Top Banner
Energy Flow Polynomials for Jet Substructure MIT Jet Workshop Cambridge, MA – January 11, 2018 Patrick T. Komiske III Center for Theoretical Physics, Massachusetts Institute of Technology PTK, E.M. Metodiev, J. Thaler – 1712.07124 Patrick T. Komiske III (MIT) EFPs for Jet Substructure 1 / 28
42

Energy Flow Polynomials for Jet Substructure

Nov 20, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Energy Flow Polynomials for Jet Substructure

Energy Flow Polynomials for Jet SubstructureMIT Jet Workshop

Cambridge, MA – January 11, 2018

Patrick T. Komiske IIICenter for Theoretical Physics, Massachusetts Institute of Technology

PTK, E.M. Metodiev, J. Thaler – 1712.07124

Patrick T. Komiske III (MIT) EFPs for Jet Substructure 1 / 28

Page 2: Energy Flow Polynomials for Jet Substructure

Energy Flow Polynomials

Part I - Introduction to Energy Flow Polynomials

Energy Flow Polynomials (EFPs)

Energy Flow Basis from IRC safety

Taming the (IRC-safe) Substructure Zoo

Spanning Substructure with Linear Regression

Patrick T. Komiske III (MIT) EFPs for Jet Substructure 2 / 28

*Part I based on atalk by Eric Metodiev.

Page 3: Energy Flow Polynomials for Jet Substructure

Energy Flow Polynomials

EFP Essentials

EFPG =M∑i1=1· · ·

M∑iN=1︸ ︷︷ ︸

Correlator

zi1 · · · ziN︸ ︷︷ ︸Energies

∏(k,`)∈G

θiki`︸ ︷︷ ︸Angles

e+e− measure: zi = Ei∑kEk

θij =(

2pµipjµ

EiEj

)β/2

Hadronic measure: zi = pT,i∑kpT,k

θij = (∆y2ij + ∆φ2

ij)β/2

e.g.

=M∑i1=1

M∑i2=1

M∑i3=1

M∑i4=1

zi1zi2zi3zi4θi1i2θi2i3θ2i2i4θi3i4

=M∑i1=1

M∑i2=1

M∑i3=1

M∑i4=1

M∑i5=1

zi1zi2zi3zi4zi5θi1i2θi2i3θi1i3θi1i4θi1i5θ2i4i5

Patrick T. Komiske III (MIT) EFPs for Jet Substructure 3 / 28

of and

Figure by E.M. Metodiev

“fly-swatter”

“bowtie”

Page 4: Energy Flow Polynomials for Jet Substructure

Energy Flow Polynomials

EFP Essentials

EFPG =M∑i1=1· · ·

M∑iN=1︸ ︷︷ ︸

Correlator

zi1 · · · ziN︸ ︷︷ ︸Energies

∏(k,`)∈G

θiki`︸ ︷︷ ︸Angles

e+e− measure: zi = Ei∑kEk

θij =(

2pµipjµ

EiEj

)β/2

Hadronic measure: zi = pT,i∑kpT,k

θij = (∆y2ij + ∆φ2

ij)β/2

e.g.

=M∑i1=1

M∑i2=1

M∑i3=1

M∑i4=1

zi1zi2zi3zi4θi1i2θi2i3θ2i2i4θi3i4

=M∑i1=1

M∑i2=1

M∑i3=1

M∑i4=1

M∑i5=1

zi1zi2zi3zi4zi5θi1i2θi2i3θi1i3θi1i4θi1i5θ2i4i5

Patrick T. Komiske III (MIT) EFPs for Jet Substructure 3 / 28

of and

Figure by E.M. Metodiev

“fly-swatter”

“bowtie”

Page 5: Energy Flow Polynomials for Jet Substructure

Energy Flow Polynomials

EFP Essentials

EFPG =M∑i1=1· · ·

M∑iN=1︸ ︷︷ ︸

Correlator

zi1 · · · ziN︸ ︷︷ ︸Energies

∏(k,`)∈G

θiki`︸ ︷︷ ︸Angles

e+e− measure: zi = Ei∑kEk

θij =(

2pµipjµ

EiEj

)β/2

Hadronic measure: zi = pT,i∑kpT,k

θij = (∆y2ij + ∆φ2

ij)β/2

e.g.

