Min Metal Temp. w/o impact per UCS-66 -29 C

Min Metal Temp. at Required thickness (UCS 66.1) -104 C

MDMT of Nozzle Neck to Pad Weld for the Nozzle, ��Curve: B ----------------------------------------------------------------------

Govrn. thk, tg = 9.023 , tr = 0.657 , c = 3.0000 mm , E* = 1.00Stress Ratio = tr * (E*)/(tg - c) = 0.109 , Temp. Reduction = 78 C

Min Metal Temp. w/o impact per UCS-66 -29 C

Min Metal Temp. at Required thickness (UCS 66.1) -104 C

MDMT of Nozzle Neck to Pad Weld for Reinforcement pad, ��Curve: B ----------------------------------------------------------------------

Govrn. thk, tg = 9.023 , tr = 0.657 , c = 3.0000 mm , E* = 1.00Stress Ratio = tr * (E*)/(tg - c) = 0.109 , Temp. Reduction = 78 C

Min Metal Temp. w/o impact per UCS-66 -29 C

Min Metal Temp. at Required thickness (UCS 66.1) -104 C

MDMT of Shell to Pad Weld at Pad OD for pad, ��Curve: B ----------------------------------------------------------------------

Govrn. thk, tg = 10.000 , tr = 1.165 , c = 3.0000 mm , E* = 1.00Stress Ratio = tr * (E*)/(tg - c) = 0.166 , Temp. Reduction = 78 C

Min Metal Temp. w/o impact per UCS-66 -29 C

Min Metal Temp. at Required thickness (UCS 66.1) -104 C

MDMT of Nozzle-Shell/Head Weld for the Nozzle (UCS-66(a)1(b)), ��Curve: B ----------------------------------------------------------------------

Govrn. thk, tg = 9.023 , tr = 0.657 , c = 3.0000 mm , E* = 1.00Stress Ratio = tr * (E*)/(tg - c) = 0.109 , Temp. Reduction = 78 C

Min Metal Temp. w/o impact per UCS-66 -29 C

Min Metal Temp. at Required thickness (UCS 66.1) -104 C

Governing MDMT of the Nozzle : -104 C

Governing MDMT of the Reinforcement Pad : -104 C

Governing MDMT of all the sub-joints of this Junction : -104 C

ANSI Flange MDMT including Temperature reduction per UCS-66.1:

Unadjusted MDMT of ANSI B16.5/47 flanges per UCS-66(c) -29 C

Flange MDMT with Temp reduction per UCS-66(b)(1)(b) -104 C

Flange MDMT with Temp reduction per UCS-66(b)(1)(c) -104 C

Where the Stress Reduction Ratio per UCS-66(b)(1)(b) is : Design Pressure/Ambient Rating = 0.50/5.11 = 0.098

Note: Using the minimum value from (b)(1)(b) and (b)(1)(c) aboveas the calculated nozzle flange MDMT.

Nozzle Calculations per App. 1-10: Internal Pressure Case:

Thickness of Nozzle [tn]: = thickness - corrosion allowance

= 10.312 - 3.000

= 7.312 mm

Effective Pressure Radius [Reff]: = Di/2 + corrosion allowance

= 635.000/2 + 3.000

= 320.500 mm

Effective Length of Vessel Wall [LR]:Note : Pad Thk >= 0.5T and Pad Width < 8(Shell Thk + Pad Thk)

= 10 * t

= 10 * 7.000

= 70.000 mm

Thickness Limit Candidate [LH1]: = t + 0.78 * sqrt( Rn * tn )

= 7.000 + 0.78 * sqrt( 154.613 * 7.312 )

= 33.227 mm

Thickness Limit Candidate [LH2]: = Lpr1 + T

= 200.000 + 7.000

= 207.000 mm

Page 57: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 56 of 94

Nozzle Calcs. : T1 Nozl: 6 9:50a Jul 11,2013

Thickness Limit Candidate [LH3]: = 8( t + te )

= 8( 7.000 + 10.000 )

= 136.000 mm

Effective Nozzle Wall Length Outside the Vessel [LH]: = min[ LH1, LH2, LH3 ]

= min[ 33.227 , 207.000 , 136.000 )

= 33.227 mm

Effective Vessel Thickness [teff]: = t

= 7.000 mm

Determine Parameter [Lamda]: = min( 10, ( Dn + Tn )/( sqrt( ( Di + teff ) * teff )) )

= min( 10, (309.23 + 7.312 )/( sqrt((641.00 + 7.000 ) * 7.000 )) )

= 4.700

Compute Areas A1-A43 (No Pad) or A1-A5 (With Pad) :

Area Contributed by the Vessel Wall [A1]: = t * LR * max( Lamda/4, 1 )

= 7.000 * 70.000 * max( 4.700/4, 1 )

= 575.738 mm²

Area Contributed by the Nozzle Outside the Vessel Wall [A2]: = tn * LH

= 7.312 * 33.227

= 242.968 mm²

Area Contributed by the Outside Fillet Weld [A41]: = 0.5 * Leg41^(2)

= 0.5 * 9.525^(2)

= 45.363 mm²

Area Contributed by the Reinforcing Pad [A5]: = min( W * te , LR * te )

= min( 100.000 * 10.000 , 70.000 * 10.000 )

= 700.000 mm²

The total area contributed by A1 through A5 [AT]: = A1 + frn( A2 + A3 ) + A41 + A42 + A43 + frp( A5 )

= 575.738+1.000(242.968+0.000)+45.363+0.000+0.000+1.000(700.000)

= 1564.069 mm²

Allowable Local Primary Membrane Stress [Sallow]: = 1.5 * S * E

= 1.5 * 137.900 * 1.000

= 206.9 MPa

Determine Force acting on the Nozzle [fN]: = P * Rn( LH - t )

= 0.500 * 154.613 ( 33.227 - 7.000 )

= 2027.3 N

Determine Force acting on the Shell [fS]: = P * Reff * ( LR + tn )

= 0.500 * 320.500 * ( 70.000 + 7.312 )

= 12388.3 N

Discontinuity Force from Internal Pressure [fY]: = P * Reff * Rnc

= 0.500 * 320.500 * 154.613

= 24774.6 N

Area Resisting Internal Pressure [Ap]: = Rn( LH - t ) + Reff( LR + tn + Rnc )

= 154.613 ( 33.227 - 7.000 ) + 320.500 ( 70.000 + 7.312 + 154.613 )

= 78387.0 mm²

Maximum Allowable Working Pressure Candidate [Pmax1]: = Sallow /( 2 * Ap/AT - Rxs/teff )

= 206.850/( 2 * 78386.969/1564.069 - 320.500/7.000 )

= 3.8 MPa

Maximum Allowable Working Pressure Candidate [Pmax2]: = S[t/Reff]

= 137.900 [7.000/320.500 ]

= 3.0 MPa

Maximum Allowable Working Pressure [Pmax]: = min( Pmax1, Pmax2 )

= min( 3.799 , 3.012 )

= 3.012 MPa

Average Primary Membrane Stress [SigmaAvg]: = ( fN + fS + fY ) / AT

= ( 2027.332 + 12388.258 + 24774.562 )/1564.069

= 25.059 MPa

General Primary Membrane Stress [SigmaCirc]: = P * Reff / teff

= 0.500 * 320.500/7.000

Page 58: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 57 of 94

Nozzle Calcs. : T1 Nozl: 6 9:50a Jul 11,2013

= 22.9 MPa

Maximum Local Primary Membrane Stress [PL]: = max( 2 * SigmaAvg - SigmaCirc, SigmaCirc )

= max( 2 * 25.059 - 22.893 , 22.893 )

= 27.2 MPa

Summary of Nozzle Pressure/Stress Results: Allowed Local Primary Membrane Stress Sallow 206.85 MPa

Local Primary Membrane Stress PL 27.22 MPa

Maximum Allowable Working Pressure Pmax 3.01 MPa

Strength of Nozzle Attachment Welds per 1-10 and U-2(g)

Discontinuity Force Factor [ky]: = ( Rnc + tn ) / Rnc

= ( 154.613 + 7.312 )/154.613

= 1.047 For set-in Nozzles

Weld Length of Nozzle to Shell Weld [Ltau]: = pi/2 * ( Rn + tn )

= pi/2 * ( 154.613 + 7.312 )

= 254.351 mm

Weld Length of Pad to Shell Weld [LtauP]: = pi/2 * ( Rn + tn + W )

= pi/2 * ( 154.613 + 7.312 + 100.000 )

= 411.431 mm

Weld Throat Dimensions, (0.7071*Leg Dimensions) [L41T, L42T, L43T]: = 6.735, 7.071, 0.000, mm

Weld Load Value [fwelds]: = min( fy * ky, 1.5 * Sn( A2 + A3 ), pi/4*P*Rn^2*ky^2 )

= min(24774*1.05,1.5*117.9(242.968+0.000),pi/4*0.5*154.61^2*1.05^2)

= 10295.579 N

Discontinuity Force [fws]: = fwelds * t * S/( t * S + te * Sp )

= 10295.6*7.00*137/(7.000*137+10.000*137)

= 4239.356 N

Discontinuity Force [fwp]: = fwelds * te * Sp / ( t * S + te * Sp )

= 10295.6*10.00*137/(7.000*137+10.000*137)

= 6056.223 N

Shear Stress [tau1]: = fws / ( Ltau * ( 0.6 * tw1 + 0.49 * L43T ) )

= 4239.356/( 254.351 * ( 0.6 * 6.000 + 0.49 * 0.000 ) )

= 4.630 MPa

Shear Stress [tau2]: = fwp / ( Ltau * ( 0.6 * tw2 + 0.49 * L41T ) )

= 6056.223/( 254.351 * ( 0.6 * 10.000 + 0.49 * 6.735 ) )

= 2.560 MPa

Shear Stress [tau3]: = fwp / ( Ltau * ( 0.49 * L42T ) )

= 6056.223/( 411.431 * ( 0.49 * 7.071 ) )

= 4.249 MPa

Maximum Shear Stress in the Welds: = max( tau1, tau2, tau3 )

= max( 4.630 , 2.560 , 4.249 )

= 4.6 must be less than or equal to 137.9 MPa

Weld Size Calculations, Description: T1

Intermediate Calc. for nozzle/shell Welds Tmin 7.3124 mm

Intermediate Calc. for pad/shell Welds TminPad 7.0000 mm

Results Per UW-16.1: Required Thickness Actual Thickness

Nozzle Weld 5.1187 = 0.7 * tmin. 6.7342 = 0.7 * Wo mm

Pad Weld 3.5000 = 0.5*TminPad 7.0700 = 0.7 * Wp mm

Maximum Allowable Pressure for this Nozzle at this Location: Converged Max. Allow. Pressure in Operating case 2.5270 MPa

Note: The MAWP of this junction was limited by the parent Shell/Head.

Nozzle is O.K. for the External Pressure 0.103 MPa

The Drop for this Nozzle is : 44.3946 mmThe Cut Length for this Nozzle is, Drop + Ho + H + T : 254.3946 mm

PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

Page 59: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 58 of 94

Nozzle Calcs. : T2 Nozl: 7 9:50a Jul 11,2013

INPUT VALUES, Nozzle Description: T2 From : 30

Pressure for Reinforcement Calculations P 0.5000 MPa

Temperature for Internal Pressure Temp 15 C

Design External Pressure Pext 0.10 MPa

Temperature for External Pressure Tempex 100 C

Shell Material SA-516 70

Shell Allowable Stress at Temperature S 137.90 MPa

Shell Allowable Stress At Ambient Sa 137.90 MPa

Inside Diameter of Cylindrical Shell D 635.00 mm

Design Length of Section L 650.0000 mm

Shell Finished (Minimum) Thickness t 10.0000 mm

Shell Internal Corrosion Allowance c 3.0000 mm

Shell External Corrosion Allowance co 0.0000 mm

Physical Maximum for Diameter Limit Dmax 500.0000 mm

Physical Maximum for Thickness Limit Tmax 0.0000 mm

Distance from Bottom/Left Tangent 415.0000 mm

User Entered Minimum Design Metal Temperature 0.00 C

Type of Element Connected to the Shell : Nozzle

Material SA-106 B

Material UNS Number K03006

Material Specification/Type Smls. pipe

Allowable Stress at Temperature Sn 117.90 MPa

Allowable Stress At Ambient Sna 117.90 MPa

Diameter Basis (for tr calc only) ID

Layout Angle 225.00 deg

Diameter 300.0000 mm.

Size and Thickness Basis Nominal

Nominal Thickness tn 40

Flange Material SA-105

Flange Type Weld Neck Flange

Corrosion Allowance can 3.0000 mm

Joint Efficiency of Shell Seam at Nozzle E1 1.00

Joint Efficiency of Nozzle Neck En 1.00

Outside Projection ho 200.0000 mm

Weld leg size between Nozzle and Pad/Shell Wo 9.5250 mm

Groove weld depth between Nozzle and Vessel Wgnv 6.0000 mm

Inside Projection h 0.0000 mm

Weld leg size, Inside Element to Shell Wi 0.0000 mm

Pad Material SA-516 70

Pad Allowable Stress at Temperature Sp 137.90 MPa

Pad Allowable Stress At Ambient Spa 137.90 MPa

Diameter of Pad along vessel surface Dp 523.8500 mm

Thickness of Pad te 10.0000 mm

Weld leg size between Pad and Shell Wp 10.0000 mm

Groove weld depth between Pad and Nozzle Wgpn 10.0000 mm

Reinforcing Pad Width 100.0000 mm

ASME Code Weld Type per UW-16 None

Class of attached Flange 300

Grade of attached Flange GR 1.1

The Pressure Design option was Design Pressure + static head.

Nozzle Sketch (may not represent actual weld type/configuration) | |

| |

| |

| |

__________/| |

____/|__________\| |

| \ | |

| \ | |

|________________\|__|

Insert Nozzle With Pad, no Inside projection

Reinforcement CALCULATION, Description: T2

ASME Code, Section VIII, Division 1, 2010, 2011a, UG-37 to UG-45

Actual Inside Diameter Used in Calculation 303.225 mm.

Actual Thickness Used in Calculation 10.312 mm

Nozzle input data check completed without errors.

Reqd thk per UG-37(a)of Cylindrical Shell, Tr [Int. Press] = (P*R)/(S*E-0.6*P) per UG-27 (c)(1)

= (0.50*320.5000)/(137*1.00-0.6*0.50)

= 1.1646 mm

Page 60: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 59 of 94

Nozzle Calcs. : T2 Nozl: 7 9:50a Jul 11,2013

Reqd thk per UG-37(a)of Nozzle Wall, Trn [Int. Press] = (P*R)/(S*E-0.6*P) per UG-27 (c)(1)

= (0.50*154.61)/(117*1.00-0.6*0.50)

= 0.6573 mm

Required Nozzle thickness under External Pressure per UG-28 : 0.8481 mm

UG-40, Limits of Reinforcement : [External Pressure] Parallel to Vessel Wall (Diameter Limit) Dl 500.0000 mm

Parallel to Vessel Wall, opening length d 250.0000 mm

Normal to Vessel Wall (Thickness Limit), pad side Tlwp 17.5000 mm

Note : The Pad diameter is greater than the Diameter Limit, theexcess will not be considered .

Weld Strength Reduction Factor [fr1]: = min( 1, Sn/S )

= min( 1, 117.9/137.9 )

= 0.855

Weld Strength Reduction Factor [fr2]: = min( 1, Sn/S )

= min( 1, 117.9/137.9 )

= 0.855

Weld Strength Reduction Factor [fr4]: = min( 1, Sp/S )

= min( 1, 137.9/137.9 )

= 1.000

Weld Strength Reduction Factor [fr3]: = min( fr2, fr4 )

= min( 0.9 , 1.0 )

= 0.855

Results of Nozzle Reinforcement Area Calculations: AREA AVAILABLE, A1 to A5 Design External Mapnc

Area Required Ar NA 325.504 NA mm²

Area in Shell A1 NA 926.113 NA mm²

Area in Nozzle Wall A2 NA 193.443 NA mm²

Area in Inward Nozzle A3 NA 0.000 NA mm²

Area in Welds A41+A42+A43 NA 74.064 NA mm²

Area in Element A5 NA 1321.125 NA mm²

TOTAL AREA AVAILABLE Atot NA 2514.745 NA mm²

Nozzle Angle Used in Area Calculations 90.00 Degs.

The area available without a pad is Sufficient.The area available with the given pad is Sufficient.

Area Required [A]: = 0.5( d * tr*F + 2 * tn * tr*F * (1-fr1) ) per UG-37(d) or UG-39

= 0.5(309.2252*2.0909*1+2*7.3124*2.0909*1*(1-0.86))

= 325.504 mm²

Reinforcement Areas per Figure UG-37.1

Area Available in Shell [A1]: = d( E1*t - F*tr ) - 2 * tn( E1*t - F*tr ) * ( 1 - fr1 )

= 190.775 ( 1.00 * 7.0000 - 1.0 * 2.091 ) - 2 * 7.312

( 1.00 * 7.0000 - 1.0 * 2.0909 ) * ( 1 - 0.855 )

= 926.113 mm²

Area Available in Nozzle Wall Projecting Outward [A2]: = ( 2 * Tlwp ) * ( tn - trn ) * fr2

= ( 2 * 17.50 ) * ( 7.31 - 0.85 ) * 0.8550

= 193.443 mm²

Area Available in Welds [A41 + A42 + A43]: = (Wo² - Ar Lost)*Fr3+((Wi-can/0.707)² - Ar Lost)*fr2 + Wp²*fr4

= (86.6250 ) * 0.86 + (0.0000 ) * 0.86 + 0.0000² * 1.00

= 74.064 mm²

Area Available in Element [A5]: = (min(Dp,DL)-(Nozzle OD))*(min(tp,Tlwp,te))*fr4

= ( 500.0000 - 323.8500 ) * 10.0000 * 1.0000

= 1321.125 mm²

Note: Per user request, A5 multiplied by 0.75, see UG-37(h).

