Top Banner

of 16

Engg Services Civil Engineering Subjective Paper 2 2011

Apr 02, 2018

Download

Documents

SudharsananPRS
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 7/27/2019 Engg Services Civil Engineering Subjective Paper 2 2011

    1/16

    ~ . _ ~ " ' C . $010901 I D - R S R - L - P R B I

    CIVIL ENGINEERINGP a p e r I I( C o n v e n t i o n a l )

    .' Three Hours 1 IMaxinlum M a r k s : 2001I N S T R U C T I O N S

    A t t e7 n p t a n y F I V E que s t ions .E a c h que s t ion c ar r i e s 4 0 " , a r k s .

    T h e n u m b e r of TRarks c ar r i e d by each:s u b d i v i s i o n o f a q u e s t i o n i.Y i n d i c a t e d a t th e e n do f th e s u b d i v i s i o n l q u e ..t ion . W h e r e v e r a q u e s t i o n

    i s a t t emp t ed , a l l i ts subd i v i s i ons m u s t b ea t t e" ,p t ed .

    Ans lVers " , u s t b e lVr i t ten o n l y i n E N G L I S H .A s s u m e s u i ta b l e d a t a , if f o u n d nece ."sary , a n d

    i nd i c a t e th e saTTle c lear l y .U n les s i n d i c a t e d otherwise , n o t a t i o n s a n d

    sYTTlbols h a v e t h e i r u s u a l ' m e a n i n g s .N.eat she tcheR to be druUJn, lVherever r e qu i r e d .

    (a ) ( i ) T h e a reas be tween th e i sohyets a re givenln t ab le below. Obta in th e E q u i v a l e n tuniform depth . W h a t is th e dep th o f flow i f

    RSR - L -PRB 1 [Con td . l

  • 7/27/2019 Engg Services Civil Engineering Subjective Paper 2 2011

    2/16

    I s ohye t sl T ID lA r e a

    b e t w e e nI s ohye t s

    . (sq . kID)

    (ii)

    (b ) ( 0

    (ii)

    D-RSR-L-PRB

    th e coeff ic ient of - JG .J-[ 'H() t;'runof f is 0 4 ? ind th evolulTle of runoff .W h a t are th e HlTlitations o f th e i sohye ta lm e t h o d ?W h a t is coeff ic ient of va r i a t i on?

    7 5 90 100 125 140 150 165 18, / , / / ,/ , /60 0 275 260 150 3 8 0

    Define th e fo l lowing (1) Fie ld i r r iga t ion requirelTlent(2) W a t e r appl ica t ion eff iciency(3 ) W a t e r s to rage eff iciency(4) W a t e r dis t r ibu t ion eff iciency(5 ) ConsulTlpt ive u s e

    ,/ , /215 120

    T h e wate r s hed a t a pa r t i cu la r s i te on ar l ve r h a s 77000 ha . T h e m e a n a n n u a lprec ipi ta t ion is 950 1l11Tl. A b o u t 25% ofprec ip i ta t ;on reaches th e bas in ou t l e t a sstrealTl flow . Es t i Ina te th e m e a n flow r a t eQ h . . 3 - 1a t t IS site In JTl S .If th e h e a d ava i lable a t th e s i te i s 150 man d a s s u m i n g th e t r ansmiss ion loss of 10%,w h a t would be th e p o w e r t h a t can begenera ted in MW ?

    2 ICon

  • 7/27/2019 Engg Services Civil Engineering Subjective Paper 2 2011

    3/16

    (i i i) A p o w e r p l a n t IS h a v i n g 6 u n i t s a n dp r o d u c i n g 18 M"V. T h e s p e e d o f t h e t u r b i n eis 650 r p m . T h e gross h e a d i s 300 m . A l o s so f 26 Tn h e a d is e s t i m a t e d . T h e coef f ic ien to f veloci ty is 0 97 . T h e d i sc h a r g e IS1099 n,3 s -1. O b t a i n t h e specif ic s p e e d a n dth e n o n - d i m e n s i o n a l f lo" , coeff ic ien t .