=M∑i1=1

M∑i2=1

M∑i3=1

M∑i4=1

zi1zi2zi3zi4θi1i2θi2i3θ2i2i4θi3i4

=M∑i1=1

M∑i2=1

M∑i3=1

M∑i4=1

M∑i5=1

zi1zi2zi3zi4zi5θi1i2θi2i3θi1i3θi1i4θi1i5θ2i4i5

Patrick T. Komiske III (MIT) EFPs for Jet Substructure 3 / 28

of and

Figure by E.M. Metodiev

“fly-swatter”

“bowtie”

Page 6: Energy Flow Polynomials for Jet Substructure

Energy Flow Polynomials

Multigraph/EFP Correspondence

Multigraph ←→ EFP

j ←→ zijk ` ←→ θiki`

=M∑i1=1

M∑i2=1

M∑i3=1

M∑i4=1

zi1zi2zi3zi4θi1i2θi1i3θi1i4

N Number of vertices ←→ N -particle correlatord Number of edges ←→ Degree of angular monomialχ Treewidth + 1 ←→ Optimal VE Complexity

Connected ←→ PrimeDisconnected ←→ Composite

Patrick T. Komiske III (MIT) EFPs for Jet Substructure 4 / 28

Page 7: Energy Flow Polynomials for Jet Substructure

EF Basis from IRC safety

Part I - Introduction to Energy Flow Polynomials

Energy Flow Polynomials (EFPs)

Energy Flow Basis from IRC safety

Taming the (IRC-safe) Substructure Zoo

Spanning Substructure with Linear Regression

Patrick T. Komiske III (MIT) EFPs for Jet Substructure 5 / 28

*Part I based on atalk by Eric Metodiev.

Page 8: Energy Flow Polynomials for Jet Substructure

EF Basis from IRC safety

EFPs Linearly Span IRC-safe Observables

Start with an arbitrary IRC-safe observable S(pµ1 , . . . , pµM )

Energy expansion*: Approx. S with polynomials of zij

IR safety: S unchanged by addition of infinitesimally soft particlesC safety: S unchanged by collinear splittings of particlesRelabeling symmetry: Particle indexing is arbitrary

See also F. Tkachov hep-ph/9601308, N. Sveshnikov and F. Tkachov hep-ph/9512370

=⇒ Energy correlators linearly span IRC-safe observables

Angular expansion*: Approx. angular part of S with polynomials of θijSimplify: Identify unique analytic structures that emerge as EFPsSimilar emergent multigraphs in M. Hogervorst et al. 1409.1581 and B. Henning et al. 1706.08520

=⇒ EFPs linearly span IRC-safe observables

*These expansions generically make use of the Stone-Weierstrass Theorem

Patrick T. Komiske III (MIT) EFPs for Jet Substructure 6 / 28

S '∑G∈G

sGEFPG

Page 9: Energy Flow Polynomials for Jet Substructure

EF Basis from IRC safety

EFPs Linearly Span IRC-safe Observables

Start with an arbitrary IRC-safe observable S(pµ1 , . . . , pµM )

Energy expansion*: Approx. S with polynomials of zijIR safety: S unchanged by addition of infinitesimally soft particlesC safety: S unchanged by collinear splittings of particlesRelabeling symmetry: Particle indexing is arbitrary

See also F. Tkachov hep-ph/9601308, N. Sveshnikov and F. Tkachov hep-ph/9512370

=⇒ Energy correlators linearly span IRC-safe observables

Angular expansion*: Approx. angular part of S with polynomials of θijSimplify: Identify unique analytic structures that emerge as EFPsSimilar emergent multigraphs in M. Hogervorst et al. 1409.1581 and B. Henning et al. 1706.08520

=⇒ EFPs linearly span IRC-safe observables

*These expansions generically make use of the Stone-Weierstrass Theorem

Patrick T. Komiske III (MIT) EFPs for Jet Substructure 6 / 28

S '∑G∈G

sGEFPG

Page 10: Energy Flow Polynomials for Jet Substructure

EF Basis from IRC safety

EFPs Linearly Span IRC-safe Observables

Start with an arbitrary IRC-safe observable S(pµ1 , . . . , pµM )

Energy expansion*: Approx. S with polynomials of zijIR safety: S unchanged by addition of infinitesimally soft particlesC safety: S unchanged by collinear splittings of particlesRelabeling symmetry: Particle indexing is arbitrary

See also F. Tkachov hep-ph/9601308, N. Sveshnikov and F. Tkachov hep-ph/9512370

=⇒ Energy correlators linearly span IRC-safe observablesAngular expansion*: Approx. angular part of S with polynomials of θijSimplify: Identify unique analytic structures that emerge as EFPsSimilar emergent multigraphs in M. Hogervorst et al. 1409.1581 and B. Henning et al. 1706.08520