UG-45 Minimum Nozzle Neck Thickness Requirement: [Int. Press.] Wall Thickness for Internal/External pressures ta = 3.8481 mm

Wall Thickness per UG16(b), tr16b = 4.5000 mm

Wall Thickness, shell/head, internal pressure trb1 = 4.1646 mm

Wall Thickness tb1 = max(trb1, tr16b) = 4.5000 mm

Wall Thickness tb2 = max(trb2, tr16b) = 4.5000 mm

Wall Thickness per table UG-45 tb3 = 11.3312 mm

Determine Nozzle Thickness candidate [tb]: = min[ tb3, max( tb1,tb2) ]

= min[ 11.331 , max( 4.500 , 4.500 ) ]

= 4.5000 mm

Page 61: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 60 of 94

Nozzle Calcs. : T2 Nozl: 7 9:50a Jul 11,2013

Minimum Wall Thickness of Nozzle Necks [tUG-45]: = max( ta, tb )

= max( 3.8481 , 4.5000 )

= 4.5000 mm

Available Nozzle Neck Thickness = 0.875 * 10.312 = 9.023 mm --> OK

Nozzle Junction Minimum Design Metal Temperature (MDMT) Calculations:

MDMT of the Nozzle Neck to Flange Weld, ���Curve: B ----------------------------------------------------------------------

Govrn. thk, tg = 9.023 , tr = 0.657 , c = 3.0000 mm , E* = 1.00Stress Ratio = tr * (E*)/(tg - c) = 0.109 , Temp. Reduction = 78 C

Min Metal Temp. w/o impact per UCS-66 -29 C

Min Metal Temp. at Required thickness (UCS 66.1) -104 C

MDMT of Nozzle Neck to Pad Weld for the Nozzle, ��Curve: B ----------------------------------------------------------------------

Govrn. thk, tg = 9.023 , tr = 0.657 , c = 3.0000 mm , E* = 1.00Stress Ratio = tr * (E*)/(tg - c) = 0.109 , Temp. Reduction = 78 C

Min Metal Temp. w/o impact per UCS-66 -29 C

Min Metal Temp. at Required thickness (UCS 66.1) -104 C

MDMT of Nozzle Neck to Pad Weld for Reinforcement pad, ��Curve: B ----------------------------------------------------------------------

Govrn. thk, tg = 9.023 , tr = 0.657 , c = 3.0000 mm , E* = 1.00Stress Ratio = tr * (E*)/(tg - c) = 0.109 , Temp. Reduction = 78 C

Min Metal Temp. w/o impact per UCS-66 -29 C

Min Metal Temp. at Required thickness (UCS 66.1) -104 C

MDMT of Shell to Pad Weld at Pad OD for pad, ��Curve: B ----------------------------------------------------------------------

Govrn. thk, tg = 10.000 , tr = 1.165 , c = 3.0000 mm , E* = 1.00Stress Ratio = tr * (E*)/(tg - c) = 0.166 , Temp. Reduction = 78 C

Min Metal Temp. w/o impact per UCS-66 -29 C

Min Metal Temp. at Required thickness (UCS 66.1) -104 C

MDMT of Nozzle-Shell/Head Weld for the Nozzle (UCS-66(a)1(b)), ��Curve: B ----------------------------------------------------------------------

Govrn. thk, tg = 9.023 , tr = 0.657 , c = 3.0000 mm , E* = 1.00Stress Ratio = tr * (E*)/(tg - c) = 0.109 , Temp. Reduction = 78 C

Min Metal Temp. w/o impact per UCS-66 -29 C

Min Metal Temp. at Required thickness (UCS 66.1) -104 C

Governing MDMT of the Nozzle : -104 C

Governing MDMT of the Reinforcement Pad : -104 C

Governing MDMT of all the sub-joints of this Junction : -104 C

ANSI Flange MDMT including Temperature reduction per UCS-66.1:

Unadjusted MDMT of ANSI B16.5/47 flanges per UCS-66(c) -29 C

Flange MDMT with Temp reduction per UCS-66(b)(1)(b) -104 C

Flange MDMT with Temp reduction per UCS-66(b)(1)(c) -104 C

Where the Stress Reduction Ratio per UCS-66(b)(1)(b) is : Design Pressure/Ambient Rating = 0.50/5.11 = 0.098

Note: Using the minimum value from (b)(1)(b) and (b)(1)(c) aboveas the calculated nozzle flange MDMT.

Nozzle Calculations per App. 1-10: Internal Pressure Case:

Thickness of Nozzle [tn]: = thickness - corrosion allowance

= 10.312 - 3.000

= 7.312 mm

Effective Pressure Radius [Reff]: = Di/2 + corrosion allowance

= 635.000/2 + 3.000

= 320.500 mm

Effective Length of Vessel Wall [LR]:Note : Pad Thk >= 0.5T and Pad Width < 8(Shell Thk + Pad Thk)

= 10 * t

= 10 * 7.000

= 70.000 mm

Thickness Limit Candidate [LH1]: = t + 0.78 * sqrt( Rn * tn )

= 7.000 + 0.78 * sqrt( 154.613 * 7.312 )

= 33.227 mm

Thickness Limit Candidate [LH2]: = Lpr1 + T

= 200.000 + 7.000

= 207.000 mm

Page 62: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 61 of 94

Nozzle Calcs. : T2 Nozl: 7 9:50a Jul 11,2013

Thickness Limit Candidate [LH3]: = 8( t + te )

= 8( 7.000 + 10.000 )

= 136.000 mm

Effective Nozzle Wall Length Outside the Vessel [LH]: = min[ LH1, LH2, LH3 ]

= min[ 33.227 , 207.000 , 136.000 )

= 33.227 mm

Effective Vessel Thickness [teff]: = t

= 7.000 mm

Determine Parameter [Lamda]: = min( 10, ( Dn + Tn )/( sqrt( ( Di + teff ) * teff )) )

= min( 10, (309.23 + 7.312 )/( sqrt((641.00 + 7.000 ) * 7.000 )) )

= 4.700

Compute Areas A1-A43 (No Pad) or A1-A5 (With Pad) :

Area Contributed by the Vessel Wall [A1]: = t * LR * max( Lamda/4, 1 )

= 7.000 * 70.000 * max( 4.700/4, 1 )

= 575.738 mm²

Area Contributed by the Nozzle Outside the Vessel Wall [A2]: = tn * LH

= 7.312 * 33.227

= 242.968 mm²

Area Contributed by the Outside Fillet Weld [A41]: = 0.5 * Leg41^(2)

= 0.5 * 9.525^(2)

= 45.363 mm²

Area Contributed by the Reinforcing Pad [A5]: = min( W * te , LR * te )

= min( 100.000 * 10.000 , 70.000 * 10.000 )

= 700.000 mm²

The total area contributed by A1 through A5 [AT]: = A1 + frn( A2 + A3 ) + A41 + A42 + A43 + frp( A5 )

= 575.738+1.000(242.968+0.000)+45.363+0.000+0.000+1.000(700.000)

= 1564.069 mm²

Allowable Local Primary Membrane Stress [Sallow]: = 1.5 * S * E

= 1.5 * 137.900 * 1.000

= 206.9 MPa

Determine Force acting on the Nozzle [fN]: = P * Rn( LH - t )

= 0.500 * 154.613 ( 33.227 - 7.000 )

= 2027.3 N

Determine Force acting on the Shell [fS]: = P * Reff * ( LR + tn )

= 0.500 * 320.500 * ( 70.000 + 7.312 )

= 12388.3 N

Discontinuity Force from Internal Pressure [fY]: = P * Reff * Rnc

= 0.500 * 320.500 * 154.613

= 24774.6 N

Area Resisting Internal Pressure [Ap]: = Rn( LH - t ) + Reff( LR + tn + Rnc )

= 154.613 ( 33.227 - 7.000 ) + 320.500 ( 70.000 + 7.312 + 154.613 )

= 78387.0 mm²

Maximum Allowable Working Pressure Candidate [Pmax1]: = Sallow /( 2 * Ap/AT - Rxs/teff )

= 206.850/( 2 * 78386.969/1564.069 - 320.500/7.000 )

= 3.8 MPa

Maximum Allowable Working Pressure Candidate [Pmax2]: = S[t/Reff]

= 137.900 [7.000/320.500 ]

= 3.0 MPa

Maximum Allowable Working Pressure [Pmax]: = min( Pmax1, Pmax2 )

= min( 3.799 , 3.012 )

= 3.012 MPa

Average Primary Membrane Stress [SigmaAvg]: = ( fN + fS + fY ) / AT

= ( 2027.332 + 12388.258 + 24774.562 )/1564.069

= 25.059 MPa

General Primary Membrane Stress [SigmaCirc]: = P * Reff / teff

= 0.500 * 320.500/7.000

Page 63: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 62 of 94

Nozzle Calcs. : T2 Nozl: 7 9:50a Jul 11,2013

= 22.9 MPa

Maximum Local Primary Membrane Stress [PL]: = max( 2 * SigmaAvg - SigmaCirc, SigmaCirc )

= max( 2 * 25.059 - 22.893 , 22.893 )

= 27.2 MPa

Summary of Nozzle Pressure/Stress Results: Allowed Local Primary Membrane Stress Sallow 206.85 MPa

Local Primary Membrane Stress PL 27.22 MPa

Maximum Allowable Working Pressure Pmax 3.01 MPa

Strength of Nozzle Attachment Welds per 1-10 and U-2(g)

Discontinuity Force Factor [ky]: = ( Rnc + tn ) / Rnc

= ( 154.613 + 7.312 )/154.613

= 1.047 For set-in Nozzles

Weld Length of Nozzle to Shell Weld [Ltau]: = pi/2 * ( Rn + tn )

= pi/2 * ( 154.613 + 7.312 )

= 254.351 mm

Weld Length of Pad to Shell Weld [LtauP]: = pi/2 * ( Rn + tn + W )

= pi/2 * ( 154.613 + 7.312 + 100.000 )

= 411.431 mm

Weld Throat Dimensions, (0.7071*Leg Dimensions) [L41T, L42T, L43T]: = 6.735, 7.071, 0.000, mm

Weld Load Value [fwelds]: = min( fy * ky, 1.5 * Sn( A2 + A3 ), pi/4*P*Rn^2*ky^2 )

= min(24774*1.05,1.5*117.9(242.968+0.000),pi/4*0.5*154.61^2*1.05^2)

= 10295.579 N

Discontinuity Force [fws]: = fwelds * t * S/( t * S + te * Sp )

= 10295.6*7.00*137/(7.000*137+10.000*137)

= 4239.356 N

Discontinuity Force [fwp]: = fwelds * te * Sp / ( t * S + te * Sp )

= 10295.6*10.00*137/(7.000*137+10.000*137)

= 6056.223 N

Shear Stress [tau1]: = fws / ( Ltau * ( 0.6 * tw1 + 0.49 * L43T ) )

= 4239.356/( 254.351 * ( 0.6 * 6.000 + 0.49 * 0.000 ) )

= 4.630 MPa

Shear Stress [tau2]: = fwp / ( Ltau * ( 0.6 * tw2 + 0.49 * L41T ) )

= 6056.223/( 254.351 * ( 0.6 * 10.000 + 0.49 * 6.735 ) )

= 2.560 MPa

Shear Stress [tau3]: = fwp / ( Ltau * ( 0.49 * L42T ) )

= 6056.223/( 411.431 * ( 0.49 * 7.071 ) )

= 4.249 MPa

Maximum Shear Stress in the Welds: = max( tau1, tau2, tau3 )

= max( 4.630 , 2.560 , 4.249 )

= 4.6 must be less than or equal to 137.9 MPa

Weld Size Calculations, Description: T2

Intermediate Calc. for nozzle/shell Welds Tmin 7.3124 mm

Intermediate Calc. for pad/shell Welds TminPad 7.0000 mm

Results Per UW-16.1: Required Thickness Actual Thickness

Nozzle Weld 5.1187 = 0.7 * tmin. 6.7342 = 0.7 * Wo mm

Pad Weld 3.5000 = 0.5*TminPad 7.0700 = 0.7 * Wp mm

Maximum Allowable Pressure for this Nozzle at this Location: Converged Max. Allow. Pressure in Operating case 2.5270 MPa

Note: The MAWP of this junction was limited by the parent Shell/Head.

Nozzle is O.K. for the External Pressure 0.103 MPa

The Drop for this Nozzle is : 44.3946 mmThe Cut Length for this Nozzle is, Drop + Ho + H + T : 254.3946 mm

PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

Page 64: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 63 of 94

Nozzle Calcs. : S1 Nozl: 8 9:50a Jul 11,2013

INPUT VALUES, Nozzle Description: S1 From : 60

Pressure for Reinforcement Calculations P 2.0000 MPa

Temperature for Internal Pressure Temp 100 C

Design External Pressure Pext 0.10 MPa

Temperature for External Pressure Tempex 100 C

Shell Material SA-516 70

Shell Allowable Stress at Temperature S 137.90 MPa

Shell Allowable Stress At Ambient Sa 137.90 MPa

Inside Diameter of Cylindrical Shell D 635.00 mm

Design Length of Section L 3625.0005 mm

Shell Finished (Minimum) Thickness t 10.0000 mm

Shell Internal Corrosion Allowance c 3.0000 mm

Shell External Corrosion Allowance co 0.0000 mm

Distance from Bottom/Left Tangent 2652.0000 mm

User Entered Minimum Design Metal Temperature 0.00 C

Type of Element Connected to the Shell : Nozzle

Material SA-106 B

Material UNS Number K03006

Material Specification/Type Smls. pipe

Allowable Stress at Temperature Sn 117.90 MPa

Allowable Stress At Ambient Sna 117.90 MPa

Diameter Basis (for tr calc only) ID

Layout Angle 270.00 deg

Diameter 200.0000 mm.

Size and Thickness Basis Nominal

Nominal Thickness tn 80

Flange Material SA-105

Flange Type Weld Neck Flange

Corrosion Allowance can 3.0000 mm

Joint Efficiency of Shell Seam at Nozzle E1 1.00

Joint Efficiency of Nozzle Neck En 1.00

Outside Projection ho 200.0000 mm

Weld leg size between Nozzle and Pad/Shell Wo 9.5250 mm

Groove weld depth between Nozzle and Vessel Wgnv 10.0000 mm

Inside Projection h 0.0000 mm

Weld leg size, Inside Element to Shell Wi 0.0000 mm

Pad Material SA-516 70

Pad Allowable Stress at Temperature Sp 137.90 MPa

Pad Allowable Stress At Ambient Spa 137.90 MPa

Diameter of Pad along vessel surface Dp 319.0000 mm

Thickness of Pad te 10.0000 mm

Weld leg size between Pad and Shell Wp 10.0000 mm

Groove weld depth between Pad and Nozzle Wgpn 10.0000 mm

Reinforcing Pad Width 49.9625 mm

ASME Code Weld Type per UW-16 None

Class of attached Flange 300

Grade of attached Flange GR 1.1

The Pressure Design option was Design Pressure + static head.

Nozzle Sketch (may not represent actual weld type/configuration) | |

| |

| |

| |

__________/| |

____/|__________\| |

| \ | |

| \ | |

|________________\|__|

Insert Nozzle With Pad, no Inside projection

Reinforcement CALCULATION, Description: S1

ASME Code, Section VIII, Division 1, 2010, 2011a, UG-37 to UG-45

Actual Inside Diameter Used in Calculation 193.675 mm.

Actual Thickness Used in Calculation 12.700 mm

Nozzle input data check completed without errors.

Reqd thk per UG-37(a)of Cylindrical Shell, Tr [Int. Press] = (P*R)/(S*E-0.6*P) per UG-27 (c)(1)

= (2.00*320.5000)/(137*1.00-0.6*2.00)

= 4.6891 mm

Reqd thk per UG-37(a)of Nozzle Wall, Trn [Int. Press] = (P*R)/(S*E-0.6*P) per UG-27 (c)(1)

Page 65: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 64 of 94

Nozzle Calcs. : S1 Nozl: 8 9:50a Jul 11,2013

= (2.00*99.84)/(117*1.00-0.6*2.00)

= 1.7109 mm

Required Nozzle thickness under External Pressure per UG-28 : 0.6739 mm

UG-40, Limits of Reinforcement : [External Pressure] Parallel to Vessel Wall (Diameter Limit) Dl 399.3500 mm

Parallel to Vessel Wall, opening length d 199.6750 mm

Normal to Vessel Wall (Thickness Limit), pad side Tlwp 17.5000 mm

Weld Strength Reduction Factor [fr1]: = min( 1, Sn/S )

= min( 1, 117.9/137.9 )

= 0.855

Weld Strength Reduction Factor [fr2]: = min( 1, Sn/S )

= min( 1, 117.9/137.9 )

= 0.855

Weld Strength Reduction Factor [fr4]: = min( 1, Sp/S )

= min( 1, 137.9/137.9 )

= 1.000

Weld Strength Reduction Factor [fr3]: = min( fr2, fr4 )

= min( 0.9 , 1.0 )

= 0.855

Results of Nozzle Reinforcement Area Calculations: AREA AVAILABLE, A1 to A5 Design External Mapnc

Area Required Ar NA 438.693 NA mm²

Area in Shell A1 NA 525.026 NA mm²

Area in Nozzle Wall A2 NA 270.105 NA mm²

Area in Inward Nozzle A3 NA 0.000 NA mm²

Area in Welds A41+A42+A43 NA 174.064 NA mm²

Area in Element A5 NA 749.438 NA mm²

TOTAL AREA AVAILABLE Atot NA 1718.633 NA mm²

Nozzle Angle Used in Area Calculations 90.00 Degs.

The area available without a pad is Sufficient.The area available with the given pad is Sufficient.

Area Required [A]: = 0.5( d * tr*F + 2 * tn * tr*F * (1-fr1) ) per UG-37(d) or UG-39

= 0.5(199.6750*4.3330*1+2*9.7000*4.3330*1*(1-0.86))

= 438.693 mm²

Reinforcement Areas per Figure UG-37.1

Area Available in Shell [A1]: = d( E1*t - F*tr ) - 2 * tn( E1*t - F*tr ) * ( 1 - fr1 )

= 199.675 ( 1.00 * 7.0000 - 1.0 * 4.333 ) - 2 * 9.700

( 1.00 * 7.0000 - 1.0 * 4.3330 ) * ( 1 - 0.855 )

= 525.026 mm²

Area Available in Nozzle Wall Projecting Outward [A2]: = ( 2 * Tlwp ) * ( tn - trn ) * fr2

= ( 2 * 17.50 ) * ( 9.70 - 0.67 ) * 0.8550

= 270.105 mm²

Area Available in Welds [A41 + A42 + A43]: = (Wo² - Ar Lost)*Fr3+((Wi-can/0.707)² - Ar Lost)*fr2 + Wp²*fr4

= (86.6250 ) * 0.86 + (0.0000 ) * 0.86 + 100.0000² * 1.00

= 174.064 mm²

Area Available in Element [A5]: = (min(Dp,DL)-(Nozzle OD))*(min(tp,Tlwp,te))*fr4

= ( 319.0000 - 219.0750 ) * 10.0000 * 1.0000

= 749.438 mm²

Note: Per user request, A5 multiplied by 0.75, see UG-37(h).

