Top Banner
1 Ken Bosnick Stephan Braig Markus Brink Scott Bunch Lisa Larrimore Ethan Minot Ji-Yong Park David Roundy Sami Rosenblatt Vera Sazonova Hande Ustunel Yuval Yaish Alex Yanson Xinjian Zhou Jun Zhu C Support: NSF, DARPA, NASA McEuen, Arias, Brouwer Groups Electronics and Mechanics with Carbon Nanotubes Roll Up a Single Graphene Sheet Single-Walled Carbon Nanotube
10

Electronics and Mechanics with Carbon Nanotubes Cphycomp.technion.ac.il/~talimu/talk1/structure_files/McEuen.pdfNature 395, 878 (98) Parallel Device Fabrication - CVD catalyst pads

Mar 25, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Electronics and Mechanics with Carbon Nanotubes Cphycomp.technion.ac.il/~talimu/talk1/structure_files/McEuen.pdfNature 395, 878 (98) Parallel Device Fabrication - CVD catalyst pads

1

Ken BosnickStephan BraigMarkus BrinkScott BunchLisa LarrimoreEthan MinotJi-Yong Park David RoundySami Rosenblatt Vera SazonovaHande UstunelYuval YaishAlex YansonXinjian ZhouJun Zhu

C

Support:

NSF, DARPA,

NASA

McEuen, Arias, Brouwer Groups

Electronics and Mechanicswith Carbon Nanotubes

RollUp a SingleGrapheneSheet

Single-WalledCarbonNanotube

Page 2: Electronics and Mechanics with Carbon Nanotubes Cphycomp.technion.ac.il/~talimu/talk1/structure_files/McEuen.pdfNature 395, 878 (98) Parallel Device Fabrication - CVD catalyst pads

2

Chemical/BiologicalMechanical

Electronic

Chemical/Biological

Mechanical/Thermal

Electrical / Optical

Harvard

DELFT

Sri Lanka

Following Kong et al. Nature 395, 878 (98)

Parallel Device Fabrication - CVD

catalystpads

900°C Furnace SWNT

Substrate w/catalyst particles

Methane

catalyst

Page 3: Electronics and Mechanics with Carbon Nanotubes Cphycomp.technion.ac.il/~talimu/talk1/structure_files/McEuen.pdfNature 395, 878 (98) Parallel Device Fabrication - CVD catalyst pads

3

Millimeter length Tubes!

Copying work of Jie Liu et al. (Duke)

Gas flow

Flying catalyst growth Laminar flow

Turbulentflow

SEMimage

AFMimage

semiconducting

E f

E

BZ boundary

E f

E

k x

BZ boundary

Nanotube Electronic Properties

Eg ~ 1 eV / d[nm]

metallic

Armchair tube

zigzag tube

Electrical propertiesof nanotubes rival (or beat) the best materials known !

Page 4: Electronics and Mechanics with Carbon Nanotubes Cphycomp.technion.ac.il/~talimu/talk1/structure_files/McEuen.pdfNature 395, 878 (98) Parallel Device Fabrication - CVD catalyst pads

4

-10 0 100.0

1.0

Vacuum

G

(e2 /h

)

L

gate

sourcedrain

Semiconducting Nanotube Transistors

First observ: Tans et al. 98

µ = 1,000 - 50,000 cm2 / V-s

p-type

intrinsicn-type

Vg (V)

Very high mobilities !

See also: IBM, Dai, Fuhrer groups

Advanced Device Geometries

Electrical

Mechanical

SEM Image

Cutting / manipulation

Page 5: Electronics and Mechanics with Carbon Nanotubes Cphycomp.technion.ac.il/~talimu/talk1/structure_files/McEuen.pdfNature 395, 878 (98) Parallel Device Fabrication - CVD catalyst pads

5

Suspended Carbon Nanotubes

0.3 0.4 0.5

-30

30

Vsd

(m

V)

0

Vg (V)

1 2 3 4

0.6

Studies of bandgap

Minot et al

sourcedrain

DNA Sensing

Yaish et al., unpublished

Page 6: Electronics and Mechanics with Carbon Nanotubes Cphycomp.technion.ac.il/~talimu/talk1/structure_files/McEuen.pdfNature 395, 878 (98) Parallel Device Fabrication - CVD catalyst pads

6

Simultaneously Monitor:(1) Mech. Response(2) Electrical Response

Salvetat et al. PRL 82, 944 (1999)Walters et al. APL 74, 3803 (1999)

Tombler et al. Nature 405, 769 (2000)

Previous work:

Strain and Bandgaps: Experimental set-up

Gate

tip

cantilever withspring constant ktip

drainsource

suspended tube

V

current preamp

Hande UstanelArias Group

AFM Image

d = 3nm0.05

0.06

0.07

0.08

0.09

2.0

G(e2/h)