    (c ) In a w a t e r t r e a t m e n t p la n t , ra w w a t e r u n d e r g o e sth e fol lowing t r e a t m e n t processe s V I Z .coagulat ion , f locculation, se d ime n ta t ion an df i l t ra t ion . A p l a n t o f capac i ty to t r e a t3 x 10 4 . rn 3 /d o f ra w w a t e r is i n s t a l l ed fo r atownship . The raw water source i s having" as u s p e n d e d so l id concen t r a t ion o f 400 p p m .A l u m [AI 2 (S04): l 14 H 20 ] iH u se d a s a p r n n a r yc o a g u l a n t a t a dose o f 45 p p m . C o n l p u t e th e dai lyp r o d u c t i o n o r s l u d g e i f 95% o f th e t o t a l s u s p e n d e dso l id s a re relTIoved by th e t r e a t m e n t processes .N e g l e c t a l u m i n i u m h y d r o x i d e q u a n t i t y f o n n e d

    .5

    d u e to Alum dose . 1 0

    (d ) A n 'o v e n d ry soil s m n p l e o f volulTIe 2 25 cm:lw e i g h s 3 9 0 g. If th e specif ic grav i ty i s 2 ' 7 2 ,d e t e r m i n e t h e void ra t io a n d s h r i n k a g e l imi t .W h a t will b e t h e w a t e r c o n t e n t w h i c h wil l ful lys a tu rate th e s a m p l e and c a u s e a n ln crease Inv o l u m e e q u a l to 8% o f th e or ig ina l d ry v o l u m e ? 1 0

    3 lContd .1

  • 7/27/2019 Engg Services Civil Engineering Subjective Paper 2 2011

    4/16

    2. (a ) ( i) Wr i t e a deta i led note on t r ack bal las t . Alsowr i t e th e reconl1nended ba l l a s t de p th .

    (ii) W i t h a n e a t label led ske tch , wri te a noteon points or t u r n o u t s ~

    (b) T h e veloci ty dis t r ibu t ion v(y) in a wide c h a n n e l isgi ven b y v(y) = 575 .Jg Yo So log ( 3 ~ Y )in w h i c h y is th e dis tance from th e bot tom a n d Yois th e dep th of f low, So is th e bed s lope o f th echanne l , k i s th e roughne s s h e i g h t a t th e bed .E s t i m a t e t h e s h e a r s t ress a t 1 C l n above th ebottolTI o f a c ha nne l on a s lope of 050/". T h e de p thof flow i s 2 5 In an d th e charac te r i s t i c roughnessis 1 e m . If th e cr i t ical shea r s t r e s s r equ i red tomove th e bed Tnater ial in th e c h a n n e l i s 1 N /m2 ,f ind w h e t h e r th e c ha nne l is in s tab le condi t ion .T h e viscosi ty of th e w a t e r is 0001 N s rn -2 .

    (c) A 45 sec tor ga te i s located on th e c r e s t o fo;pil lway. T h e w a t e r is up to th e lTIid-point of th ega t e w h e n closp.d. T h e wid th o f t he ga te is 1 0 Ill.T h e r a d i u s o f the sec tor ga t e is 2 m. Dete r mineth e hydros t a t i c force on th e ga te . Mass dens i ty1 0 0 0 kg/ITl 3, g = 9 79 m s-2 .

    (d) D r a w th e to ta l s t r es s , pore pr es s u r e a n d effect ives t res s diagra.rns for a sand stratUITI hav ing at h i cknes s o f l O In. T h e wate r t ab le is a t a dep tho f 2 m below th e ground level and the re is acap i l l a ry r i se . o f 1 In above th e w a t e r table .A s s u m e th e d ry and sa tu ra t ed un i t weights of th es a n d as 17 kN /m 3 an d 21 kN/m 3 respec t ive ly .

    D-RSR-L-PRB 4 [Contd

  • 7/27/2019 Engg Services Civil Engineering Subjective Paper 2 2011

    5/16

    3 . (a ) A 20 m m th ick lab o r a to r y Boil s a m p l e r e a c h e s60% conso l ida t ion In 325 seconds u n d e r doub led ra i n a g e condi t ion . How m u c h t i me will b erequ i red for a 10 m th ick l aye r In th e f ield tor each th e s a m e degree o f consol ida t ion , i f th e c layl a y e r I S s an d wich ed b eh v een a sa n d y l a y e r a n da n i l n p e n n e a b l e l a y e r ?

