Top Banner

of 48

Fabrication and Characterization of GFET

Jun 02, 2018

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/10/2019 Fabrication and Characterization of GFET

    1/48

  • 8/10/2019 Fabrication and Characterization of GFET

    2/48

    II

    E

    . F ,

    ,

    . I ,

    (FET). F KTH FET (GFET)

    90 . A

    O (A2O3) K (ALD).

    B

    +5 V. A 20 A2O3 ,

    , 14 V. F,

    . T

    .

  • 8/10/2019 Fabrication and Characterization of GFET

    3/48

  • 8/10/2019 Fabrication and Characterization of GFET

    4/48

    IV

    I , D. M L,

    . H

    . I

    .

    I P M , ,

    KTH. A, I

    .

    I P CM

    , . I D.G M , D. PE H

    , D. A S R S

    R S, D. H R .

    M T A S .

    S V G, R G, C H

    . I M M

    .

    I M M, M K, S R, O G,L L, B B, E D L .

    I .

    E I , N,

    .

  • 8/10/2019 Fabrication and Characterization of GFET

    5/48

    V

    A .................................................................................................................................................. IIA ................................................................................................................................. IV

    1. I ........................ ...................... ............................ ................... ............................ ........... 1

    2. G........................................ .............................. ..................... ........................... ................... 3

    2.1. G P ....................... ...................... ............................... ................... ................. 3

    2.2. G A ........................ ........................ ........................... .......................... ........ 5

    2.3. G P M ..................... ............................ .................... ........................... 6

    2.3.1. M ..................... ........................... ........................ .......................... ... 6

    2.3.2. E G S C S C ............................... ................... ........... 7

    2.3.3. C V D................................... .............................. .................... ........ 7

    2.3.4. S A S ......................... ............................ ................... ........... 7

    2.4. G ......................... ............................ ................... ...................... 7

    2.4.1. M D GFET .................. .............................. ................. ......................... 8

    2.4.2. CV C GFET ........................ ............................ .................... ..... 9

    3. F .......................... ...................... ............................ ................... ............................ ......... 11

    3.1. G P .......................... ........................ ........................... .......................... ...... 11

    3.1.1. S ....................... .......................... ......................... .......................... 11

    3.1.2. G ......................... ............................ ................... ......... 12

    3.2. D F ........................... ............................ ....................... ........................... ......... 13

    3.2.1. D .......................... ...................... ............................ .................... ........................... . 14

    3.2.2. E L (EBL) ...................... ............................ .................... ......................... 15

    3.2.3. S D M C ...................... ............................... ................... ............ 15

    3.2.4. H ALD ...................... ............................ ................... ......... 16

    3.2.5. G E............................................. ........................... .................... .................... 18

    3.3. S ........................ ...................... ............................ ................... .............................. .... 19

    4. C .......................... ...................... ............................ .................... ........................... . 20

    4.1. R S ....................... ...................... ............................... ................... ............... 20

    4.2. C B D ......................... ............................ ................... ............ 22

    4.2.1. U B GFET ..................... ............................ ...................... .................... 24

    4.2.2. B GFET A2O3 ......................... ....................... ........................... . 27

  • 8/10/2019 Fabrication and Characterization of GFET

    6/48

    VI

    4.3. M E: L ...................... .............................. .................... ...... 29

    4.3.1. S ............................ ............................ ....................... ........................ ...... 29

    4.3.2. B B ....................... ............................ ................... ......... 33

    4.4. C ..................... ............................ .................... ................. 34

    5. C ........................... ...................... ............................ ................... ............................ ......... 36

    R ............................................................................................................................................ 38

  • 8/10/2019 Fabrication and Characterization of GFET

    7/48

    1

    1.

    F M L

    I C (IC),

    . H, ,

    . M

    . A ,

    1

    2.

    F 2004,

    . P,

    , . A

    ,

    . T

    . I

    3 .T

    2D

    4.

    F 5

    CMOS . Y,

    . O ,

    . S,

    .

  • 8/10/2019 Fabrication and Characterization of GFET

    8/48

  • 8/10/2019 Fabrication and Characterization of GFET

    9/48

    3

    2.

    F , 8. H,

    2D 3D . G

    . T

    , , , .

