Top Banner
Ec o syste m Mo de lling Page 1 Vladimir I. Zvalinsky PICES 2005 Em a il: The ecosystem parameters and its stability. Theoretical consideration V.I.Il'ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 690041, Russia [email protected]
19

Ecosystem Modelling Page 1 - meetings.pices.int · Ecosystem Modelling Page 1 Vladimir I. Zvalinsky PICES 2005 Em a il: The ecosystem parameters and its stability. Theoretical consideration

Sep 10, 2019

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Ecosystem Modelling Page 1 - meetings.pices.int · Ecosystem Modelling Page 1 Vladimir I. Zvalinsky PICES 2005 Em a il: The ecosystem parameters and its stability. Theoretical consideration

Ecosyste m Mode lling Pa ge 1

Vladimir I. Zvalinsky

PICES 2005

Ema il:

The ecosystem parameters and its stability. Theoretical consideration

V.I.Il'ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences,

Vladivostok, 690041, Russia

[email protected]

Page 2: Ecosystem Modelling Page 1 - meetings.pices.int · Ecosystem Modelling Page 1 Vladimir I. Zvalinsky PICES 2005 Em a il: The ecosystem parameters and its stability. Theoretical consideration

Ecosyste m Mode lling Page 2

USUALEc osyste m mod e lling oc curs a s fo llow:- Mo de lling o f e a c h se pa ra te trop hic link;- Co nne ction o f trophic link be twe en e a c h othe r;- Attributing o f some laws for connec tio n o f links.

NEMURO MODEL 2000 is the e xa mple o f such proc edure .In result we ha ve no t a bso lute ly e co system, but c onnec ted amo ng the mse lve s diffe re nt tro phic links.At such ap proa ch e co system pa rame te rs, a s a whole , may not be re ve a le d.

PICES 2005

Page 3: Ecosystem Modelling Page 1 - meetings.pices.int · Ecosystem Modelling Page 1 Vladimir I. Zvalinsky PICES 2005 Em a il: The ecosystem parameters and its stability. Theoretical consideration

Ec osyste m mode lling Pa ge 3

ANOTHER WAY

- At first the e c osyste m c once ptua l mo de l is de signe d;- Then the la w o f transition substanc e from o ne trophic link to anothe r (or the c onc eptua l mod e l o f sep ara te link) is de sig ne d;- Formula tion o f full se t of equations;- Red uce the se t o f e qua tio ns to d ime nsionless fo rm a nd a na lysis.

As an example the six compartment e cosyste m mode l is consid ere d.

PICES 2005

Page 4: Ecosystem Modelling Page 1 - meetings.pices.int · Ecosystem Modelling Page 1 Vladimir I. Zvalinsky PICES 2005 Em a il: The ecosystem parameters and its stability. Theoretical consideration

Sedi

men

tatio

nLight

In

ZL

I

Mortality

Egestion

Inorganic matter

incorporationG

razing

Grazing

Respiration

Mineralisation

Ph

Exchange

E-cycleTransition

law

Transition law

Transition law

Tran

sition

law

Transition law

Conceptual model of ecosystem as ecological cycleEcosystem represents by 6 compartments. Four of them are livinglinks (Phy, SZ, LZ and Bacterial) and two of them are non living ones(inorganic matter and detritus).

Page 4

PICES 2005

Det

ZS

B

Page 5: Ecosystem Modelling Page 1 - meetings.pices.int · Ecosystem Modelling Page 1 Vladimir I. Zvalinsky PICES 2005 Em a il: The ecosystem parameters and its stability. Theoretical consideration

5

Page 6: Ecosystem Modelling Page 1 - meetings.pices.int · Ecosystem Modelling Page 1 Vladimir I. Zvalinsky PICES 2005 Em a il: The ecosystem parameters and its stability. Theoretical consideration

6

Page 7: Ecosystem Modelling Page 1 - meetings.pices.int · Ecosystem Modelling Page 1 Vladimir I. Zvalinsky PICES 2005 Em a il: The ecosystem parameters and its stability. Theoretical consideration

C5Solar light

Herbi-vores

Carnivores

Bacte-rium

Detritus

Phyto-plank- ton

Primaryproduction4

3

C1

C2C

C

C0

I

Respiration

Sedimentation

Vertical

exchange

MortalityEgestion

PP

ZS

ZL

B

rEB rEP

rES

rEL

Vij

C5

Ecosystem as a system of coupled cyclical processesEcosystem parameters

rP2rP1

rS1rS2

rB2

rL2rL1

rB1

rP

B2rrB1+R =B

rS2rS1 +R =ZS

rL2rL1 +R =ZL

r rP2 PrP1 + +R =PP

E

RBRZS R ZLRPP, , ,

C +0C =tot C +3 C5C +1 C +2 C +4

- total resistance of each trophic link

- total concentration of limiting nutrient

rEPrEB rES rEL, , , - coupling resistance between ecosystem cycle and each trophic link