=⇒ EFPs linearly span IRC-safe observables

*These expansions generically make use of the Stone-Weierstrass Theorem

Patrick T. Komiske III (MIT) EFPs for Jet Substructure 6 / 28

S '∑G∈G

sGEFPG

Page 11: Energy Flow Polynomials for Jet Substructure

EF Basis from IRC safety

Organization of the Energy Flow Basis

Need to select EFP subset GDetermine G by truncating in dFinite # of EFPs at each d

OEIS A050535:# of multigraphs with d edges# of EFPs of degree d

OEIS A076864:# of connect. multigraphs with d edges# of prime EFPs with degree d

Patrick T. Komiske III (MIT) EFPs for Jet Substructure 7 / 28

Page 12: Energy Flow Polynomials for Jet Substructure

Substructure Zoo

Part I - Introduction to Energy Flow Polynomials

Energy Flow Polynomials (EFPs)

Energy Flow Basis from IRC safety

Taming the (IRC-safe) Substructure Zoo

Spanning Substructure with Linear Regression

Patrick T. Komiske III (MIT) EFPs for Jet Substructure 8 / 28

*Part I based on atalk by Eric Metodiev.

Page 13: Energy Flow Polynomials for Jet Substructure

Substructure Zoo

Substructure Observables in the Energy Flow Context

Jet Mass: m2J

p2TJ

=M∑i1=1

M∑i2=1

zi1zi2(cosh(∆yi1i2)− cos(∆φi1i2)) = 12 × + · · ·

Angularities: λ(α) =M∑i=1

ziθαi

λ(4) = − 34 ×

λ(6) = − 32 × + 5

8 ×

Patrick T. Komiske III (MIT) EFPs for Jet Substructure 9 / 28

C.F. Berger, T. Kucs, and G. Sterman, hep-ph/0303051S.D. Ellis, et al., 1001.0014A.J. Larkoski, J. Thaler, and W. Waalewijn, 1408.3122

using pT -centroid axis

Page 14: Energy Flow Polynomials for Jet Substructure

Substructure Zoo

Substructure Observables in the Energy Flow Context

Jet Mass: m2J

p2TJ

=M∑i1=1

M∑i2=1

zi1zi2(cosh(∆yi1i2)− cos(∆φi1i2)) = 12 × + · · ·

Angularities: λ(α) =M∑i=1

ziθαi

λ(4) = − 34 ×

λ(6) = − 32 × + 5

8 ×

Patrick T. Komiske III (MIT) EFPs for Jet Substructure 9 / 28

C.F. Berger, T. Kucs, and G. Sterman, hep-ph/0303051S.D. Ellis, et al., 1001.0014A.J. Larkoski, J. Thaler, and W. Waalewijn, 1408.3122

using pT -centroid axis

Page 15: Energy Flow Polynomials for Jet Substructure

Substructure Zoo

Substructure Observables in the Energy Flow Context

Energy Correlation Functions: e(β)N =

M∑i1

· · ·M∑

iN=1zi1 · · · ziN

∏k<`∈{1,...,N}

θβiki`

e(β)2 = , e

(β)3 = , e

(β)4 =

Geometric Moments: C =M∑i=1

zi

(∆y2

i ∆yi∆φi∆yi∆φi ∆φ2

i

), Pf = 4 detC

(TrC)2

Tr C = 12 × , 4 det C = − 1

2 ×

Patrick T. Komiske III (MIT) EFPs for Jet Substructure 10 / 28

A.J. Larkoski, G.P. Salam, J. Thaler, 1305.0007with measure choice β

L.G. Almeida, et al., 0807.0234 J. Thaler and Lian-Tao Wang, 0806.0023 J. Gallicchio and M. Schwartz, 1211.7038

using pT -centroid axis

Page 16: Energy Flow Polynomials for Jet Substructure

Substructure Zoo

Substructure Observables in the Energy Flow Context

Energy Correlation Functions: e(β)N =

M∑i1

· · ·M∑

iN=1zi1 · · · ziN

∏k<`∈{1,...,N}

θβiki`

e(β)2 = , e

(β)3 = , e

(β)4 =

Geometric Moments: C =M∑i=1

zi

(∆y2

i ∆yi∆φi∆yi∆φi ∆φ2

i

), Pf = 4 detC

(TrC)2

Tr C = 12 × , 4 det C = − 1

2 ×

Patrick T. Komiske III (MIT) EFPs for Jet Substructure 10 / 28

A.J. Larkoski, G.P. Salam, J. Thaler, 1305.0007with measure choice β

L.G. Almeida, et al., 0807.0234 J. Thaler and Lian-Tao Wang, 0806.0023 J. Gallicchio and M. Schwartz, 1211.7038

using pT -centroid axis

Page 17: Energy Flow Polynomials for Jet Substructure

Linear Regression

Part I - Introduction to Energy Flow Polynomials

Energy Flow Polynomials (EFPs)

