Top Banner

of 10

Dynamic Aggregation of Generator Unit Models

Aug 08, 2018

Download

Documents

Ashik Ahmed
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/22/2019 Dynamic Aggregation of Generator Unit Models

    1/10

    IEEE Transactions on Power Apparatus and Systems, Vol. PAS-97, no. 4 July/Aug 1978DYNAMIC AGGREGATION OF GENERATING U NI T M OD EL S

    A. J . Ge r m o n dMember, I E E E R . PodmoreMember, I E E ES y s t e m s Control, In c .Palo Alto, California

    ABSTRACTA new technique i s described for the automaticformation of d yn am ic e qu iv al en ts of g en er at in g u ni tsrepresented by detailed models.The method applies to groups of g en er at in g u ni tsthat are coherent. The parameters of an equivalentmodel of governor, turbine, s yn ch ro no us m ac hi ne , e xc i-tation system and power system stabilizer are identi-fied fo r each group of coherent units, by means of aleast-square fit of their transfer functions. Th etechnique is demonstrated with a large system stabilitydata base.The primary advantage of this procedure i s thatthe reduced model retains a p hy si ca l m e an i ng and thus,

    can be used w ith c o nv en t io n al t r an s ie n t stability pro-grams. It also has the capacity for handling th e widerange of models used in practical studies.

    INTRODUCTIONThe need to develop fast and cost-efficient sim-plified s ta bi li ty a na ly si s t ec hn iq ue s has motivated re-search in t h e area of reduced-order dynamic models of

    power systems. The reduction techniques are based onone of t wo m et ho ds : m o d a l analysis of the linearizedmodel [ 1 ] or coherency recognition [ 2 , 3 ] .

    * The modal analysis technique requires thecomputation of eigenvalues, which i s time-consuming, and provides a reduced system ofdifferential equations which c a n n o t be in-terpreted, in general, as r epr esen ti n g m o delsof physical units. Thus, the reduced modelsobtained by modal analysis c a n n o t be usedwithout modifications to conventional stabil-ity programs.

    * Re du ct io n b as ed on coherency does n o t pre-sent these disadvantages. An efficientmethod for c oh er en cy a na ly si s has b een d e-veloped and is reported in a companion paper[ 4 ] .

    This paper addresses th e problem of grouping gen-erating units that are coherent into an equivalentgenerating u nit model. A method of logarithmic averageha s been proposed [ 3 ] , but applies only when the modelsof the generating units to be grouped are of the sametype.The method presented in this paper does not re-

    quire such a restriction. The d at a b as e of the origi-na l s y s t e m can include a variety of models for the~ ~ A t o

    F 7 7 1 6 5 - 4 . A paper recommended a n d a p p r o v e d b y t h e IEEE Power S y s t e mE n g i n e e r i n g C o m m i t t e e o f t h e IEEE Power E n g i n e e r i n g S o c i e t y f o r p r e s e n t a -t i o n at t h e IEEE PE S W i n t e r M e e t i n g , New Y o r k , NY, J a n u a r y 3 0 - F e b r u a r y4 , 1 9 7 7 . M a n u s c r i p t s u b m i t t e d A u g u s t 3 0 , 1 9 7 6 ; made a v a i l a b l e f o r p r i n t i n gDecember 2 , 1 9 7 6 .

    governors, turbines, s yn ch ro no us m ac hi ne s, excitationsystems and power s y s t e m stabilizers [ 5 , 6 , 7 ] . Thee qu iv al en t g en er at in g units are made of similar modelsand thus are compatible with conventional stabilityprograms.

    Th e method considers separately the linear para-m e t e r s and the non-linear limits of the generating unitmodels. First the aggregated transfer functions relat-in g the t ot al mechanical an d electrical power output ofth e coherent generating units to their common speed andterminal voltage are calculated fo r several discretefrequencies. The p a r a m e t e r s of the equivalent transferfunctions are adapted to match the a g g reg a ted t r an s ferfunctions with a minimal error. Then th e equivalentlimits are calculated. The procedure has been imple-mented and experimented with a d ata base representingthe W e s te r n U. S. S y s t e m [ 8 ] . . Equivalents calculatedfor coherent generating units of this system will beused as examples of the method. Finally, the perfor -mance in the time domain of an equivalent mode l will becompared to a full representation of a group of fourgenerating units.