Tip Voltage (V)

1.51.00.50-0.5-1.0

Strain-Induced Band Gap in a Metallic Tube

strain = 0

strain = 2 %

Metal Semic. strain

Gate

Vtip

drainsource

suspended tube

V

I

Minot et al., PRL 03

Page 7: Electronics and Mechanics with Carbon Nanotubes Cphycomp.technion.ac.il/~talimu/talk1/structure_files/McEuen.pdfNature 395, 878 (98) Parallel Device Fabrication - CVD catalyst pads

7

250nm

Suspended nanotube quantum dot

ΔE, Orbital energy difference between N and N+1 electrons

Low bias

G (e2/h)

0

0.2

0.

0.005

0.3 0.4 0.5Vg (V)

0.6

x20

G (

e2 /h)

x50

0.3 0.4 0.5

-30

30

Vsd

(mV

)

0

Vg (V)

1 2 3 4

0.6

0

p-type gap n-type

Minot et al., Nature (04)

U + Egap

G (e2/h)0

0.01 200

250

300

Vg (mV)

350

400

150

B (T)0 4

electrons

holes

Nanotube Zeeman Effect

µorb

B||B||

k||

Ei(k|

|)

k||

B|| = 0 B|| > 0

0 0gE

µorb

Page 8: Electronics and Mechanics with Carbon Nanotubes Cphycomp.technion.ac.il/~talimu/talk1/structure_files/McEuen.pdfNature 395, 878 (98) Parallel Device Fabrication - CVD catalyst pads

8

Guitar String Vibrations of Nanotubes

Nanotube Guitar:How do you strum it?How do you hear it?

Nano Guitar(Craighead Group)

Related work: Reulet et al. PRL (00)Purcell et al. PRL (02)

f0f0

2ωδ gg VV +

1ωδ sdV

Nanotube Electromechanical Mixer

Q

1

A(ω)

ωo ω

2

2

1gVdz

dCF = Drive/tune

21 ωωω −=Δ

( ) 212'

)(1 2

)( ωωω δδωδ gsdkC

VgC

g

VVAdV

dGI

g

g+=Δ

Response at

detect

See also:Cleland group

Page 9: Electronics and Mechanics with Carbon Nanotubes Cphycomp.technion.ac.il/~talimu/talk1/structure_files/McEuen.pdfNature 395, 878 (98) Parallel Device Fabrication - CVD catalyst pads

9

I (nA

)

4.96 4.98 5 5.02 5.04 5.06

-2

2

6

10

14x 10

-3

frequency (MHz)

f = 5 MHz

Q ~ 50

f0f0Nanotube Mechanical Resonances

Sazonova et al., Nature (04)

-6 -4 -2 0 2 4 6

50

55

60

65

70

75

freq

uenc

y (M

Hz)

Vg (V)Tunable Nanomechanical oscillator!

-5.00-3.75-2.50-1.250.001.252.503.755.00

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

col

row

-0.35-0.30-0.25-0.20-0.15-0.10-0.050.000.050.100.150.200.250.30

dvg

Multiple Vibrational Modes

f

Vg

030 MHz

80 MHz

5 V- 5 V

Page 10: Electronics and Mechanics with Carbon Nanotubes Cphycomp.technion.ac.il/~talimu/talk1/structure_files/McEuen.pdfNature 395, 878 (98) Parallel Device Fabrication - CVD catalyst pads

10

Spring constant:k ~ mω2

k ~ 10-3 -10-5 N/m

Force sensitivity (300K) Fmin ~ 2 fN/Hz1/2 limited by detection sensitivity

Theoretical limits: 20 aN (300K) 1 aN ( 1K)

Force scales(N):

atomic bonds

single-spinNMR

10-9

low-T AFM10-15

10-21

Future:Ultrasmall force sensingMass sensingRF signal processingQuantum “mechanical” system…….

Ji-Yong ParkYuval YaishJun Zhu Markus Brink Scott BunchSami Rosenblatt

Vera Sazonova,Yuval Yaish, Ethan Minot, Ji-Yong Park,Markus Brink, Hande Ustunel, DavidRoundy,Jed Whittaker (BYU)Robert Davis (BYU)

http://www.lassp.cornell.edu/lassp_data/mceuen/homepage/welcome.html

Scanned Probe Techniques/Elec. Phonon Scattering

Nanotube Mag. Moments

Wet Nanotubes

Nanotube Electromechanics

Ethan Minot Yuval YaishVera SazonovaSami RosenblattMarkus Brink

Yuval YaishSami RosenblattXinjian ZhouLisa Larrimore