Energy Flow Basis from IRC safety

Taming the (IRC-safe) Substructure Zoo

Energy Flow Polynomials

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Lea

rned

Coeffi

cien

t

W Jets: Ang. α = 6

Pythia 8.226,√s = 13 TeV

R = 0.8, pT ∈ [500, 550] GeV

EFP β = 1, d ≤ 7

Spanning Substructure with Linear Regression

Patrick T. Komiske III (MIT) EFPs for Jet Substructure 11 / 28

*Part I based on atalk by Eric Metodiev.

Page 18: Energy Flow Polynomials for Jet Substructure

Linear Regression

Linear Models

S '∑G∈G

sGEFPG, S : IRC-safe observable, G : set of EFPs

Machine learn {sG} with a linear modelLinear models:

Convex with few/no hyperparameters to tuneAchieve global optimum via closed form solution or convergent iterationCannot have a simpler model (1 parm./input) sensitive to all inputsMany potential methods to analyze learned modelSee Ch. 3 and 4 of C. Bishop Pattern Recognition and Machine Learning

Patrick T. Komiske III (MIT) EFPs for Jet Substructure 12 / 28

Page 19: Energy Flow Polynomials for Jet Substructure

Linear Regression

Confirming Analytic Relationships

λ(2) = 12 × , λ(4) = − 3

4 ×

λ(6) = − 32 × + 5

8 ×

Energy Flow Polynomials

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Lea

rned

Coeffi

cien

t

W Jets: Ang. α = 2

Pythia 8.226,√s = 13 TeV

R = 0.8, pT ∈ [500, 550] GeV

EFP β = 1, d ≤ 7

Energy Flow Polynomials

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Lea

rned

Coeffi

cien

t

W Jets: Ang. α = 4

Pythia 8.226,√s = 13 TeV

R = 0.8, pT ∈ [500, 550] GeV

EFP β = 1, d ≤ 7

Energy Flow Polynomials

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Lea

rned

Coeffi

cien

t

W Jets: Ang. α = 6

Pythia 8.226,√s = 13 TeV

R = 0.8, pT ∈ [500, 550] GeV

EFP β = 1, d ≤ 7

Patrick T. Komiske III (MIT) EFPs for Jet Substructure 13 / 28

Page 20: Energy Flow Polynomials for Jet Substructure

Linear Regression

Linear Regression and IRC-safetymJ/pT,J : IRC safe - no Taylor expansion due to square rootλ(α=1/2): IRC safe - no simple analytic relationshipτ

(β=1)2 : IRC safe - algorithmically definedτ

(β=1)21 : Sudakov safe - safe for 2-prong jets and moreτ

(β=1)32 : Sudakov safe - safe for 3-prong jets and more

Multiplicity: IRC unsafe

2 3 4 5 6 7

Max Degree of EFPs

0.0

0.2

0.4

0.6

0.8

1.0

Cor

r.C

oef

.5

th−

95th

Per

centi

le

QCD Jets

Pythia 8.226,√s = 13 TeV

R = 0.8, pT ∈ [500, 550] GeV

EFP β = 1

mJ/pTJ

λ(α=1/2)

τ(β=1)2

τ(β=1)21

τ(β=1)32

Mult.

2 3 4 5 6 7

Max Degree of EFPs

0.0

0.2

0.4

0.6

0.8

1.0

Cor

r.C

oef

.5

th−

95th

Per

centi

le

W Jets

Pythia 8.226,√s = 13 TeV

R = 0.8, pT ∈ [500, 550] GeV

EFP β = 1

mJ/pTJ

λ(α=1/2)

τ(β=1)2

τ(β=1)21

τ(β=1)32

Mult.