    2.1.

    G 2 (F. 2.1)

    . T

    2004 G N 1. S2

    9. T 1.42

    Figure 2.1: sp2and p orbitals of

    carbon atoms in graphene [2].

  • 8/10/2019 Fabrication and Characterization of GFET

    10/48

    4

    . T

    ,

    .

    G A B

    (F. 2.2). T

    K , D , (F. 2.2 2.2).

    T D , . T,

    D E

    D 10.

    2.2: ) A B. ) B . ) D B 9.

    G D

    (21),

    F .

  • 8/10/2019 Fabrication and Characterization of GFET

    11/48

    5

    (21)

    W 10

    F 8. S, , M D F

    11,12.

    T

    . C 10.

    A, H , 15000 2/V.

    SO2 11, 27000 2/V. 13 200000 2/V.

    3,14. H, ,

    15.

    O

    16, H 17,

    18.

    2.2. A

    D ,

    . H,

    , . I ,

    19,20.

    O , RF

    2. T 100 GH

    240 21.

    I ,

    . F , C 108

    A/2, ,

    22,23. T

    24. F ,

  • 8/10/2019 Fabrication and Characterization of GFET

    12/48

    6

    25.

    A , ,

    26,27.

    F, , , ,

    (NEMS) 28 29,30.

    2.3.

    I N . 1,

    . A

    ,

    . T

    ,

    , .

    2.3.1.

    G V D W . A , S T,

    .

    2.3: , , 90 . .

  • 8/10/2019 Fabrication and Characterization of GFET

    13/48

    7

    N,

    90 300

    2. A , . I ,

    ,

    , 2.3.

    2.3.2. E C C

    T

    (0001) 1300C

    31,32. S , ,

    , 20 26. A

    ,

    .

    2.3.3. C D

    I , N, C, P, I R

    . U

    ,

    3335. S

    2. CVD

    ,

    36.

    2.3.4. A

    I , T

    37. D

    38. A

    ,

    36.

    2.4.

    E N

    . 1. A ,

    (GFET) . I ,

  • 8/10/2019 Fabrication and Characterization of GFET

    14/48

    8

    S/SO2

    . H,

    , 2007 39.

    2.4.1. D E

    W ,

    . T

    40. I ,

    /

    (RIP) 41. T

    F ( 2.4)42.

    2.4: 42

    L . T,

    . H

    41,

    . U GFET SO2, RIP

    43.

    O , GFET

    6. A

    , ,

    (ALD)

    6. Y,

  • 8/10/2019 Fabrication and Characterization of GFET

    15/48

    9

    44 7 ALD

    . S ALD ,

    P 6.

    2.4.2. C C E

    F 2.5 (GFET) 2.

    B , GFET

    D . I , GFET

    . H,

    . A,

    45.

    2.5: 2.

    I , GFET

    46,47. F , GFET

    MOSFET. I , (V

  • 8/10/2019 Fabrication and Characterization of GFET

    16/48

  • 8/10/2019 Fabrication and Characterization of GFET

    17/48

    11

    3.

    I ,

    S/SO2. S

    , A2O3

    (ALD). I , .

    3.1.

    3.1.1.

    A

    . T,

    . I , 90

    99 .

    I , . T

    . T

    (F. 3.1) 0.5 0.5

    .

    A (SPR 700 1.2), (XLS

    7500/2145 ) .

  • 8/10/2019 Fabrication and Characterization of GFET

    18/48

    12

    3.1: EB .

    I , 100 T

    (P PAK 600 C S) . T

    (F. 2.2).

    3.2: EB

    T, (D DFD640 ) 0.5 X 0.5 . B, ,

    SO2.

    3.1.2.

    G

    . T,

    . A,

  • 8/10/2019 Fabrication and Characterization of GFET

    19/48

    13

    (. 3.3). R

    , .

    3.3: ( ).

    .

    3.2.

    D

    , , ,

    . T 3.4.

  • 8/10/2019 Fabrication and Characterization of GFET

    20/48

    14

    3.4: E , ) , ) (A), ) D /A , ) , ) A23 AD, ) (A), ) D

    /A , ) .

    3.2.1.

    B ,

    ACAD . I ,

    .

    F 3.5 .

