Top Banner
Introduction Ergodicity Parametrization Unifying the Maps Conclusion Dynamics of the Pentagram Map Supervised by Dr. Xingping Sun H. Dinkins, E. Pavlechko, K. Williams Missouri State University July 28th, 2016 H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 1 / 45
146

Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Aug 20, 2018

Download

Documents

truongminh
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Dynamics of the Pentagram MapSupervised by Dr. Xingping Sun

H. Dinkins,E. Pavlechko,K. Williams

Missouri State University

July 28th, 2016

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 1 / 45

Page 2: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Review

Midpoint Iteration

Problem of midpoint iterations

Finite Fourier Transforms

Coefficients of ergodicity

Elementary geometry

FIGURE – Basic midpoint iteration on a heptagon

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 2 / 45

Page 3: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Review

Midpoint Iteration

Problem of midpoint iterations

Finite Fourier Transforms

Coefficients of ergodicity

Elementary geometry

FIGURE – Basic midpoint iteration on a heptagon

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 2 / 45

Page 4: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Review

Midpoint Iteration

Problem of midpoint iterations

Finite Fourier Transforms

Coefficients of ergodicity

Elementary geometry

FIGURE – Basic midpoint iteration on a heptagon

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 2 / 45

Page 5: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Review

Midpoint Iteration

Problem of midpoint iterations

Finite Fourier Transforms

Coefficients of ergodicity

Elementary geometry

FIGURE – Basic midpoint iteration on a heptagon

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 2 / 45

Page 6: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Review

Variation

First proposed in 1800’s

Solved using Brouwer’s fixed pointtheorem

Projective geometry

FIGURE – Pentagram mapping on a pentagon

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 3 / 45

Page 7: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Review

Variation

First proposed in 1800’s

Solved using Brouwer’s fixed pointtheorem

Projective geometry

FIGURE – Pentagram mapping on a pentagon

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 3 / 45

Page 8: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Review

Variation

First proposed in 1800’s

Solved using Brouwer’s fixed pointtheorem

Projective geometry

FIGURE – Pentagram mapping on a pentagon

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 3 / 45

Page 9: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Review

FIGURE – Pentagram mapping on a pentagon

Our Work

Looked into the generalizations to anyn-gon

Shown that the max rate of areadecrease for any pentagon is 14/15

Proved convergence for any regularn-gon

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 4 / 45

Page 10: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Review

FIGURE – Pentagram mapping on a pentagon

Our Work

Looked into the generalizations to anyn-gon

Shown that the max rate of areadecrease for any pentagon is 14/15

Proved convergence for any regularn-gon

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 4 / 45

Page 11: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Review

FIGURE – Pentagram mapping on a pentagon

Our Work

Looked into the generalizations to anyn-gon

Shown that the max rate of areadecrease for any pentagon is 14/15

Proved convergence for any regularn-gon

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 4 / 45

Page 12: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Review

Midterm Goals

Generalize the pentagon’s area method to n-gons

Show the area method converges to a point

Use the matrices to prove convergence of vertices

Explore connections to projective geometry

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 5 / 45

Page 13: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Review

Midterm Goals

Generalize the pentagon’s area method to n-gons

Show the area method converges to a point

Use the matrices to prove convergence of vertices

Explore connections to projective geometry

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 5 / 45

Page 14: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Review

Midterm Goals

Generalize the pentagon’s area method to n-gons

Show the area method converges to a point

Use the matrices to prove convergence of vertices

Explore connections to projective geometry

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 5 / 45

Page 15: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Review

Midterm Goals

Generalize the pentagon’s area method to n-gons

Show the area method converges to a point

Use the matrices to prove convergence of vertices

Explore connections to projective geometry

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 5 / 45

Page 16: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Review

Contents

1 IntroductionReviewExtending Previous Results

2 ErgodicityCoefficients of Ergodicity

3 ParametrizationSet-upLinear TransformationPython Program

4 Unifying the MapsConstructionBasic Properties of the MapRegular Polygon CaseGeneral PolygonsThe Pentagon Case

5 Conclusion

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 6 / 45

Page 17: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Extending Previous Results

Schwartz’s Proof

Richard Schwartz [4] proved that the pentagram map converges on any convexpolygon.

Definition

The cross ratio of collinear points A,B,C,D ∈ R2 is defined as

χ(A,B,C,D) =|A− C| · |B − D||A− B| · |C − D|

where | · | denotes the Euclidean distance.

If the four points are ordered A,B,C,D, then χ(A,B,C,D) ≥ 1.

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 7 / 45

Page 18: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Extending Previous Results

Schwartz’s Proof

Richard Schwartz [4] proved that the pentagram map converges on any convexpolygon.

Definition

The cross ratio of collinear points A,B,C,D ∈ R2 is defined as

χ(A,B,C,D) =|A− C| · |B − D||A− B| · |C − D|

where | · | denotes the Euclidean distance.

If the four points are ordered A,B,C,D, then χ(A,B,C,D) ≥ 1.

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 7 / 45

Page 19: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Extending Previous Results

Schwartz’s Proof

Richard Schwartz [4] proved that the pentagram map converges on any convexpolygon.

Definition

The cross ratio of collinear points A,B,C,D ∈ R2 is defined as

χ(A,B,C,D) =|A− C| · |B − D||A− B| · |C − D|

where | · | denotes the Euclidean distance.

If the four points are ordered A,B,C,D, then χ(A,B,C,D) ≥ 1.

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 7 / 45

Page 20: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Extending Previous Results

Schwartz’s Proof

Definition

Let v be a vertex of a polygon Π. The vertex invariant of v, written χ(v) is defined by

χ(v) = χ(A,B,C,D)

where A,B,C, and D are the points defined in the diagram.

The pentagram map preserves the vertex invariants of a pentagon.The pentagram map preserves the product of the vertex invariants for anypolygon.

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 8 / 45

Page 21: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Extending Previous Results

Schwartz’s Proof

Definition

Let v be a vertex of a polygon Π. The vertex invariant of v, written χ(v) is defined by

χ(v) = χ(A,B,C,D)

where A,B,C, and D are the points defined in the diagram.

The pentagram map preserves the vertex invariants of a pentagon.

The pentagram map preserves the product of the vertex invariants for anypolygon.

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 8 / 45

Page 22: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Extending Previous Results

Schwartz’s Proof

Definition

Let v be a vertex of a polygon Π. The vertex invariant of v, written χ(v) is defined by

χ(v) = χ(A,B,C,D)

where A,B,C, and D are the points defined in the diagram.

The pentagram map preserves the vertex invariants of a pentagon.The pentagram map preserves the product of the vertex invariants for anypolygon.

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 8 / 45

Page 23: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Extending Previous Results

Schwartz’s Proof

Definition

Let A,B ∈ S where S is a convex subset of R2. Let x and y be the intersection pointsof the line through A and B with the boundary of S, where the points are orderedx ,A,B, y . Then the Hilbert Distance between A and B in S is defined as

δS(A,B) = log(χ(x ,A,B, y))

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 9 / 45

Page 24: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Extending Previous Results

Schwartz’s Proof

Proof Sketch (by contradiction) :

1 Assume there exists a line L that intersects each Πk in a nontrivial segment.

2 The endpoints of L⋂

Πk become arbitrarily close to the endpoints of L⋂

Πk−1 ask →∞ (Cauchy Sequence w.r.t. Hausdorff Distance).

3 The Hilbert Distance between the endpoints of L⋂

Πk inside Πk−1 becomesinfinite as k →∞.

4 By the triangle inequality, the Hilbert Perimeter of Πk in Πk−1 becomes infinite ask →∞.

5 But we can show that the Hilbert Perimeter of Πk in Πk−1 is the log of the productof the vertex invariants of Πk , so it is invariant with respect to the pentagram map.

6 Contradiction !

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 10 / 45

Page 25: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Extending Previous Results

Schwartz’s Proof

Proof Sketch (by contradiction) :

1 Assume there exists a line L that intersects each Πk in a nontrivial segment.

2 The endpoints of L⋂

Πk become arbitrarily close to the endpoints of L⋂

Πk−1 ask →∞ (Cauchy Sequence w.r.t. Hausdorff Distance).

3 The Hilbert Distance between the endpoints of L⋂

Πk inside Πk−1 becomesinfinite as k →∞.

4 By the triangle inequality, the Hilbert Perimeter of Πk in Πk−1 becomes infinite ask →∞.

5 But we can show that the Hilbert Perimeter of Πk in Πk−1 is the log of the productof the vertex invariants of Πk , so it is invariant with respect to the pentagram map.

6 Contradiction !

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 10 / 45

Page 26: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Extending Previous Results

Schwartz’s Proof

Proof Sketch (by contradiction) :

1 Assume there exists a line L that intersects each Πk in a nontrivial segment.

2 The endpoints of L⋂

Πk become arbitrarily close to the endpoints of L⋂

Πk−1 ask →∞ (Cauchy Sequence w.r.t. Hausdorff Distance).

3 The Hilbert Distance between the endpoints of L⋂

Πk inside Πk−1 becomesinfinite as k →∞.