UG-45 Minimum Nozzle Neck Thickness Requirement: [Int. Press.] Wall Thickness for Internal/External pressures ta = 4.7109 mm

Wall Thickness per UG16(b), tr16b = 4.5000 mm

Wall Thickness, shell/head, internal pressure trb1 = 7.6891 mm

Wall Thickness tb1 = max(trb1, tr16b) = 7.6891 mm

Wall Thickness tb2 = max(trb2, tr16b) = 4.5000 mm

Wall Thickness per table UG-45 tb3 = 10.1600 mm

Determine Nozzle Thickness candidate [tb]: = min[ tb3, max( tb1,tb2) ]

= min[ 10.160 , max( 7.689 , 4.500 ) ]

= 7.6891 mm

Minimum Wall Thickness of Nozzle Necks [tUG-45]: = max( ta, tb )

= max( 4.7109 , 7.6891 )

= 7.6891 mm

Available Nozzle Neck Thickness = 0.875 * 12.700 = 11.113 mm --> OK

Page 66: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 65 of 94

Nozzle Calcs. : S1 Nozl: 8 9:50a Jul 11,2013

Nozzle Junction Minimum Design Metal Temperature (MDMT) Calculations:

MDMT of the Nozzle Neck to Flange Weld, ���Curve: B ----------------------------------------------------------------------

Govrn. thk, tg = 11.113 , tr = 1.711 , c = 3.0000 mm , E* = 1.00Stress Ratio = tr * (E*)/(tg - c) = 0.211 , Temp. Reduction = 78 C

Min Metal Temp. w/o impact per UCS-66 -26 C

Min Metal Temp. at Required thickness (UCS 66.1) -103 C

Min Metal Temp. w/o impact per UG-20(f) -29 C

MDMT of Nozzle Neck to Pad Weld for the Nozzle, ��Curve: B ----------------------------------------------------------------------

Govrn. thk, tg = 10.000 , c = 3.0000 mm , E* = 1.00Stress Ratio = tr * (E*)/(tg - c) = 0.670 , Temp. Reduction = 18 CPad governing, Conservatively assuming Pad stress = Shell stress(Div. 1 L-9.3)

Min Metal Temp. w/o impact per UCS-66 -29 C

Min Metal Temp. at Required thickness (UCS 66.1) -47 C

MDMT of Nozzle Neck to Pad Weld for Reinforcement pad, ��Curve: B ----------------------------------------------------------------------

Govrn. thk, tg = 10.000 , c = 3.0000 mm , E* = 1.00Stress Ratio = tr * (E*)/(tg - c) = 0.670 , Temp. Reduction = 18 CPad governing, Conservatively assuming Pad stress = Shell stress(Div. 1 L-9.3)

Min Metal Temp. w/o impact per UCS-66 -29 C

Min Metal Temp. at Required thickness (UCS 66.1) -47 C

MDMT of Shell to Pad Weld at Pad OD for pad, ��Curve: B ----------------------------------------------------------------------

Govrn. thk, tg = 10.000 , tr = 4.689 , c = 3.0000 mm , E* = 1.00Stress Ratio = tr * (E*)/(tg - c) = 0.670 , Temp. Reduction = 18 C

Min Metal Temp. w/o impact per UCS-66 -29 C

Min Metal Temp. at Required thickness (UCS 66.1) -47 C

MDMT of Nozzle-Shell/Head Weld for the Nozzle (UCS-66(a)1(b)), ��Curve: B ----------------------------------------------------------------------

Govrn. thk, tg = 10.000 , tr = 4.689 , c = 3.0000 mm , E* = 1.00Stress Ratio = tr * (E*)/(tg - c) = 0.670 , Temp. Reduction = 18 C

Min Metal Temp. w/o impact per UCS-66 -29 C

Min Metal Temp. at Required thickness (UCS 66.1) -47 C

Governing MDMT of the Nozzle : -47 C

Governing MDMT of the Reinforcement Pad : -47 C

Governing MDMT of all the sub-joints of this Junction : -47 C

ANSI Flange MDMT including Temperature reduction per UCS-66.1:

Unadjusted MDMT of ANSI B16.5/47 flanges per UCS-66(c) -29 C

Flange MDMT with Temp reduction per UCS-66(b)(1)(b) -48 C

Flange MDMT with Temp reduction per UCS-66(b)(1)(c) -104 C

Where the Stress Reduction Ratio per UCS-66(b)(1)(b) is : Design Pressure/Ambient Rating = 2.00/5.11 = 0.391

Note: Using the minimum value from (b)(1)(b) and (b)(1)(c) aboveas the calculated nozzle flange MDMT.

Nozzle Calculations per App. 1-10: Internal Pressure Case:

Thickness of Nozzle [tn]: = thickness - corrosion allowance

= 12.700 - 3.000

= 9.700 mm

Effective Pressure Radius [Reff]: = Di/2 + corrosion allowance

= 635.000/2 + 3.000

= 320.500 mm

Effective Length of Vessel Wall [LR]:Note : Pad Thk >= 0.5T and Pad Width < 8(Shell Thk + Pad Thk)

= 10 * t

= 10 * 7.000

= 70.000 mm

Thickness Limit Candidate [LH1]: = t + 0.78 * sqrt( Rn * tn )

= 7.000 + 0.78 * sqrt( 99.837 * 9.700 )

= 31.273 mm

Thickness Limit Candidate [LH2]: = Lpr1 + T

= 200.000 + 7.000

= 207.000 mm

Thickness Limit Candidate [LH3]: = 8( t + te )

= 8( 7.000 + 10.000 )

Page 67: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 66 of 94

Nozzle Calcs. : S1 Nozl: 8 9:50a Jul 11,2013

= 136.000 mm

Effective Nozzle Wall Length Outside the Vessel [LH]: = min[ LH1, LH2, LH3 ]

= min[ 31.273 , 207.000 , 136.000 )

= 31.273 mm

Effective Vessel Thickness [teff]: = t

= 7.000 mm

Determine Parameter [Lamda]: = min( 10, ( Dn + Tn )/( sqrt( ( Di + teff ) * teff )) )

= min( 10, (199.67 + 9.700 )/( sqrt((641.00 + 7.000 ) * 7.000 )) )

= 3.109

Compute Areas A1-A43 (No Pad) or A1-A5 (With Pad) :

Area Contributed by the Vessel Wall [A1]: = t * LR * max( Lamda/4, 1 )

= 7.000 * 70.000 * max( 3.109/4, 1 )

= 490.000 mm²

Area Contributed by the Nozzle Outside the Vessel Wall [A2]: = tn * LH

= 9.700 * 31.273

= 303.350 mm²

Area Contributed by the Pad Fillet Weld [A42]: = 0.5 * Leg42^(2)

= 0.5 * 10.000^(2)

= 50.000 mm²

Area Contributed by the Outside Fillet Weld [A41]: = 0.5 * Leg41^(2)

= 0.5 * 9.525^(2)

= 45.363 mm²

Area Contributed by the Reinforcing Pad [A5]: = min( W * te , LR * te )

= min( 49.963 * 10.000 , 70.000 * 10.000 )

= 499.625 mm²

The total area contributed by A1 through A5 [AT]: = A1 + frn( A2 + A3 ) + A41 + A42 + A43 + frp( A5 )

= 490.000+1.000(303.350+0.000)+45.363+50.000+0.000+1.000(499.625)

= 1388.338 mm²

Allowable Local Primary Membrane Stress [Sallow]: = 1.5 * S * E

= 1.5 * 137.900 * 1.000

= 206.9 MPa

Determine Force acting on the Nozzle [fN]: = P * Rn( LH - t )

= 2.000 * 99.837 ( 31.273 - 7.000 )

= 4846.3 N

Determine Force acting on the Shell [fS]: = P * Reff * ( LR + tn )

= 2.000 * 320.500 * ( 70.000 + 9.700 )

= 51083.4 N

Discontinuity Force from Internal Pressure [fY]: = P * Reff * Rnc

= 2.000 * 320.500 * 99.837

= 63990.4 N

Area Resisting Internal Pressure [Ap]: = Rn( LH - t ) + Reff( LR + tn + Rnc )

= 99.837 ( 31.273 - 7.000 ) + 320.500 ( 70.000 + 9.700 + 99.837 )

= 59965.1 mm²

Maximum Allowable Working Pressure Candidate [Pmax1]: = Sallow /( 2 * Ap/AT - Rxs/teff )

= 206.850/( 2 * 59965.141/1388.338 - 320.500/7.000 )

= 5.1 MPa

Maximum Allowable Working Pressure Candidate [Pmax2]: = S[t/Reff]

= 137.900 [7.000/320.500 ]

= 3.0 MPa

Maximum Allowable Working Pressure [Pmax]: = min( Pmax1, Pmax2 )

= min( 5.095 , 3.012 )

= 3.012 MPa

Average Primary Membrane Stress [SigmaAvg]: = ( fN + fS + fY ) / AT

= ( 4846.341 + 51083.352 + 63990.391 )/1388.338

= 86.384 MPa

General Primary Membrane Stress [SigmaCirc]:

Page 68: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 67 of 94

Nozzle Calcs. : S1 Nozl: 8 9:50a Jul 11,2013

= P * Reff / teff

= 2.000 * 320.500/7.000

= 91.6 MPa

Maximum Local Primary Membrane Stress [PL]: = max( 2 * SigmaAvg - SigmaCirc, SigmaCirc )

= max( 2 * 86.384 - 91.571 , 91.571 )

= 91.6 MPa

Summary of Nozzle Pressure/Stress Results: Allowed Local Primary Membrane Stress Sallow 206.85 MPa

Local Primary Membrane Stress PL 91.57 MPa

Maximum Allowable Working Pressure Pmax 3.01 MPa

Strength of Nozzle Attachment Welds per 1-10 and U-2(g)

Discontinuity Force Factor [ky]: = ( Rnc + tn ) / Rnc

= ( 99.837 + 9.700 )/99.837

= 1.097 For set-in Nozzles

Weld Length of Nozzle to Shell Weld [Ltau]: = pi/2 * ( Rn + tn )

= pi/2 * ( 99.837 + 9.700 )

= 172.061 mm

Weld Length of Pad to Shell Weld [LtauP]: = pi/2 * ( Rn + tn + W )

= pi/2 * ( 99.837 + 9.700 + 49.963 )

= 250.542 mm

Weld Throat Dimensions, (0.7071*Leg Dimensions) [L41T, L42T, L43T]: = 6.735, 7.071, 0.000, mm

Weld Load Value [fwelds]: = min( fy * ky, 1.5 * Sn( A2 + A3 ), pi/4*P*Rn^2*ky^2 )

= min(63990*1.10,1.5*117.9(303.350+0.000),pi/4*2.0*99.84^2*1.10^2)

= 18845.537 N

Discontinuity Force [fws]: = fwelds * t * S/( t * S + te * Sp )

= 18845.5*7.00*137/(7.000*137+10.000*137)

= 7759.927 N

Discontinuity Force [fwp]: = fwelds * te * Sp / ( t * S + te * Sp )

= 18845.5*10.00*137/(7.000*137+10.000*137)

= 11085.610 N

Shear Stress [tau1]: = fws / ( Ltau * ( 0.6 * tw1 + 0.49 * L43T ) )

= 7759.927/( 172.061 * ( 0.6 * 7.000 + 0.49 * 0.000 ) )

= 10.739 MPa

Shear Stress [tau2]: = fwp / ( Ltau * ( 0.6 * tw2 + 0.49 * L41T ) )

= 11085.610/( 172.061 * ( 0.6 * 10.000 + 0.49 * 6.735 ) )

= 6.928 MPa

Shear Stress [tau3]: = fwp / ( Ltau * ( 0.49 * L42T ) )

= 11085.610/( 250.542 * ( 0.49 * 7.071 ) )

= 12.771 MPa

Maximum Shear Stress in the Welds: = max( tau1, tau2, tau3 )

= max( 10.739 , 6.928 , 12.771 )

= 12.8 must be less than or equal to 137.9 MPa

Weld Size Calculations, Description: S1

Intermediate Calc. for nozzle/shell Welds Tmin 9.7000 mm

Intermediate Calc. for pad/shell Welds TminPad 7.0000 mm

Results Per UW-16.1: Required Thickness Actual Thickness

Nozzle Weld 6.0000 = Min per Code 6.7342 = 0.7 * Wo mm

Pad Weld 3.5000 = 0.5*TminPad 7.0700 = 0.7 * Wp mm

Maximum Allowable Pressure for this Nozzle at this Location: Converged Max. Allow. Pressure in Operating case 2.5270 MPa

Note: The MAWP of this junction was limited by the parent Shell/Head.

Nozzle is O.K. for the External Pressure 0.103 MPa

The Drop for this Nozzle is : 19.4937 mmThe Cut Length for this Nozzle is, Drop + Ho + H + T : 229.4936 mm

PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

Page 69: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 68 of 94

Nozzle Calcs. : S2A Nozl: 9 9:50a Jul 11,2013

INPUT VALUES, Nozzle Description: S2A From : 60

Pressure for Reinforcement Calculations P 2.0000 MPa

Temperature for Internal Pressure Temp 100 C

Design External Pressure Pext 0.10 MPa

Temperature for External Pressure Tempex 100 C

Shell Material SA-516 70

Shell Allowable Stress at Temperature S 137.90 MPa

Shell Allowable Stress At Ambient Sa 137.90 MPa

Inside Diameter of Cylindrical Shell D 635.00 mm

Design Length of Section L 3625.0005 mm

Shell Finished (Minimum) Thickness t 10.0000 mm

Shell Internal Corrosion Allowance c 3.0000 mm

Shell External Corrosion Allowance co 0.0000 mm

Distance from Bottom/Left Tangent 1139.9999 mm

User Entered Minimum Design Metal Temperature 0.00 C

Type of Element Connected to the Shell : Nozzle

Material SA-106 B

Material UNS Number K03006

Material Specification/Type Smls. pipe

Allowable Stress at Temperature Sn 117.90 MPa

Allowable Stress At Ambient Sna 117.90 MPa

Diameter Basis (for tr calc only) ID

Layout Angle 180.00 deg

Diameter 150.0000 mm.

Size and Thickness Basis Nominal

Nominal Thickness tn 80

Flange Material SA-105

Flange Type Weld Neck Flange

Corrosion Allowance can 3.0000 mm

Joint Efficiency of Shell Seam at Nozzle E1 1.00

Joint Efficiency of Nozzle Neck En 1.00

Outside Projection ho 200.0000 mm

Weld leg size between Nozzle and Pad/Shell Wo 9.5250 mm

Groove weld depth between Nozzle and Vessel Wgnv 10.0000 mm

Inside Projection h 0.0000 mm

Weld leg size, Inside Element to Shell Wi 0.0000 mm

Pad Material SA-516 70

Pad Allowable Stress at Temperature Sp 137.90 MPa

Pad Allowable Stress At Ambient Spa 137.90 MPa

Diameter of Pad along vessel surface Dp 268.2750 mm

Thickness of Pad te 10.0000 mm

Weld leg size between Pad and Shell Wp 10.0000 mm

Groove weld depth between Pad and Nozzle Wgpn 10.0000 mm

Reinforcing Pad Width 50.0000 mm

ASME Code Weld Type per UW-16 None

Class of attached Flange 300

Grade of attached Flange GR 1.1

The Pressure Design option was Design Pressure + static head.

Nozzle Sketch (may not represent actual weld type/configuration) | |

| |

| |

| |

__________/| |

____/|__________\| |

| \ | |

| \ | |

|________________\|__|

Insert Nozzle With Pad, no Inside projection

Reinforcement CALCULATION, Description: S2A

ASME Code, Section VIII, Division 1, 2010, 2011a, UG-37 to UG-45

Actual Inside Diameter Used in Calculation 146.329 mm.

Actual Thickness Used in Calculation 10.973 mm

Nozzle input data check completed without errors.

Reqd thk per UG-37(a)of Cylindrical Shell, Tr [Int. Press] = (P*R)/(S*E-0.6*P) per UG-27 (c)(1)

= (2.00*320.5000)/(137*1.00-0.6*2.00)

= 4.6891 mm

Reqd thk per UG-37(a)of Nozzle Wall, Trn [Int. Press] = (P*R)/(S*E-0.6*P) per UG-27 (c)(1)

Page 70: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 69 of 94

Nozzle Calcs. : S2A Nozl: 9 9:50a Jul 11,2013

= (2.00*76.16)/(117*1.00-0.6*2.00)

= 1.3053 mm

Required Nozzle thickness under External Pressure per UG-28 : 0.5796 mm

UG-40, Limits of Reinforcement : [External Pressure] Parallel to Vessel Wall (Diameter Limit) Dl 304.6588 mm

Parallel to Vessel Wall, opening length d 152.3294 mm

Normal to Vessel Wall (Thickness Limit), pad side Tlwp 17.5000 mm

Weld Strength Reduction Factor [fr1]: = min( 1, Sn/S )

= min( 1, 117.9/137.9 )

= 0.855

Weld Strength Reduction Factor [fr2]: = min( 1, Sn/S )

= min( 1, 117.9/137.9 )

= 0.855

Weld Strength Reduction Factor [fr4]: = min( 1, Sp/S )

= min( 1, 137.9/137.9 )

= 1.000

Weld Strength Reduction Factor [fr3]: = min( fr2, fr4 )

= min( 0.9 , 1.0 )

= 0.855

Results of Nozzle Reinforcement Area Calculations: AREA AVAILABLE, A1 to A5 Design External Mapnc

Area Required Ar NA 335.033 NA mm²

Area in Shell A1 NA 400.092 NA mm²

Area in Nozzle Wall A2 NA 221.242 NA mm²

Area in Inward Nozzle A3 NA 0.000 NA mm²

Area in Welds A41+A42+A43 NA 174.064 NA mm²

Area in Element A5 NA 750.000 NA mm²

TOTAL AREA AVAILABLE Atot NA 1545.399 NA mm²

Nozzle Angle Used in Area Calculations 90.00 Degs.

The area available without a pad is Sufficient.The area available with the given pad is Sufficient.