    (b) W r i t e a de ta i l ed no te with n e a t l abe l l ed ske tcheson dr a i nage as an in tegra l -par t o f geometr ic

    10

    des ign fo r h i g h wa y , for an y five cases . 10(e l

    Cd)

    ( i ) W h a t IS crop c a l e n d a r ? I l l u s t r a t e th esame_

    (ii) D e t e r m i n e th e d i s ch a r g e o f a distr ibutmoya t th e ta i l e n d f rom th e fol lowing d a t a :Gro s s C o m m a n d A r e a (GCA) = 2 0 0 0 0 h aCul t ivab le COInmand Ar ea (CCA) = 70%Losses beyond th e ta i l e n d = 1 m 3s - 1

    K h a r i f Rice Irrigation K o r dep th Kor pe r iodIn tens i ty 19 crn 2 5 w e e k s150/n

    R a b ; \ Vh e a t In iga t ion K or dep th Kor pe r iod

    ( i)

    In tens i ty 135 CIT ) 4 we e k s30%

    Sugar c ane lr l ;gation K o r dep th K o r per iodIn tens i ty 165 CTTI 4 we e k s10%

    W h a tsu rg e

    are t h e a d v a n t a g e st a n k s ove r s imp le

    o f dif feren t ia la n d re s t r i c t ed

    ol'ifice surge tan -ks ?

    7

    4

    D-RSR-L-PRB 5 IContd . ]

  • 7/27/2019 Engg Services Civil Engineering Subjective Paper 2 2011

    6/16

    4. (a )

    (b )

    (ii) EstiTIlate th e rnaxnnUll l w a t e r h a m m e rp r e s s u r e ge ne ra t e d in a r ig id p ipe o f a 3 IIId ia p ipe w i t h a n in i t ia l veloci ty of" 30 n,s.,-la n d th e p ipe is 8 kill long . T h e downstJ 'ea l l lva lve a t th e pipe en d is closed in 4 seconds .T h e b u l k l l lodulus of" w a t e r is225 x 106 k P a a n d th e n>ass densi t .y is995 7 kg /m 3. Also deter l l l ine th e cr i t i ca lt in le o f c losure .

    E x p l a i n th e processIng opera t ions t h a t a regenera l ly ca r r ied o u t for h a n d l i n g a n d d i sposa l o fsol id wa s te s accun>ula ted a t th e bottOlll fro IIIi nd iv idua l a p a r t-m e n t s o f a h igh r i se apal - t rnen t

    6

    bu i ld ing w i th the help o f sol id w a s t e c h u t e. 10Conso l ida ted u n d ra in ed tr iaxia l t e s t s w e r eperforn>ed on tw o ident ica l s p ec in l en s o fsa t u rat ed c lay with pore p res su re rneasureIl lents .T h e obse rva t ions a reCel l proa t fa i lu re

    ( k Pa )2 50350

    Devia to r s t re s sa t fai lure

    ( k Pa )179242

    Po r e pressurea t f"ailure

    (kPa)----1

    101145

    DeterITline th e s h e a r s t r e ng th pa ra n , e t e r s I nt e r = s of bo th to ta l a n d effect ive s t re s ses (byanaly t ica l _l le thod). 1

    D-RSR-L-PRB 6 [Con t d .

  • 7/27/2019 Engg Services Civil Engineering Subjective Paper 2 2011

    7/16

    5.

    (c ) Expla in th e procedure o f conduct ing h n p a c tt e s t a s p e r IS 2386 p a r t IV.W h a t a re th e l i Ini ts for th e mate r i a l to b eused for(1) Sub-base(2) B a s e course(3) Surface course 5

    (ii) Wri te a deta i led no te on s l eeper dens i ty forr a i lways . 5

    (d) A hydrau l i c j u m p i s formed in a 5 m wide out le ta t a shor t dis tance d o w n s t r e a m of cont ro l ga te . Ifth e flow d e p t h s a re 10 m a n d 2 rn In th e u /sa n d dis respect ively of th e s luice ga te a n d th eQ = 1.50 mlls- l , de te rmine( i ) Flovv dep th downs t ream of th e j u m p( i i ) T h r u s t on t he ga t e(iii) H e a d losses in th e j u m p 10

    (a ) ( i) Dravvdown f rom m ul t ip le ob se rva t ion well ina confined aqu i fe r u n d e r s t eady s t a t e flowcondi t ion w h e n 100 m 3/day is p u m p e d isgiven belo", . Dete rmine th e t r ansmis s iv i tyass l l ln ing the l i nea r var ia t ion semi log g r a p hon th e given d a t a : .