4 By the triangle inequality, the Hilbert Perimeter of Πk in Πk−1 becomes infinite ask →∞.

5 But we can show that the Hilbert Perimeter of Πk in Πk−1 is the log of the productof the vertex invariants of Πk , so it is invariant with respect to the pentagram map.

6 Contradiction !

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 10 / 45

Page 27: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Extending Previous Results

Schwartz’s Proof

Proof Sketch (by contradiction) :

1 Assume there exists a line L that intersects each Πk in a nontrivial segment.

2 The endpoints of L⋂

Πk become arbitrarily close to the endpoints of L⋂

Πk−1 ask →∞ (Cauchy Sequence w.r.t. Hausdorff Distance).

3 The Hilbert Distance between the endpoints of L⋂

Πk inside Πk−1 becomesinfinite as k →∞.

4 By the triangle inequality, the Hilbert Perimeter of Πk in Πk−1 becomes infinite ask →∞.

5 But we can show that the Hilbert Perimeter of Πk in Πk−1 is the log of the productof the vertex invariants of Πk , so it is invariant with respect to the pentagram map.

6 Contradiction !

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 10 / 45

Page 28: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Extending Previous Results

Schwartz’s Proof

Proof Sketch (by contradiction) :

1 Assume there exists a line L that intersects each Πk in a nontrivial segment.

2 The endpoints of L⋂

Πk become arbitrarily close to the endpoints of L⋂

Πk−1 ask →∞ (Cauchy Sequence w.r.t. Hausdorff Distance).

3 The Hilbert Distance between the endpoints of L⋂

Πk inside Πk−1 becomesinfinite as k →∞.

4 By the triangle inequality, the Hilbert Perimeter of Πk in Πk−1 becomes infinite ask →∞.

5 But we can show that the Hilbert Perimeter of Πk in Πk−1 is the log of the productof the vertex invariants of Πk , so it is invariant with respect to the pentagram map.

6 Contradiction !

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 10 / 45

Page 29: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Extending Previous Results

Schwartz’s Proof

Proof Sketch (by contradiction) :

1 Assume there exists a line L that intersects each Πk in a nontrivial segment.

2 The endpoints of L⋂

Πk become arbitrarily close to the endpoints of L⋂

Πk−1 ask →∞ (Cauchy Sequence w.r.t. Hausdorff Distance).

3 The Hilbert Distance between the endpoints of L⋂

Πk inside Πk−1 becomesinfinite as k →∞.

4 By the triangle inequality, the Hilbert Perimeter of Πk in Πk−1 becomes infinite ask →∞.

5 But we can show that the Hilbert Perimeter of Πk in Πk−1 is the log of the productof the vertex invariants of Πk , so it is invariant with respect to the pentagram map.

6 Contradiction !

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 10 / 45

Page 30: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Extending Previous Results

Schwartz’s Proof

Proof Sketch (by contradiction) :

1 Assume there exists a line L that intersects each Πk in a nontrivial segment.

2 The endpoints of L⋂

Πk become arbitrarily close to the endpoints of L⋂

Πk−1 ask →∞ (Cauchy Sequence w.r.t. Hausdorff Distance).

3 The Hilbert Distance between the endpoints of L⋂

Πk inside Πk−1 becomesinfinite as k →∞.

4 By the triangle inequality, the Hilbert Perimeter of Πk in Πk−1 becomes infinite ask →∞.

5 But we can show that the Hilbert Perimeter of Πk in Πk−1 is the log of the productof the vertex invariants of Πk , so it is invariant with respect to the pentagram map.

6 Contradiction !

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 10 / 45

Page 31: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Extending Previous Results

Convergence for a Restricted Class of Pentagons

Let ki = χ(vi ) = |AC||BD||AB||CD| >

|AC||AB|

=⇒ |AC| < ki |AB|=⇒ |AD| − |CD| < ki |AB|=⇒ |AD| < (ki − 1)|AB|+ |AB|+ |CD|=⇒ |AD| < (ki − 1)|AB|+ |AD| − |BC|=⇒ |BC| < (ki − 1)|AB|

By symmetry |BC| < (ki − 1)|CD|.=⇒ 2|BC| < (ki − 1)(|AB|+ |CD|)=⇒ 2|BC| < (ki − 1)(|AD| − |BC|)=⇒ |BC| <

(ki−1ki +1

)|AD|

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 11 / 45

Page 32: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Extending Previous Results

Convergence for a Restricted Class of Pentagons

Let ki = χ(vi ) = |AC||BD||AB||CD| >

|AC||AB|

=⇒ |AC| < ki |AB|

=⇒ |AD| − |CD| < ki |AB|=⇒ |AD| < (ki − 1)|AB|+ |AB|+ |CD|=⇒ |AD| < (ki − 1)|AB|+ |AD| − |BC|=⇒ |BC| < (ki − 1)|AB|

By symmetry |BC| < (ki − 1)|CD|.=⇒ 2|BC| < (ki − 1)(|AB|+ |CD|)=⇒ 2|BC| < (ki − 1)(|AD| − |BC|)=⇒ |BC| <

(ki−1ki +1

)|AD|

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 11 / 45

Page 33: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Extending Previous Results

Convergence for a Restricted Class of Pentagons

Let ki = χ(vi ) = |AC||BD||AB||CD| >

|AC||AB|

=⇒ |AC| < ki |AB|=⇒ |AD| − |CD| < ki |AB|

=⇒ |AD| < (ki − 1)|AB|+ |AB|+ |CD|=⇒ |AD| < (ki − 1)|AB|+ |AD| − |BC|=⇒ |BC| < (ki − 1)|AB|

By symmetry |BC| < (ki − 1)|CD|.=⇒ 2|BC| < (ki − 1)(|AB|+ |CD|)=⇒ 2|BC| < (ki − 1)(|AD| − |BC|)=⇒ |BC| <

(ki−1ki +1

)|AD|

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 11 / 45

Page 34: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Extending Previous Results

Convergence for a Restricted Class of Pentagons

Let ki = χ(vi ) = |AC||BD||AB||CD| >

|AC||AB|

=⇒ |AC| < ki |AB|=⇒ |AD| − |CD| < ki |AB|=⇒ |AD| < (ki − 1)|AB|+ |AB|+ |CD|

=⇒ |AD| < (ki − 1)|AB|+ |AD| − |BC|=⇒ |BC| < (ki − 1)|AB|

By symmetry |BC| < (ki − 1)|CD|.=⇒ 2|BC| < (ki − 1)(|AB|+ |CD|)=⇒ 2|BC| < (ki − 1)(|AD| − |BC|)=⇒ |BC| <

(ki−1ki +1

)|AD|

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 11 / 45

Page 35: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Extending Previous Results

Convergence for a Restricted Class of Pentagons

Let ki = χ(vi ) = |AC||BD||AB||CD| >

|AC||AB|

=⇒ |AC| < ki |AB|=⇒ |AD| − |CD| < ki |AB|=⇒ |AD| < (ki − 1)|AB|+ |AB|+ |CD|=⇒ |AD| < (ki − 1)|AB|+ |AD| − |BC|

=⇒ |BC| < (ki − 1)|AB|

By symmetry |BC| < (ki − 1)|CD|.=⇒ 2|BC| < (ki − 1)(|AB|+ |CD|)=⇒ 2|BC| < (ki − 1)(|AD| − |BC|)=⇒ |BC| <

(ki−1ki +1

)|AD|

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 11 / 45

Page 36: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Extending Previous Results

Convergence for a Restricted Class of Pentagons

Let ki = χ(vi ) = |AC||BD||AB||CD| >

|AC||AB|

=⇒ |AC| < ki |AB|=⇒ |AD| − |CD| < ki |AB|=⇒ |AD| < (ki − 1)|AB|+ |AB|+ |CD|=⇒ |AD| < (ki − 1)|AB|+ |AD| − |BC|=⇒ |BC| < (ki − 1)|AB|

By symmetry |BC| < (ki − 1)|CD|.=⇒ 2|BC| < (ki − 1)(|AB|+ |CD|)=⇒ 2|BC| < (ki − 1)(|AD| − |BC|)=⇒ |BC| <

(ki−1ki +1

)|AD|

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 11 / 45

Page 37: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Extending Previous Results

Convergence for a Restricted Class of Pentagons

Let ki = χ(vi ) = |AC||BD||AB||CD| >

|AC||AB|

=⇒ |AC| < ki |AB|=⇒ |AD| − |CD| < ki |AB|=⇒ |AD| < (ki − 1)|AB|+ |AB|+ |CD|=⇒ |AD| < (ki − 1)|AB|+ |AD| − |BC|=⇒ |BC| < (ki − 1)|AB|

By symmetry |BC| < (ki − 1)|CD|.