2 3 4 5 6 7

Max Degree of EFPs

0.0

0.2

0.4

0.6

0.8

1.0

Cor

r.C

oef

.5

th−

95th

Per

centi

le

Top Jets

Pythia 8.226,√s = 13 TeV

R = 0.8, pT ∈ [500, 550] GeV

EFP β = 1

mJ/pTJ

λ(α=1/2)

τ(β=1)2

τ(β=1)21

τ(β=1)32

Mult.

Patrick T. Komiske III (MIT) EFPs for Jet Substructure 14 / 28

Page 21: Energy Flow Polynomials for Jet Substructure

Conclusions

Part I Conclusions

EFPs:Energy correlators with angular structures indexed by multigraphsLinearly span the space of IRC-safe observablesEncompass many existing classes of substructure observables

Linear regression:Linear models are the easiest and most tractable kind of model

Convex with few/no hyperparametersGlobal optimum via closed form solution or convergent iterationMany potential tools to analyze what’s learned

Works with EFPs to match onto many IRC-safe observables

Patrick T. Komiske III (MIT) EFPs for Jet Substructure 15 / 28

Page 22: Energy Flow Polynomials for Jet Substructure

Part II - Linear Jet Tagging with EFPs

Linear Classification with EFPs

Comparison with Modern Machine Learning

Fast Computation of EFPs

Patrick T. Komiske III (MIT) EFPs for Jet Substructure 16 / 28

Page 23: Energy Flow Polynomials for Jet Substructure

Linear Classification

Linear Classification Overview

Fit a decision plane, determined by a vector w

Fisher’s linear discriminant (LDA): closed-form solutionLogistic regression: Convex, iterative solution

Decision threshold t is determined by distance from the planeG is finite set of graphs corresponding to the inputs

Organization by d is natural (equivalent to the order of the expansion)Organization by N or χ also possible, (where is the information?)

Classifier =

t+

∑G∈G

wGEFPG

≥ 0, signal< 0, background

Patrick T. Komiske III (MIT) EFPs for Jet Substructure 17 / 28

Page 24: Energy Flow Polynomials for Jet Substructure

Linear Classification

Linear Classification with EFPs

W vs. QCD jet classification (quark/gluon and top tagging in backup)

0.0 0.2 0.4 0.6 0.8 1.0

W Jet Efficiency

10−1

100

101

102

103

Inve

rse

QC

DJet

Mis

tag

Rat

e

EFPs: W vs. QCD

Pythia 8.226,√s = 13 TeV

R = 0.8, pT ∈ [500, 550] GeV

EFP β = 0.5

d ≤ 3

d ≤ 6

d ≤ 7

Linear

DNN

better

300k training samplesLinear: Fisher’s linear discriminant

num. params. = num. EFPs < 1000100k test samples

DNN: Dense neural net(100 node fully-connected layer)× 3∼ 120k parameters50k validation, 50k test samples

Patrick T. Komiske III (MIT) EFPs for Jet Substructure 18 / 28

Page 25: Energy Flow Polynomials for Jet Substructure

Linear Classification

Which EFPs are Important?

0.0 0.2 0.4 0.6 0.8 1.0

W Jet Efficiency

10−1

100

101

102

103

Inve

rse

QC

DJet

Mis

tag

Rat

e

EFPs: W vs. QCD

Pythia 8.226,√s = 13 TeV

R = 0.8, pT ∈ [500, 550] GeV

EFP β = 0.5, d ≤ 7

N ≤ 3

N ≤ 5

N ≤ 7

N ≤ 9

0.0 0.2 0.4 0.6 0.8 1.0

W Jet Efficiency

10−1

100

101

102

103

Inve

rse

QC

DJet

Mis

tag

Rat

e

EFPs: W vs. QCD

Pythia 8.226,√s = 13 TeV

R = 0.8, pT ∈ [500, 550] GeV

EFP β = 0.5, d ≤ 7

χ ≤ 2

χ ≤ 3

χ ≤ 4

High-N EFPs are important for classification performance

Great classification performance with just χ = 2 EFPs!

Patrick T. Komiske III (MIT) EFPs for Jet Substructure 19 / 28

Page 26: Energy Flow Polynomials for Jet Substructure

Modern ML Comparison

Part II - Linear Jet Tagging with EFPs

Linear Classification with EFPs

Comparison with Modern Machine Learning

Fast Computation of EFPs

Patrick T. Komiske III (MIT) EFPs for Jet Substructure 20 / 28

Page 27: Energy Flow Polynomials for Jet Substructure

Modern ML Comparison

Modern Machine Learning Comparison

0.0 0.2 0.4 0.6 0.8 1.0

W Jet Efficiency

10−1

100

101

102

103

Inve

rse

QC

DJet

Mis

tag

Rat

e

W vs. QCD

Pythia 8.226,√s = 13 TeV

R = 0.8, pT ∈ [500, 550] GeV

EFP β = 0.5, d ≤ 7

EFPs, Lin.