    r (Il l ) S ( I n )dis tance drawdovvn

    30 2 79 .40 250550 2 3 8

    100 183200 128400 0 73

    4D -RSR - L -PRB 7 [ C on t d . [

  • 7/27/2019 Engg Services Civil Engineering Subjective Paper 2 2011

    8/16

    , i i) W a t e r f lo""s at. a ve loc i ty o f 1 m .. -1 in a150 f Iun d ia n ew duc t i l e I ron p i p e .E s t i m a t e th e h e a d l o s s o v e r 5 0 0 III u S i n gD a r c y - W e i " b a c h f o r m u l a fo r th e g i v e nks ~ 026 f I lm. 6A . ' t - 100 x 1 0 -6 m 2s .1.: : iUm e V l S C O ~ l y --H i n t 1

    ..i f [k s 251 -.2 lo g . + - _3 7D Re ,,!f I.,

    (b ) W h a t a r e th e l o u r t",,,t,. to b " c a r r i e d o u t forphy.dca l p .xanl ina t ion o f w a t e r qua l i t y in an a t u r a l r ive r f lowing o v e r a n a l luv ia l b ed ?E x p l a i n br ie f ly t h e p r o c e d u r e a n d i n s t r u m e n t srequired to carr ' ) ou t th e t e s t ~ .

    t c i A :n! ta in ing wall 6 m high , with a ~ r n o o t hvertical back J.8 pushed aga ins t a soi l I nassh a v i n g c ' _ 4 0 kN/rn" , ' ~ 15" a n dy .. 19 kl'' ';/m 3 _ e ..in g l tankine 'E; t h e o r y . c o m p u t eth e t .o t a l p, -es"ure a n d th e p o i n t o f a p p l i c a t i o n o ft .he r e su l t an t ; t h , u s t . i f th e horL"on ta l so i lsurface carrie!:! a unifi::;t"m surcharge load o f5 0 k ~ ! m 2 .

    1

    I

    D-RSR - L PRB 8 [Con1:d

  • 7/27/2019 Engg Services Civil Engineering Subjective Paper 2 2011

    9/16

    (d ) ( i ) Runw.ay l eng th r equ i red fo r l and ing a t s ealevel in s t anda rd a tm os phe r i c condi t ion is-2100 rn. R u n w a y l eng th r equ i red fo r t akeoff a t a level s i te - a t s e a l eve l I I Is t anda rd at010spher ic condi t ion i s 2500 rn .AerodrOIne e leva t ion lS 200 m an dre ference t empera tu re 1 S 24C.T eI npe r a tu r e i n t he s t anda rd a t m o s p h e r efor 200 In is 15C a n d r u n w a y slope is0-5%. De te rm ine t he leng th o f th e -r u n w a yaf te r app ly ing correct ion to r u n w a y l e ng th . 5

    (ii) Discuss th e - five s t eps involved In th ese t t ing u p of a Theodol i te .

    (a) T h e l l leasured loss of head In a 50 l l lm dia l l le te rpipe conveying w a t e r a t 0 6 O1S-1 is 8PO 0101 o fw a t e r p e r 100 01 l eng th . Ca lcu la te th e loss o fh e a d in ITlm of w a t e r p e r 400 01 l eng th w h e n a i rf lows t h r ough a 200 -O1rn d iame te r pipe a t th ecor re sponding speed . Assu01e t h a t th e p ipes havegeometr ica l ly s imi l a r roughne s s an d aSSU01e th edens i t i e s of a i r and w a t e r a s 1 23 an d 1000 kg /rn 3a n d th e abso lu te viscos i t ies a s 1 8 x 1 0 -5 a n d012 P a . s respect ively . -

    5

    10

    RSR-L-PRB 9 [Con td . )