=⇒ 2|BC| < (ki − 1)(|AB|+ |CD|)=⇒ 2|BC| < (ki − 1)(|AD| − |BC|)=⇒ |BC| <

(ki−1ki +1

)|AD|

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 11 / 45

Page 38: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Extending Previous Results

Convergence for a Restricted Class of Pentagons

Let ki = χ(vi ) = |AC||BD||AB||CD| >

|AC||AB|

=⇒ |AC| < ki |AB|=⇒ |AD| − |CD| < ki |AB|=⇒ |AD| < (ki − 1)|AB|+ |AB|+ |CD|=⇒ |AD| < (ki − 1)|AB|+ |AD| − |BC|=⇒ |BC| < (ki − 1)|AB|

By symmetry |BC| < (ki − 1)|CD|.=⇒ 2|BC| < (ki − 1)(|AB|+ |CD|)

=⇒ 2|BC| < (ki − 1)(|AD| − |BC|)=⇒ |BC| <

(ki−1ki +1

)|AD|

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 11 / 45

Page 39: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Extending Previous Results

Convergence for a Restricted Class of Pentagons

Let ki = χ(vi ) = |AC||BD||AB||CD| >

|AC||AB|

=⇒ |AC| < ki |AB|=⇒ |AD| − |CD| < ki |AB|=⇒ |AD| < (ki − 1)|AB|+ |AB|+ |CD|=⇒ |AD| < (ki − 1)|AB|+ |AD| − |BC|=⇒ |BC| < (ki − 1)|AB|

By symmetry |BC| < (ki − 1)|CD|.=⇒ 2|BC| < (ki − 1)(|AB|+ |CD|)=⇒ 2|BC| < (ki − 1)(|AD| − |BC|)

=⇒ |BC| <(

ki−1ki +1

)|AD|

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 11 / 45

Page 40: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Extending Previous Results

Convergence for a Restricted Class of Pentagons

Let ki = χ(vi ) = |AC||BD||AB||CD| >

|AC||AB|

=⇒ |AC| < ki |AB|=⇒ |AD| − |CD| < ki |AB|=⇒ |AD| < (ki − 1)|AB|+ |AB|+ |CD|=⇒ |AD| < (ki − 1)|AB|+ |AD| − |BC|=⇒ |BC| < (ki − 1)|AB|

By symmetry |BC| < (ki − 1)|CD|.=⇒ 2|BC| < (ki − 1)(|AB|+ |CD|)=⇒ 2|BC| < (ki − 1)(|AD| − |BC|)=⇒ |BC| <

(ki−1ki +1

)|AD|

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 11 / 45

Page 41: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Extending Previous Results

Convergence for a Restricted Class of Pentagons

This applies for any side of Π1.

P(Π1) <∑4

i=0

(ki−1ki +1

)di

< 2(

kmax−1kmax +1

)P(Π0)

=⇒ P(Π1)

P(Π0)< 2

(kmax−1kmax +1

)

The ki values are invariant under thepentagram map.

So P(Πk )

P(Π0)<(

2(

kmax−1kmax +1

))k

If kmax < 3, then the pentagramiteration converges to a point and wehave a bound for the rate.

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 12 / 45

Page 42: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Extending Previous Results

Convergence for a Restricted Class of Pentagons

This applies for any side of Π1.P(Π1) <

∑4i=0

(ki−1ki +1

)di

< 2(

kmax−1kmax +1

)P(Π0)

=⇒ P(Π1)

P(Π0)< 2

(kmax−1kmax +1

)

The ki values are invariant under thepentagram map.

So P(Πk )

P(Π0)<(

2(

kmax−1kmax +1

))k

If kmax < 3, then the pentagramiteration converges to a point and wehave a bound for the rate.

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 12 / 45

Page 43: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Extending Previous Results

Convergence for a Restricted Class of Pentagons

This applies for any side of Π1.P(Π1) <

∑4i=0

(ki−1ki +1

)di

< 2(

kmax−1kmax +1

)P(Π0)

=⇒ P(Π1)

P(Π0)< 2

(kmax−1kmax +1

)

The ki values are invariant under thepentagram map.

So P(Πk )

P(Π0)<(

2(

kmax−1kmax +1

))k

If kmax < 3, then the pentagramiteration converges to a point and wehave a bound for the rate.

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 12 / 45

Page 44: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Extending Previous Results

Convergence for a Restricted Class of Pentagons

This applies for any side of Π1.P(Π1) <

∑4i=0

(ki−1ki +1

)di

< 2(

kmax−1kmax +1

)P(Π0)

=⇒ P(Π1)

P(Π0)< 2

(kmax−1kmax +1

)

The ki values are invariant under thepentagram map.

So P(Πk )

P(Π0)<(

2(

kmax−1kmax +1

))k

If kmax < 3, then the pentagramiteration converges to a point and wehave a bound for the rate.

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 12 / 45

Page 45: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Extending Previous Results

Convergence for a Restricted Class of Pentagons

This applies for any side of Π1.P(Π1) <

∑4i=0

(ki−1ki +1

)di

< 2(

kmax−1kmax +1

)P(Π0)

=⇒ P(Π1)

P(Π0)< 2

(kmax−1kmax +1

)

The ki values are invariant under thepentagram map.

So P(Πk )

P(Π0)<(

2(

kmax−1kmax +1

))k

If kmax < 3, then the pentagramiteration converges to a point and wehave a bound for the rate.

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 12 / 45

Page 46: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Extending Previous Results

Convergence for a Restricted Class of Pentagons

This applies for any side of Π1.P(Π1) <

∑4i=0

(ki−1ki +1

)di

< 2(

kmax−1kmax +1

)P(Π0)

=⇒ P(Π1)

P(Π0)< 2

(kmax−1kmax +1

)

The ki values are invariant under thepentagram map.

So P(Πk )

P(Π0)<(

2(

kmax−1kmax +1

))k

If kmax < 3, then the pentagramiteration converges to a point and wehave a bound for the rate.

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 12 / 45

Page 47: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Extending Previous Results

Convergence for a Restricted Class of Pentagons

This applies for any side of Π1.P(Π1) <

∑4i=0

(ki−1ki +1

)di

< 2(

kmax−1kmax +1

)P(Π0)

=⇒ P(Π1)

P(Π0)< 2

(kmax−1kmax +1

)

The ki values are invariant under thepentagram map.

So P(Πk )

P(Π0)<(

2(

kmax−1kmax +1

))k

If kmax < 3, then the pentagramiteration converges to a point and wehave a bound for the rate.

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 12 / 45

Page 48: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Extending Previous Results

A Conjecture

Explorations in geogebra indicate that P(Π1)

P(Π0)< kmax−1

kmax +1 holds in general for anypolygon, regardless of the number of sides, but we have not been able to prove this.

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 13 / 45

Page 49: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Coefficients of Ergodicity

Representation by matrices

The Pentagram map can be represented by an n × ncirculant-patterned matrix.

M =

α0 0 1− α0 0 . . . 00 α1 0 1− α1 . . . 0...

. . ....

0 1− αn−1 0 0 . . . αn−1

where αi is a proportion along the i th diagonal, or α = c

d

Note : In a regular n-gonα0 = α1 = . . . = αn−1 =(

sin(π/n)sin(2π/n)

)2

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 14 / 45

Page 50: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Coefficients of Ergodicity

Matrices continued

Multiplying M by a vector of vertices will result in a column vector of the next polygon’svertices

vertices of Πk+1 = Mk (vertices of Πk )vk+1

0vk+1

1...

vk+1n−1

=

α0 0 1− α0 0 . . . 00 α1 0 1− α1 . . . 0...

. . ....

0 1− αn−1 0 0 . . . αn−1

vk0

vk1...

vkn−1

We can then express the vertices of Πk as

Πk = Mk Mk−1 . . .M0Π0

Our project’s main goal is to show that the vertices of Πk converge as k →∞

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 15 / 45

Page 51: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Coefficients of Ergodicity

Matrices continued

Multiplying M by a vector of vertices will result in a column vector of the next polygon’svertices

vertices of Πk+1 = Mk (vertices of Πk )vk+1

0vk+1

1...

vk+1n−1

=

α0 0 1− α0 0 . . . 00 α1 0 1− α1 . . . 0...

. . ....

0 1− αn−1 0 0 . . . αn−1

vk0

vk1...

vkn−1

We can then express the vertices of Πk as

Πk = Mk Mk−1 . . .M0Π0

Our project’s main goal is to show that the vertices of Πk converge as k →∞

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 15 / 45

Page 52: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Coefficients of Ergodicity

Past Uses

Eric Hintikka [1] used coefficients of ergodicity to prove that any polygon derivedfrom a series of stochastic circulant-patterned matrices will converge.

Stochastic : All entries in each row will add to one and be non-negative.

Circulant- patterned : Each matrix has the same zero pattern, which repeatsthrough each row while shifting one column each time.

M =

α0 0 1− α0 0 . . . 00 α1 0 1− α1 . . . 0...

. . ....

0 1− αn−1 0 0 . . . αn−1

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 16 / 45

Page 53: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Coefficients of Ergodicity

Coefficients of Ergodicity

Generally, ergodicity coefficients estimate the rate of convergence for stochasticmatrices [2].We’ll use some key properties of one coefficient, τ1 :

1 0 ≤ τ1(M) ≤ 1, and 0 = τ1(M)⇔ M is a rank one matrix

2 τ1(M) = 1−∑n

k=1 min{mik ,mjk}3 τ1(M1M2) ≤ τ1(M1)τ1(M2)

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 17 / 45

Page 54: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Coefficients of Ergodicity

Proving Convergence

Scheme :

For a sequence of k stochastic matrices, divide them into groups of n. Call onesuch group Mg .

