Top Banner
EE141 1 EE141 1 EE141-S04 EE141 EE141- Spring 2004 Spring 2004 Digital Integrated Digital Integrated Circuits Circuits Lecture 20 Lecture 20 Power Power Sequential Logic Sequential Logic - Intro Intro EE141 2 EE141-S04 Administrative Stuff Administrative Stuff Midterm 2 Th 6:30pm in 277 Cory Material: – Wires – Complex logic – Arithmetic Review session on We at 5:30pm in 241 Cory Homework 7 posted – Due April 15
19

EE141- Spring 2004 Digital Integrated Circuits

Feb 09, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: EE141- Spring 2004 Digital Integrated Circuits

EE141

1

EE1411

EE141-S04

EE141EE141-- Spring 2004Spring 2004Digital Integrated Digital Integrated CircuitsCircuits

Lecture 20Lecture 20PowerPowerSequential Logic Sequential Logic -- IntroIntro

EE1412

EE141-S04

Administrative StuffAdministrative StuffMidterm 2 Th 6:30pm in 277 CoryMaterial:

– Wires– Complex logic– Arithmetic

Review session on We at 5:30pm in 241 CoryHomework 7 posted – Due April 15

Page 2: EE141- Spring 2004 Digital Integrated Circuits

EE141

2

EE1413

EE141-S04

Class MaterialClass Material

Last lectureMultipliers – Shifters – Power Intro

Today’s lecturePowerIntro to sequential logic

EE1414

EE141-S04

PowerPower

Page 3: EE141- Spring 2004 Digital Integrated Circuits

EE141

3

EE1415

EE141-S04

Power Dissipation in CMOSPower Dissipation in CMOS

Dynamic powerCharging capacitancesDominant today

Leakage powerLeaky transistorsConcern in low-activity, portable devices

Short circuit powerStatic power

E.g. pseudo-NMOS

EE1416

EE141-S04

Dynamic Power ConsumptionDynamic Power Consumption

( ) ( ) ∫∫ ∫ ====→

DDV

DDLoutLDD

T T

DDDDDD VCdvCVdttiVdttPE0

2

0 010

( ) ( ) ∫∫ ∫ ====DDV

DDLoutoutL

T T

LoutCC VCdvvCdttivdttPE0

2

0 021

Vdd

Vout

iL

CL

PMOS

NETWORK

NMOS

A1

AN

NETWORK

210 DDLVCE =→

Page 4: EE141- Spring 2004 Digital Integrated Circuits

EE141

4

EE1417

EE141-S04

Dynamic Power ConsumptionDynamic Power ConsumptionPower = Energy/transition • Transition rate

= CLVDD2 • f0→1

= CLVDD2 • f • P0→1

= CswitchedVDD2 • f

Power dissipation is data dependent – depends on the switching probabilitySwitched capacitance Cswitched = CL • P0→1

EE1418

EE141-S04

Transition Activity and PowerTransition Activity and PowerEnergy consumed in N cycles, EN:

EN = CL • VDD2 • n0→1

n0→1 – number of 0→1 transitions in N cycles

fVCN

nf

NE

P DDLN

N

Navg ⋅⋅⋅⎟⎠⎞

⎜⎝⎛=⋅= →

∞→∞→

210limlim

fN

nN

⋅= →

∞→→10

10 limα

fVCP DDLavg ⋅⋅⋅= →2

10α

Page 5: EE141- Spring 2004 Digital Integrated Circuits

EE141

5

EE1419

EE141-S04

“Dynamic” or timing dependent component

➟Type of Logic Function (NOR vs. XOR)“Static” component (does not account for timing)

➟Circuit Topology

➟Type of Logic Style (Static vs. Dynamic)

