Top Banner
Extending Synchronization from Super-threshold to Sub-threshold Region Jun Zhou, Maryam Ashouei, David Kinniment*, Jos Huisken and Gordon Russell* IMEC Netherlands & *Newcastle University
26

Extending Synchronization from Super-Threshold to Sub-threshold Region

May 16, 2023

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Extending Synchronization from Super-Threshold to Sub-threshold Region

Extending Synchronization from

Super-threshold to Sub-threshold Region

Jun Zhou, Maryam Ashouei, David Kinniment*, Jos Huisken and Gordon Russell*

IMEC Netherlands & *Newcastle University

Page 2: Extending Synchronization from Super-Threshold to Sub-threshold Region

• Sub-threshold Operation

• Synchronization in Multi-Low-VDD Systems on Chip

• Low Voltage Synchronizer Design

• Sub-threshold Synchronizer Design

• Results

• Implementation

• Conclusion

Page 3: Extending Synchronization from Super-Threshold to Sub-threshold Region

• Sub-threshold Operation

• Synchronization in Multi-Low-VDD Systems on Chip

• Low Voltage Synchronizer Design

• Sub-threshold Synchronizer Design

• Results

• Implementation

• Conclusion

Page 4: Extending Synchronization from Super-Threshold to Sub-threshold Region

� 4© Holst Centre

Sub-threshold Operation

• Minimum energy point VDD

• Low Performance Requirement

Minimum Energy VDDF

req

VDD

En

erg

y p

er C

ycle

Dynamic

Leakage

Total

VDD0 0VT VT

Page 5: Extending Synchronization from Super-Threshold to Sub-threshold Region

• Sub-threshold Operation

• Synchronization in Multi-Low-VDD Systems on Chip

• Low Voltage Synchronizer Design

• Sub-threshold Synchronizer Design

• Results

• Implementation

• Conclusion

Page 6: Extending Synchronization from Super-Threshold to Sub-threshold Region

� 6© Holst Centre

Multi-Low-VDD Systems on Chip

VDD/Clock Domain A

Norm VDD

VDD/Clock Domain B

Low VDD

VDD/Clock Domain C

Sub-threshold VDD

Network on Chip

S S

S

Synchronizers

Page 7: Extending Synchronization from Super-Threshold to Sub-threshold Region

• Sub-threshold Operation

• Synchronization in Multi-Low-VDD Systems on Chip

• Low Voltage Synchronizer Design

• Sub-threshold Synchronizer Design

• Results

• Implementation

• Conclusion

Page 8: Extending Synchronization from Super-Threshold to Sub-threshold Region

� 8© Holst Centre

Synchronizer Performance (MTBF)

dcw

Tt

ffT

eMTBF

ds

τ−

=

ts: Synchronization TimeTd : Normal Propagation Delayτ : Metastability Time Constant Tw : Metastability Windowfc : Clock Frequencyfd : Incoming Data Frequency

In the Super-threshold Region:

↓↓↑→↓→∝ MTBFTVDDVDDT dd ,

↓↓↑→↓→∝∝∝ MTBFVDDVDDIgandg

Cdm

m

ττ ,2

In the Sub-threshold Region:

↓↓↓↑↑→↓→∝ MTBFTVDDe

VDDT dVDDd ,

↓↓↓↑↑→↓→∝∝∝ MTBFVDDeIgandg

C VDD

dm

m

ττ ,

Page 9: Extending Synchronization from Super-Threshold to Sub-threshold Region

� 9© Holst Centre

Jamb Latch

τ

9.5E-09

2.8E-09

9.0E-10

3.2E-10

1.3E-10

6.0E-11

3.2E-11

1.2E-07

4.0E-07

3.4E-08

1.00E-11

1.00E-10

1.00E-09

1.00E-08

1.00E-07

1.00E-06

0.2 0.4 0.6 0.8 1 1.2

VDD (v)

Tau

(s)

Schematic vs VDDτ

Page 10: Extending Synchronization from Super-Threshold to Sub-threshold Region

� 10© Holst Centre

Improved Latch

9.2E-08

8.4E-09

9.8E-10

1.9E-106.6E-11

3.4E-112.1E-11

1.5E-111.2E-11 9.6E-12

1.00E-12

1.00E-11

1.00E-10

1.00E-09

1.00E-08

1.00E-07

1.00E-06

0.2 0.4 0.6 0.8 1 1.2

VDD (v)