Each group will multiply to create a positive, stochastic matrix, withτ1(M) = 1−

∑nk=1 min{mik ,mjk}. Then we know that τ1 < 1 for each group

specifically, we have τ1(Mg) ≤ 1 − nε(n−1) where ε is the smallest entry in any M matrixthat is greater than zero.

When we multiply each of the groups together, we have

limk→∞

τ1(Mk ) ≤ limk→∞

(1− nε(n−1))k

Which will equal zero when we have a bound on ε, the smallest possible α value.

Which implies Mk is a rank one matrix, say L.

Thus, the polygon converges, as

limk→∞

Πk = LΠ0

Which is simply a point.

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 18 / 45

Page 55: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Coefficients of Ergodicity

Proving Convergence

Scheme :

For a sequence of k stochastic matrices, divide them into groups of n. Call onesuch group Mg .Each group will multiply to create a positive, stochastic matrix, withτ1(M) = 1−

∑nk=1 min{mik ,mjk}. Then we know that τ1 < 1 for each group

specifically, we have τ1(Mg) ≤ 1 − nε(n−1) where ε is the smallest entry in any M matrixthat is greater than zero.

When we multiply each of the groups together, we have

limk→∞

τ1(Mk ) ≤ limk→∞

(1− nε(n−1))k

Which will equal zero when we have a bound on ε, the smallest possible α value.

Which implies Mk is a rank one matrix, say L.

Thus, the polygon converges, as

limk→∞

Πk = LΠ0

Which is simply a point.

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 18 / 45

Page 56: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Coefficients of Ergodicity

Proving Convergence

Scheme :

For a sequence of k stochastic matrices, divide them into groups of n. Call onesuch group Mg .Each group will multiply to create a positive, stochastic matrix, withτ1(M) = 1−

∑nk=1 min{mik ,mjk}. Then we know that τ1 < 1 for each group

specifically, we have τ1(Mg) ≤ 1 − nε(n−1) where ε is the smallest entry in any M matrixthat is greater than zero.

When we multiply each of the groups together, we have

limk→∞

τ1(Mk ) ≤ limk→∞

(1− nε(n−1))k

Which will equal zero when we have a bound on ε, the smallest possible α value.

Which implies Mk is a rank one matrix, say L.

Thus, the polygon converges, as

limk→∞

Πk = LΠ0

Which is simply a point.

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 18 / 45

Page 57: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Coefficients of Ergodicity

Proving Convergence

Scheme :

For a sequence of k stochastic matrices, divide them into groups of n. Call onesuch group Mg .Each group will multiply to create a positive, stochastic matrix, withτ1(M) = 1−

∑nk=1 min{mik ,mjk}. Then we know that τ1 < 1 for each group

specifically, we have τ1(Mg) ≤ 1 − nε(n−1) where ε is the smallest entry in any M matrixthat is greater than zero.

When we multiply each of the groups together, we have

limk→∞

τ1(Mk ) ≤ limk→∞

(1− nε(n−1))k

Which will equal zero when we have a bound on ε, the smallest possible α value.

Which implies Mk is a rank one matrix, say L.

Thus, the polygon converges, as

limk→∞

Πk = LΠ0

Which is simply a point.

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 18 / 45

Page 58: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Coefficients of Ergodicity

Proving Convergence

Scheme :

For a sequence of k stochastic matrices, divide them into groups of n. Call onesuch group Mg .Each group will multiply to create a positive, stochastic matrix, withτ1(M) = 1−

∑nk=1 min{mik ,mjk}. Then we know that τ1 < 1 for each group

specifically, we have τ1(Mg) ≤ 1 − nε(n−1) where ε is the smallest entry in any M matrixthat is greater than zero.

When we multiply each of the groups together, we have

limk→∞

τ1(Mk ) ≤ limk→∞

(1− nε(n−1))k

Which will equal zero when we have a bound on ε, the smallest possible α value.

Which implies Mk is a rank one matrix, say L.

Thus, the polygon converges, as

limk→∞

Πk = LΠ0

Which is simply a point.

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 18 / 45

Page 59: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Coefficients of Ergodicity

Proving Convergence

Scheme :

For a sequence of k stochastic matrices, divide them into groups of n. Call onesuch group Mg .Each group will multiply to create a positive, stochastic matrix, withτ1(M) = 1−

∑nk=1 min{mik ,mjk}. Then we know that τ1 < 1 for each group

specifically, we have τ1(Mg) ≤ 1 − nε(n−1) where ε is the smallest entry in any M matrixthat is greater than zero.

When we multiply each of the groups together, we have

limk→∞

τ1(Mk ) ≤ limk→∞

(1− nε(n−1))k

Which will equal zero when we have a bound on ε, the smallest possible α value.

Which implies Mk is a rank one matrix, say L.

Thus, the polygon converges, as

limk→∞

Πk = LΠ0

Which is simply a point.

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 18 / 45

Page 60: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Coefficients of Ergodicity

Limitations

The matrices to represent the pentagram mapping are made up α values that wehave no control over. Eric bounded his matrices with entries (0 < δ < 1

2 ) and(1− δ) so there was control over the entries in his matrix.

Method only works for polygons with odd number of sides :

M =

α0 0 1− α0 0 0 00 α1 0 1− α1 0 00 0 α2 0 1− α2 00 0 0 α3 0 1− α3

1− α4 0 0 0 α4 00 1− α5 0 0 0 α5

Mk =

γ0 0 γ1 0 γ2 20 β0 0 β1 0 β2φ2 0 φ0 0 φ1 00 ψ2 0 ψ0 0 ψ1ρ1 0 ρ2 0 ρ0 00 ζ1 0 ζ2 0 ζ0

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 19 / 45

Page 61: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Coefficients of Ergodicity

Limitations

The matrices to represent the pentagram mapping are made up α values that wehave no control over. Eric bounded his matrices with entries (0 < δ < 1

2 ) and(1− δ) so there was control over the entries in his matrix.

Method only works for polygons with odd number of sides :

M =

α0 0 1− α0 0 0 00 α1 0 1− α1 0 00 0 α2 0 1− α2 00 0 0 α3 0 1− α3

1− α4 0 0 0 α4 00 1− α5 0 0 0 α5

Mk =

γ0 0 γ1 0 γ2 20 β0 0 β1 0 β2φ2 0 φ0 0 φ1 00 ψ2 0 ψ0 0 ψ1ρ1 0 ρ2 0 ρ0 00 ζ1 0 ζ2 0 ζ0

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 19 / 45

Page 62: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Coefficients of Ergodicity

Possibilities

If we consider α in terms of the cross-ratio, we wouldhave

α =CDAD

If a bound exists on this α in terms of k , even arestricted case of k , then we are able to use thecoefficients of ergodicity

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 20 / 45

Page 63: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Set-up

Set-up

Represent the pentagon as a loop :

The five points of pentagon Π0 are represented as (ai , bi ) where i = 0, . . . , 4.

Define a loop f : [0, 1]→ R2 which maps parameter t 7→ (x(t), y(t)).

The x-coordinates in the loop representing the pentagon

x(t) =

(1− 5t)a0 + 5ta1 0 ≤ t ≤ 1/5(2− 5t)a1 + (5t − 1)a2 1/5 ≤ t ≤ 2/5(3− 5t)a2 + (5t − 2)a3 2/5 ≤ t ≤ 3/5(4− 5t)a3 + (5t − 3)a4 3/5 ≤ t ≤ 4/5(5− 5t)a4 + (5t − 4)a0 4/5 ≤ t ≤ 1

The y-coordinate parametrization has the same form, except all a’s are replacedwith b.

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 21 / 45

Page 64: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Set-up

Set-up

Represent the pentagon as a loop :

The five points of pentagon Π0 are represented as (ai , bi ) where i = 0, . . . , 4.

Define a loop f : [0, 1]→ R2 which maps parameter t 7→ (x(t), y(t)).

The x-coordinates in the loop representing the pentagon

x(t) =

(1− 5t)a0 + 5ta1 0 ≤ t ≤ 1/5(2− 5t)a1 + (5t − 1)a2 1/5 ≤ t ≤ 2/5(3− 5t)a2 + (5t − 2)a3 2/5 ≤ t ≤ 3/5(4− 5t)a3 + (5t − 3)a4 3/5 ≤ t ≤ 4/5(5− 5t)a4 + (5t − 4)a0 4/5 ≤ t ≤ 1

The y-coordinate parametrization has the same form, except all a’s are replacedwith b.

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 21 / 45

Page 65: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Set-up

Set-up

Represent the pentagon as a loop :

The five points of pentagon Π0 are represented as (ai , bi ) where i = 0, . . . , 4.

Define a loop f : [0, 1]→ R2 which maps parameter t 7→ (x(t), y(t)).