  • 7/27/2019 Engg Services Civil Engineering Subjective Paper 2 2011

    10/16

    (b ) (n

    A \vaste disposa lcons t ruc ted in glac ia l

    faci l i tysoi!. T h e

    I S to b es a n d aqu i fe r

    occurs immedia te ly below. T h e facil i ty IS278 rn long a n d 200 m wide . T h e t r e n c h e se x t e n d u p to 13 minto oxidised t i l l a n dp e n e t r a t e w a t e r t ab le which is 5 m belowth e l and surface . T h e hydrau l icconduc t iv i t i e s o f u p p e r t i l l a n d l ower t i l la re respec t ive ly 1 0 -7 m s- 1 an d 1 0 -8 111S- 1 .Average g r a d i e n t o f " , a t e r t ab le is 072ac ross th e si te . T h e m a t e r i a l on th e r i g h t .h a n d s ide is to b e excava ted to th e to p o funox id i sed t i l l . T h e t r ench ....,ill b e f i l led byth e grave l . Calcu la te th e g ro u n d w a t e r f lowveloci ty in th e t i l ls , th e vo lumet r ic r a t e o ff low in to th e t r ench and th e t r ave l tiTTle forw a s t e to reach th e sa n d aqui fe r .

    1 - : - - - - - 278 m - - - - ~ > IfT ~ .- OX!13 m d i sed t i l l8 m

    1-" '1 mU n o x d ised t i l l13 In

    S a n d . LEffec t ive poros i ty 0 1-

    D-RSR-L-PRB 10 [Con

  • 7/27/2019 Engg Services Civil Engineering Subjective Paper 2 2011

    11/16

    (c )

    (ii) W h a t IS th e int-r insic pe rm e a b i l i t y o f a w a t e r sa tu ra t ed m e dium t h a t h a s hydra u l i cconduct iv i ty o f 15 24 m l d a y ? A s s u m e th egroung w a t e r is a t a tm os phc r i c pr es s u r e a t20C an d h as a dens i ty o f 9982 kg/m 3 an dviscosi ty o f 1002 x 1 0 -3 kg /ms . 4

    ( i ) T h e following obse rva t ions were m a d e . tone tcrJn ine th e sens i t iv i ty of tw o bubb letubes . D e t c r m i n e which l;mbbJe t ube ISm ore sens it ive . The dis tance o f th e s t a f ffrolTI th e instrulTIent w as lOO lTI a n d th elength o f one division o f bo th bubb le t ubesi s 2 TUrn . _ ._ ,

    Buhb le B u b b l e Re a d ing St a f fT u b e f - - - R e a d i n gL H S R H S

    I 1 13 05 1 681A . . 08 12 1 7671 -1 15B 03 1 635.. 06 14 178811 -

    (ii) Fol lowing da ta per ta ins to a cross -se c t i o n :Founda t ion wid th i s 20 rn, dep th o f c u t a tmid-point IS 4 TIl, transverse s lope onth e l - ight s ide to th e mid-po in t is 1 0 to 1a n d t r ans ve r s e s lope on th e le f t h a n ds id e of lTIid-point is 7 to 1.. T h e s ide s lopeis 2 5 to 1.D r a w a n e a t label led f igure an d cOlTIputeth e a rea of the cross-sect ion .

    5

    5

    1 1 [Con td .J

  • 7/27/2019 Engg Services Civil Engineering Subjective Paper 2 2011

    12/16

    'Cd) T he subsoi l a t a bui ld ing s i te consis t s o f medimTls a n d with y = 18 kN/m 3, c' = 0, ' = 32 an dw a t e r tab le a t th e ground surface_ A 2-5 . ms q u a r e footing is to be placed a t 1-5 In below theground surface . COTnpute th e safe bear ingcapac i ty o f th e footing.W h a t will be th e safe bear ing capac i ty , i f th ew a t e r t ab le goes down to 3 m below th e gr oundsur face?

    [ Fo r

  • 7/27/2019 Engg Services Civil Engineering Subjective Paper 2 2011

    13/16

    (b )

    (c )

    Analysesover th eindica tes

    of thep a s t 150

    th edis t r ibu t ion .-

    TTlaximumy e a r s infollowing

    a n n u a l flooda sn l all r iver

    cumula t i ve

    NUIl lbcr Q P(X < xn )1 0 02 25 0 193 50 0 35- 4 75 0 .'525 100 0626 125 0 697 150 0 8 88 175 0 929 200 095

    1O 225 0 9811 250 100

    Est im.a te 10, 50, 100 yea r s flood.(ii) A 25 crn pipe is cOTTlpressed by a t r ee roo t

    in to an el l ip t ical sect ion unt i l i t s ins ideh e i gh t is 18 cm. Dete r mine t he hyd r au l icm e a n r a d i u s whe n the pipe is h a l f full .