7

Page 8: Ecosystem Modelling Page 1 - meetings.pices.int · Ecosystem Modelling Page 1 Vladimir I. Zvalinsky PICES 2005 Em a il: The ecosystem parameters and its stability. Theoretical consideration

There are three Type of Ecosystem Parameters

RBRZS R ZLRPP, , ,

E

mmR = P /Pij P ij

- total resistance of corresponding trophic link, which is inversely proportional to maximum specific rate

- total concentration of limiting nutrient

- coupling resistance between ecosystem cycle and each trophic link

[Ctot]=[C0]+[C1]+[C2]+[C3]+[C4]+[C5]

1.

2.

3.

KCi = Pim/{kCi*[ECi]} - substrate constant (Michaelis

constant?) of corresponding link

rEP, rES, rEL, rEB

rEi = KCi/Σ[Ci] = KCI/[Ctot]

Page 8

PICES 2005

The task is: How the Ecosystem stability depends on ecosystem parameters

Page 9: Ecosystem Modelling Page 1 - meetings.pices.int · Ecosystem Modelling Page 1 Vladimir I. Zvalinsky PICES 2005 Em a il: The ecosystem parameters and its stability. Theoretical consideration

Page 9

PICES 2005

0 2 4 6Substrate concentration, S=[S]/KC

0

0.2

0.4

0.6

0.8

1

Proc

ess

rela

tive

rate

, V=P

/Pm

M-M

g=0.80.95BL

tanh

exp

KC

Different kinetic curves for description of biological process what most often are using.Change of the factor hyperbola non-rectangularity "g" from "0.0" up to "1.0" changes the curve shape from "M-M" variant up to "Blackman" one.

g=0.0g=0.

999

0 2 4 6Substrate concentration, S=[S]/KC

0

0.2

0.4

0.6

0.8

1

M-M

0.95BL

KC

We used two kinetic curves: M-M curve (g=0.0) and curve with factor g=0.95 (which close to BL and close to experimental kinetic curves.

g=0.0g=0.

999

Page 10: Ecosystem Modelling Page 1 - meetings.pices.int · Ecosystem Modelling Page 1 Vladimir I. Zvalinsky PICES 2005 Em a il: The ecosystem parameters and its stability. Theoretical consideration

Page 10Parameters combination used for execution of

ecosystem behavior

Parameters I II III IV

RPP 1.0 1.0 1.0 1.0

RZS 2.0 2.0 4.0 4.0

RZL 4.0 4.0 8.0 8.0

Factor "g" 0.0 0.0 0.95 0.95

rEP=rES=rEL V a r i a b l e s

Page 11: Ecosystem Modelling Page 1 - meetings.pices.int · Ecosystem Modelling Page 1 Vladimir I. Zvalinsky PICES 2005 Em a il: The ecosystem parameters and its stability. Theoretical consideration

Time course of primary link at different rE Page 11

g=0.0 (M-M kinetics); rPP=1; rZS=2; rZL=4

0 100 200 300 400 500Time, in 1/Pm (=days)

0

0.2

0.4

0.6

0.8Co

ncen

trat

ion

C Ph

Nemuro, g=0.0 (M-M); rPP=1; rZS=2; rZL=4

rE=1

rE=0.5

rE=2

rE=KC/[Ctot]L

Decreasing of rE (increasing of [Ctot]L) causes oscillations

rE=0.4

At Ctot=2*KC (rE=0.5) - undamped Osc.

Page 12: Ecosystem Modelling Page 1 - meetings.pices.int · Ecosystem Modelling Page 1 Vladimir I. Zvalinsky PICES 2005 Em a il: The ecosystem parameters and its stability. Theoretical consideration

The same time course, but g=0.95 Page 12(BL kinetics); at rE < 0.5 - undamped oscillation At such kinetics of each process less amplitude oscillations

0 100 200 300 400 500Time, in 1/Pm (=days)

0

0.2

0.4

0.6

0.8

Conc

entr

atio

n C P

h

rE=1

rE=0.3

rE=0.5

rE=2

rE=0.19

rE=0.17rE=KC/[Ctot]L

Page 13: Ecosystem Modelling Page 1 - meetings.pices.int · Ecosystem Modelling Page 1 Vladimir I. Zvalinsky PICES 2005 Em a il: The ecosystem parameters and its stability. Theoretical consideration

Time course of primary link at different rE Page 13g=0.0 (M-M kinetics); rPP=1; but rZS=4; rZL=8

More amlitude oscillations, more period

0 200 400 600 800 1000Time, in 1/Pm (=days)

0

0.2

0.4

0.6

0.8

Conc

entr

atio

n C P

h

rE=1

rE=0.5

rE=2

rE=0.4

At Ctot=KC (rE=1.0) - undamped Osc.