The x-coordinates in the loop representing the pentagon

x(t) =

(1− 5t)a0 + 5ta1 0 ≤ t ≤ 1/5(2− 5t)a1 + (5t − 1)a2 1/5 ≤ t ≤ 2/5(3− 5t)a2 + (5t − 2)a3 2/5 ≤ t ≤ 3/5(4− 5t)a3 + (5t − 3)a4 3/5 ≤ t ≤ 4/5(5− 5t)a4 + (5t − 4)a0 4/5 ≤ t ≤ 1

The y-coordinate parametrization has the same form, except all a’s are replacedwith b.

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 21 / 45

Page 66: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Set-up

Set-up

Represent the pentagon as a loop :

The five points of pentagon Π0 are represented as (ai , bi ) where i = 0, . . . , 4.

Define a loop f : [0, 1]→ R2 which maps parameter t 7→ (x(t), y(t)).

The x-coordinates in the loop representing the pentagon

x(t) =

(1− 5t)a0 + 5ta1 0 ≤ t ≤ 1/5(2− 5t)a1 + (5t − 1)a2 1/5 ≤ t ≤ 2/5(3− 5t)a2 + (5t − 2)a3 2/5 ≤ t ≤ 3/5(4− 5t)a3 + (5t − 3)a4 3/5 ≤ t ≤ 4/5(5− 5t)a4 + (5t − 4)a0 4/5 ≤ t ≤ 1

The y-coordinate parametrization has the same form, except all a’s are replacedwith b.

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 21 / 45

Page 67: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Set-up

Loop

FIGURE – The parametrization of the pentagon

t (x(t), y(t))0 , 1 (a0, b0)1/5 (a1, b1)2/5 (a2, b2)3/5 (a3, b3)4/5 (a4, b4)

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 22 / 45

Page 68: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Linear Transformation

Moving Segments

Paramterization of thefirst pentagon allows for asimple linear translationof segments whendefining the secondpentagon.

Requires all segments tobe defined by a uniquelinear transformation.

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 23 / 45

Page 69: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Linear Transformation

Matrix Multiplication

Because the transformation is a linear one, we can represent the points throughmatrix multiplication.[

x1(t)y1(t)

]=

[A BC D

] [x(t)y(t)

]i5≤ t ≤

(i + 1)

5

Once we know the position of all five points in the original pentagon, we candetermine the intersections of the diagonals using analytic techniques.

So assuming we know (x(t), y(t)) and can find (x1(t), y1(t)), we can solve asystem of equations to determine the matrix :

[A BC D

]=

a′i bi+1−a′i+1biai bi+1−ai+1bi

ai a′i+1−ai+1a′i

ai bi+1−ai+1bib′i bi+1−b′i+1biai bi+1−ai+1bi

ai b′i+1−ai+1b′i

ai bi+1−ai+1bi

One downside is that a matrix needs to be found for each segment’stransformation.

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 24 / 45

Page 70: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Linear Transformation

Matrix Multiplication

Because the transformation is a linear one, we can represent the points throughmatrix multiplication.[

x1(t)y1(t)

]=

[A BC D

] [x(t)y(t)

]i5≤ t ≤

(i + 1)

5

Once we know the position of all five points in the original pentagon, we candetermine the intersections of the diagonals using analytic techniques.

So assuming we know (x(t), y(t)) and can find (x1(t), y1(t)), we can solve asystem of equations to determine the matrix :

[A BC D

]=

a′i bi+1−a′i+1biai bi+1−ai+1bi

ai a′i+1−ai+1a′i

ai bi+1−ai+1bib′i bi+1−b′i+1biai bi+1−ai+1bi

ai b′i+1−ai+1b′i

ai bi+1−ai+1bi

One downside is that a matrix needs to be found for each segment’stransformation.

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 24 / 45

Page 71: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Linear Transformation

Matrix Multiplication

Because the transformation is a linear one, we can represent the points throughmatrix multiplication.[

x1(t)y1(t)

]=

[A BC D

] [x(t)y(t)

]i5≤ t ≤

(i + 1)

5

Once we know the position of all five points in the original pentagon, we candetermine the intersections of the diagonals using analytic techniques.

So assuming we know (x(t), y(t)) and can find (x1(t), y1(t)), we can solve asystem of equations to determine the matrix :

[A BC D

]=

a′i bi+1−a′i+1biai bi+1−ai+1bi

ai a′i+1−ai+1a′i

ai bi+1−ai+1bib′i bi+1−b′i+1biai bi+1−ai+1bi

ai b′i+1−ai+1b′i

ai bi+1−ai+1bi

One downside is that a matrix needs to be found for each segment’stransformation.

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 24 / 45

Page 72: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Linear Transformation

Matrix Multiplication

Because the transformation is a linear one, we can represent the points throughmatrix multiplication.[

x1(t)y1(t)

]=

[A BC D

] [x(t)y(t)

]i5≤ t ≤

(i + 1)

5

Once we know the position of all five points in the original pentagon, we candetermine the intersections of the diagonals using analytic techniques.

So assuming we know (x(t), y(t)) and can find (x1(t), y1(t)), we can solve asystem of equations to determine the matrix :

[A BC D

]=

a′i bi+1−a′i+1biai bi+1−ai+1bi

ai a′i+1−ai+1a′i

ai bi+1−ai+1bib′i bi+1−b′i+1biai bi+1−ai+1bi

ai b′i+1−ai+1b′i

ai bi+1−ai+1bi

One downside is that a matrix needs to be found for each segment’stransformation.

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 24 / 45

Page 73: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Linear Transformation

Finding Convergence

Our goal :

1 Find the matrix[

A BC D

]for each segment’s transformation

2 Show the Perimeter of the new pentagon is smaller due to this transformation.

3 Repeat the process over and over until we get a point.

However, this is a lot of calculation to do byhand.

BRING IN THE PYTHON !

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 25 / 45

Page 74: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Linear Transformation

Finding Convergence

Our goal :

1 Find the matrix[

A BC D

]for each segment’s transformation

2 Show the Perimeter of the new pentagon is smaller due to this transformation.

3 Repeat the process over and over until we get a point.

However, this is a lot of calculation to do byhand.

BRING IN THE PYTHON !

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 25 / 45

Page 75: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Linear Transformation

Finding Convergence

Our goal :

1 Find the matrix[

A BC D

]for each segment’s transformation

2 Show the Perimeter of the new pentagon is smaller due to this transformation.

3 Repeat the process over and over until we get a point.

However, this is a lot of calculation to do byhand.

BRING IN THE PYTHON !

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 25 / 45

Page 76: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Linear Transformation

Finding Convergence

Our goal :

1 Find the matrix[

A BC D

]for each segment’s transformation

2 Show the Perimeter of the new pentagon is smaller due to this transformation.

3 Repeat the process over and over until we get a point.

However, this is a lot of calculation to do byhand.

BRING IN THE PYTHON !

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 25 / 45

Page 77: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Python Program

The Game

Give it 5 points, going in counter-clockwise order. It finds :

The intersection of the diagonals.

The ratio of P(Πk )

P(Πk−1), which allows for the easy calculation of P(Πk )

P(Π0)

Draws a picture of the n iterations

Gives the vertices of Πk

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 26 / 45

Page 78: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Python Program

The Game

Give it 5 points, going in counter-clockwise order. It finds :

The intersection of the diagonals.

The ratio of P(Πk )

P(Πk−1), which allows for the easy calculation of P(Πk )

P(Π0)

Draws a picture of the n iterations

Gives the vertices of Πk

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 26 / 45

Page 79: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Python Program

The Game

Give it 5 points, going in counter-clockwise order. It finds :

The intersection of the diagonals.

The ratio of P(Πk )

P(Πk−1), which allows for the easy calculation of P(Πk )

P(Π0)

Draws a picture of the n iterations

Gives the vertices of Πk

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 26 / 45

Page 80: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Python Program

The Game

Give it 5 points, going in counter-clockwise order. It finds :

The intersection of the diagonals.

The ratio of P(Πk )

P(Πk−1), which allows for the easy calculation of P(Πk )

P(Π0)

Draws a picture of the n iterations

Gives the vertices of Πk

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 26 / 45

Page 81: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Construction

Two Types of Maps

Can we unify these two maps ?

The midpoint map The pentagram map

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 27 / 45

Page 82: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Construction

The Generalized Pentagram Map (GPM)

Let Π be an n-gon with verticesv0

0 , v01 , . . . , v

0n−1.

Choose ai , bi ∈ [0, 1] with ai ≤ bi fori = 0, 1, . . . , n − 1.

Construct points Ai ,Bi such that

ai =v0

i Aiv0

i v0i+1

and bi =v0

i Biv0

i v0i+1

.

Connect v0i−1 to Bi and v0

i+2 to Ai .

Call the intersection v1i .

Apply this process to each edge to form thevertices of an n-gon T (Π).

Applying this process k times gives usT k (Π).

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 28 / 45

Page 83: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Construction

The Generalized Pentagram Map (GPM)

Let Π be an n-gon with verticesv0

0 , v01 , . . . , v

0n−1.

Choose ai , bi ∈ [0, 1] with ai ≤ bi fori = 0, 1, . . . , n − 1.

Construct points Ai ,Bi such that

ai =v0

i Aiv0

i v0i+1

and bi =v0

i Biv0

i v0i+1

.

Connect v0i−1 to Bi and v0

i+2 to Ai .