Tau

(s)

9.5E-09

2.8E-09

9.0E-10

3.2E-10

1.3E-10

6.0E-11

3.2E-11

1.2E-07

4.0E-07

3.4E-08

1.00E-11

1.00E-10

1.00E-09

1.00E-08

1.00E-07

1.00E-06

0.2 0.4 0.6 0.8 1 1.2

VDD (v)

Tau

(s)

Schematic

vs VDDτ

Jamb Latch

Improved Latch

Page 11: Extending Synchronization from Super-Threshold to Sub-threshold Region

� 11© Holst Centre

Normal Propagation Delay Td

Page 12: Extending Synchronization from Super-Threshold to Sub-threshold Region

� 12© Holst Centre

Sub-threshold MTBF

dcw

Tt

ffT

eMTBF

ds

τ−

=

2 days1.5 us92 nsImproved latch

0.17 s0.7 us400 nsJamb Latch

MTBFτ

At 0.3 V, Tw = 30 ~ 50 ns. Assuming that fc = fd = 300 KHz:

dT

Unacceptable !

Two factors are not taken into account in the calculation:

1. System MTBF = Single MTBF / Num of Synchronizers

2. Large Process Variation in the Sub-Threshold Region

Page 13: Extending Synchronization from Super-Threshold to Sub-threshold Region

� 13© Holst Centre

Process Variation

Mean: 440 nsStd: 230 ns

0

10

20

30

40

50

60

70

80

0 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800

Tau (ns)

Nu

mb

er o

f Occ

ura

nce

Variation of Tau for Jamb Latch at 0.3 V

dcw

Tt

ffT

eMTBF

ds

τ−

=

Page 14: Extending Synchronization from Super-Threshold to Sub-threshold Region

• Sub-threshold Operation

• Synchronization in Multi-Low-VDD Systems on Chip

• Low Voltage Synchronizer Design

• Sub-threshold Synchronizer Design

• Results

• Implementation

• Conclusion

Page 15: Extending Synchronization from Super-Threshold to Sub-threshold Region

� 15© Holst Centre

Increasing Transistor Size?

1.80E-11

2.00E-11

2.20E-11

2.40E-11

2.60E-11

2.80E-11

3.00E-11

0.00E+00 2.00E-06 4.00E-06 6.00E-06 8.00E-06 1.00E-05 1.20E-05

Transistor Size (m)

Tau

(s)

↑↑∝

mg

Page 16: Extending Synchronization from Super-Threshold to Sub-threshold Region

� 16© Holst Centre

Applying Forward Body Bias (FBB)

Advantages:

1. Increase gm without increasing C. So tau is reduced.

2. Propagation delay is reduced like other logic circuits.

3. Process variation is improved.

)( Tgsoxnm VVL

WCg −⋅⋅= µ

TV

d

th

dm eI

n

Ig

−∝⋅

= ,ν

Super-threshold:

Sub-threshold:

Page 17: Extending Synchronization from Super-Threshold to Sub-threshold Region

• Sub-threshold Operation

• Synchronization in Multi-Low-VDD Systems on Chip

• Low Voltage Synchronizer Design

• Sub-threshold Synchronizer Design

• Results

• Implementation

• Conclusion

Page 18: Extending Synchronization from Super-Threshold to Sub-threshold Region

� 18© Holst Centre

4.88E-08

3.96E-07

1.00E-11

1.00E-10

1.00E-09

1.00E-08

1.00E-07

1.00E-06

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Body-Bias (v)

Tau

(s)

VDD=1.2 VDD=1.1 VDD=1.0 VDD=0.9 VDD=0.8 VDD=0.7 VDD=0.6

VDD=0.5 VDD=0.4 VDD=0.3

Jamb Latch with FBB

Tau vs FBB

1.30E-08

9.16E-08

1.00E-12

1.00E-11

1.00E-10

1.00E-09

1.00E-08

1.00E-07

1.00E-06

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Body-Bias (v)

Tau

(s)