EFPs, DNN

gray CNN

Nsubs, Lin.

Nsubs, DNN

color CNN

Linear and DNN same as beforeCNN: Convolutional neural net

33× 33 jet images(48 filters)× 3gray: pT channel onlycolor: pT and mult. channels∼ 80k parameters

(Linear classification with EFPs) ∼ (MML) for εs & 0.5!

N -subjetiness: 1011.2268, N -subjetiness basis: 1704.08249, NN Review: 1709.04464

Patrick T. Komiske III (MIT) EFPs for Jet Substructure 21 / 28

Page 28: Energy Flow Polynomials for Jet Substructure

Modern ML Comparison

Modern Machine Learning Comparison

0.0 0.2 0.4 0.6 0.8 1.0

Quark Jet Efficiency

10−1

100

101

102

103

Inve

rse

Glu

on

Jet

Mis

tag

Rat

e

Quark vs. Gluon

Pythia 8.226,√s = 13 TeV

R = 0.4, pT ∈ [500, 550] GeV

EFP β = 0.5, d ≤ 7

EFPs, Lin.

EFPs, DNN

gray CNN

Nsubs, Lin.

Nsubs, DNN

color CNN

0.0 0.2 0.4 0.6 0.8 1.0

Top Jet Efficiency

10−1

100

101

102

103

Inve

rse

QC

DJet

Mis

tag

Rate

Top vs. QCD

Pythia 8.226,√s = 13 TeV

R = 0.8, pT ∈ [500, 550] GeV

EFP β = 0.5, d ≤ 7

EFPs, Lin.

EFPs, DNN

gray CNN

Nsubs, Lin.

Nsubs, DNN

color CNN

(Linear classification with EFPs) & (MML) for εs & 0.5

Patrick T. Komiske III (MIT) EFPs for Jet Substructure 22 / 28

Page 29: Energy Flow Polynomials for Jet Substructure

Computation

Part II - Linear Jet Tagging with EFPs

Linear Classification with EFPs

Comparison with Modern Machine Learning

Fast Computation of EFPs

Patrick T. Komiske III (MIT) EFPs for Jet Substructure 23 / 28

Page 30: Energy Flow Polynomials for Jet Substructure

Computation

Computational Complexity of ECF(G)s

M∑i1=1· · ·

M∑iN=1

Ei1 · · ·EiN

∏i<j∈{i1,...,iN}

θβij , ECFβN

v∏m=1

min(m){θβij}i<j∈{i1,...,iN}, vECFGβN

Implementation of ECF(G) formula runs in time O(MN )

With M ∼ 100, ECF(G)N=4 ∼ one hundred million operations

N = 4 is barely tractable, N ≥ 5 is essentially inaccessible

fjcontrib – EnergyCorrelator 1.2.0

Patrick T. Komiske III (MIT) EFPs for Jet Substructure 24 / 28

1305.0007

1609.07483

Page 31: Energy Flow Polynomials for Jet Substructure

Computation

Computational Complexity of ECF(G)s

M∑i1=1· · ·

M∑iN=1

Ei1 · · ·EiN

∏i<j∈{i1,...,iN}

θβij , ECFβN

v∏m=1

min(m){θβij}i<j∈{i1,...,iN}, vECFGβN

Implementation of ECF(G) formula runs in time O(MN )

With M ∼ 100, ECF(G)N=4 ∼ one hundred million operations

N = 4 is barely tractable, N ≥ 5 is essentially inaccessible

fjcontrib – EnergyCorrelator 1.2.0

Patrick T. Komiske III (MIT) EFPs for Jet Substructure 24 / 28

1305.0007

1609.07483

Page 32: Energy Flow Polynomials for Jet Substructure

Computation

Computational Complexity of EFPs

Like other energy correlators, EFPs are naively O(MN )