➟Signal Statistics

➟ Inter-signal Correlations

➟Signal Statistics and Correlations

Factors Affecting Transition ActivityFactors Affecting Transition Activity

EE14110

EE141-S04

Type of Logic Function: NOR vs. XORType of Logic Function: NOR vs. XOR

011

001

010

100OutBA

Example: Static 2-input NOR Gate

Assume signal probabilitiespA=1 = 1/2pB=1 = 1/2

Then transition probabilityp0→1 = pOut=0 x pOut=1

= 3/4 x 1/4 = 3/16

α0→1 = 3/16

If inputs switch every cycle

Page 6: EE141- Spring 2004 Digital Integrated Circuits

EE141

6

EE14111

EE141-S04

Type of Logic Function: NOR vs. XORType of Logic Function: NOR vs. XOR

011

101

110

000OutBA

Example: Static 2-input XOR Gate

Assume signal probabilitiespA=1 = 1/2pB=1 = 1/2

Then transition probabilityp0→1 = pOut=0 x pOut=1

= 1/2 x 1/2 = 1/4

α0→1 = 1/4

If inputs switch in every cycle

EE14112

EE141-S04

Power Consumption of Dynamic GatesPower Consumption of Dynamic Gates

In1

In2 PDN

In3

Me

Mp

CLK

CLK

Out

CL

Power only dissipated when previous Out = 0

Page 7: EE141- Spring 2004 Digital Integrated Circuits

EE141

7

EE14113

EE141-S04

Dynamic Power Consumption is Dynamic Power Consumption is Data DependentData Dependent

011

001

010

100OutBA

Dynamic 2-input NOR Gate

Assume signal probabilitiesPA=1 = 1/2PB=1 = 1/2

Then transition probabilityP0→1 = Pout=0 x Pout=1

= 3/4 x 1 = 3/4

Switching activity always higher in dynamic gates!P0→1 = Pout=0

EE14114

EE141-S04

Vdd

I

I

Vdd

IN

INB

OUTB OUT

Guaranteed transition for every operation!

α0->1 = 1

Dynamic CVSLDynamic CVSL

Page 8: EE141- Spring 2004 Digital Integrated Circuits

EE141

8

EE14115

EE141-S04

Problem: Problem: ReconvergentReconvergent FanoutFanout

A

B

X

Z

Reconvergence

P(Z = 1) = P(B = 1) . P(X = 1 | B=1)

Becomes complex and intractable fast

EE14116

EE141-S04

InterInter--Signal CorrelationsSignal Correlations

Logic withoutreconvergent fanout

Logic with reconvergent fanout

A

BZ

CA

Z

C

B

p0→1 = (1 – pApB) pApBP(Z = 1) = p(C=1 | B=1) p(B=1)

p0→1 = 0

Need to use conditional probabilities to model inter-signal correlationsCAD tools required for such analysis

Page 9: EE141- Spring 2004 Digital Integrated Circuits

EE141

9

EE14117

EE141-S04

GlitchingGlitching in Static CMOSin Static CMOSA

B

X

CZ

ABC 101 000

X

Z

Gate Delay

Also known asdynamic hazards

The result is correct,but there is extra power dissipated

EE14118

EE141-S04

Example: Chain of NOR GatesExample: Chain of NOR Gates1

Out1 Out2 Out3 Out4 Out5

0 200 400 6000.0

1.0

2.0

3.0

Time (ps)

Vol

tage

(V

)

Out8

Out6

Out2

Out6

Out1

Out3

Out7

Out5

Page 10: EE141- Spring 2004 Digital Integrated Circuits

EE141

10

EE14119

EE141-S04

Principles for Power ReductionPrinciples for Power Reduction

Prime choice: Reduce voltage!Recent years have seen an acceleration in supply voltage reductionDesign at very low voltages still open question (0.6 … 0.9 V by 2010!)Reducing thresholds to improve performance increases leakage

Reduce switching activityReduce physical capacitance

EE14120

EE141-S04

Sequential Logic

Page 11: EE141- Spring 2004 Digital Integrated Circuits

EE141

11

EE14121

EE141-S04

Sequential LogicSequential Logic

2 storage mechanisms

• positive feedback

• charge-based

COMBINATIONALLOGIC

Registers

Outputs

Next state

CLK

Q D

Current State

Inputs

EE14122

EE141-S04

Latch versus RegisterLatch versus Register

Latchstores data when clock is low

D

Clk

Q D

Clk

Q

Registerstores data when clock rises

Clk Clk

D D

Q Q

Page 12: EE141- Spring 2004 Digital Integrated Circuits

EE141

12

EE14123

EE141-S04

Naming ConventionNaming Convention

In our book, latch is level sensitive, register is edge-triggeredThere are many different naming conventionsMany books call edge-triggered elements flip-flops