    3.5: , ) , ) .

    D GFET , .

    F / , ,

  • 8/10/2019 Fabrication and Characterization of GFET

    21/48

    15

    (. 3.5.). S,

    (. 3.5.).

    3.2.2. ()

    R EBL GFET

    . O

    . A 200 PMMA (A2) EBL ,

    R T 150 SEM & E . T

    M (MIBK) F I (IPA). F 3.6

    .

    3.6: , 30 B.

    3.2.3.

    W 5/40 T/A (PVD). T

    SO2. F 3.7

    .

    3.7: .

  • 8/10/2019 Fabrication and Characterization of GFET

    22/48

    16

    N GFET

    . A , .

    3.2.4.

    A ,

    . H

    , . A L

    D (ALD) 6. S

    ALD (BENEQ TFS 200, 2.8) A2O3 .

    3.8 AD .

    A (ALD)

    49. A 3.9.,

    / ALD .

    1) R (trimethylaluminum, in case of Al2O3 deposition)

    . T

    .

    2) R (trimethylaluminum) (M)

    .

  • 8/10/2019 Fabrication and Characterization of GFET

    23/48

    17

    3) P ( ) . T

    .

    4) T .

    R . T

    3.9..

    3.9: ) A 23 , , A , 2 ,

    (..). ) C AD 50.

    H, , ALD

    . U

    ALD 6.

    S, 34 A ,

    . T, ALD

    A2O3

  • 8/10/2019 Fabrication and Characterization of GFET

    24/48

    18

    .. A 3.10, 300 200C

    30 A2O3.

    3.10: A23 A 200C 51.

    3.2..

    F EBL , .

    R 200 PMMA OPTI SST20 . F (

    3.5).

    T , 5/40 T/A

    P PAK 600 C S, A. F,

    GFET 3.11. 3.11.

    .

  • 8/10/2019 Fabrication and Characterization of GFET

    25/48

    19

    3.11: E .

    3.3.

    G S/SO2

    99

    . B , ,

    EBL . T

    / . T/A PVD

    . H A2O3

    ALD. O 3.12.

    3.12: E

    I

    .

  • 8/10/2019 Fabrication and Characterization of GFET

    26/48

    20

    4.

    T

    (GFET) 3. R

    . T

    K 4200SCS

    . A,

    ALD .

    4.1.

    R , ,

    . I ,

    R .

    R

    52. S , ,

    , R . H, R H LRAM

    GFET.

    F 4.1 R S ,

    2. T R ;

    1580 1 2 (G ), (2D )

    2700 1 53. T 2D ,

    52

    53.

  • 8/10/2019 Fabrication and Characterization of GFET

    27/48

    21

    4.1: , ; 2.

    W H LRAM, A+

    (=514.5 ). T (

    . 4.2) . T R 4.2 G

    1580 1, 2D 2700 1. C

    R 4.1, .

    4.2: 2D . . .

  • 8/10/2019 Fabrication and Characterization of GFET

    28/48

    22

    I A2O3 , R

    . I R

    4.3. T G 2D R . I

    . I ,

    1350 1 (D)

    .

    : A23 .

    4.2.

    A EBL ,

    . F 4.4 GFET S/SO 2

    .

    4.4: D E . /2 ; A23 A/ /

  • 8/10/2019 Fabrication and Characterization of GFET

    29/48

    23

    4.5: ) B E . ) .

    F 4.5 20

    A2O3 , 5.2 . A ,

    . A, (. 3.3) (D P) 14 V. M

    .

    F 4.5 15 V

    +15 V . T

    GFET . A,

    ( )

    4.5. W , ;

    . C 103 A,

    .

    I , GFET,

    A2O3, . A,

    .

  • 8/10/2019 Fabrication and Characterization of GFET

    30/48

  • 8/10/2019 Fabrication and Characterization of GFET

    31/48

  • 8/10/2019 Fabrication and Characterization of GFET

    32/48

    26

    (45)

    A 1.2 5.2 11016 2 55 2/V. 193 2/V..

    H, ,

    54. A

    C

    . T,

    , 45. A ,

    47.

    (46)

    (47)

    F , 4.8 1.2

    . T 22 2/V. 110122.

    T 20 90 2/V.

    .