Factorability of summand in EFP formula can speed up computation

=

M∑i1=1

M∑i1=1

M∑i3=1

zi1zi2zi3θ2i1i2θi2i3

M∑i4=1

M∑i5=1

zi4zi5θ4i4i5

=M∑i1=1

M∑i2=1

M∑i3=1

M∑i4=1

M∑i5=1

M∑i6=1

M∑i7=1

M∑i8=1

zi1zi2zi3zi4zi5zi6zi7zi8θi1i2θi1i3θi1i4θi1i5θi1i6θi1i7θi1i8︸ ︷︷ ︸O(M8)

=M∑i1=1

zi1

M∑i2=1

zi2θi1i2

7

︸ ︷︷ ︸O(M2)

Patrick T. Komiske III (MIT) EFPs for Jet Substructure 25 / 28

1

2

3

4

5Composite EFPs are products of prime EFPs

Page 33: Energy Flow Polynomials for Jet Substructure

Computation

Computational Complexity of EFPs

Like other energy correlators, EFPs are naively O(MN )

Factorability of summand in EFP formula can speed up computation

=

M∑i1=1

M∑i1=1

M∑i3=1

zi1zi2zi3θ2i1i2θi2i3

M∑i4=1

M∑i5=1

zi4zi5θ4i4i5

=M∑i1=1

M∑i2=1

M∑i3=1

M∑i4=1

M∑i5=1

M∑i6=1

M∑i7=1

M∑i8=1

zi1zi2zi3zi4zi5zi6zi7zi8θi1i2θi1i3θi1i4θi1i5θi1i6θi1i7θi1i8︸ ︷︷ ︸O(M8)

=M∑i1=1

zi1

M∑i2=1

zi2θi1i2

7

︸ ︷︷ ︸O(M2)

Patrick T. Komiske III (MIT) EFPs for Jet Substructure 25 / 28

1

2

3

4

5Composite EFPs are products of prime EFPs

Page 34: Energy Flow Polynomials for Jet Substructure

Computation

Variable Elimination (VE)

Algorithm for finding optimal parentheses placement in EFP formulaReduces EFP computational complexity to O(Mχ):

Best case (NP-hard): χ = treewidth(G) + 1Heuristics can be used which work excellently for our small graphsχ = 2 for all tree graphs, χ = 3 for single-cycle graphs, χ = N for KN

χ 2 3 4

e.g.

Patrick T. Komiske III (MIT) EFPs for Jet Substructure 26 / 28

Page 35: Energy Flow Polynomials for Jet Substructure

Computation

EnergyFlow Python Package

A convenient and simple package for efficient implementation of EFPsCurrently written in pure Python using the NumPy library

Need a fast, arbitrary dimension multi-arrayWe’re working on a C++ implementation (not simple)

Patrick T. Komiske III (MIT) EFPs for Jet Substructure 27 / 28

Page 36: Energy Flow Polynomials for Jet Substructure

Conclusions

Conclusions

Linear classification with EFPs very comparable to MML methodsLinear methods =⇒ very nice both theoretically and experimentally

EFP linear structure potentially allows for theoretical calculationFully differentiable model, uncertainty/error propagation simpleConvex, global minimum is guaranteedNo/few hyperparametersInteresting methods made possible by linearity

Lasso regression for automatic feature selectionPCA, orthogonal subspaces, etc.

Efficient computation of EFPs has been achievedEnergyFlow Python package here, stay tuned for more