Area Required [A]: = 0.5( d * tr*F + 2 * tn * tr*F * (1-fr1) ) per UG-37(d) or UG-39

= 0.5(152.3294*4.3330*1+2*7.9728*4.3330*1*(1-0.86))

= 335.033 mm²

Reinforcement Areas per Figure UG-37.1

Area Available in Shell [A1]: = d( E1*t - F*tr ) - 2 * tn( E1*t - F*tr ) * ( 1 - fr1 )

= 152.329 ( 1.00 * 7.0000 - 1.0 * 4.333 ) - 2 * 7.973

( 1.00 * 7.0000 - 1.0 * 4.3330 ) * ( 1 - 0.855 )

= 400.092 mm²

Area Available in Nozzle Wall Projecting Outward [A2]: = ( 2 * Tlwp ) * ( tn - trn ) * fr2

= ( 2 * 17.50 ) * ( 7.97 - 0.58 ) * 0.8550

= 221.242 mm²

Area Available in Welds [A41 + A42 + A43]: = (Wo² - Ar Lost)*Fr3+((Wi-can/0.707)² - Ar Lost)*fr2 + Wp²*fr4

= (86.6250 ) * 0.86 + (0.0000 ) * 0.86 + 100.0000² * 1.00

= 174.064 mm²

Area Available in Element [A5]: = (min(Dp,DL)-(Nozzle OD))*(min(tp,Tlwp,te))*fr4

= ( 268.2750 - 168.2750 ) * 10.0000 * 1.0000

= 750.000 mm²

Note: Per user request, A5 multiplied by 0.75, see UG-37(h).

UG-45 Minimum Nozzle Neck Thickness Requirement: [Int. Press.] Wall Thickness for Internal/External pressures ta = 4.3053 mm

Wall Thickness per UG16(b), tr16b = 4.5000 mm

Wall Thickness, shell/head, internal pressure trb1 = 7.6891 mm

Wall Thickness tb1 = max(trb1, tr16b) = 7.6891 mm

Wall Thickness tb2 = max(trb2, tr16b) = 4.5000 mm

Wall Thickness per table UG-45 tb3 = 9.2200 mm

Determine Nozzle Thickness candidate [tb]: = min[ tb3, max( tb1,tb2) ]

= min[ 9.220 , max( 7.689 , 4.500 ) ]

= 7.6891 mm

Minimum Wall Thickness of Nozzle Necks [tUG-45]: = max( ta, tb )

= max( 4.3053 , 7.6891 )

= 7.6891 mm

Available Nozzle Neck Thickness = 0.875 * 10.973 = 9.601 mm --> OK

Page 71: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 70 of 94

Nozzle Calcs. : S2A Nozl: 9 9:50a Jul 11,2013

Nozzle Junction Minimum Design Metal Temperature (MDMT) Calculations:

MDMT of the Nozzle Neck to Flange Weld, ���Curve: B ----------------------------------------------------------------------

Govrn. thk, tg = 9.601 , tr = 1.305 , c = 3.0000 mm , E* = 1.00Stress Ratio = tr * (E*)/(tg - c) = 0.198 , Temp. Reduction = 78 C

Min Metal Temp. w/o impact per UCS-66 -29 C

Min Metal Temp. at Required thickness (UCS 66.1) -104 C

MDMT of Nozzle Neck to Pad Weld for the Nozzle, ��Curve: B ----------------------------------------------------------------------

Govrn. thk, tg = 9.601 , tr = 1.305 , c = 3.0000 mm , E* = 1.00Stress Ratio = tr * (E*)/(tg - c) = 0.198 , Temp. Reduction = 78 C

Min Metal Temp. w/o impact per UCS-66 -29 C

Min Metal Temp. at Required thickness (UCS 66.1) -104 C

MDMT of Nozzle Neck to Pad Weld for Reinforcement pad, ��Curve: B ----------------------------------------------------------------------

Govrn. thk, tg = 9.601 , tr = 1.305 , c = 3.0000 mm , E* = 1.00Stress Ratio = tr * (E*)/(tg - c) = 0.198 , Temp. Reduction = 78 C

Min Metal Temp. w/o impact per UCS-66 -29 C

Min Metal Temp. at Required thickness (UCS 66.1) -104 C

MDMT of Shell to Pad Weld at Pad OD for pad, ��Curve: B ----------------------------------------------------------------------

Govrn. thk, tg = 10.000 , tr = 4.689 , c = 3.0000 mm , E* = 1.00Stress Ratio = tr * (E*)/(tg - c) = 0.670 , Temp. Reduction = 18 C

Min Metal Temp. w/o impact per UCS-66 -29 C

Min Metal Temp. at Required thickness (UCS 66.1) -47 C

MDMT of Nozzle-Shell/Head Weld for the Nozzle (UCS-66(a)1(b)), ��Curve: B ----------------------------------------------------------------------

Govrn. thk, tg = 9.601 , tr = 1.305 , c = 3.0000 mm , E* = 1.00Stress Ratio = tr * (E*)/(tg - c) = 0.198 , Temp. Reduction = 78 C

Min Metal Temp. w/o impact per UCS-66 -29 C

Min Metal Temp. at Required thickness (UCS 66.1) -104 C

Governing MDMT of the Nozzle : -104 C

Governing MDMT of the Reinforcement Pad : -47 C

Governing MDMT of all the sub-joints of this Junction : -47 C

ANSI Flange MDMT including Temperature reduction per UCS-66.1:

Unadjusted MDMT of ANSI B16.5/47 flanges per UCS-66(c) -29 C

Flange MDMT with Temp reduction per UCS-66(b)(1)(b) -48 C

Flange MDMT with Temp reduction per UCS-66(b)(1)(c) -104 C

Where the Stress Reduction Ratio per UCS-66(b)(1)(b) is : Design Pressure/Ambient Rating = 2.00/5.11 = 0.391

Note: Using the minimum value from (b)(1)(b) and (b)(1)(c) aboveas the calculated nozzle flange MDMT.

Nozzle Calculations per App. 1-10: Internal Pressure Case:

Thickness of Nozzle [tn]: = thickness - corrosion allowance

= 10.973 - 3.000

= 7.973 mm

Effective Pressure Radius [Reff]: = Di/2 + corrosion allowance

= 635.000/2 + 3.000

= 320.500 mm

Effective Length of Vessel Wall [LR]:Note : Pad Thk >= 0.5T and Pad Width < 8(Shell Thk + Pad Thk)

= 10 * t

= 10 * 7.000

= 70.000 mm

Thickness Limit Candidate [LH1]: = t + 0.78 * sqrt( Rn * tn )

= 7.000 + 0.78 * sqrt( 76.165 * 7.973 )

= 26.221 mm

Thickness Limit Candidate [LH2]: = Lpr1 + T

= 200.000 + 7.000

= 207.000 mm

Thickness Limit Candidate [LH3]: = 8( t + te )

= 8( 7.000 + 10.000 )

= 136.000 mm

Effective Nozzle Wall Length Outside the Vessel [LH]:

Page 72: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 71 of 94

Nozzle Calcs. : S2A Nozl: 9 9:50a Jul 11,2013

= min[ LH1, LH2, LH3 ]

= min[ 26.221 , 207.000 , 136.000 )

= 26.221 mm

Effective Vessel Thickness [teff]: = t

= 7.000 mm

Determine Parameter [Lamda]: = min( 10, ( Dn + Tn )/( sqrt( ( Di + teff ) * teff )) )

= min( 10, (152.33 + 7.973 )/( sqrt((641.00 + 7.000 ) * 7.000 )) )

= 2.380

Compute Areas A1-A43 (No Pad) or A1-A5 (With Pad) :

Area Contributed by the Vessel Wall [A1]: = t * LR * max( Lamda/4, 1 )

= 7.000 * 70.000 * max( 2.380/4, 1 )

= 490.000 mm²

Area Contributed by the Nozzle Outside the Vessel Wall [A2]: = tn * LH

= 7.973 * 26.221

= 209.055 mm²

Area Contributed by the Pad Fillet Weld [A42]: = 0.5 * Leg42^(2)

= 0.5 * 10.000^(2)

= 50.000 mm²

Area Contributed by the Outside Fillet Weld [A41]: = 0.5 * Leg41^(2) - Area cut by thickness limit

= 0.5 * 9.525^(2) - 0.046

= 45.317 mm²

Area Contributed by the Reinforcing Pad [A5]: = min( W * te , LR * te )

= min( 50.000 * 10.000 , 70.000 * 10.000 )

= 500.000 mm²

The total area contributed by A1 through A5 [AT]: = A1 + frn( A2 + A3 ) + A41 + A42 + A43 + frp( A5 )

= 490.000+1.000(209.055+0.000)+45.317+50.000+0.000+1.000(500.000)

= 1294.372 mm²

Allowable Local Primary Membrane Stress [Sallow]: = 1.5 * S * E

= 1.5 * 137.900 * 1.000

= 206.9 MPa

Determine Force acting on the Nozzle [fN]: = P * Rn( LH - t )

= 2.000 * 76.165 ( 26.221 - 7.000 )

= 2927.7 N

Determine Force acting on the Shell [fS]: = P * Reff * ( LR + tn )

= 2.000 * 320.500 * ( 70.000 + 7.973 )

= 49976.3 N

Discontinuity Force from Internal Pressure [fY]: = P * Reff * Rnc

= 2.000 * 320.500 * 76.165

= 48817.4 N

Area Resisting Internal Pressure [Ap]: = Rn( LH - t ) + Reff( LR + tn + Rnc )

= 76.165 ( 26.221 - 7.000 ) + 320.500 ( 70.000 + 7.973 + 76.165 )

= 50865.0 mm²

Maximum Allowable Working Pressure Candidate [Pmax1]: = Sallow /( 2 * Ap/AT - Rxs/teff )

= 206.850/( 2 * 50865.031/1294.372 - 320.500/7.000 )

= 6.3 MPa

Maximum Allowable Working Pressure Candidate [Pmax2]: = S[t/Reff]

= 137.900 [7.000/320.500 ]

= 3.0 MPa

Maximum Allowable Working Pressure [Pmax]: = min( Pmax1, Pmax2 )

= min( 6.305 , 3.012 )

= 3.012 MPa

Average Primary Membrane Stress [SigmaAvg]: = ( fN + fS + fY ) / AT

= ( 2927.680 + 49976.312 + 48817.418 )/1294.372

= 78.594 MPa

General Primary Membrane Stress [SigmaCirc]: = P * Reff / teff

= 2.000 * 320.500/7.000

= 91.6 MPa

Page 73: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 72 of 94

Nozzle Calcs. : S2A Nozl: 9 9:50a Jul 11,2013

Maximum Local Primary Membrane Stress [PL]: = max( 2 * SigmaAvg - SigmaCirc, SigmaCirc )

= max( 2 * 78.594 - 91.571 , 91.571 )

= 91.6 MPa

Summary of Nozzle Pressure/Stress Results: Allowed Local Primary Membrane Stress Sallow 206.85 MPa

Local Primary Membrane Stress PL 91.57 MPa

Maximum Allowable Working Pressure Pmax 3.01 MPa

Strength of Nozzle Attachment Welds per 1-10 and U-2(g)

Discontinuity Force Factor [ky]: = ( Rnc + tn ) / Rnc

= ( 76.165 + 7.973 )/76.165

= 1.105 For set-in Nozzles

Weld Length of Nozzle to Shell Weld [Ltau]: = pi/2 * ( Rn + tn )

= pi/2 * ( 76.165 + 7.973 )

= 132.163 mm

Weld Length of Pad to Shell Weld [LtauP]: = pi/2 * ( Rn + tn + W )

= pi/2 * ( 76.165 + 7.973 + 50.000 )

= 210.703 mm

Weld Throat Dimensions, (0.7071*Leg Dimensions) [L41T, L42T, L43T]: = 6.735, 7.071, 0.000, mm

Weld Load Value [fwelds]: = min( fy * ky, 1.5 * Sn( A2 + A3 ), pi/4*P*Rn^2*ky^2 )

= min(48817*1.10,1.5*117.9(209.055+0.000),pi/4*2.0*76.16^2*1.10^2)

= 11118.906 N

Discontinuity Force [fws]: = fwelds * t * S/( t * S + te * Sp )

= 11118.9*7.00*137/(7.000*137+10.000*137)

= 4578.373 N

Discontinuity Force [fwp]: = fwelds * te * Sp / ( t * S + te * Sp )

= 11118.9*10.00*137/(7.000*137+10.000*137)

= 6540.533 N

Shear Stress [tau1]: = fws / ( Ltau * ( 0.6 * tw1 + 0.49 * L43T ) )

= 4578.373/( 132.163 * ( 0.6 * 7.000 + 0.49 * 0.000 ) )

= 8.249 MPa

Shear Stress [tau2]: = fwp / ( Ltau * ( 0.6 * tw2 + 0.49 * L41T ) )

= 6540.533/( 132.163 * ( 0.6 * 10.000 + 0.49 * 6.735 ) )

= 5.322 MPa

Shear Stress [tau3]: = fwp / ( Ltau * ( 0.49 * L42T ) )

= 6540.533/( 210.703 * ( 0.49 * 7.071 ) )

= 8.960 MPa

Maximum Shear Stress in the Welds: = max( tau1, tau2, tau3 )

= max( 8.249 , 5.322 , 8.960 )

= 9.0 must be less than or equal to 137.9 MPa

Weld Size Calculations, Description: S2A

Intermediate Calc. for nozzle/shell Welds Tmin 7.9728 mm

Intermediate Calc. for pad/shell Welds TminPad 7.0000 mm

Results Per UW-16.1: Required Thickness Actual Thickness

Nozzle Weld 5.5810 = 0.7 * tmin. 6.7342 = 0.7 * Wo mm

Pad Weld 3.5000 = 0.5*TminPad 7.0700 = 0.7 * Wp mm

Maximum Allowable Pressure for this Nozzle at this Location: Converged Max. Allow. Pressure in Operating case 2.5270 MPa

Note: The MAWP of this junction was limited by the parent Shell/Head.

Nozzle is O.K. for the External Pressure 0.103 MPa

The Drop for this Nozzle is : 11.3511 mmThe Cut Length for this Nozzle is, Drop + Ho + H + T : 221.3511 mm

PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

Page 74: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 73 of 94

Nozzle Calcs. : S2B Nozl: 10 9:50a Jul 11,2013

INPUT VALUES, Nozzle Description: S2B From : 60

Pressure for Reinforcement Calculations P 2.0000 MPa

Temperature for Internal Pressure Temp 100 C

Design External Pressure Pext 0.10 MPa

Temperature for External Pressure Tempex 100 C

Shell Material SA-516 70

Shell Allowable Stress at Temperature S 137.90 MPa

Shell Allowable Stress At Ambient Sa 137.90 MPa

Inside Diameter of Cylindrical Shell D 635.00 mm

Design Length of Section L 3625.0005 mm

Shell Finished (Minimum) Thickness t 10.0000 mm

Shell Internal Corrosion Allowance c 3.0000 mm

Shell External Corrosion Allowance co 0.0000 mm

Distance from Bottom/Left Tangent 4139.9995 mm

User Entered Minimum Design Metal Temperature 0.00 C

Type of Element Connected to the Shell : Nozzle

Material SA-106 B

Material UNS Number K03006

Material Specification/Type Smls. pipe

Allowable Stress at Temperature Sn 117.90 MPa

Allowable Stress At Ambient Sna 117.90 MPa

Diameter Basis (for tr calc only) ID

Layout Angle 180.00 deg

Diameter 150.0000 mm.

Size and Thickness Basis Nominal

Nominal Thickness tn 80

Flange Material SA-105

Flange Type Weld Neck Flange

Corrosion Allowance can 3.0000 mm

Joint Efficiency of Shell Seam at Nozzle E1 1.00

Joint Efficiency of Nozzle Neck En 1.00

Outside Projection ho 200.0000 mm

Weld leg size between Nozzle and Pad/Shell Wo 9.5250 mm

Groove weld depth between Nozzle and Vessel Wgnv 10.0000 mm

Inside Projection h 0.0000 mm

Weld leg size, Inside Element to Shell Wi 0.0000 mm

Pad Material SA-516 70

Pad Allowable Stress at Temperature Sp 137.90 MPa

Pad Allowable Stress At Ambient Spa 137.90 MPa

Diameter of Pad along vessel surface Dp 268.2750 mm

Thickness of Pad te 10.0000 mm

Weld leg size between Pad and Shell Wp 10.0000 mm

Groove weld depth between Pad and Nozzle Wgpn 10.0000 mm

Reinforcing Pad Width 50.0000 mm

ASME Code Weld Type per UW-16 None

Class of attached Flange 300

Grade of attached Flange GR 1.1

The Pressure Design option was Design Pressure + static head.

Nozzle Sketch (may not represent actual weld type/configuration) | |

| |

| |

| |

__________/| |

____/|__________\| |

| \ | |

| \ | |

|________________\|__|

Insert Nozzle With Pad, no Inside projection

Reinforcement CALCULATION, Description: S2B

ASME Code, Section VIII, Division 1, 2010, 2011a, UG-37 to UG-45

Actual Inside Diameter Used in Calculation 146.329 mm.

Actual Thickness Used in Calculation 10.973 mm

Nozzle input data check completed without errors.

Reqd thk per UG-37(a)of Cylindrical Shell, Tr [Int. Press] = (P*R)/(S*E-0.6*P) per UG-27 (c)(1)

= (2.00*320.5000)/(137*1.00-0.6*2.00)

= 4.6891 mm

Reqd thk per UG-37(a)of Nozzle Wall, Trn [Int. Press] = (P*R)/(S*E-0.6*P) per UG-27 (c)(1)

Page 75: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 74 of 94

Nozzle Calcs. : S2B Nozl: 10 9:50a Jul 11,2013

= (2.00*76.16)/(117*1.00-0.6*2.00)

= 1.3053 mm

Required Nozzle thickness under External Pressure per UG-28 : 0.5796 mm

UG-40, Limits of Reinforcement : [External Pressure] Parallel to Vessel Wall (Diameter Limit) Dl 304.6588 mm

Parallel to Vessel Wall, opening length d 152.3294 mm

Normal to Vessel Wall (Thickness Limit), pad side Tlwp 17.5000 mm

Weld Strength Reduction Factor [fr1]: = min( 1, Sn/S )

= min( 1, 117.9/137.9 )

= 0.855

Weld Strength Reduction Factor [fr2]: = min( 1, Sn/S )

= min( 1, 117.9/137.9 )

= 0.855

Weld Strength Reduction Factor [fr4]: = min( 1, Sp/S )

= min( 1, 137.9/137.9 )

= 1.000

Weld Strength Reduction Factor [fr3]: = min( fr2, fr4 )

= min( 0.9 , 1.0 )

= 0.855

Results of Nozzle Reinforcement Area Calculations: AREA AVAILABLE, A1 to A5 Design External Mapnc

Area Required Ar NA 335.033 NA mm²

Area in Shell A1 NA 400.092 NA mm²

Area in Nozzle Wall A2 NA 221.242 NA mm²

Area in Inward Nozzle A3 NA 0.000 NA mm²

Area in Welds A41+A42+A43 NA 174.064 NA mm²

Area in Element A5 NA 750.000 NA mm²

TOTAL AREA AVAILABLE Atot NA 1545.399 NA mm²

Nozzle Angle Used in Area Calculations 90.00 Degs.