    4.8: . .

  • 8/10/2019 Fabrication and Characterization of GFET

    33/48

    27

    4.2.2. 23

    A , A 2O3 . A

    A ,

    ALD. T

    A2O3 . F 4.9

    ( )

    ( ) A2O3.

    4.9: B () A23(). ) =1.2 , ) = 5.2 .

  • 8/10/2019 Fabrication and Characterization of GFET

    34/48

    28

    D A2O3

    . F, F. 4.9,

    . S / , A2O3

    .

    T (

    ) . T A2O3

    /A2O3

    . I , D

    ( 5 V 14 V ),

    /

    SO2 .

    T, . I

    ,

    , . T

    .

    F, . I

    / , 40. T 4.1

    .

    41: .

    ()

    ()

    (V)

    C

    (F/2)

    (S)

    U

    (S)

    W H

    (2/V.)

    U

    (2/V.)

    W H

    1.2 3.3 50 3.5 1 107 5.66 108 22 12

    5.2 4.4 50 3.5 1.2 107 5.23 108 80 36

  • 8/10/2019 Fabrication and Characterization of GFET

    35/48

    29

    4.3.

    4.3.1.

    T

    . A,

    . V

    ,

    . S

    , .

    C 47, :

    (47)

    -30 -25 -20 -15 -10 -5 0 5 10

    0,2

    0,4

    DrainCurrent(A/m)

    Back Gate Voltage (V)

    L=1.2m

    L=1.2m

    L=5.2m

    Vd= 60 mV

    Vd= 30 mV

    4.10: D , , 30 () 60 ().

    H,

    . F 4.10

    , . T 42

  • 8/10/2019 Fabrication and Characterization of GFET

    36/48

    30

    . T /

    . T

    .

    O , ,

    / . I ,

    .

    F, 34.8 K (. 4.11). T,

    (. 4.11) 33.3 K

    . F,

    ,

    ( 4.11). F (

    ) 2 K, 1.6 K/.

    T 33 K .

    4.11: ; ) ; ) ; )

    H . T

    . F 4.12

    SEM .

    C 4.12,

    (V) 48:

  • 8/10/2019 Fabrication and Characterization of GFET

    37/48

    31

    (48)

    W RC , R , V

    .

    4.12: A E. .

    F 4.13

    V=50 V. T R= 33 K

    .

    4.13: () , .

  • 8/10/2019 Fabrication and Characterization of GFET

    38/48

    32

    B V V . 47, /

    (. 4.14). T 30 K

    .

    4.14: . B .

    I , ,

    . A ,

    , .

    H, , 1500

    2/V..

    F,

    . I , . Q ,

    ,

    54. T

    .

  • 8/10/2019 Fabrication and Characterization of GFET

    39/48

    33

    4.3.2.

    A ,

    90 SO2 . I

    . I

    , .

    W HF

    . T 100 A ,

    . T

    F 4.15.

    F 4.15 . H,

    . T

    42.

    -40 -30 -20 -10 0 10

    0,6

    0,8

    1,0

    1,2

    1,4

    1,6

    1,8

    2,0

    Vd=30 mV

    DrainCurrent(A

    )

    Back Gate Voltage (V)

    With back contact

    Without back contact

    Vd=60 mV

    4.15: B (=30 =60 ).

    T,

    .

  • 8/10/2019 Fabrication and Characterization of GFET

    40/48

  • 8/10/2019 Fabrication and Characterization of GFET

    41/48

    35

    I F. 4.16,

    1.5 . Y,

    2 D . T .

    F 4.17

    , 10 V 30 V. I

    .

    4.17: , = 10 30 . .

    T D 13 V, A2O3 .

  • 8/10/2019 Fabrication and Characterization of GFET

    42/48

    36

    .

    I , KTH () GFET

    , , . E

    . W GFET

    20 (A2O3)

    (ALD). W ALD

    . W

    ALD.

    B , A2O3,

    ,

    . A

    , A2O3 . T

    /A2O3 . F,

    .

    T GFET . I

    . I

    , ,

    .

    A

    GFET,

    . O

  • 8/10/2019 Fabrication and Characterization of GFET

    43/48

    37

    , , 42. A

    MOSFET.