EE14124

EE141-S04

LatchesLatches

In

clk

In

Out

Positive Latch

CLK

DG

Q

Out

Outstable

Outfollows In

In

clk

In

Out

Negative Latch

CLK

DG

Q

Out

Outstable

Outfollows In

Page 13: EE141- Spring 2004 Digital Integrated Circuits

EE141

13

EE14125

EE141-S04

NLatch

Logic

Logic

PLatch

φ

LatchLatch--Based DesignBased Design

• N latch is transparentwhen φ = 0

• P latch is transparent when φ = 1

EE14126

EE141-S04

Timing DefinitionsTiming Definitions

t

CLK

t

D

tc →q

tholdtsu

t

Q DATASTABLE

DATASTABLE

Register

CLK

D Q

Page 14: EE141- Spring 2004 Digital Integrated Circuits

EE141

14

EE14127

EE141-S04

Characterizing TimingCharacterizing Timing

Register Latch

Clk

D Q

tC →Q

Clk

D Q

tC →Q

tD →Q

EE14128

EE141-S04

Maximum Clock FrequencyMaximum Clock Frequency

FF

’s

LOGIC

tp,comb

φ

Also:tcdreg + tcdlogic > thold

tcd: contamination delay = minimum delay

tclk-Q + tp,comb + tsetup = T

Page 15: EE141- Spring 2004 Digital Integrated Circuits

EE141

15

EE14129

EE141-S04

Positive Feedback: BiPositive Feedback: Bi--StabilityStabilityVi1 Vo2

Vo2 = Vi 1

Vo1 = Vi 2

V

o

1

Vi1

A

C

B

V

i

2

5

V

o

1

Vo2

V

i

2

5

V

o

1

Vi1 = Vo2

EE14130

EE141-S04

MetaMeta--StabilityStability

Gain should be larger than 1 in the transition region

A

C

d

B

Vi2

5V

o1

Vi1 5 Vo2

A

C

d

B

Vi2

5V

o1

Vi1 5 Vo2

Page 16: EE141- Spring 2004 Digital Integrated Circuits

EE141

16

EE14131

EE141-S04

Writing into a Static LatchWriting into a Static Latch

CLK

CLK

CLK

D

Q D

CLK

CLK

D

Converting into a MUXForcing the state(can implement as NMOS-only)

Use the clock as a decoupling signal, that distinguishes between the transparent and opaque states

EE14132

EE141-S04

PseudoPseudo--Static LatchStatic Latch

D

CLK

CLK

D

Page 17: EE141- Spring 2004 Digital Integrated Circuits

EE141

17

EE14133

EE141-S04

MuxMux--Based LatchesBased LatchesNegative latch(transparent when CLK= 0)

Positive latch(transparent when CLK= 1)

CLK

1

0D

Q 0

CLK

1D

Q

InClkQClkQ ⋅+⋅= InClkQClkQ ⋅+⋅=

EE14134

EE141-S04

MuxMux--Based LatchBased Latch

CLK

CLK

CLK

D

Q

Page 18: EE141- Spring 2004 Digital Integrated Circuits

EE141

18

EE14135

EE141-S04

MuxMux--Based LatchBased Latch

CLK

CLK

CLK

CLK

QM

QM

NMOS only Non-overlapping clocks

EE14136

EE141-S04

Storage MechanismsStorage Mechanisms

D

CLK

CLK

Q

Dynamic

CLK

CLK

CLK

D

Q

Static

Page 19: EE141- Spring 2004 Digital Integrated Circuits

EE141

19

EE14137

EE141-S04

Next LectureNext Lecture

Sequential logic (cntd)