Call the intersection v1i .

Apply this process to each edge to form thevertices of an n-gon T (Π).

Applying this process k times gives usT k (Π).

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 28 / 45

Page 84: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Construction

The Generalized Pentagram Map (GPM)

Let Π be an n-gon with verticesv0

0 , v01 , . . . , v

0n−1.

Choose ai , bi ∈ [0, 1] with ai ≤ bi fori = 0, 1, . . . , n − 1.

Construct points Ai ,Bi such that

ai =v0

i Aiv0

i v0i+1

and bi =v0

i Biv0

i v0i+1

.

Connect v0i−1 to Bi and v0

i+2 to Ai .

Call the intersection v1i .

Apply this process to each edge to form thevertices of an n-gon T (Π).

Applying this process k times gives usT k (Π).

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 28 / 45

Page 85: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Construction

The Generalized Pentagram Map (GPM)

Let Π be an n-gon with verticesv0

0 , v01 , . . . , v

0n−1.

Choose ai , bi ∈ [0, 1] with ai ≤ bi fori = 0, 1, . . . , n − 1.

Construct points Ai ,Bi such that

ai =v0

i Aiv0

i v0i+1

and bi =v0

i Biv0

i v0i+1

.

Connect v0i−1 to Bi and v0

i+2 to Ai .

Call the intersection v1i .

Apply this process to each edge to form thevertices of an n-gon T (Π).

Applying this process k times gives usT k (Π).

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 28 / 45

Page 86: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Construction

The Generalized Pentagram Map (GPM)

Let Π be an n-gon with verticesv0

0 , v01 , . . . , v

0n−1.

Choose ai , bi ∈ [0, 1] with ai ≤ bi fori = 0, 1, . . . , n − 1.

Construct points Ai ,Bi such that

ai =v0

i Aiv0

i v0i+1

and bi =v0

i Biv0

i v0i+1

.

Connect v0i−1 to Bi and v0

i+2 to Ai .

Call the intersection v1i .

Apply this process to each edge to form thevertices of an n-gon T (Π).

Applying this process k times gives usT k (Π).

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 28 / 45

Page 87: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Construction

The Generalized Pentagram Map (GPM)

Let Π be an n-gon with verticesv0

0 , v01 , . . . , v

0n−1.

Choose ai , bi ∈ [0, 1] with ai ≤ bi fori = 0, 1, . . . , n − 1.

Construct points Ai ,Bi such that

ai =v0

i Aiv0

i v0i+1

and bi =v0

i Biv0

i v0i+1

.

Connect v0i−1 to Bi and v0

i+2 to Ai .

Call the intersection v1i .

Apply this process to each edge to form thevertices of an n-gon T (Π).

Applying this process k times gives usT k (Π).

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 28 / 45

Page 88: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Construction

The Generalized Pentagram Map (GPM)

Let Π be an n-gon with verticesv0

0 , v01 , . . . , v

0n−1.

Choose ai , bi ∈ [0, 1] with ai ≤ bi fori = 0, 1, . . . , n − 1.

Construct points Ai ,Bi such that

ai =v0

i Aiv0

i v0i+1

and bi =v0

i Biv0

i v0i+1

.

Connect v0i−1 to Bi and v0

i+2 to Ai .

Call the intersection v1i .

Apply this process to each edge to form thevertices of an n-gon T (Π).

Applying this process k times gives usT k (Π).

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 28 / 45

Page 89: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Construction

The Generalized Pentagram Map (GPM)

Let Π be an n-gon with verticesv0

0 , v01 , . . . , v

0n−1.

Choose ai , bi ∈ [0, 1] with ai ≤ bi fori = 0, 1, . . . , n − 1.

Construct points Ai ,Bi such that

ai =v0

i Aiv0

i v0i+1

and bi =v0

i Biv0

i v0i+1

.

Connect v0i−1 to Bi and v0

i+2 to Ai .

Call the intersection v1i .

Apply this process to each edge to form thevertices of an n-gon T (Π).

Applying this process k times gives usT k (Π).

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 28 / 45

Page 90: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Construction

Representing the Map

A GPM T is uniquely determined by the ai and bi values.

Let f (T ) = (a0, b0, a1, b1, . . . , an−1, bn−1).

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 29 / 45

Page 91: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Construction

Representing the Map

A GPM T is uniquely determined by the ai and bi values.

Let f (T ) = (a0, b0, a1, b1, . . . , an−1, bn−1).

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 29 / 45

Page 92: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Construction

Representing the Map

A GPM T is uniquely determined by the ai and bi values.

Let f (T ) = (a0, b0, a1, b1, . . . , an−1, bn−1).

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 29 / 45

Page 93: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Basic Properties of the Map

Some Examples

f (T ) = (0, 0, . . . , 0) =⇒

T is the identitymap.

f (T ) = (1, 1, . . . , 1) =⇒ T is a relabelingof the vertices.

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 30 / 45

Page 94: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Basic Properties of the Map

Some Examples

f (T ) = (0, 0, . . . , 0) =⇒ T is the identitymap.

f (T ) = (1, 1, . . . , 1) =⇒ T is a relabelingof the vertices.

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 30 / 45

Page 95: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Basic Properties of the Map

Some Examples

f (T ) = (0, 0, . . . , 0) =⇒ T is the identitymap.

f (T ) = (1, 1, . . . , 1) =⇒

T is a relabelingof the vertices.

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 30 / 45

Page 96: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Basic Properties of the Map

Some Examples

f (T ) = (0, 0, . . . , 0) =⇒ T is the identitymap.

f (T ) = (1, 1, . . . , 1) =⇒ T is a relabelingof the vertices.

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 30 / 45

Page 97: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Basic Properties of the Map

Some Examples

f (T ) = ( 12 ,

12 , . . . ,

12 ) =⇒

T is themidpoint map.

f (T ) = (0, 1, 0, 1, . . . , 0, 1) =⇒ T is thepentagram map.

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 31 / 45

Page 98: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Basic Properties of the Map

Some Examples

f (T ) = ( 12 ,

12 , . . . ,

12 ) =⇒ T is the

midpoint map.

f (T ) = (0, 1, 0, 1, . . . , 0, 1) =⇒ T is thepentagram map.

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 31 / 45

Page 99: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Basic Properties of the Map

Some Examples

f (T ) = ( 12 ,

12 , . . . ,

12 ) =⇒ T is the

midpoint map.f (T ) = (0, 1, 0, 1, . . . , 0, 1) =⇒

T is thepentagram map.

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 31 / 45

Page 100: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Basic Properties of the Map

Some Examples

f (T ) = ( 12 ,

12 , . . . ,

12 ) =⇒ T is the

midpoint map.f (T ) = (0, 1, 0, 1, . . . , 0, 1) =⇒ T is thepentagram map.

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 31 / 45

Page 101: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Basic Properties of the Map

Intuition for the Map on Convex Polygons

Gray regions are the overlap of two consecutive vertex triangles.

The vertices of T (Π) lie inside separate gray regions.

Each vertex of T (Π) can lie anywhere in its corresponding region without affectingthe configuration of the other vertices.

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 32 / 45

Page 102: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Basic Properties of the Map

Intuition for the Map on Convex Polygons

Gray regions are the overlap of two consecutive vertex triangles.

The vertices of T (Π) lie inside separate gray regions.

Each vertex of T (Π) can lie anywhere in its corresponding region without affectingthe configuration of the other vertices.

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 32 / 45

Page 103: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Basic Properties of the Map

Intuition for the Map on Convex Polygons

Gray regions are the overlap of two consecutive vertex triangles.

The vertices of T (Π) lie inside separate gray regions.

Each vertex of T (Π) can lie anywhere in its corresponding region without affectingthe configuration of the other vertices.

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 32 / 45

Page 104: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Basic Properties of the Map

Intuition for the Map on Convex Polygons

Gray regions are the overlap of two consecutive vertex triangles.

The vertices of T (Π) lie inside separate gray regions.

Each vertex of T (Π) can lie anywhere in its corresponding region without affectingthe configuration of the other vertices.

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 32 / 45

Page 105: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Basic Properties of the Map

Convexity and the GPM

All the maps we’ve looked at previously preserve convexity.

Do all GPMs preserve convexity ?Unfortunately, no.

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 33 / 45

Page 106: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Basic Properties of the Map

Convexity and the GPM

All the maps we’ve looked at previously preserve convexity.Do all GPMs preserve convexity ?

Unfortunately, no.

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 33 / 45

Page 107: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Basic Properties of the Map

Convexity and the GPM

All the maps we’ve looked at previously preserve convexity.Do all GPMs preserve convexity ?

Unfortunately, no.