VDD=1.2 VDD=1.1 VDD=1.0 VDD=0.9 VDD=0.8 VDD=0.7 VDD=0.6

VDD=0.5 VDD=0.4 VDD=0.3

Improved Latch with FBB

8 times reduction 7 times reduction

DecreasingVDD

Page 19: Extending Synchronization from Super-Threshold to Sub-threshold Region

� 19© Holst Centre

3.150E-07

1.454E-06

1.00E-10

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Body-Bias (v)

No

rmal

Pro

pag

atio

n D

elay

(s)

VDD=1.2 VDD=1.1 VDD=1.0 VDD=0.9 VDD=0.8 VDD=0.7

VDD=0.6 VDD=0.5 VDD=0.4 VDD=0.3

1.43E-07

7.06E-07

1.00E-11

1.00E-10

1.00E-09

1.00E-08

1.00E-07

1.00E-06

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Body-Bias (v)

No

rmal

Pro

pag

atio

n D

elay

(s)

VDD=1.2 VDD=1.1 VDD=1.0 VDD=0.9 VDD=0.8 VDD=0.7

VDD=0.6 VDD=0.5 VDD=0.4 VDD=0.3

Jamb Latch with FBB

Propagation Delay vs FBB

Improved Latch with FBB

5 times reduction 4 times reduction

Page 20: Extending Synchronization from Super-Threshold to Sub-threshold Region

� 20© Holst Centre

Process Variation

Mean: 440 nsStd: 230 ns

0

10

20

30

40

50

60

70

80

0 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800

Tau (ns)

Nu

mb

er o

f Occ

ura

nce

Mean: 54 nsStd: 25 ns

0

10

20

30

40

50

60

70

80

90

0 25 44 63 82 101 120 139 158 177 196

Tau (ns)

Num

ber o

f Occ

uran

ce

Without FBB at 0.3 V With FBB at 0.3 V

Std: 10 times reduction

Mean: 54 nsStd: 25 nsMean: 440 ns

Std: 230 ns

Page 21: Extending Synchronization from Super-Threshold to Sub-threshold Region

� 21© Holst Centre

Sub-threshold MTBF

dcw

Tt

ffT

eMTBF

ds

τ−

=

1.35x1017

years0.14 us49 nsJamb Latch with 0.3V FBB

2 days1.5 us92 nsImproved latch

4.88x1089

years0.32 us13 nsImproved Latch with 0.3V FBB

0.17 s0.7 us400 nsJamb Latch

MTBFτ

At 0.3 V, Tw = 7 ~ 15 ns, assuming that fc = fd = 300 KHz:

dT

4.7 months3σ

Page 22: Extending Synchronization from Super-Threshold to Sub-threshold Region

• Sub-threshold Operation

• Synchronization in Multi-Low-VDD Systems on Chip

• Low Voltage Synchronizer Design

• Sub-threshold Synchronizer Design

• Results

• Implementation

• Conclusion

Page 23: Extending Synchronization from Super-Threshold to Sub-threshold Region

� 23© Holst Centre

Full-VDD Biased Synchronizer

Advantage:

1. Full-VDD bias gives large performance improvement.

2. No on-chip voltage generation circuit needed (Min Power andArea Overhead).

3. The Bias can be disabled when VDD is higher than the PN junction conducting voltage (0.7 V) to avoid performance degradation.

Page 24: Extending Synchronization from Super-Threshold to Sub-threshold Region

• Sub-threshold Operation

• Synchronization in Multi-Low-VDD Systems on Chip

• Low Voltage Synchronizer Design

• Sub-threshold Synchronizer Design

• Results

• Implementation

• Conclusion

Page 25: Extending Synchronization from Super-Threshold to Sub-threshold Region

� 25© Holst Centre

Conclusions

1. For the first time, synchronizer performance is investigated in the near-threshold and sub-threshold region.

2. The investigated synchronizers shows unacceptable MTBF especially when taking into account the process variation.

3. Applying Forward Body Bias significantly improves Td and Tau. It also greatly reduce the impact of process variation on synchronizer performance. As a result, MTBF is significantly improved.

4. A full-VDD biased synchronizer scheme is proposed to improve synchronizer performance in the near-threshold and sub-threshold region with minimal area and power overhead.

Page 26: Extending Synchronization from Super-Threshold to Sub-threshold Region

� 26© Holst Centre

Question?

Thank you !