    A t u rb ine fo r th e following s i te condi t ion is to b ed e s i g n e d :J-Jead i s 120 m., P o w e r produced = 5 x 120 M W .No. of t u r b ines 5 . H e a d loss du e to fr ict ion as3 % th e gross h e a d . L e ng th o f th e pens tock1300 Tn each . Overa l l Eff iciency 0 87. N u m b e r ofpa i r s o f poles 18. Speed 166 7 rp m . B r e a d t h toD i a m e t e r 0 3. Darcy-Wei sbach f = 0020. .D e term.ine th e d iame te r of th e penstock , R u n n e r

    .5

    .5

    a nd th e type of tu rb ine . = 0 75 . 1013 [Contd .J

  • 7/27/2019 Engg Services Civil Engineering Subjective Paper 2 2011

    14/16

    8.

    (d) E xp la in th e fol lowing t e r m s genera l ly adopted Inw a s t e w a t e r collect ion s y s t e m :( i ) (1) S e w a g e (2) Se we r s (3) Se we ra ge s ys t e m .

    Brief ly ment ion th e p r.inc ip les involved 1n' C o ~ b i n e d sewer design7.

    ( i i) A s i te a d ja c e n t to a r iver IS considered forth e loca t ion of a munic ipa l was te w a t e rt r ea t l nen t p lan t hav ing an a ve ra geinf low o f 2500 m 3/day . T h e se lec tedt r ea tment process sequence IS as fo l lows :(1 ) gr i t channe l (2) pJ"imary s ed imen ta t i on(3) ac t iva ted s ludge an d (4) secondarysedimentat ion.Design th e gr i t c ha nne l s as s umI ngInaX'nlum hydrau l ic load ing a s twice th e

    .average inf low rate . As S t l l n e otherappropr ia te design p a r a m e t e r s , i f requ i red .

    (a ) Nine pi les o f 300 In111 diia a n d 8 Tn l eng th a rea r ranged In a s qua r e pa t t e rn for th e foundat ionfor a co lumn In a uniform depos i t o f TTlediurns t i f f clay (qu - 100 kN/1112 ). If th e cen t re tocen t re spac ing of pi les IS 900 lllrn and adhes ionfac tor - Og, ca lcula te th e capac i ty o f the ' pilegroup a s s u m i n g a F .S . of 2 5 .

    (b) E xp la in in detai l th e e igh t r equ i r emen t s ofa irport pave.rnent.

    D-RSR-L-PRB 14 [Con

  • 7/27/2019 Engg Services Civil Engineering Subjective Paper 2 2011

    15/16

    (c ) ( i ) W h a t is p r i m i n g ?(ii) A s iphon h a s a r ec t angu la r t h r o a t sect ion

    2 2 m wide a n d th e r ad ius o I t h e c r o w n an dc r e s t a r e 3 In a n d 16 rn respect ive ly . T h ee n e r g y losses a re 0 '2 , 0 '2 , 06 a n d 05 tiITlesth e - m e a n veloci ty he a d a t t h r o a trespect ive ly ln th e in let , u p p e r l eg ; l o w e rle g an d ou t l e t pOI-tion . T h e ki"net.ic eneTj,'Ycoeff ic ient i s 103. Local at r r lOspher icpr es s u r e lS 10 In o f wa te r . D e t e r m i n ea . th e d i scha rge when th e r e se rvo i r level

    is 03 m above the c re s t a n d th e t a i lw a t e r level (ou t l e t submerged) 6 mbelow i t .

    b. th e ITliniITluTTl pr es s u r e a t th e t h r o a tsect ion.

    F o r s ubm e rge d condi t ion ou t l e t velQcity is50% o f t h r o a t veloci ty '.

    (d ) ( i) E x p l a i n th e func t ion o f governo r in IYnpulset ype of t u rb ine .

    (ii) A Pe.l ton whee l develops 3500 k W u n d e r ahe a d of 120 In wi th a n overa l l eff ic iency of8 5 %. Find th e dian le te r o f th e nozzle i f th ecoeff ic ient o f veloci ty is 098 .

    1 5

    1

    9

    2

    8

  • 7/27/2019 Engg Services Civil Engineering Subjective Paper 2 2011

    16/16