The area available without a pad is Sufficient.The area available with the given pad is Sufficient.

Area Required [A]: = 0.5( d * tr*F + 2 * tn * tr*F * (1-fr1) ) per UG-37(d) or UG-39

= 0.5(152.3294*4.3330*1+2*7.9728*4.3330*1*(1-0.86))

= 335.033 mm²

Reinforcement Areas per Figure UG-37.1

Area Available in Shell [A1]: = d( E1*t - F*tr ) - 2 * tn( E1*t - F*tr ) * ( 1 - fr1 )

= 152.329 ( 1.00 * 7.0000 - 1.0 * 4.333 ) - 2 * 7.973

( 1.00 * 7.0000 - 1.0 * 4.3330 ) * ( 1 - 0.855 )

= 400.092 mm²

Area Available in Nozzle Wall Projecting Outward [A2]: = ( 2 * Tlwp ) * ( tn - trn ) * fr2

= ( 2 * 17.50 ) * ( 7.97 - 0.58 ) * 0.8550

= 221.242 mm²

Area Available in Welds [A41 + A42 + A43]: = (Wo² - Ar Lost)*Fr3+((Wi-can/0.707)² - Ar Lost)*fr2 + Wp²*fr4

= (86.6250 ) * 0.86 + (0.0000 ) * 0.86 + 100.0000² * 1.00

= 174.064 mm²

Area Available in Element [A5]: = (min(Dp,DL)-(Nozzle OD))*(min(tp,Tlwp,te))*fr4

= ( 268.2750 - 168.2750 ) * 10.0000 * 1.0000

= 750.000 mm²

Note: Per user request, A5 multiplied by 0.75, see UG-37(h).

UG-45 Minimum Nozzle Neck Thickness Requirement: [Int. Press.] Wall Thickness for Internal/External pressures ta = 4.3053 mm

Wall Thickness per UG16(b), tr16b = 4.5000 mm

Wall Thickness, shell/head, internal pressure trb1 = 7.6891 mm

Wall Thickness tb1 = max(trb1, tr16b) = 7.6891 mm

Wall Thickness tb2 = max(trb2, tr16b) = 4.5000 mm

Wall Thickness per table UG-45 tb3 = 9.2200 mm

Determine Nozzle Thickness candidate [tb]: = min[ tb3, max( tb1,tb2) ]

= min[ 9.220 , max( 7.689 , 4.500 ) ]

= 7.6891 mm

Minimum Wall Thickness of Nozzle Necks [tUG-45]: = max( ta, tb )

= max( 4.3053 , 7.6891 )

= 7.6891 mm

Available Nozzle Neck Thickness = 0.875 * 10.973 = 9.601 mm --> OK

Page 76: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 75 of 94

Nozzle Calcs. : S2B Nozl: 10 9:50a Jul 11,2013

Nozzle Junction Minimum Design Metal Temperature (MDMT) Calculations:

MDMT of the Nozzle Neck to Flange Weld, ���Curve: B ----------------------------------------------------------------------

Govrn. thk, tg = 9.601 , tr = 1.305 , c = 3.0000 mm , E* = 1.00Stress Ratio = tr * (E*)/(tg - c) = 0.198 , Temp. Reduction = 78 C

Min Metal Temp. w/o impact per UCS-66 -29 C

Min Metal Temp. at Required thickness (UCS 66.1) -104 C

MDMT of Nozzle Neck to Pad Weld for the Nozzle, ��Curve: B ----------------------------------------------------------------------

Govrn. thk, tg = 9.601 , tr = 1.305 , c = 3.0000 mm , E* = 1.00Stress Ratio = tr * (E*)/(tg - c) = 0.198 , Temp. Reduction = 78 C

Min Metal Temp. w/o impact per UCS-66 -29 C

Min Metal Temp. at Required thickness (UCS 66.1) -104 C

MDMT of Nozzle Neck to Pad Weld for Reinforcement pad, ��Curve: B ----------------------------------------------------------------------

Govrn. thk, tg = 9.601 , tr = 1.305 , c = 3.0000 mm , E* = 1.00Stress Ratio = tr * (E*)/(tg - c) = 0.198 , Temp. Reduction = 78 C

Min Metal Temp. w/o impact per UCS-66 -29 C

Min Metal Temp. at Required thickness (UCS 66.1) -104 C

MDMT of Shell to Pad Weld at Pad OD for pad, ��Curve: B ----------------------------------------------------------------------

Govrn. thk, tg = 10.000 , tr = 4.689 , c = 3.0000 mm , E* = 1.00Stress Ratio = tr * (E*)/(tg - c) = 0.670 , Temp. Reduction = 18 C

Min Metal Temp. w/o impact per UCS-66 -29 C

Min Metal Temp. at Required thickness (UCS 66.1) -47 C

MDMT of Nozzle-Shell/Head Weld for the Nozzle (UCS-66(a)1(b)), ��Curve: B ----------------------------------------------------------------------

Govrn. thk, tg = 9.601 , tr = 1.305 , c = 3.0000 mm , E* = 1.00Stress Ratio = tr * (E*)/(tg - c) = 0.198 , Temp. Reduction = 78 C

Min Metal Temp. w/o impact per UCS-66 -29 C

Min Metal Temp. at Required thickness (UCS 66.1) -104 C

Governing MDMT of the Nozzle : -104 C

Governing MDMT of the Reinforcement Pad : -47 C

Governing MDMT of all the sub-joints of this Junction : -47 C

ANSI Flange MDMT including Temperature reduction per UCS-66.1:

Unadjusted MDMT of ANSI B16.5/47 flanges per UCS-66(c) -29 C

Flange MDMT with Temp reduction per UCS-66(b)(1)(b) -48 C

Flange MDMT with Temp reduction per UCS-66(b)(1)(c) -104 C

Where the Stress Reduction Ratio per UCS-66(b)(1)(b) is : Design Pressure/Ambient Rating = 2.00/5.11 = 0.391

Note: Using the minimum value from (b)(1)(b) and (b)(1)(c) aboveas the calculated nozzle flange MDMT.

Nozzle Calculations per App. 1-10: Internal Pressure Case:

Thickness of Nozzle [tn]: = thickness - corrosion allowance

= 10.973 - 3.000

= 7.973 mm

Effective Pressure Radius [Reff]: = Di/2 + corrosion allowance

= 635.000/2 + 3.000

= 320.500 mm

Effective Length of Vessel Wall [LR]:Note : Pad Thk >= 0.5T and Pad Width < 8(Shell Thk + Pad Thk)

= 10 * t

= 10 * 7.000

= 70.000 mm

Thickness Limit Candidate [LH1]: = t + 0.78 * sqrt( Rn * tn )

= 7.000 + 0.78 * sqrt( 76.165 * 7.973 )

= 26.221 mm

Thickness Limit Candidate [LH2]: = Lpr1 + T

= 200.000 + 7.000

= 207.000 mm

Thickness Limit Candidate [LH3]: = 8( t + te )

= 8( 7.000 + 10.000 )

= 136.000 mm

Effective Nozzle Wall Length Outside the Vessel [LH]:

Page 77: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 76 of 94

Nozzle Calcs. : S2B Nozl: 10 9:50a Jul 11,2013

= min[ LH1, LH2, LH3 ]

= min[ 26.221 , 207.000 , 136.000 )

= 26.221 mm

Effective Vessel Thickness [teff]: = t

= 7.000 mm

Determine Parameter [Lamda]: = min( 10, ( Dn + Tn )/( sqrt( ( Di + teff ) * teff )) )

= min( 10, (152.33 + 7.973 )/( sqrt((641.00 + 7.000 ) * 7.000 )) )

= 2.380

Compute Areas A1-A43 (No Pad) or A1-A5 (With Pad) :

Area Contributed by the Vessel Wall [A1]: = t * LR * max( Lamda/4, 1 )

= 7.000 * 70.000 * max( 2.380/4, 1 )

= 490.000 mm²

Area Contributed by the Nozzle Outside the Vessel Wall [A2]: = tn * LH

= 7.973 * 26.221

= 209.055 mm²

Area Contributed by the Pad Fillet Weld [A42]: = 0.5 * Leg42^(2)

= 0.5 * 10.000^(2)

= 50.000 mm²

Area Contributed by the Outside Fillet Weld [A41]: = 0.5 * Leg41^(2) - Area cut by thickness limit

= 0.5 * 9.525^(2) - 0.046

= 45.317 mm²

Area Contributed by the Reinforcing Pad [A5]: = min( W * te , LR * te )

= min( 50.000 * 10.000 , 70.000 * 10.000 )

= 500.000 mm²

The total area contributed by A1 through A5 [AT]: = A1 + frn( A2 + A3 ) + A41 + A42 + A43 + frp( A5 )

= 490.000+1.000(209.055+0.000)+45.317+50.000+0.000+1.000(500.000)

= 1294.372 mm²

Allowable Local Primary Membrane Stress [Sallow]: = 1.5 * S * E

= 1.5 * 137.900 * 1.000

= 206.9 MPa

Determine Force acting on the Nozzle [fN]: = P * Rn( LH - t )

= 2.000 * 76.165 ( 26.221 - 7.000 )

= 2927.7 N

Determine Force acting on the Shell [fS]: = P * Reff * ( LR + tn )

= 2.000 * 320.500 * ( 70.000 + 7.973 )

= 49976.3 N

Discontinuity Force from Internal Pressure [fY]: = P * Reff * Rnc

= 2.000 * 320.500 * 76.165

= 48817.4 N

Area Resisting Internal Pressure [Ap]: = Rn( LH - t ) + Reff( LR + tn + Rnc )

= 76.165 ( 26.221 - 7.000 ) + 320.500 ( 70.000 + 7.973 + 76.165 )

= 50865.0 mm²

Maximum Allowable Working Pressure Candidate [Pmax1]: = Sallow /( 2 * Ap/AT - Rxs/teff )

= 206.850/( 2 * 50865.031/1294.372 - 320.500/7.000 )

= 6.3 MPa

Maximum Allowable Working Pressure Candidate [Pmax2]: = S[t/Reff]

= 137.900 [7.000/320.500 ]

= 3.0 MPa

Maximum Allowable Working Pressure [Pmax]: = min( Pmax1, Pmax2 )

= min( 6.305 , 3.012 )

= 3.012 MPa

Average Primary Membrane Stress [SigmaAvg]: = ( fN + fS + fY ) / AT

= ( 2927.680 + 49976.312 + 48817.418 )/1294.372

= 78.594 MPa

General Primary Membrane Stress [SigmaCirc]: = P * Reff / teff

= 2.000 * 320.500/7.000

= 91.6 MPa

Page 78: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 77 of 94

Nozzle Calcs. : S2B Nozl: 10 9:50a Jul 11,2013

Maximum Local Primary Membrane Stress [PL]: = max( 2 * SigmaAvg - SigmaCirc, SigmaCirc )

= max( 2 * 78.594 - 91.571 , 91.571 )

= 91.6 MPa

Summary of Nozzle Pressure/Stress Results: Allowed Local Primary Membrane Stress Sallow 206.85 MPa

Local Primary Membrane Stress PL 91.57 MPa

Maximum Allowable Working Pressure Pmax 3.01 MPa

Strength of Nozzle Attachment Welds per 1-10 and U-2(g)

Discontinuity Force Factor [ky]: = ( Rnc + tn ) / Rnc

= ( 76.165 + 7.973 )/76.165

= 1.105 For set-in Nozzles

Weld Length of Nozzle to Shell Weld [Ltau]: = pi/2 * ( Rn + tn )

= pi/2 * ( 76.165 + 7.973 )

= 132.163 mm

Weld Length of Pad to Shell Weld [LtauP]: = pi/2 * ( Rn + tn + W )

= pi/2 * ( 76.165 + 7.973 + 50.000 )

= 210.703 mm

Weld Throat Dimensions, (0.7071*Leg Dimensions) [L41T, L42T, L43T]: = 6.735, 7.071, 0.000, mm

Weld Load Value [fwelds]: = min( fy * ky, 1.5 * Sn( A2 + A3 ), pi/4*P*Rn^2*ky^2 )

= min(48817*1.10,1.5*117.9(209.055+0.000),pi/4*2.0*76.16^2*1.10^2)

= 11118.906 N

Discontinuity Force [fws]: = fwelds * t * S/( t * S + te * Sp )

= 11118.9*7.00*137/(7.000*137+10.000*137)

= 4578.373 N

Discontinuity Force [fwp]: = fwelds * te * Sp / ( t * S + te * Sp )

= 11118.9*10.00*137/(7.000*137+10.000*137)

= 6540.533 N

Shear Stress [tau1]: = fws / ( Ltau * ( 0.6 * tw1 + 0.49 * L43T ) )

= 4578.373/( 132.163 * ( 0.6 * 7.000 + 0.49 * 0.000 ) )

= 8.249 MPa

Shear Stress [tau2]: = fwp / ( Ltau * ( 0.6 * tw2 + 0.49 * L41T ) )

= 6540.533/( 132.163 * ( 0.6 * 10.000 + 0.49 * 6.735 ) )

= 5.322 MPa

Shear Stress [tau3]: = fwp / ( Ltau * ( 0.49 * L42T ) )

= 6540.533/( 210.703 * ( 0.49 * 7.071 ) )

= 8.960 MPa

Maximum Shear Stress in the Welds: = max( tau1, tau2, tau3 )

= max( 8.249 , 5.322 , 8.960 )

= 9.0 must be less than or equal to 137.9 MPa

Weld Size Calculations, Description: S2B

Intermediate Calc. for nozzle/shell Welds Tmin 7.9728 mm

Intermediate Calc. for pad/shell Welds TminPad 7.0000 mm

Results Per UW-16.1: Required Thickness Actual Thickness

Nozzle Weld 5.5810 = 0.7 * tmin. 6.7342 = 0.7 * Wo mm

Pad Weld 3.5000 = 0.5*TminPad 7.0700 = 0.7 * Wp mm

Maximum Allowable Pressure for this Nozzle at this Location: Converged Max. Allow. Pressure in Operating case 2.5270 MPa

Note: The MAWP of this junction was limited by the parent Shell/Head.

Nozzle is O.K. for the External Pressure 0.103 MPa

The Drop for this Nozzle is : 11.3511 mmThe Cut Length for this Nozzle is, Drop + Ho + H + T : 221.3511 mm

PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

Page 79: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 78 of 94

Nozzle Schedule : Step: 23 9:50a Jul 11,2013

Nozzle Schedule:

Nominal Flange Noz. Wall Re-Pad Cut

Description Size Sch/Type O/Dia Thk ODia Thick Length

mm Cls mm mm mm mm mm

------------------------------------------------------------------------------

S2A 150 80 WNF 168.275 10.973 268.27 10.00 221

S2B 150 80 WNF 168.275 10.973 268.27 10.00 221

S1 200 80 WNF 219.075 12.700 319.00 10.00 229

T1 300 40 WNF 323.850 10.312 523.85 10.00 254

T2 300 40 WNF 323.850 10.312 523.85 10.00 254

General Notes for the above table:

The Cut Length is the Outside Projection + Inside Projection + Drop +In Plane Shell Thickness. This value does not include weld gaps,nor does it account for shrinkage.

In the case of Oblique Nozzles, the Outside Diameter mustbe increased. The Re-Pad WIDTH around the nozzle is calculated as follows:Width of Pad = (Pad Outside Dia. (per above) - Nozzle Outside Dia.)/2

For hub nozzles, the thickness and diameter shown are those of the smallerand thinner section.

Nozzle Material and Weld Fillet Leg Size Details: Shl Grve Noz Shl/Pad Pad OD Pad Grve Inside

Nozzle Material Weld Weld Weld Weld Weld

mm mm mm mm mm

------------------------------------------------------------------------------

S2A SA-106 B 10.000 9.525 10.000 10.000 -

S2B SA-106 B 10.000 9.525 10.000 10.000 -

S1 SA-106 B 10.000 9.525 10.000 10.000 -

T1 SA-106 B 6.000 9.525 10.000 10.000 -

T2 SA-106 B 6.000 9.525 10.000 10.000 -

Note: The Outside projections below do not include the flange thickness.

Nozzle Miscellaneous Data:

Elevation/Distance Layout Projection Installed In

Nozzle From Datum Angle Outside Inside Component

mm deg. mm mm

----------------------------------------------------------------------------

S2A 1140.000 180.00 200.00 0.00 SHELL

S2B 4140.000 180.00 200.00 0.00 SHELL

S1 2652.000 270.00 200.00 0.00 SHELL

T1 368.000 -45.00 200.00 0.00 FC SHELL

T2 368.000 225.00 200.00 0.00 FC SHELL

PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

Page 80: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 79 of 94

Nozzle Summary : Step: 24 9:50a Jul 11,2013

Nozzle Calculation Summary:

Description MAWP Ext MAPNC UG45 [tr] Weld Areas or

MPa MPa Path Stresses

---------------------------------------------------------------------------

T1 2.5270 OK 0.00 OK 4.50 OK Passed

T2 2.5270 OK 0.00 OK 4.50 OK Passed

S1 2.5270 OK 0.00 OK 7.69 OK Passed

S2A 2.5270 OK 0.00 OK 7.69 OK Passed

S2B 2.5270 OK 0.00 OK 7.69 OK Passed

---------------------------------------------------------------------------

Min. - Nozzles 2.5270 S2B 0.000 S2B

Note: MAWPs (Internal Case) shown above are at the High Point.

Check the Spatial Relationship between the Nozzles

From Node Nozzle Description X Coordinate, Layout Angle, Dia. Limit

30 T1 415.000 -45.000 500.000

30 T2 415.000 225.000 500.000

60 S1 2652.000 270.000 399.350

60 S2A 1140.000 180.000 308.275

60 S2B 4140.000 180.000 308.275

The nozzle spacing is computed by the following:= Sqrt( ll² + lc² ) wherell - Arc length along the inside vessel surface in the long. direction.lc - Arc length along the inside vessel surface in the circ. direction

If any interferences/violations are found, they will be noted below.No interference violations have been detected !

PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

Page 81: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 80 of 94

MDMT Summary : Step: 25 9:50a Jul 11,2013

Minimum Design Metal Temperature Results Summary :

Curve Basic Reduced UG-20(f) Thickness Gov E*

Description MDMT MDMT MDMT ratio Thk

Notes C C C mm

----------------------------------------------------------------------------

FC COVER [11] B -27 -27 -29 1.000 10.750 1.000

SH#FC FLANGE [11] B -29 -29 -29 1.000 10.000 1.000

SH#RC FLANGE [11] B -29 -32 -29 0.937 10.000 1.000

FC SHELL [8] B -29 -104 -29 0.280 10.000 0.850

SHELL [8] B -29 -45 -29 0.705 10.000 0.850

RC SHELL [8] B -29 -40 -29 0.803 10.000 0.850

RC HEAD [10] B -29 -41 -29 0.787 10.000 0.850

RC HEAD [7] B -23 -44 -29 0.625 12.000 0.850

T1 [1] B -29 -104 0.109 9.023 1.000

Nozzle Flg [4] -29 -104 0.109

T2 [1] B -29 -104 0.109 9.023 1.000

Nozzle Flg [4] -29 -104 0.109

S1 [1] B -29 -47 -29 0.670 10.000 1.000

Nozzle Flg [4] -29 -104 0.211

S2A [1] B -29 -47 -29 0.670 10.000 1.000

Nozzle Flg [4] -29 -104 0.198

S2B [1] B -29 -47 -29 0.670 10.000 1.000

Nozzle Flg [4] -29 -104 0.198

----------------------------------------------------------------------------

Required Minimum Design Metal Temperature �� 0 CWarmest Computed Minimum Design Metal Temperature� -29 C

Notes:[ ! ] - This was an impact tested material.[ 1] - Governing Nozzle Weld.[ 4] - ANSI Flange MDMT Calcs; Thickness ratio per UCS-66(b)(1)(c).[ 5] - ANSI Flange MDMT Calcs; Thickness ratio per UCS-66(b)(1)(b).[ 6] - MDMT Calculations at the Shell/Head Joint.[ 7] - MDMT Calculations for the Straight Flange.[ 8] - Cylinder/Cone/Flange Junction MDMT.[ 9] - Calculations in the Spherical Portion of the Head.[10] - Calculations in the Knuckle Portion of the Head.[11] - Calculated (Body Flange) Flange MDMT.[12] - Calculated Flat Head MDMT per UCS-66(3)

UG-84(b)(2) was not considered.UCS-66(g) was not considered.UCS-66(i) was not considered.

Notes:Impact test temps were not entered in and not considered in the analysis.UCS-66(i) applies to impact tested materials not by specification andUCS-66(g) applies to materials impact tested per UG-84.1 General Note (c).The Basic MDMT includes the (30F) PWHT credit if applicable.

PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

Page 82: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 81 of 94

ASME TS Calc : NORMAL OPERATIO Case: 1 9:50a Jul 11,2013

Input Echo, Tubesheet Number 1, Description: STATIONARY TUBE

Shell Data:Main Shell Description: SHELL

Shell Design Pressure Ps 2.00 MPa

Shell Thickness ts 10.0000 mm

Shell Corrosion Allowance cas 3.0000 mm

Inside Diameter of Shell Ds 635.000 mm

Shell Temperature for Internal Pressure Ts 100.00 C

Shell Material SA-516 70

Note: Using 2 * Yield for Discontinuity Stress Allowable (UG-23(e)), Sps.Make sure that material properties at this temperature are nottime-dependent for Material: SA-516 70

Shell Material UNS Number K02700

Shell Allowable Stress at Temperature Ss 137.90 MPa

Shell Allowable Stress at Ambient 137.90 MPa

Channel Description: FC SHELL Channel Type: Cylinder

Channel Design Pressure Pt 0.50 MPa

Channel Thickness tc 10.0000 mm

Channel Corrosion Allowance cac 3.0000 mm

Inside Diameter of Channel Dc 635.000 mm

Channel Design Temperature TEMPC 15.00 C

Channel Material SA-516 70

Note: Using 2 * Yield for Discontinuity Stress Allowable (UG-23(e)), Sps.Make sure that material properties at this temperature are nottime-dependent for Material: SA-516 70

Channel Material UNS Number K02700

Channel Allowable Stress at Temperature Sc 137.90 MPa

Channel Allowable Stress at Ambient 137.90 MPa

Tube Data: Number of Tube Holes Nt 468

Tube Wall Thickness et 2.1100 mm

Tube Outside Diameter D 19.0500 mm

Straight Tube Length (bet. inner tubsht faces) L 3952.00 mm

Design Temperature of the Tubes 100.00 C

Tube Material SA-179

Tube Material UNS Number K01200

Is this a Welded Tube No

Tube Material Specification used Smls. tube

Tube Allowable Stress at Temperature 92.39 MPa

Tube Allowable Stress At Ambient 92.39 MPa

Tube Yield Stress At design Temperature Syt 163.44 MPa

Tube Pitch (Center to Center Spacing) P 23.8120 mm

Tube Layout Pattern Triangular

Fillet Weld Leg af 2.0000 mm

Groove Weld Leg ag 0.0000 mm

Tube-Tubesheet Joint Weld Type Partial Strength

Method for Tube-Tubesheet Jt. Allow. UW-20

Tube-Tubesheet Joint Classification i

Radius to Outermost Tube Hole Center ro 310.000 mm

Largest Center-to-Center Tube Distance Ul 38.0000 mm

Length of Expanded Portion of Tube ltx 40.0000 mm

Tube-side pass partition groove depth hg 5.0000 mm

Tubesheet Data:

Tubesheet TYPE: Stationary, Gasketed both Sides, Conf. d Exchanger TYPE: With an Immersed Floating Head, Conf. a

Tubesheet Design Metal Temperature T 100.00 C

Tubesheet Material Specification SA-266 4

Note: Using 2 * Yield for Discontinuity Stress Allowable (UG-23(e)), Sps.Make sure that material properties at this temperature are nottime-dependent for Material: SA-266 4

Tubesheet Material UNS Number K03017

Tubesheet Allowable Stress at Temperature S 137.90 MPa

Tubesheet Allowable Stress at Ambient Tt 137.90 MPa

Thickness of Tubesheet h 54.0000 mm

Tubesheet Corr. Allowance (Shell side) Cats 3.0000 mm

Tubesheet Corr. Allowance (Channel side) Catc 3.0000 mm

Tubesheet Outside Diameter A 695.000 mm

Dimension G for the Channel Side Gc 680.092 mm

Area of the Untubed Lanes AL 47182.0 mm²

Additional Data for Fixed/Floating Tubesheet Exchangers: Unsupported Tube Span under consideration l 380.000 mm

Tube End condition corresponding to Span (l) k 0.80

Ignore Radial Thermal Exp. effects (UHX-13.8/14.6) YES

Note: The Metal temperatures at the Rim are set to ambient (21 C)

Tubesheet Metal Temp. at Rim T' 21.11 C

Page 83: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 82 of 94

ASME TS Calc : NORMAL OPERATIO Case: 1 9:50a Jul 11,2013

Shell Metal Temp. at Tubesheet T'S 21.11 C

Channel Metal Temp. at Tubesheet T'C 21.11 C

Perform Differential Pressure Design N

Run Multiple Load Cases YES

Junction Stress Reduction option None

Additional Data for Gasketed Tubesheets: Tubesheet Gasket on which Side Both

Flange Outside Diameter A 776.000 mm

Flange Inside Diameter B 635.000 mm

Flange Face Outside Diameter Fod 698.000 mm

Flange Face Inside Diameter Fid 635.000 mm

Gasket Outside Diameter Go 695.000 mm

Gasket Inside Diameter Gi 651.000 mm

Small end Hub thk. g0 10.0000 mm

Large end Hub thk. g1 13.0000 mm

Gasket Factor, m 2.00

Gasket Design Seating Stress y 11.03 MPa

Flange Facing Sketch Code Sketch 1a

Column for Gasket Seating Code Column II

Gasket Thickness tg 3.0000 mm

Full face Gasket Flange Option Program Selects

Bolting Information: Diameter of Bolt Circle C 728.000 mm

Nominal Bolt Diameter dB 20.0000 mm

Type of Thread Series TEMA Metric Thread

Number of Bolts n 28

Bolt Material SA-193 B7

Bolt Material UNS Number G41400

Bolt Allowable Stress At Temperature Sb 172.38 MPa

Bolt Allowable Stress At Ambient Sa 172.38 MPa

Weld between Flange and Shell/Channel 0.0000 mm

Alternate Flange Operating Bolt Load, Wm1 865076.94 N

Alternate Flange Seating Bolt Load, Wm2 196454.78 N

Alternate Flange Design Bolt Load, W 956292.25 N

Tubesheet Integral with None

Tubesheet Extended as Flange No

Is Exchanger in Creep range (skip EP, Use 3S for Sps) NO

ASME TubeSheet Results per Part UHX, 2010, 2011a

Elasticity/Expansion Material Properties:

Shell - TE-1 Carbon & Low Alloy Steels, Group 1Shell - TM-1 Carbon Steels with C<= 0.3%

-----------------------------------------------------------------

Th. Exp. Coeff. Metal Temp. along Len 100.0 C 0.0000121022 /C

Elastic Mod. at Design Temperature 100.0 C 0.19816E+06 MPa

Th. Exp. Coeff. Metal Temp. at Tubsht 21.1 C 0.0000115190 /C

Elastic Mod. at Metal Temp. along Len 100.0 C 0.19816E+06 MPa

Elastic Mod. at Ambient Temperature 21.1 C 0.20271E+06 MPa

Channel - TE-1 Carbon & Low Alloy Steels, Group 1Channel - TM-1 Carbon Steels with C<= 0.3%

-----------------------------------------------------------------

Th. Exp. Coeff. Metal Temp. at Tubsht 21.1 C 0.0000115190 /C

Elastic Mod. at Design Temperature 15.0 C 0.20311E+06 MPa

Elastic Mod. at Ambient Temperature 21.1 C 0.20271E+06 MPa

Tubes - TE-1 Carbon & Low Alloy Steels, Group 1Tubes - TM-1 Carbon Steels with C<= 0.3%

-----------------------------------------------------------------

Th. Exp. Coeff. Metal Temp. along Len 15.0 C 0.0000114311 /C

Elastic Mod. at Design Temperature 100.0 C 0.19816E+06 MPa

Elastic Mod. at Metal Temp. along Len 15.0 C 0.20311E+06 MPa

Elastic Mod. at Tubsht. Design Temp. 100.0 C 0.19816E+06 MPa

Elastic Mod. at Ambient Temperature 21.1 C 0.20271E+06 MPa

TubeSheet - TE-1 Carbon & Low Alloy Steels, Group 1TubeSheet - TM-1 Carbon Steels with C<= 0.3%

-----------------------------------------------------------------

Th. Exp. Coeff. Metal Temp. at Rim 21.1 C 0.0000115190 /C

Elastic Mod. at Design Temperature 100.0 C 0.19816E+06 MPa

Elastic Mod. at Metal Temp. at Rim 21.1 C 0.20271E+06 MPa

Elastic Mod. at Ambient Temperature 21.1 C 0.20271E+06 MPa

Note:The Elasticity and Alpha values are taken from Tables in ASME II D.Please insure these properties are consistent with thetype of Material for the tubes, shell, channel etc.

Tube Required Thickness under Internal Pressure (Tubeside pressure) :

Thickness Due to Internal Pressure: = (P*(D/2-CAE)) / (S*E+0.4*P) per Appendix 1-1 (a)(1)

= (0.50*(19.0500/2-0.000)/(92.39*1.00+0.4*0.50)

= 0.0514 + 0.0000 = 0.0514 mm

Page 84: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 83 of 94

ASME TS Calc : NORMAL OPERATIO Case: 1 9:50a Jul 11,2013

Tube Required Thickness under External Pressure (Shellside pressure) :

External Pressure Chart CS-1 at 100.00 C

Elastic Modulus for Material 199955.00 MPa

Results for Max. Allowable External Pressure (Emawp): TCA ODCA SLEN D/T L/D Factor A B

2.1100 19.05 3952.00 9.03 50.0000 0.0134948 95.84

EMAWP = (2.167/(D/T)-0.0833)*B = 15.0201 MPa

Results for Required Thickness: No Conversion TCA ODCA SLEN D/T L/D Factor A B

0.4508 19.05 3952.00 42.26 50.0000 0.0006159 61.57

EMAWP = (4*B)/(3*(D/T)) = ( 4 *61.5720 )/( 3 *42.2626 ) = 1.9425 MPa

Summary of Tube Required Thickness Results: Total Required Thickness including Corrosion all. 0.4508 mm

Allowable Internal Pressure at Corroded thickness 22.46 MPa

Required Internal Design Pressure 0.50 MPa

Allowable External Pressure at Corroded thickness 15.02 MPa

Required External Design Pressure 2.00 MPa

Required Thickness due to Shell Side pressure 0.4508 mm

-----------------------------------------------------------------

Detailed Results for load Case 3 un-corr. (Ps + Pt - Th) -----------------------------------------------------------------

Intermediate Calculations For Gasketed Tubesheets:

ASME Code, Section VIII, Div. 1, 2010, 2011a

Gasket Contact Width, N = (Goc-Gic) / 2 22.000 mm

Basic Gasket Width, b0 = N / 2.0 11.000 mm

Effective Gasket Width, b = SQRT(b0) * 2.5 8.355 mm

Gasket Reaction Diameter, G = Go-2.0*b 678.291 mm

Flange Design Bolt Load, Seating Condition W : 956292.25 N

Flange Design Bolt Load, Operating Condition Wm1: 865039.12 N

Results for ASME Stationary Tubesheet Calculations for Configuration d,

Results for Tubesheet Calculations Original Thickness :

UHX-14.5.1 Step 1:

Compute the Tube Expansion Depth Ratio [rho]: = ltx / h ( modified for corrosion if present )

= 40.0000 / 54.0000 = 0.7407 ( must be 0 <= rho <= 1 )

Compute the Effective Tube Hole Diameter [d*]: = Max( dt - 2tt*( Et/E )( St/S )( rho ), dt - 2tt)

= Max( 19.0500 -2*2.1100 *(198162 /198162 )*

( 92 /137 )*(0.741 ), 19.0500 -2*2.1100 )

= 16.9556 mm

Compute the Equivalent Outer Tube Limit Circle Diameter [Do]: = 2 * ro + dt = 2 * 310.000 + 19.050 = 639.050 mm

Determine the Basic Ligament Efficiency for Shear [mu]: = (p - dt)/p = (23.8120 - 19.0500 )/23.8120 = 0.2000

Compute the Equivalent Outer Tube Limit Radius [ao]: = Do / 2 = 639.0500 / 2 = 319.5250 mm

Compute the Effective Tube Pitch [p*]: = p / sqrt( 1 - 4 * min( AL * CNV_factor, 4*Do*p)/(Pi * Do²) )

= 23.8120 / sqrt( 1 - 4 * min( 47182.00 *1.000 , 4*639.050 *23.812 )

/ ( 3.141 * 639.050²) )

= 25.7838 mm

Compute the Effective Ligament Efficiency for Bending [mu*]: = (p* - d*) / p* = (25.7838 - 16.9556 ) / 25.7838 = 0.3424

Compute the Ratio [Rhos]: = as / ao = 339.1454 / 319.5250 = 1.061405

Compute the Ratio [Rhoc]: = ac / ao = 340.0460 / 319.5250 = 1.064223

Compute Parameter [xt]: = 1 - Nt * (( dt - 2 * tt )/( 2 * ao ))^(2)

= 1 - 468 * ((19.0500 - 2 * 2.1100 )/(2 * 319.5250 ))^(2) = 0.7480

Determine Parameter [xs]: = 1 - Nt*( dt/(2*ao) )^(2)

= 1 - 468 *( 19.0500 /(2*319.5250 ) )^(2) = 0.5841

Determine the Value [h'g]: = Max(( hg - CATC ), 0 ) (For pressure only cases)

= Max(( 5.000 - 0.000 ), 0 ) = 5.000 mm

UHX-14.5.2 Step 2:

Page 85: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 84 of 94

ASME TS Calc : NORMAL OPERATIO Case: 1 9:50a Jul 11,2013

Intermediate parameters for Tubesheet Gasketed on the Shell Side:betaS, ks, Lambdas, deltaS = 0

Intermediate parameters for Tubesheet Gasketed on the Channel Side:betac, kc, deltaC, Lambdac = 0

UHX-14.5.3 Step 3:

E*/E and nu* for Triangular pattern from Fig. UHX-11.3. h/p = 2.267764 ; mu* = 0.342393

E*/E = 0.337089 ; nu* = 0.329849 ; E* = 66799. MPa

Note: As h/p (2.268) is > 2, data values for h/p = 2 were used.