  • 8/10/2019 Fabrication and Characterization of GFET

    44/48

    38

    [1] K.S. Novoselov, a K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V.Grigorieva, and a a Firsov, Electric field effect in atomically thin carbon films., Science(New York, N.Y.), vol. 306, Oct. 2004, pp. 666-9.

    [2] M.C. Lemme, Current Status of Graphene Transistors, Solid State Phenomena, vol. 158,2010, pp. 499-509.

    [3] K. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. Stormer,Ultrahigh electron mobility in suspended graphene, Solid State Communications, vol.146, Jun. 2008, pp. 351-355.

    [4] B.S.K. Banerjee, F. Ieee, L.F. Register, E. Tutuc, M. Ieee, D. Basu, S. Kim, D. Reddy, andA.H. Macdonald, Graphene for CMOS and Beyond CMOS Applications, Proceedingsof the IEEE, vol. 98, 2010.

    [5] T.J. Echtermeyer, M.C. Lemme, J. Bolten, M. Baus, M. Ramsteiner, and H. Kurz,Graphene field-effect devices, The European Physical Journal Special Topics, vol. 148,Sep. 2007, pp. 19-26.

    [6] L. Liao and X. Duan, Graphenedielectric integration for graphene transistors,Materials Science and Engineering: R: Reports, vol. 70, Nov. 2010, pp. 354-370.

    [7] S. Kim, J. Nah, I. Jo, D. Shahrjerdi, L. Colombo, Z. Yao, E. Tutuc, and S.K. Banerjee,Realization of a high mobility dual-gated graphene field-effect transistor with Al[sub2]O[sub 3] dielectric,Applied Physics Letters, vol. 94, 2009, p. 062107.

    [8] P.R. Wallace, The Band Theory of Graphite, Physical Review, vol. 71, 1947, pp. 622-634.

    [9] A. Castro Neto, F. Guinea, N. Peres, K. Novoselov, and A. Geim, The electronicproperties of graphene,Reviews of Modern Physics, vol. 81, Jan. 2009, pp. 109-162.

    [10] A.K. Geim and K.S. Novoselov, The rise of graphene.,Nature materials, vol. 6, Mar.

    2007, pp. 183-91.

    [11] K.S. Novoselov, a K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva,S.V. Dubonos, and a a Firsov, Two-dimensional gas of massless Dirac fermions ingraphene.,Nature, vol. 438, Nov. 2005, pp. 197-200.

    [12] M.S. Purewal, Y. Zhang, and P. Kim, Unusual transport properties in carbon basednanoscaled materials: nanotubes and graphene, Physica Status Solidi (B), vol. 243, Nov.2006, pp. 3418-3422.

  • 8/10/2019 Fabrication and Characterization of GFET

    45/48

    39

    [13] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A.N.Marchenkov, E.H. Conrad, P.N. First, and W. a de Heer, Electronic confinement andcoherence in patterned epitaxial graphene., Science (New York, N.Y.), vol. 312, May.2006, pp. 1191-6.

    [14] S. Morozov, K. Novoselov, M. Katsnelson, F. Schedin, D. Elias, J. Jaszczak, and a Geim,Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer, Physical Review Letters,vol. 100, Jan. 2008, pp. 11-14.

    [15] E. Hwang, S. Adam, and S. Sarma, Carrier Transport in Two-Dimensional GrapheneLayers, Physical Review Letters, vol. 98, May. 2007, pp. 2-5.

    [16] A. a Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C.N. Lau,Superior thermal conductivity of single-layer graphene.,Nano letters, vol. 8, Mar. 2008,pp. 902-7.

    [17] P. Blake, P.D. Brimicombe, R.R. Nair, T.J. Booth, D. Jiang, F. Schedin, L. aPonomarenko, S.V. Morozov, H.F. Gleeson, E.W. Hill, A.K. Geim, and K.S. Novoselov,Graphene-based liquid crystal device.,Nano letters, vol. 8, Jun. 2008, pp. 1704-8.

    [18] T.J. Booth, P. Blake, R.R. Nair, D. Jiang, E.W. Hill, U. Bangert, A. Bleloch, M. Gass,K.S. Novoselov, M.I. Katsnelson, and a K. Geim, Macroscopic graphene membranes andtheir extraordinary stiffness.,Nano letters, vol. 8, Aug. 2008, pp. 2442-6.