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 33 / 45

Page 108: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Regular Polygon Case

A Special Type of GPM

Let Π be a regular n-gon and let T be a GPM such thatf (T ) = (m, 1−m,m, 1−m, . . . ,m, 1−m) for some m ∈ [0, 1

2 ].

s′ = s[cos

(πn

)− (1− 2m) tan(z) sin

(πn

)]

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 34 / 45

Page 109: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Regular Polygon Case

A Special Type of GPM

Let Π be a regular n-gon and let T be a GPM such thatf (T ) = (m, 1−m,m, 1−m, . . . ,m, 1−m) for some m ∈ [0, 1

2 ].

s′ = s[cos

(πn

)− (1− 2m) tan(z) sin

(πn

)]

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 34 / 45

Page 110: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Regular Polygon Case

A Special Type of GPM

Let Π be a regular n-gon and let T be a GPM such thatf (T ) = (m, 1−m,m, 1−m, . . . ,m, 1−m) for some m ∈ [0, 1

2 ].

s′ = s[cos

(πn

)− (1− 2m) tan(z) sin

(πn

)]

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 34 / 45

Page 111: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Regular Polygon Case

A Special Type of GPM

Found using :

Multiple Law of Sines applications

Similar triangles

Symmetry of the regular polygon

P(T k+1(Π))

P(T k (Π))= cos

(πn

)− (1− 2m) sin

(πn

)tan(z)

Plugging in m = 0 reduces this equation to P(T k+1(Π))

P(T k (Π))=

cos( 2πn )

cos( πn )

which is what

we obtained previously.

So T is a convexity preserving GPM on regular polygons and T k (Π) converges toa point.

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 35 / 45

Page 112: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Regular Polygon Case

A Special Type of GPM

Found using :

Multiple Law of Sines applications

Similar triangles

Symmetry of the regular polygon

P(T k+1(Π))

P(T k (Π))= cos

(πn

)− (1− 2m) sin

(πn

)tan(z)

Plugging in m = 0 reduces this equation to P(T k+1(Π))

P(T k (Π))=

cos( 2πn )

cos( πn )

which is what

we obtained previously.

So T is a convexity preserving GPM on regular polygons and T k (Π) converges toa point.

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 35 / 45

Page 113: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Regular Polygon Case

A Special Type of GPM

Found using :

Multiple Law of Sines applications

Similar triangles

Symmetry of the regular polygon

P(T k+1(Π))

P(T k (Π))= cos

(πn

)− (1− 2m) sin

(πn

)tan(z)

Plugging in m = 0 reduces this equation to P(T k+1(Π))

P(T k (Π))=

cos( 2πn )

cos( πn )

which is what

we obtained previously.

So T is a convexity preserving GPM on regular polygons and T k (Π) converges toa point.

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 35 / 45

Page 114: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Regular Polygon Case

A Special Type of GPM

What makes this map important ?

It is a nontrivial convexity-preserving GPM on regular polygons.

This very "normal" type of GPM preserves regularity and decreases side length ina predictable way.

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 36 / 45

Page 115: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Regular Polygon Case

A Special Type of GPM

What makes this map important ?

It is a nontrivial convexity-preserving GPM on regular polygons.

This very "normal" type of GPM preserves regularity and decreases side length ina predictable way.

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 36 / 45

Page 116: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Regular Polygon Case

A Special Type of GPM

What makes this map important ?

It is a nontrivial convexity-preserving GPM on regular polygons.

This very "normal" type of GPM preserves regularity and decreases side length ina predictable way.

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 36 / 45

Page 117: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

General Polygons

GPM Properties

Proposition

Let T1 and T2 be GPMs on a convex n-gon Π such thatf (T1) = (a0, b0, . . . , an−1, bn−1) and f (T2) = (x , b0, . . . , an−1, bn−1) where a0 ≤ x .Then A(T1(Π)) ≤ A(T2(Π)).

T2(Π) is convex at vertex 0. T2(Π) is not convex at vertex 0

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 37 / 45

Page 118: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

General Polygons

GPM Properties

Proposition

Let T1 and T2 be GPMs on a convex n-gon Π such thatf (T1) = (a0, b0, . . . , an−1, bn−1) and f (T2) = (x , b0, . . . , an−1, bn−1) where a0 ≤ x .Then A(T1(Π)) ≤ A(T2(Π)).

T2(Π) is convex at vertex 0.

T2(Π) is not convex at vertex 0

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 37 / 45

Page 119: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

General Polygons

GPM Properties

Proposition

Let T1 and T2 be GPMs on a convex n-gon Π such thatf (T1) = (a0, b0, . . . , an−1, bn−1) and f (T2) = (x , b0, . . . , an−1, bn−1) where a0 ≤ x .Then A(T1(Π)) ≤ A(T2(Π)).

T2(Π) is convex at vertex 0. T2(Π) is not convex at vertex 0

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 37 / 45

Page 120: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

General Polygons

GPM Properties

Corollary

Let TP be the pentagram map and T be any other GPM on a convex polygon Π. ThenA(TP(Π)) < A(T (Π)).

The process seen in the previous proposition terminates with the pentagram map.

Recall that last time we provedA(T k+1

P (Π))

A(T kP (Π))

< 1415 where Π is a pentagon.

We can use this corollary to obtain a better bound on the rate of area reduction forthe pentagram map on pentagons.

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 38 / 45

Page 121: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

General Polygons

GPM Properties

Corollary

Let TP be the pentagram map and T be any other GPM on a convex polygon Π. ThenA(TP(Π)) < A(T (Π)).

The process seen in the previous proposition terminates with the pentagram map.

Recall that last time we provedA(T k+1

P (Π))

A(T kP (Π))

< 1415 where Π is a pentagon.

We can use this corollary to obtain a better bound on the rate of area reduction forthe pentagram map on pentagons.

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 38 / 45

Page 122: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

General Polygons

GPM Properties

Corollary

Let TP be the pentagram map and T be any other GPM on a convex polygon Π. ThenA(TP(Π)) < A(T (Π)).

The process seen in the previous proposition terminates with the pentagram map.

Recall that last time we provedA(T k+1

P (Π))

A(T kP (Π))

< 1415 where Π is a pentagon.

We can use this corollary to obtain a better bound on the rate of area reduction forthe pentagram map on pentagons.

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 38 / 45

Page 123: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

General Polygons

GPM Properties

Corollary

Let TP be the pentagram map and T be any other GPM on a convex polygon Π. ThenA(TP(Π)) < A(T (Π)).

The process seen in the previous proposition terminates with the pentagram map.

Recall that last time we provedA(T k+1

P (Π))

A(T kP (Π))

< 1415 where Π is a pentagon.

We can use this corollary to obtain a better bound on the rate of area reduction forthe pentagram map on pentagons.

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 38 / 45

Page 124: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

The Pentagon Case

A Better Bound

The following proposition is due to Dan Ismailescu et al. [3].

Proposition

Let Tm be a GPM on a convex pentagon Π such that f (Tm) = (m,m, . . . ,m). ThenA(T k+1

m (Π))

A(T km(Π))

< 1−m(1−m).

By the proposition on the previous slide,A(T k+1

P (Π))

A(T kP (Π))

<A(Tm(T k

P (Π)))

A(T kP (Π))

< 1−m(1−m).

On the interval [0, 1], the function g(x) = 1− x(1− x) is attains a minimum of 34

at x = 12 .

SoA(T k+1

P (Π))

A(T kP (Π))

< 34 =⇒ A(T k

P (Π))

A(Π)<(

34

)k.

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 39 / 45

Page 125: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

The Pentagon Case

A Better Bound

The following proposition is due to Dan Ismailescu et al. [3].

Proposition

Let Tm be a GPM on a convex pentagon Π such that f (Tm) = (m,m, . . . ,m). ThenA(T k+1

m (Π))

A(T km(Π))

< 1−m(1−m).

By the proposition on the previous slide,A(T k+1

P (Π))

A(T kP (Π))

<A(Tm(T k

P (Π)))

A(T kP (Π))

< 1−m(1−m).

On the interval [0, 1], the function g(x) = 1− x(1− x) is attains a minimum of 34

at x = 12 .

SoA(T k+1

P (Π))

A(T kP (Π))

< 34 =⇒ A(T k

P (Π))

A(Π)<(

34

)k.

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 39 / 45

Page 126: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

The Pentagon Case

A Better Bound

The following proposition is due to Dan Ismailescu et al. [3].

Proposition

Let Tm be a GPM on a convex pentagon Π such that f (Tm) = (m,m, . . . ,m). ThenA(T k+1

m (Π))

A(T km(Π))

< 1−m(1−m).

By the proposition on the previous slide,A(T k+1

P (Π))

A(T kP (Π))

<A(Tm(T k

P (Π)))

A(T kP (Π))

< 1−m(1−m).

On the interval [0, 1], the function g(x) = 1− x(1− x) is attains a minimum of 34

at x = 12 .

SoA(T k+1

P (Π))

A(T kP (Π))

< 34 =⇒ A(T k

P (Π))

A(Π)<(

34

)k.

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 39 / 45

Page 127: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

The Pentagon Case

A Better Bound

The following proposition is due to Dan Ismailescu et al. [3].

Proposition

Let Tm be a GPM on a convex pentagon Π such that f (Tm) = (m,m, . . . ,m). ThenA(T k+1

m (Π))

A(T km(Π))

< 1−m(1−m).

By the proposition on the previous slide,A(T k+1

P (Π))

A(T kP (Π))

<A(Tm(T k

P (Π)))

A(T kP (Π))

< 1−m(1−m).