EFPs potentially bridge MML performance & theory understanding

Patrick T. Komiske III (MIT) EFPs for Jet Substructure 28 / 28

Page 37: Energy Flow Polynomials for Jet Substructure

Backup

Additional Slides

Patrick T. Komiske III (MIT) EFPs for Jet Substructure 28 / 28

Page 38: Energy Flow Polynomials for Jet Substructure

Backup

Quark/Gluon, Top Linear Classification with EFPs

0.0 0.2 0.4 0.6 0.8 1.0

Quark Jet Efficiency

10−1

100

101

102

103

Inve

rse

Glu

onJet

Mis

tag

Rat

e

EFPs: Quark vs. Gluon

Pythia 8.226,√s = 13 TeV

R = 0.4, pT ∈ [500, 550] GeV

EFP β = 0.5

d ≤ 3

d ≤ 6

d ≤ 7

Linear

DNN

0.0 0.2 0.4 0.6 0.8 1.0

Top Jet Efficiency

10−1

100

101

102

103

Inve

rse

QC

DJet

Mis

tag

Rat

e

EFPs: Top vs. QCD

Pythia 8.226,√s = 13 TeV

R = 0.8, pT ∈ [500, 550] GeV

EFP β = 0.5

d ≤ 3

d ≤ 6

d ≤ 7

Linear

DNN

Patrick T. Komiske III (MIT) EFPs for Jet Substructure 28 / 28

Page 39: Energy Flow Polynomials for Jet Substructure

Backup

Quark/Gluon and Top Tagging N Sweep

0.0 0.2 0.4 0.6 0.8 1.0

Quark Jet Efficiency

10−1

100

101

102

103

Inve

rse

Glu

onJet

Mis

tag

Rat

e

EFPs: Quark vs. Gluon

Pythia 8.226,√s = 13 TeV

R = 0.4, pT ∈ [500, 550] GeV

EFP β = 0.5, d ≤ 7

N ≤ 3

N ≤ 5

N ≤ 7

N ≤ 9

0.0 0.2 0.4 0.6 0.8 1.0

Top Jet Efficiency

10−1

100

101

102

103

Inve

rse

QC

DJet

Mis

tag

Rat

e

EFPs: Top vs. QCD

Pythia 8.226,√s = 13 TeV

R = 0.8, pT ∈ [500, 550] GeV

EFP β = 0.5, d ≤ 7

N ≤ 3

N ≤ 5

N ≤ 7

N ≤ 9

Patrick T. Komiske III (MIT) EFPs for Jet Substructure 28 / 28

Page 40: Energy Flow Polynomials for Jet Substructure

Backup

Quark/Gluon and Top Tagging χ Sweep

0.0 0.2 0.4 0.6 0.8 1.0

Quark Jet Efficiency

10−1

100

101

102

103

Inve

rse

Glu

onJet

Mis

tag

Rat

e

EFPs: Quark vs. Gluon

Pythia 8.226,√s = 13 TeV

R = 0.4, pT ∈ [500, 550] GeV

EFP β = 0.5, d ≤ 7

χ ≤ 2

χ ≤ 3

χ ≤ 4

0.0 0.2 0.4 0.6 0.8 1.0

Top Jet Efficiency

10−1

100

101

102

103

Inve

rse

QC

DJet

Mis

tag

Rat

e

EFPs: Top vs. QCD

Pythia 8.226,√s = 13 TeV

R = 0.8, pT ∈ [500, 550] GeV

EFP β = 0.5, d ≤ 7

χ ≤ 2

χ ≤ 3

χ ≤ 4

Patrick T. Komiske III (MIT) EFPs for Jet Substructure 28 / 28

Page 41: Energy Flow Polynomials for Jet Substructure

Backup

N -Subjettiness Linear/DNN Comparison

0.0 0.2 0.4 0.6 0.8 1.0

Quark Jet Efficiency

10−1

100

101

102

103

Inve

rse

Glu

onJet

Mis

tag

Rat

e

Nsubs: Quark vs. Gluon

Pythia 8.226,√s = 13 TeV

R = 0.4, pT ∈ [500, 550] GeV

kT axes

2-body

6-body

10-body

Linear

DNN

0.0 0.2 0.4 0.6 0.8 1.0

W Jet Efficiency

10−1

100

101

102

103

Inve

rse

QC

DJet

Mis

tag

Rat

e

Nsubs: W vs. QCD

Pythia 8.226,√s = 13 TeV

R = 0.8, pT ∈ [500, 550] GeV

kT axes

2-body

6-body

10-body

Linear

DNN

0.0 0.2 0.4 0.6 0.8 1.0

Top Jet Efficiency

10−1

100

101

102

103

Inve

rse

QC

DJet

Mis

tag

Rat

e

Nsubs: Top vs. QCD

Pythia 8.226,√s = 13 TeV

R = 0.8, pT ∈ [500, 550] GeV

kT axes

2-body

6-body

10-body

Linear

DNN

Patrick T. Komiske III (MIT) EFPs for Jet Substructure 28 / 28

Page 42: Energy Flow Polynomials for Jet Substructure

Backup

VE Timing

Test our implementation of VE averaged over all EFPs with d ≤ 7

This includes prime EFPs up to N = 8 ! (Imagine N = 8 ECF, OMG)

24 25 26 27 28 29 210 211 212

M

10−4

10−3

10−2

10−1

100

101

102

Tim

e(s

)/

EF

P

χ ≤ 2

χ ≤ 3

χ ≤ 4

N 2 3 4 5 6 7 82 7 12 33 50 65 48 23

χ 3 11 42 82 80 334 2 1

Prime EFPs with d ≤ 7

Patrick T. Komiske III (MIT) EFPs for Jet Substructure 28 / 28