    [19] M. Han, B. zyilmaz, Y. Zhang, and P. Kim, Energy Band-Gap Engineering of

    Graphene Nanoribbons, Physical Review Letters, vol. 98, May. 2007, pp. 1-4.

    [20] X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, Chemically derived, ultrasmooth graphenenanoribbon semiconductors., Science (New York, N.Y.), vol. 319, Feb. 2008, pp. 1229-32.

    [21] Y.-M. Lin, C. Dimitrakopoulos, K. a Jenkins, D.B. Farmer, H.-Y. Chiu, a Grill, and P.Avouris, 100-GHz transistors from wafer-scale epitaxial graphene., Science (New York,N.Y.), vol. 327, Feb. 2010, p. 662.

    [22] J. Moser, A. Barreiro, and A. Bachtold, Current-induced cleaning of graphene,International Materials Reviews, pp. 3-6.

    [23] F. Schwierz, Graphene transistors,Nature Nanotechnology, vol. 5, May. 2010, pp. 487-496.

    [24] P. Avouris, Graphene: Electronic and Photonic Properties and Devices,Nano Letters,Sep. 2010, p. 100929092847080.

    [25] F. Xia, T. Mueller, Y.-M. Lin, A. Valdes-Garcia, and P. Avouris, Ultrafast graphenephotodetector.,Nature nanotechnology, vol. 4, Dec. 2009, pp. 839-43.

  • 8/10/2019 Fabrication and Characterization of GFET

    46/48

    40

    [26] Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, and Y. Chen, SupercapacitorDevices Based on Graphene Materials, The Journal of Physical Chemistry C, vol. 113,Jul. 2009, pp. 13103-13107.

    [27] M.D. Stoller, S. Park, Y. Zhu, J. An, and R.S. Ruoff, Graphene-based ultracapacitors.,Nano letters, vol. 8, Oct. 2008, pp. 3498-502.

    [28] A.K. Geim, Graphene: status and prospects., Science (New York, N.Y.), vol. 324, Jun.2009, pp. 1530-4.

    [29] J.T. Robinson, F.K. Perkins, E.S. Snow, Z. Wei, and P.E. Sheehan, Reduced grapheneoxide molecular sensors.,Nano letters, vol. 8, Oct. 2008, pp. 3137-40.

    [30] J.S. Bunch, A.M. van der Zande, S.S. Verbridge, I.W. Frank, D.M. Tanenbaum, J.M.Parpia, H.G. Craighead, and P.L. McEuen, Electromechanical resonators from graphenesheets., Science (New York, N.Y.), vol. 315, Jan. 2007, pp. 490-3.

    [31] C. Berger, Z. Song, T. Li, X. Li, A.Y. Ogbazghi, R. Feng, Z. Dai, A.N. Marchenkov, E.H.Conrad, P.N. First, and W. a de Heer, Ultrathin Epitaxial Graphite: 2D Electron GasProperties and a Route toward Graphene-based Nanoelectronics, The Journal of PhysicalChemistry B, vol. 108, Dec. 2004, pp. 19912-19916.

    [32] W. Deheer, C. Berger, X. Wu, P. First, E. Conrad, X. Li, T. Li, M. Sprinkle, J. Hass, andM. Sadowski, Epitaxial graphene, Solid State Communications, vol. 143, Jul. 2007, pp.92-100.

    [33] A. Obraztsov, E. Obraztsova, A. Tyurnina, and A. Zolotukhin, Chemical vapordeposition of thin graphite films of nanometer thickness, Carbon, vol. 45, Sep. 2007, pp.2017-2021.

    [34] A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, and J. Kong,Large area, few-layer graphene films on arbitrary substrates by chemical vapordeposition.,Nano letters, vol. 9, Jan. 2009, pp. 30-5.

    [35] J. Coraux, A.T. NDiaye, C. Busse, and T. Michely, Structural coherency of grapheneon Ir(111).,Nano letters, vol. 8, Feb. 2008, pp. 565-70.

    [36] K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.-H. Ahn, P. Kim, J.-Y.Choi, and B.H. Hong, Large-scale pattern growth of graphene films for stretchabletransparent electrodes.,Nature, vol. 457, Feb. 2009, pp. 706-10.