On the interval [0, 1], the function g(x) = 1− x(1− x) is attains a minimum of 34

at x = 12 .

SoA(T k+1

P (Π))

A(T kP (Π))

< 34 =⇒ A(T k

P (Π))

A(Π)<(

34

)k.

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 39 / 45

Page 128: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

The Pentagon Case

A More General Result

What else can we say about different types of GPMs on convex pentagons ?

Proposition

Let T1 and T2 be GPMs on a convex n-gon Π such thatf (T1) = (a0, b0, . . . , an−1, bn−1) and f (T2) = (x , b0, . . . , an−1, bn−1) where a0 ≤ x .Then A(T2(Π)) ≤ A(T1(Π)).

Proposition

Let Π be a convex pentagon and let T be a convexity preserving GPM on Π such thatf (T ) = (a0, b0, a1, b1, . . . , a4, b4) with ai ≤ m ≤ bi for i = 0, 1, . . . , 4. Then T k (Π)shrinks to a region of zero area. In particular,

A(T k (Π))

A(Π)≤ (1−m(1−m))k

Proof :

Apply the top proposition to each coordinate of f (T ).

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 40 / 45

Page 129: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

The Pentagon Case

A More General Result

What else can we say about different types of GPMs on convex pentagons ?

Proposition

Let T1 and T2 be GPMs on a convex n-gon Π such thatf (T1) = (a0, b0, . . . , an−1, bn−1) and f (T2) = (x , b0, . . . , an−1, bn−1) where a0 ≤ x .Then A(T2(Π)) ≤ A(T1(Π)).

Proposition

Let Π be a convex pentagon and let T be a convexity preserving GPM on Π such thatf (T ) = (a0, b0, a1, b1, . . . , a4, b4) with ai ≤ m ≤ bi for i = 0, 1, . . . , 4. Then T k (Π)shrinks to a region of zero area. In particular,

A(T k (Π))

A(Π)≤ (1−m(1−m))k

Proof :

Apply the top proposition to each coordinate of f (T ).

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 40 / 45

Page 130: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

The Pentagon Case

A More General Result

What else can we say about different types of GPMs on convex pentagons ?

Proposition

Let T1 and T2 be GPMs on a convex n-gon Π such thatf (T1) = (a0, b0, . . . , an−1, bn−1) and f (T2) = (x , b0, . . . , an−1, bn−1) where a0 ≤ x .Then A(T2(Π)) ≤ A(T1(Π)).

Proposition

Let Π be a convex pentagon and let T be a convexity preserving GPM on Π such thatf (T ) = (a0, b0, a1, b1, . . . , a4, b4) with ai ≤ m ≤ bi for i = 0, 1, . . . , 4. Then T k (Π)shrinks to a region of zero area. In particular,

A(T k (Π))

A(Π)≤ (1−m(1−m))k

Proof :

Apply the top proposition to each coordinate of f (T ).

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 40 / 45

Page 131: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

The Pentagon Case

A More General Result

What else can we say about different types of GPMs on convex pentagons ?

Proposition

Let T1 and T2 be GPMs on a convex n-gon Π such thatf (T1) = (a0, b0, . . . , an−1, bn−1) and f (T2) = (x , b0, . . . , an−1, bn−1) where a0 ≤ x .Then A(T2(Π)) ≤ A(T1(Π)).

Proposition

Let Π be a convex pentagon and let T be a convexity preserving GPM on Π such thatf (T ) = (a0, b0, a1, b1, . . . , a4, b4) with ai ≤ m ≤ bi for i = 0, 1, . . . , 4. Then T k (Π)shrinks to a region of zero area. In particular,

A(T k (Π))

A(Π)≤ (1−m(1−m))k

Proof :

Apply the top proposition to each coordinate of f (T ).

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 40 / 45

Page 132: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

The Pentagon Case

Review of GPM Results

We proved convergence to a point for a special type of GPM applied to regularpolygons.

We obtained a better bound of the rate of area decrease for the pentagram map.

We proved that a restricted class of GPMs applied to a convex pentagon shrinksto a region of zero area. Furthermore, we provided a bound on the rate of areadecrease.

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 41 / 45

Page 133: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

The Pentagon Case

Review of GPM Results

We proved convergence to a point for a special type of GPM applied to regularpolygons.

We obtained a better bound of the rate of area decrease for the pentagram map.

We proved that a restricted class of GPMs applied to a convex pentagon shrinksto a region of zero area. Furthermore, we provided a bound on the rate of areadecrease.

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 41 / 45

Page 134: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

The Pentagon Case

Review of GPM Results

We proved convergence to a point for a special type of GPM applied to regularpolygons.

We obtained a better bound of the rate of area decrease for the pentagram map.

We proved that a restricted class of GPMs applied to a convex pentagon shrinksto a region of zero area. Furthermore, we provided a bound on the rate of areadecrease.

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 41 / 45

Page 135: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

The Pentagon Case

Future GPM Directions

Given a polygon Π, find a sufficient condition for a GPM to be aconvexity-preserving map on Π.

Investigate different types of GPMs.

Study GPMs on polygons with n > 5 vertices.

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 42 / 45

Page 136: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

The Pentagon Case

Future GPM Directions

Given a polygon Π, find a sufficient condition for a GPM to be aconvexity-preserving map on Π.

Investigate different types of GPMs.

Study GPMs on polygons with n > 5 vertices.

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 42 / 45

Page 137: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

The Pentagon Case

Future GPM Directions

Given a polygon Π, find a sufficient condition for a GPM to be aconvexity-preserving map on Π.

Investigate different types of GPMs.

Study GPMs on polygons with n > 5 vertices.

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 42 / 45

Page 138: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Overall Results

Generalized the iteration procedure.

Improved the rate of convergence for Area to 34 .

Made a program to assist in computation of the pentagram map.

Set up methods for simpler geometric proofs for convergence.

Worked with matrices to represent convergence.

Built upon previously established results by Richard Schwartz.

Proved convergence to a point for a restricted class of pentagons.

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 43 / 45

Page 139: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Overall Results

Generalized the iteration procedure.

Improved the rate of convergence for Area to 34 .

Made a program to assist in computation of the pentagram map.

Set up methods for simpler geometric proofs for convergence.

Worked with matrices to represent convergence.

Built upon previously established results by Richard Schwartz.

Proved convergence to a point for a restricted class of pentagons.

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 43 / 45

Page 140: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Overall Results

Generalized the iteration procedure.

Improved the rate of convergence for Area to 34 .

Made a program to assist in computation of the pentagram map.

Set up methods for simpler geometric proofs for convergence.

Worked with matrices to represent convergence.

Built upon previously established results by Richard Schwartz.

Proved convergence to a point for a restricted class of pentagons.

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 43 / 45

Page 141: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Overall Results

Generalized the iteration procedure.

Improved the rate of convergence for Area to 34 .

Made a program to assist in computation of the pentagram map.

Set up methods for simpler geometric proofs for convergence.

Worked with matrices to represent convergence.

Built upon previously established results by Richard Schwartz.

Proved convergence to a point for a restricted class of pentagons.

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 43 / 45

Page 142: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Overall Results

Generalized the iteration procedure.

Improved the rate of convergence for Area to 34 .

Made a program to assist in computation of the pentagram map.

Set up methods for simpler geometric proofs for convergence.

Worked with matrices to represent convergence.

Built upon previously established results by Richard Schwartz.

Proved convergence to a point for a restricted class of pentagons.

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 43 / 45

Page 143: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Overall Results

Generalized the iteration procedure.

Improved the rate of convergence for Area to 34 .

Made a program to assist in computation of the pentagram map.

Set up methods for simpler geometric proofs for convergence.

Worked with matrices to represent convergence.

Built upon previously established results by Richard Schwartz.

Proved convergence to a point for a restricted class of pentagons.

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 43 / 45

Page 144: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Overall Results

Generalized the iteration procedure.

Improved the rate of convergence for Area to 34 .

Made a program to assist in computation of the pentagram map.

Set up methods for simpler geometric proofs for convergence.

Worked with matrices to represent convergence.

Built upon previously established results by Richard Schwartz.

Proved convergence to a point for a restricted class of pentagons.

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 43 / 45

Page 145: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

THANK YOU

Dr. Sun

Professor Vollmar for his Pythonexpertise

Missouri State University for hostingus

The NSF : Grant #1559911

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 44 / 45

Page 146: Dynamics of the Pentagram Map - Missouri State …people.missouristate.edu/lesreid/reu/2016/PPT/hunter_ella_kelly.pdf · Introduction Ergodicity Parametrization Unifying the Maps

Introduction Ergodicity Parametrization Unifying the Maps Conclusion

References

Erik Hintikka and Xingping Sun.Convergence of sequences of polygons.Involve, 2016.

Ilse Ipsen and Teresa Selee.Ergodicity coefficients defined by vector norms.Society for Industrial and Applied Mathematics, 32(1) :153 – 200, 2011.

Dan Ismailescu et al.Area problems involving kasner polygons.ArXhiv : 0910.0452v1, 2009.

Richard Schwartz.The pentagram map.Experimental Mathematics, 51 :71–81, 1994.

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 45 / 45