Compute the Tube Bundle Stiffness Factor [Xa]: = ((24 *(1 - nu*^(2))*Nt * Et* tt* (dt - tt)* ao²) /

( E* * L * H^(3) ) )^(0.25)

= ((24 *(1 - 0.330 ^(2))*468 *198162 *2.1100 *

(19.0500 - 2.1100 )*319.5250 ^(2))/( 66798 *

3952.00 * 54.000 ^(3) ))^(0.25)

= 3.6327

Values from Table UHX-13.1 Zd = 0.032043 ; Zv = 0.077130 ; Zm = 0.414666

Za = 0.436054E+01 ; Zw = 0.077130

UHX-14.5.4 Step 4:

Compute the Diameter Ratio [K]: = A / Do = 695.0000 / 639.0500 = 1.0876

Compute Coefficient [F]: = (1 - nu*) / (E*) * ( Lambdas + Lambdac + E * ln(K) )

= (1 - 0.33 ) / (66798 ) * ( 0.00 + 0.00 +

198162 * ln(1.09 ) )

= 0.1669

Compute Parameter [Phi]: = (1 + nu*) * F = (1 + 0.3298 ) * 0.1669 = 0.2219

Compute Parameter [Q1]: = (Rhos - 1 - Phi * Zv)/(1 + Phi * Zm)

= (1.0614 - 1 - 0.2219 *0.0771 )/(1 + 0.2219 *0.4147 )

= 0.040558711

UHX-14.5.5 Step 5:

Determine factor [gamab]: = ( Gc - Gs ) / Do (config d)

= (680.0920 - 678.2908 )/639.0500 = 0.00282

Calculate Parameter [OmegaS]: = rhos * ks * Betas * deltaS( 1 + h * Betas )

= 1.0614 * 0.00 * 0.0000 * 0.000000 ( 1 + 54.0000 * 0.0000 )

= 0.0000 mm ²

Calculate Parameter [Omega*S]: = Ao² * ( Rhos² - 1 ) * ( Rhos - 1 ) / 4 - OmegaS

= 319.525² * ( 1.061² - 1 ) * ( 1.061 - 1 ) / 4 - 0.000

= 198.3907 mm ²

Calculate Parameter [OmegaC]: = rhoc * kc * Betac * deltaC( 1 + h * Betac )

= 1.0642 * 0.00 * 0.0000 * 0.000000 ( 1 + 54.0000 * 0.0000 )

= 0.0000 mm ²

Calculate Parameter [Omega*C]: = ao²[( Rhoc²+1 )*( Rhoc-1 )/4 -(Rhos-1)/2]- OmegaC

= 319.52499²[( 1.06422²+1 )*( 1.06422 -1 )/4 -(1.06141 -1)/2]- 0.00000

= 361.1879 mm ²

Compute the Pressure [P*S]:= 0 For Pressure only cases or Configurations d,e,f,A,B,C,D

Compute the Pressure [P*C]:= 0 For Pressure only cases or Configurations b,c,d,B,C,D

UHX-14.5.6 Step 6:

Pe = Ps - Pt

= 2.000 - 0.500 = 1.500 MPa

UHX-14.5.7 Step 7:

Determine Factor [Q2]: = [((Omega*S*Ps - Omega*C*Pt) - (Omegas*P*s - Omegac P*c))CNV_FAC +

W* * gamab/(2*pi)]/(1 + Phi*Zm)

= [( ( 198.391 * 2.000 - 361.188 * 0.500 ) -

( 0.000 * 0.000 - 0.000 * 0.000 )) * 1.000 +

865039 * 0.003 /(2*3.141)]/(1 + 0.22189 * 0.41467 )

= 553.285156250 N

Calculate Factor [Q3]: = Q1 + 2 * Q2 / ( Pe * ao^(2)

Page 86: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 85 of 94

ASME TS Calc : NORMAL OPERATIO Case: 1 9:50a Jul 11,2013

= 0.041 + 2 * 553.285 / ( 1.500 * 319.525 ^(2) = 0.047785

Fm Value from Table UHX-13.1 = 0.084143

The Tubesheet Bending Stress - Original Thickness [Sigma]: = (1.5 * Fm / mu* ) * (2 * ao/(H - h'g)^(2) * Pe

= (1.5 * 0.0841 /0.3424 ) * (2 * 319.5250 /(54.000 - 5.000 ))^(2) * 1.50

= 94.0485 MPa

The Allowable Tubesheet Bending Stress [Sigma allowed]: = 1.5 * S = 1.5 * 137.90 = 206.85 MPa

The Tubesheet Bending Stress - Final Thickness [Sigmaf]: = (1.5 * Fm/mu*) * (2 * ao/( h - h'g)² * Pe

= (1.5 * 0.0698 /0.3424 ) * (2 * 319.5250 /(35.090 - 5.000 ))² * 1.50

= 206.8376 MPa

Reqd Tubesheet Thickness, for Bending Stress (Including CA ) [HReqB]: = h + Cats + Catc = 35.0899 + 0.0000 + 0.0000 = 35.0899 mm

UHX-14.5.8 Step 8:

Shear Stress check [Tau_limit]: = 3.2 * S * MU * h / Do

= 3.2 * 20000.00 * 0.200 * 54.000 / 639.05 = 7.46 MPa

The Tubesheet Average Shear Stress - Original Thickness [Tau]: = ( 1 / ( 2*mu ) ) * ( ao/h ) * Pe

= ( 1 / (2*0.200 ) ) * ( 319.5250 /54.000 ) * 1.500

= 22.1911 MPa

The Allowable Tubesheet Shear Stress [Tau allowed]: = 0.8 * S = 0.8 * 137.90 = 110.32 MPa

The Tubesheet Shear Stress - Final Thickness [Tauf]: = ( 1/(2*mu) ) * ( ao/h ) * Pe

= ( 1/(2*0.200 ) ) * ( 319.5250 /10.862 ) * 1.500 = 110.32 MPa

Reqd Tubesheet Thickness, for Shear Stress (Including CA) [HreqS]: = H + Cats + Catc = 10.8622 + 0.0000 + 0.0000 = 10.8622 mm

Reqd Tubesheet Thickness for Given Loadings (Including CA) [Hreqd] : = Max( HreqB, HreqS ) = Max( 35.0899 , 10.8622 ) = 35.0899 mm

UHX-14.5.9 Step 9:

The Ftmin and Ftmax Coefficients from Table UHX-13.2: Ftmin = -0.8353 , Ftmax = 3.1109

First Extreme Tube Axial Stress from among all the tubes [Sigmat1]: = ( (Ps * xs - Pt * xt) - Pe * Ftmin ) / ( Xt - Xs )

= ( (2.00 * 0.5841 - 0.50 * 0.7480 ) - (1.500 ) * -0.835 ) /

(0.7480 - 0.5841 ) )

= 12.4951 MPa

Second Extreme value of Tube Axial Stress from among all the tubes [Sigmat2]: = ( (Ps * xs - Pt * xt) - Pe * Ftmax ) / ( Xt - Xs )

= ( (2.00 * 0.5841 - 0.50 * 0.7480 ) - (1.500 ) * 3.111 ) /

(0.7480 - 0.5841 ) )

= -23.6327 MPa

Maximum Tube Axial Stress [Sigmat,max]: = MAX( |Sigmat1|, |Sigmat2| ) = 23.633 MPa

The Allowable Tube Stress, [SigmatA] = Sot = 92.3930 MPa

Check for Buckling as some of the Tubes are in Compression

Determine the Factor of Safety [Fs]: = Max( (3.25 - 0.25*(Zd + Q3*Zw)*Xa^4 ), 1.25 )

= Max((3.25 - 0.25*(0.032 + 0.048 *0.077 )*3.633 ^4), 1.25 )

= 1.6945 (Should be <= 2 )

Determine the Factor [rt]: = ( ( dt^(2) + (dt - 2*tt)^(2) )^(.5) )/4

= ( (19.0500 ^(2) + (19.0500 - 2*2.1100 )^(2) )^(.5) )/4 = 6.0355 mm

Determine the Factor [Ct]: = ( 2 * PI^(2) * Et/Syt )^(0.5)

= ( 2 * 3.14 ^(2) * 198162 /163 )^(0.5) = 154.7023

Determine the Factor [Ft]: = k * L/r = 0.8 * 380.00 /6.035 = 50.3689

The Buckling Allowable Stress [Stb]: = Sy,t/Fs*( 1 - Ft/(2*Ct) )

= 163 /1.69 *( 1 - 50.369 /(2*154.702 ) )

= 80.749 MPa (Never greater than Sot)

Note: The Axial Compressive stress in Tubes is within limits.

The Largest tube-to-tubesheet Joint Load [Wt]: = Sigmat,max * Tube Area = 23.63 * 112.2912 = 2653.52 N

Page 87: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 86 of 94

ASME TS Calc : NORMAL OPERATIO Case: 1 9:50a Jul 11,2013

Tube Weld Size Results per UW-20:Tube Strength [Ft]:

= 3.1415 * t * ( do - t ) * Sa

= 3.1415 * 2.110 * ( 19.050 - 2.110 ) * 92.39 = 10374.039 N

Fillet Weld Strength [Ff]: = .55 * 3.1415 * af * (do + 0.67*af) * Sw (but not > Ft)

= .55 * 3.1415 * 2.000 * (19.050 + 0.67*2.000 ) * 92.39

= 6509.7148 N

Groove Weld Strength, Fg = 0.0

Max. Allow. Tube-Tubesheet Joint load, Lmax

= Ff + Fg (but not > Ft) = 6509.7148 N

Design Strength Ratio [fd]: = Fd / Ft = 0.2558

Weld Strength Factor [fw]: = Sot / ( Min(Sot, S) ) = 1.0000

Min Weld Length [ar]: = ( (0.75 * do)² + 2.73*t*(do - t)* fw * fd ) )½ - .75 * do

= 0.8483 mm

Minimum Required Fillet Weld Leg afr 0.8483 mm

Note: Computations completed for ASME Tubesheet Configuration d.

Stress/Force summary for loadcase 3 un-corr. (Ps + Pt - Th): ------------------------------------------------------------------------

Stress Description Actual Allowable Pass/Fail

------------------------------------------------------------------------

Tubesheet Bend. Stress 94.0 <= 206.9 MPa Ok

Tubesheet Shear Stress 22.2 <= 110.3 MPa Ok

Maximum Stress in the Tubes 23.6 <= 92.4 MPa Ok

Minmum Tube Stress (Buckling) -23.6 <= -80.7 MPa Ok

Maximum Force on any one Tube 2653.5 <= 6509.7 N Ok

------------------------------------------------------------------------

Thickness results for loadcase 3 un-corr. (Ps + Pt - Th): ----------------------------------------------------------------------------

Thickness (mm) Required Actual P/F

----------------------------------------------------------------------------

Tubesheet Thickness : 35.090 54.000 Ok

Tube-Tubesheet Fillet Weld Leg : 0.848 2.000 Ok

----------------------------------------------------------------------------

Stationary Tubesheet results per ASME UHX-14 2010, 2011a

Results for 6 Load Cases:

--Reqd. Thk. + CA -------- Tubesheet Stresses Case Pass/

Case# Tbsht Extnsn Bend Allwd Shear Allwd Type Fail

----------------------------------------------------------------------------

1uc 20.611 ... 31 207 7 110 Fvs+Pt-Th Ok

2uc 40.743 ... 125 207 30 110 Ps+Fvt-Th Ok

3uc 35.090 ... 94 207 22 110 Ps+Pt-Th Ok

1c 23.101 ... 33 207 8 110 Fvs+Pt-Th-Ca Ok

2c 43.078 ... 134 207 33 110 Ps+Fvt-Th-Ca Ok

3c 37.446 ... 100 207 25 110 Ps+Pt-Th-Ca Ok

----------------------------------------------------------------------------

Max: 43.0782 ... mm 0.646 0.302 (Str. Ratio)

Load Case Definitions:Fvs,Fvt - User-defined Shell-side and Tube-side vacuum pressures or 0.0.Ps, Pt - Shell-side and Tube-side Design Pressures.(+-)Th - With or Without Thermal Expansion.Ca - With or Without Corrosion Allowance.

Tube, Shell and Channel Stress Summary: --------- Tube Stresses Tube Loads Shell Stress Channel Stress Pass

Case# Ten Allwd Cmp Allwd Ld Allwd Stress Allwd Stress Allwd Fail

------------------------------------------------------------------------------

1uc 7 92 -5 -80 808 6509 ... ... ... ... Ok

2uc 31 92 -31 -80 3461 6509 ... ... ... ... Ok

3uc 24 92 -24 -80 2654 6509 ... ... ... ... Ok

1c 8 92 -5 -89 928 6509 ... ... ... ... Ok

2c 35 92 -35 -90 3943 6509 ... ... ... ... Ok

3c 27 92 -27 -90 3015 6509 ... ... ... ... Ok

------------------------------------------------------------------------------

Max RATIO 0.380 0.390 0.606 ... ...

Summary of Thickness Comparisons for 6 Load Cases: ----------------------------------------------------------------------------

Thickness (mm) Required Actual P/F

----------------------------------------------------------------------------

Tubesheet Thickness : 43.078 54.000 Ok

Tube Thickness : 0.451 2.110 Ok

Tube-Tubesheet Fillet Weld Leg : 1.244 2.000 Ok

Page 88: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 87 of 94

ASME TS Calc : NORMAL OPERATIO Case: 1 9:50a Jul 11,2013

----------------------------------------------------------------------------

Tubesheet MAWP used to Compute Hydrotest Pressure:

Stress / Force | Tubeside (0 shellside) | Shellside (0 tubeside) |

Condition | MAWP |Stress Rat.| MAWP |Stress Rat.|

------------------------------------------------------------------------------

Tubesheet Bending Stress | 3.103 | 1.000 | 3.094 | 1.000 |

Tubesheet Shear Stress | 6.628 | 1.000 | 6.628 | 1.000 |

Tube Tensile Stress | 5.588 | 1.000 | 5.261 | 1.000 |

Tube Compressive Stress | 8.359 | 1.000 | 5.129 | 1.000 |

Tube-Tubesheet Joint load | 3.507 | 1.000 | 3.302 | 1.000 |

Tube Pressure Stress | 22.457 | 1.000 | 15.020 | 1.000 |

------------------------------------------------------------------------------

Minimum MAWP | 3.103 | | 3.094 | |

Tubesheet MAPnc used to Compute Hydrotest Pressure:

Stress / Force | Tubeside (0 shellside) | Shellside (0 tubeside) |

Condition | MAPnc |Stress Rat.| MAPnc |Stress Rat.|

------------------------------------------------------------------------------

Tubesheet Bending Stress | 3.309 | 1.000 | 3.302 | 1.000 |

Tubesheet Shear Stress | 7.457 | 1.000 | 7.457 | 1.000 |

Tube Tensile Stress | 6.420 | 1.000 | 5.994 | 1.000 |

Tube Compressive Stress | 9.105 | 1.000 | 5.704 | 1.000 |

Tube-Tubesheet Joint load | 4.028 | 1.000 | 3.761 | 1.000 |

Tube Pressure Stress | 22.457 | 1.000 | 15.020 | 1.000 |

------------------------------------------------------------------------------

Minimum MAPnc | 3.309 | | 3.302 | |

PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

Page 89: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 88 of 94

ASME Fl-TS Calc : NORMAL OPERATIO Case: 1 9:50a Jul 11,2013

Input Echo, Tubesheet Number 1, Description: FLOATING TUBESH

Shell Data:Main Shell Description: SHELL

Shell Design Pressure Ps 2.00 MPa

Shell Thickness ts 10.0000 mm

Shell Corrosion Allowance cas 3.0000 mm

Inside Diameter of Shell Ds 635.000 mm

Shell Temperature for Internal Pressure Ts 100.00 C

Shell Material SA-516 70

Note: Using 2 * Yield for Discontinuity Stress Allowable (UG-23(e)), Sps.Make sure that material properties at this temperature are nottime-dependent for Material: SA-516 70

Shell Material UNS Number K02700

Shell Allowable Stress at Temperature Ss 137.90 MPa

Shell Allowable Stress at Ambient 137.90 MPa

Channel Description: FC SHELL Channel Type: Cylinder

Channel Design Pressure Pt 0.50 MPa

Channel Thickness tc 10.0000 mm

Channel Corrosion Allowance cac 3.0000 mm

Inside Diameter of Channel Dc 635.000 mm

Channel Design Temperature TEMPC 15.00 C

Channel Material SA-516 70

Note: Using 2 * Yield for Discontinuity Stress Allowable (UG-23(e)), Sps.Make sure that material properties at this temperature are nottime-dependent for Material: SA-516 70

Channel Material UNS Number K02700

Channel Allowable Stress at Temperature Sc 137.90 MPa

Channel Allowable Stress at Ambient 137.90 MPa

Tube Data: Number of Tube Holes Nt 468

Tube Wall Thickness et 2.1100 mm

Tube Outside Diameter D 19.0500 mm

Straight Tube Length (bet. inner tubsht faces) L 3952.00 mm

Design Temperature of the Tubes 100.00 C

Tube Material SA-179

Tube Material UNS Number K01200

Is this a Welded Tube No

Tube Material Specification used Smls. tube

Tube Allowable Stress at Temperature 92.39 MPa

Tube Allowable Stress At Ambient 92.39 MPa

Tube Yield Stress At design Temperature Syt 163.44 MPa

Tube Pitch (Center to Center Spacing) P 23.8120 mm

Tube Layout Pattern Triangular

Fillet Weld Leg af 2.0000 mm

Groove Weld Leg ag 0.0000 mm

Tube-Tubesheet Joint Weld Type Partial Strength

Method for Tube-Tubesheet Jt. Allow. UW-20

Tube-Tubesheet Joint Classification i

Radius to Outermost Tube Hole Center ro 310.000 mm

Largest Center-to-Center Tube Distance Ul 38.0000 mm

Length of Expanded Portion of Tube ltx 40.0000 mm

Tube-side pass partition groove depth hg 5.0000 mm

Tubesheet Data:

Tubesheet TYPE: UNKNOWN Exchanger TYPE: With an Immersed Floating Head, Conf. a

Tubesheet Design Metal Temperature T 100.00 C

Tubesheet Material Specification SA-266 4

Note: Using 2 * Yield for Discontinuity Stress Allowable (UG-23(e)), Sps.Make sure that material properties at this temperature are nottime-dependent for Material: SA-266 4

Tubesheet Material UNS Number K03017

Tubesheet Allowable Stress at Temperature S 137.90 MPa

Tubesheet Allowable Stress at Ambient Tt 137.90 MPa

Thickness of Tubesheet h 54.0000 mm

Tubesheet Corr. Allowance (Shell side) Cats 3.0000 mm

Tubesheet Corr. Allowance (Channel side) Catc 3.0000 mm

Tubesheet Outside Diameter A 625.000 mm

Area of the Untubed Lanes AL 47182.0 mm²

Additional Data for Fixed/Floating Tubesheet Exchangers: Unsupported Tube Span under consideration l 380.000 mm

Tube End condition corresponding to Span (l) k 0.80

Ignore Radial Thermal Exp. effects (UHX-13.8/14.6) YES

Note: The Metal temperatures at the Rim are set to ambient (21 C)

Tubesheet Metal Temp. at Rim T' 21.11 C

Shell Metal Temp. at Tubesheet T'S 21.11 C

Page 90: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 89 of 94

ASME Fl-TS Calc : NORMAL OPERATIO Case: 1 9:50a Jul 11,2013

Channel Metal Temp. at Tubesheet T'C 21.11 C

Perform Differential Pressure Design N

Run Multiple Load Cases YES

Junction Stress Reduction option None

Additional Data for Gasketed Tubesheets: Tubesheet Gasket on which Side Channel

Flange Outside Diameter A 708.000 mm

Flange Inside Diameter B 593.000 mm

Flange Face Outside Diameter Fod 628.000 mm

Flange Face Inside Diameter Fid 593.000 mm

Gasket Outside Diameter Go 625.000 mm

Gasket Inside Diameter Gi 599.000 mm

Gasket Factor, m 2.00

Gasket Design Seating Stress y 11.03 MPa

Flange Facing Sketch Code Sketch 1a

Column for Gasket Seating Code Column I

Gasket Thickness tg 3.0000 mm

Full face Gasket Flange Option Program Selects

Length of Partition Gasket lp 890.000 mm

Width of Partition Gasket wp 10.0000 mm

Partition Gasket Factor, mPart 2.0000

Partition Gasket Design Seating Stress yPart 11.03 MPa

Partition Gasket Facing Sketch Code Sketch 1a

Partition Gasket Column for Gasket Seating Code Column I

Bolting Information: Diameter of Bolt Circle C 660.000 mm

Nominal Bolt Diameter dB 20.0000 mm

Type of Thread Series TEMA Metric Thread

Number of Bolts n 24

Bolt Material SA-193 B7

Bolt Material UNS Number G41400

Bolt Allowable Stress At Temperature Sb 172.38 MPa

Bolt Allowable Stress At Ambient Sa 172.38 MPa

Weld between Flange and Shell/Channel 0.0000 mm

Tubesheet Extended as Flange Yes

Thickness of Extended Portion of Tubesheet Tf 0.0000 mm

Is Bolt Load Transferred to the Tubesheet No

Is Exchanger in Creep range (skip EP, Use 3S for Sps) NO

Notes/Error Messages/Warnings for Tubesheet number 1

ERROR - The selected Tubesheet Type is not a valid per ASME, check the input.