Page 14: Ecosystem Modelling Page 1 - meetings.pices.int · Ecosystem Modelling Page 1 Vladimir I. Zvalinsky PICES 2005 Em a il: The ecosystem parameters and its stability. Theoretical consideration

The same time course, but g=0.95 Page 14(BL kinetics); at rE < 0.5 - undamped oscillation

At such kinetics of each process less amplitude oscillations

0 200 400 600 800 1000Time, in 1/Pm (=days)

0

0.2

0.4

0.6

0.8

Conc

entr

atio

n C P

h

rE=0.5

rE=2

rE=1(4:8)

rE=0.37

Page 15: Ecosystem Modelling Page 1 - meetings.pices.int · Ecosystem Modelling Page 1 Vladimir I. Zvalinsky PICES 2005 Em a il: The ecosystem parameters and its stability. Theoretical consideration

Page 15

• Michaelis-Menten not steep kinetics of each biological process couses higher amplitude oscillation at less total concentration ecosystem limiting nutrient

• Steep kinetics (close to Blackman’s broken line) couses less amplitude oscillation at higher total concentration ecosystem limiting nutrient

• Higher difference between specific rate growth of neighboring trophic links couses higher amplitude of oscillations with higher period

Page 16: Ecosystem Modelling Page 1 - meetings.pices.int · Ecosystem Modelling Page 1 Vladimir I. Zvalinsky PICES 2005 Em a il: The ecosystem parameters and its stability. Theoretical consideration

Very high period of oscillations shows the non biological nature of oscillations. The Czs equal to 0.0 for a long time? We think that this is impossible in Nature. It must be some Threshold for min C. We introduce threshold.

Page 16

0 100 200 300 400 500Time, in 1/Pm (=days)

0

0.2

0.4

0.6

0.8

Con

cent

ratio

n C

Ph, C

ZS, C

ZL

rE=0.5 CPh

CZS

CZL

It is very high period of oscillations

g=0.0 (M-M); rPP=1; rZS=2; rZL=4

Page 17: Ecosystem Modelling Page 1 - meetings.pices.int · Ecosystem Modelling Page 1 Vladimir I. Zvalinsky PICES 2005 Em a il: The ecosystem parameters and its stability. Theoretical consideration

Dinamics of the same ecosystem at introducing Page 17of Threshold = 0.1*rE = 0.1*Kc. No oscillations. Real time relaxation.

More steep kinetic curve (g=0.95) - less time relaxation

0 40 80 120 160Time, in 1/Pm (=days)

0

0.2

0.4

0.6

Con

cent

ratio

n C

Ph, C

ZS, C

ZL

CPh

CZS

g=0.0

g=0.95

g=0.95 g=0.0

Page 18: Ecosystem Modelling Page 1 - meetings.pices.int · Ecosystem Modelling Page 1 Vladimir I. Zvalinsky PICES 2005 Em a il: The ecosystem parameters and its stability. Theoretical consideration

Whith threshold of Ci at M-M kinetic curve (g=0.0) Page 18it is possible to find special ratio of rEi, when oscillations take place: rEP=0.7; rES=0.13; rEL=0.9. But at steep kinetic curve (g=0.95) there are no oscillation at any rEi.

0 40 80 120 160 200Time, in 1/Pm (=days)

0

0.2

0.4

Conc

entr

atio

n C P

h

Tresh=0.05

g=0.

95 g=0.

0

g=0.

0Tr

esh=

0.1

Page 19: Ecosystem Modelling Page 1 - meetings.pices.int · Ecosystem Modelling Page 1 Vladimir I. Zvalinsky PICES 2005 Em a il: The ecosystem parameters and its stability. Theoretical consideration

Page 19Conclusion

• In order to construct the predictive ecosystem model we must to understand the essential inner attributes of marine ecosystem.

• For the ecosystem modelling it is necessary to reveal mathematical couses of ecosystem stability/unstability from the biological and ecological ones and divide them from each other.

• On PICES 2001 Ken Denman said: «Stability of simple Box Model is ‘Fragile’»

• Our knowlidge about marine ecosystem is not less ‘Fragile’