    [37] X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, and H. Dai, Highly conductinggraphene sheets and Langmuir-Blodgett films.,Nature nanotechnology, vol. 3, Sep.2008, pp. 538-42.

  • 8/10/2019 Fabrication and Characterization of GFET

    47/48

    41

    [38] G. Eda, G. Fanchini, and M. Chhowalla, Large-area ultrathin films of reduced grapheneoxide as a transparent and flexible electronic material.,Nature nanotechnology, vol. 3,May. 2008, pp. 270-4.

    [39] M.C. Lemme, T.J. Echtermeyer, M. Baus, and H. Kurz, A Graphene Field-EffectDevice,IEEE Electron Device Letters, vol. 28, Apr. 2007, pp. 282-284.

    [40] M. Lemme, T. Echtermeyer, M. Baus, B. Szafranek, J. Bolten, M. Schmidt, T. Wahlbrink,and H. Kurz, Mobility in graphene double gate field effect transistors, Solid-StateElectronics, vol. 52, Feb. 2008, pp. 514-518.

    [41] J.-H. Chen, C. Jang, S. Adam, M.S. Fuhrer, E.D. Williams, and M. Ishigami, Charged-impurity scattering in graphene,Nature Physics, vol. 4, Apr. 2008, pp. 377-381.

    [42] Zebrev, Quantum Capacitance vs Chemical Potential Universal Curve and Interface TrapParameter Extraction in Graphene Gated StructuresNo Title,Interface, pp. 1-13.

    [43] J.-H. Chen, C. Jang, M. Ishigami, S. Xiao, W.G. Cullen, E.D. Williams, and M.S. Fuhrer,Diffusive charge transport in graphene on SiO2, Solid State Communications, vol. 149,Jul. 2009, pp. 1080-1086.

    [44] X. Wang, S.M. Tabakman, and H. Dai, Atomic layer deposition of metal oxides onpristine and functionalized graphene.,Journal of the American Chemical Society, vol.130, Jul. 2008, pp. 8152-3.

    [45] S. Xu and Q. Zhang, Causes of asymmetry in graphene transfer characteristics, 2010International Workshop on Junction Technology Extended Abstracts, May. 2010, pp. 1-3.

    [46] S. a Thiele, J. a Schaefer, and F. Schwierz, Modeling of graphene metal-oxide-semiconductor field-effect transistors with gapless large-area graphene channels,Journalof Applied Physics, vol. 107, 2010, p. 094505.

    [47] H. Wang, S. Member, A. Hsu, J. Kong, D.A. Antoniadis, and T. Palacios, CompactVirtual-Source Current Voltage Model for Top- and Back-Gated Graphene Field-EffectTransistors, vol. 58, 2011, pp. 1523-1533.

    [48] P. Palestri,private communication, 2010.

    [49] R.L. Puurunen, Surface chemistry of atomic layer deposition: A case study for thetrimethylaluminum/water process,Journal of Applied Physics, vol. 97, 2005, p. 121301.

    [50] E. Granneman, P. Fischer, D. Pierreux, H. Terhorst, and P. Zagwijn, Batch ALD:Characteristics, comparison with single wafer ALD, and examples, Surface and CoatingsTechnology, vol. 201, Sep. 2007, pp. 8899-8907.

    [51] M. Manouchehri and C. Henkel, private communication, 2010.

  • 8/10/2019 Fabrication and Characterization of GFET

    48/48

    [52] A. Ferrari, Raman spectroscopy of graphene and graphite: Disorder, electronphononcoupling, doping and nonadiabatic effects, Solid State Communications, vol. 143, Jul.2007, pp. 47-57.

    [53] A. Ferrari, J. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D.Jiang, K. Novoselov, S. Roth, and A. Geim, Raman Spectrum of Graphene and GrapheneLayers, Physical Review Letters, vol. 97, Oct. 2006, pp. 1-4.

    [54] Z. Chen and J. Appenzeller, Mobility extraction and quantum capacitance impact in highperformance graphene field-effect transistor devices, 2008 IEEE International ElectronDevices Meeting, Dec. 2008, pp. 1-4.