Warning: Bolt load is not transferred to tubesheet which is extended for

bolting. Req. Tubesheet extension thk. can't be computed. Please check input

Number of fatal errors: 1. Analysis of this tubesheet will be halted.

Page 91: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 90 of 94

Flohead Analysis : FLOATING COVER Case: 1 9:50a Jul 11,2013

Input Echo, Floating Head Item 1, Description: FLOATING COVER

Floating Head Type Appendix 1-6 type (d)

Tube Side ( Internal ) Design Pressure Pts 0.50 MPa

Shell Side ( External ) Design Pressure Pss 2.00 MPa

Design Temperature for Spherical Head Temp 150.00 C

Head Material SA-516 70

Head Material UNS Number K02700

Head Allowable Stress at Temperature Sho 137.90 MPa

Head Allowable Stress at Ambient Sha 137.90 MPa

Crown Radius for Spherical Head L 445.000 mm

Head Thickness Th 16.000 mm

Tube Side ( Internal ) Corrosion Allowance Cats 3.0000 mm

Shell Side ( External ) Corrosion Allowance Cass 3.0000 mm

Flange Material SA-105

Flange Material UNS Number K03504

Flange Allowable Stress at Temperature Sfo 137.90 MPa

Flange Allowable Stress at Ambient Sfa 137.90 MPa

Flange Outside Diameter Fod 708.000 mm

Flange Inside Diameter Fid 593.000 mm

Flange Thickness Tf 65.0000 mm

Bolt Material SA-193 B7

Bolt Material UNS Number G41400

Bolt Allowable Stress At Temperature Sb 172.38 MPa

Bolt Allowable Stress At Ambient Sa 172.38 MPa

Diameter of Bolt Circle C 660.000 mm

Nominal Bolt Diameter dB 20.0000 mm

Type of Threads TEMA Metric Thread

Number of Bolts 24

Full face Gasket Flange Option Not a Full Face

Flange Face Outside Diameter Ffod 628.000 mm

Flange Face Inside Diameter Ffid 593.000 mm

Gasket Outside Diameter Go 625.000 mm

Gasket Inside Diameter Gi 599.000 mm

Gasket Factor, m 2.0000

Gasket Design Seating Stress y 11.03 MPa

Flange Facing Sketch Code Sketch 1a

Column for Gasket Seating Code Column I

Gasket Thickness 3.0000 mm

Flange Face Nubbin Width 0.0000 mm

Length of Partition Gasket 890.000 mm

Width of Partition Gasket 10.0000 mm

Partition Gasket Factor, mPart 2.0000

Partition Gasket Design Seating Stress yPart 11.03 MPa

Partition Gasket Facing Sketch Code Sketch 1a

Partition Gasket Column for Gasket Seating Code Column I

Dist. from Head Centerline to Flange Centroid hr 23.2296 mm

The Flange is not Slotted.

Backing Ring Material Specification SA-105

Backing Ring Material UNS Number K03504

Backing Ring Allowable Stress, Temperature Sots 137.90 MPa

Backing Ring Allowable Stress, Ambient Sats 137.90 MPa

Backing Ring Inside Diameter Dr 599.000 mm

Backing Ring Thickness Tr 79.0000 mm

Number of Splits in Backing Ring nsp 1

Internal Pressure results for Spherical headsASME Code, Section VIII, Div. 1, 2010, 2011a Appendix 1-6

Thickness Due to Internal Pressure[thr]: = 5PL / 6Sho

= ( 5 * 0.50 * 448.0000 ) / ( 6 * 137 )

= 1.3536 mm

Maximum Allowable Working Pressure at Given Thickness[Pa]: = 6Sho* (Th-Cass-Cats) / 5L

= ( 6 * 137 * 10.0000 ) / ( 5 * 448.0000 )

= 3.69 MPa

Maximum Allowable Pressure, New and Cold[Pnc]: = 6Sha / 5L

= ( 6 * 137 * 16.0000 ) / ( 5 * 445.0000 )

= 5.95 MPa

Actual Stress at given Pressure and Thickness[Sact]: = 5PL / 6(Th-Cass-Cats)

= ( 5 * 0.50 * 448.0000 ) / ( 6 * 10.0000 )

= 19. MPa

External Pressure results, Spherical headASME Code, Section VIII, Division 1, 2010, 2011a

Page 92: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 91 of 94

Flohead Analysis : FLOATING COVER Case: 1 9:50a Jul 11,2013

External Pressure Chart CS-2 at 150.00 C

Elastic Modulus for Material 199818.77 MPa

Results for Maximum Allowable External Pressure: Corroded Thickness of Shell TCA 10.0000 mm

Outside Crown Radius of Shell OD/2 458.0000 mm

Crown Radius / Thickness Ratio (0D/2)/T 45.8000

Geometry Factor, A f(D/T,LD) A 0.0027293

Materials Factor, B, f(A, Chart) B 109.9170 MPa

Maximum Allowable Working Pressure 2.40 MPa

EMAWP = B/( (0D/T)/ 2 ) = 109.9170 /(91.6000 /2.0) = 2.3999

Results for Reqd Thickness for Ext. Pressure (Tca): Corroded Thickness of Head TCA 8.5711 mm

Outside Diameter of Shell ODCA 916.000 mm

Diameter / Thickness Ratio (D/T) 106.8710

Geometry Factor, A f(DT,LD) A 0.0023393

Materials Factor, B, f(A, Chart) B 106.8824 MPa

Maximum Allowable Working Pressure 2.00 MPa

EMAWP = B/((D/T)/2) = 106.8824 /(106.8710 / 2 ) = 2.0002

Intermediate Calculations for Flanged portion:

ASME Code, Section VIII, Div. 1, 2010, 2011a Appendix 2

Gasket Contact Width, N = (Goc-Gic) / 2 13.000 mm

Basic Gasket Width, b0 = N / 2.0 6.500 mm

Effective Gasket Width, b = SQRT(b0) * 2.5 6.422 mm

Gasket Reaction Diameter, G = Go-2.0*b 612.156 mm

ASME Maximum Circumferential Spacing between Bolts per App. 2 eq. (3) [Bsmax]: = 2a + 6t/(m + 0.5)

= 2 * 20.000 + 6 * 65.000 /(2.00 + 0.5)

= 196.000 mm

Actual Circumferential Bolt Spacing [Bs]: = C * sin( pi / n ) )

= 660.000 * sin( 3.142 / 24 )

= 86.147 mm

ASME Moment Multiplier for Bolt Spacing per App. 2 eq. (7) [Bsc]: = max( sqrt( Bs/( 2a + t )), 1 )

= max( sqrt( 86.147 /( 2 * 20.000 + 65.000 )), 1 )

= 1.0000

Bolting Information for TEMA Metric Thread Series (Non Mandatory): Total Area of Bolts 5209.224 mm²

-----------------------------------------------------------------------------

Minimum Actual Maximum

-----------------------------------------------------------------------------

Radial distance bet. bolts and the edge 23.810 24.000

Circumferential spacing between bolts 52.390 86.147 196.000

-----------------------------------------------------------------------------

Results for the Internal Pressure case:

Basic Flange and Bolt loads: Hydrostatic End Load due to Pressure H 147145.4 N

Contact Load on Gasket Surfaces Hp 33598.8 N

Hydrostatic End Load at Flange ID Hd 140888.8 N

Pressure Force on Flange Face Ht 6256.5 N

Radial Component of Head Membrane Force Hr 159429.2 N

Operating Bolt Load: Wm1 180744.2 N

Gasket Seating Bolt Load Wm2 185331.1 N

Required Bolt Area Am 1075.254 mm²

Min. Gasket Contact Width (Brownell Young) [Not an ASME Calculation]: = Ab * Sb/(y * PI * (Go+Gi) )

= 5209.224 * 172.38 /(11.03 * 3.14 * (625.00 + 599.00 ) )

= 21.167 mm[Note: Exceeds actual gasket width, 13.000 ]

Flange Design Bolt Load (Seating) W 541597.4 N

Gasket Seating Force (Operating) Hg 33598.8 N

Distance to Gasket Load Reaction hg 23.9222 mm

Distance to Face Pressure Reaction ht 27.2111 mm

Distance to End Pressure Reaction hd 30.5000 mm

Summary of Moments for Internal Pressure: Loading Force Distance Bolt Corr Moment

End Pressure, Md 140889. 30.5000 1.0000 4298852. N-mm

Face Pressure, Mt 6257. 27.2111 1.0000 170316. N-mm

Gasket Load, Mg 33599. 23.9222 1.0000 804084. N-mm

Floating Hd. Load, Mh 159429. 23.2296 1.0000 -3704978. N-mm

Gasket Seating, Ma 541597. 23.9222 1.0000 12961458. N-mm

Total Moment for Operation ( Internal Pressure ) 1568274.000 N-mm

Total Moment for Gasket Seating ( Int. Pressure ) 12961458.000 N-mm

Results for the External Pressure case:

Page 93: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 92 of 94

Flohead Analysis : FLOATING COVER Case: 1 9:50a Jul 11,2013

Basic Flange and Bolt loads: Hydrostatic End Load due to Pressure H 588581.4 N

Hydrostatic End Load at Flange ID Hd 563555.4 N

Pressure Force on Flange Face Ht 25026.1 N

Radial Component of Head Membrane Force Hr 637716.8 N

Gasket Seating Bolt Load Wm2 185331.1 N

Required Bolt Area Am 1075.254 mm²

Flange Design Bolt Load (Seating) W 541597.4 N

Distance to Gasket Load Reaction hg 23.9222 mm

Distance to Face Pressure Reaction ht 27.2111 mm

Distance to End Pressure Reaction hd 30.5000 mm

Summary of Moments for External Pressure: Loading Force Distance Bolt Corr Moment

End Pressure, Md 563555. 6.5778 1.0000 3708456. N-mm

Face Pressure, Mt 25026. 3.2889 1.0000 82342. N-mm

Floating Hd. Load, Mh 637717. 23.2296 1.0000 -14819914. N-mm

Gasket Seating, Ma 541597. 23.9222 1.0000 12961458. N-mm

Total Moment for Operation ( External Pressure ) 11029118.000 N-mm

Total Moment for Gasket Seating ( Ext. Pressure ) 12961458.000 N-mm

Required thickness for Main Flange, internal operating conditions: [T] = F + SQRT( F * F + J ) per 1-6(g)

= 1.756+SQRT(1.756*1.756+239.735)

= 17.3390 mm

Required thickness for Main Flange, internal bolt-up conditions: [T] = F + SQRT( F * F + J ) per 1-6(g)

= 0.000+SQRT(0.000*0.000+1981.362)

= 44.5125 mm

Required thickness for Main Flange, external operating conditions: [T] = F + SQRT( F * F + J ) per 1-6(g)

= 7.025+SQRT(7.025*7.025+1685.974)

= 48.6826 mm

Required thickness for Main Flange, external bolt-up conditions: [T] = F + SQRT( F * F + J ) per 1-6(g)

= 0.000+SQRT(0.000*0.000+1981.362)

= 44.5125 mm

Required thickness for Backing Ring, internal operating conditions: [T] = SQRT( WM1 * h * Split_fac * Y / S B ) Per TEMA 8th ed. RCB-5.141

= SQRT(180744.2*30.50*2.00*11.699/(137.9*599.000))

= 39.5187 mm

Required thickness for Backing Ring, internal bolt-up conditions: [T] = SQRT( W * h * Split_fac * Y / S B ) Per TEMA 8th ed. RCB-5.141

= SQRT(541597*30.50*2.00*11.699/(137.9*599.000))

= 68.4083 mm

Summary of Required Thicknesses: Head Flange Backing Ring

Tubeside (Internal) Pressure 1.3536 17.3390 39.5187 mm

Shellside (External) Pressure 8.5711 48.6826 mm

Tubeside Gasket Seating Load 44.5125 68.4083 mm

Shellside Gasket Seating Load 44.5125 mm

Maximum + Corrosion Allowance 14.5711 54.6826 68.4083 mm

Actual Thickness as Given 16.0000 65.0000 79.0000 mm

Floating Head MAWP and MAPnc (MPa):

Stress | Tubeside | Shellside |

Condition | MAWP | MAPnc | MAWP | MAPnc |

------------------------------------------------------------------------------

Flange Stress | 2.00 | 2.00 | 2.75 | 4.02 |

Floating head Stress | 3.69 | 5.95 | 2.40 | 4.08 |

Bolt Stress | 2.48 | 2.48 | ---- | ---- |

------------------------------------------------------------------------------

Minimum MAWP & MAPnc | 2.00 | 2.00 | 2.40 | 4.02 |

PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

Page 94: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 93 of 94

Vessel Design Summary : Step: 26 9:50a Jul 11,2013

Design Code: ASME Code Section VIII Division 1, 2010, 2011a

Diameter Spec : 635.000 x 724.000 mm ID

Vessel Design Length, Tangent to Tangent 4923.00 mm

Specified Datum Line Distance 0.00 mm

Shell Material Specification SA-516 70

Nozzle Material Specification SA-106 B

Re-Pad Material Specification SA-516 70

Shell Side Design Temperature 100 C

Channel Side Design Temperature 15 C

Shell Side Design Pressure 2.000 MPa

Channel Side Design Pressure 0.500 MPa

Shell Side Hydrostatic Test Pressure 2.732 MPa

Channel Side Hydrostatic Test Pressure 0.672 MPa

Required Minimum Design Metal Temperature 0 C

Warmest Computed Minimum Design Metal Temperature -29 C

Wind Design Code ASCE-93

Earthquake Design Code UBC-94

Element Pressures and MAWP: MPa

Element Desc | Design Pres. | External | M.A.W.P | Corrosion

| + Stat. head | Pressure | | Allowance

---------------------------------------------------------------------

FC COVER 0.500 0.103 0.841 3.1750

FC#CV FLANGE 0.500 0.103 1.013 3.0000

FC SHELL 0.500 0.103 2.527 3.0000

FC#SH FLANGE 0.500 0.103 0.517 3.0000

SH#FC FLANGE 2.000 0.103 2.102 3.0000

SHELL 2.000 0.103 2.527 3.0000

SH#RC FLANGE 2.000 0.103 2.243 3.0000

RC#SH FLANGE 2.000 0.103 2.285 3.0000

RC SHELL 2.000 0.103 2.222 3.0000

RC HEAD 2.000 0.103 2.268 3.0000

Element "To" Elev Length Element Thk R e q d T h k Joint Eff

Type mm mm mm Int. Ext. Long Circ

-----------------------------------------------------------------------

Body Flg 43.0 43.0 43.0 35.3 28.8 1.00 1.00

Body Flg 90.0 47.0 47.0 42.8 42.8 1.00 1.00

Cylinder 693.0 650.0 10.0 4.5 5.1 0.85 0.85

Body Flg 693.0 76.0 76.0 72.6 62.5 1.00 1.00

Body Flg 840.0 93.0 60.0 58.6 38.4 1.00 1.00

Cylinder 4465.0 3625.0 10.0 8.5 7.3 0.85 0.85

Body Flg 4573.0 108.0 75.0 69.7 28.4 1.00 1.00

Body Flg 4663.0 90.0 80.0 66.8 46.7 1.00 1.00

Cylinder 4873.0 300.0 10.0 9.3 4.9 0.85 0.85

Ellipse 4923.0 50.0 12.0 9.2 4.9 0.85 0.85

Element thicknesses are shown as Nominal if specified, otherwise are Minimum

Saddle Parameters: Saddle Width 101.600 mm

Saddle Bearing Angle 120.000 deg.

Centerline Dimension 609.600 mm

Wear Pad Width 152.400 mm

Wear Pad Thickness 9.525 mm

Wear Pad Bearing Angle 130.000 deg.

Distance from Saddle to Tangent 209.550 mm

Baseplate Length 685.800 mm

Baseplate Thickness 12.700 mm

Baseplate Width 101.600 mm

Number of Ribs (including outside ribs) 4

Rib Thickness 6.350 mm

Web Thickness 6.350 mm

Height of Center Web 228.600 mm

Summary of Maximum Saddle Loads, Operating Case : Maximum Vertical Saddle Load 21594.77 N

Maximum Transverse Saddle Shear Load 788.75 N

Maximum Longitudinal Saddle Shear Load 194.49 N

Summary of Maximum Saddle Loads, Hydrotest Case : Maximum Vertical Saddle Load 26318.06 N

Maximum Transverse Saddle Shear Load 260.29 N

Maximum Longitudinal Saddle Shear Load 64.18 N

Weights: Fabricated - Bare W/O Removable Internals 3625.9 kgm

Shop Test - Fabricated + Water ( Full ) 5065.9 kgm

Shipping - Fab. + Rem. Intls.+ Shipping App. 3625.9 kgm

Erected - Fab. + Rem. Intls.+ Insul. (etc) 3625.9 kgm

Empty - Fab. + Intls. + Details + Wghts. 3625.9 kgm

Operating - Empty + Operating Liquid (No CA) 3954.0 kgm

Field Test - Empty Weight + Water (Full) 5065.9 kgm

Page 95: Floating Head HE

PV Elite 2012 Licensee: JACOBS H&G

FileName : Floating Head HE ------------------------------ Page 94 of 94

Vessel Design Summary : Step: 26 9:50a Jul 11,2013

PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012