    METHODDefinitions

    * A coherent group of generating units, for ag iv en p er tu rb at io n, i s a group o f g en er a to r so s ci ll a ti ng w i th the same angular speed, andt er mi na l v olt ag es in a constant complexratio. Thus, th e generating units belongingto a coherent group can be attached to acommon bus, i f necessary through an ideal,complex ratio transformer.

    * Th e dynamic equivalent of a coherent group ofgenerating units i s a s i ng le g en er a ti n g unitthat exhibits the same speed, voltage andtotal mechanical and electrical power a s th egroup during any perturbation where thoseu ni ts r em ai n c oh er en t.

    Assumptions and Overview of the MethodTh e assumptions are made that the coherent gener-a ti ng u ni ts are on a common bus, with the same terminalvoltage VT , and have the same speed W.

    Figure 1 . Generating Unit M o d e l0018-9510/78/0600-1060$00.75 G 1 9 7 8 IEEE

    106 0

    Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on May 25, 2009 at 23:34 from IEEE Xplore. Restrictions apply.

  • 8/22/2019 Dynamic Aggregation of Generator Unit Models

    2/10

    The block diagram of Figure 1 r ep re se nt s th e f un c-tio nal r ela ti on s between the mechanical and electricaloutput of an individual_generating unit and its speed uand terminal voltage V , these being considered asi np ut v ar i ab le s.

    1 0 6 1Since all the machines of a coherent g r ou p h av e,b y d efi n it i on , th e same speed deviation W , equations

    ( 1 ) are summed-up for all the machines of a group toform the m ech a ni c al Eq uat i on ( 2 ) of the equivalent gen-erator-turbine:A similar block diagram i s used to model an equiv-alent generating u n i t , with the individual mechanicalpower replaced by the total mechanical power and th e

    electrical power by the t ot a l elec t ri c al p ow er o ut pu tfor the group.Th e objective of the method i s to specify t h ec h a r a c t e r i s t i c s of t h i s e q u i v a l e n t model, given t h emodel of each individual unit. This will be done byconsidering separately th e r o t o r dynamics, the governorand turbine model, the synchronous machine model, th eexcitation system model and th e power system stabilizermodel.Th e assumption i s n o w made that t h e linear andnonlinear c h a r a c t e r i s t i c s of th e e q u i v a l e n t models ca nbe identified separately.Th e linear parameters of each e q u i v a l e n t model arenumerically adjusted to obtain a minimal error between

    i ts t ra ns fe r function and the sum of t he t ra ns fe r func-t i o n s of the individual u n i t s . The error to be mini-mized i s th e sum of the squares of the magnitude of therelative d i f f e r e n c e , fo r s p e c i f i e d discrete frequen-c i e s .Th e transfer functions to be approximated areindicated i n Table I . The s p e c i f i c problems and theequivalent parameters f o r th e non-linear character-i s t i c s of ea ch m od el are discussed i n th e followingsections of th e paper.

    Table I Open-Loop Transfer FunctionsTo Be A p p r o x i m a t e d By The E q u i v a l e n t ModelsROTOR DYNAMICS

    The mechanical equation fo r one machine i s :2 H K = P - P - D . u .j dt mj e j I j

    withu p.u. s p e e d deviation

    mj e- (E D w ( 2 )M j 3

    MVA: All p ar ame te rs being referred to the same base

    * Th e equivalent inertia constant i s th e sum ofthe individual inertia constants.* Th e e qui va le nt d am pi ng factor i s th e sum ofthe individual damping factors.

    EQUIVAL ENT T U RB INE - GOV E RNOR SYSTE MAggregated Transfer Function

    The Western System data base includes severalmodels o f g ov er no rs , turbines and also comprehensivemodels of g ov er no r a nd turbine( s) . Bl oc k diagrams ofth e major g ov er no r a nd turbine models are representedi n [ 5 ] .

    Assuming a speed variation of small a m p l i t u d e , th evalve an d v al ve rate limits are neglected and a lineartransfer functionG . ( s ) = P m j ( s ) / A u ( s ) ( 3 )

    where Au = ( F - u ) denotes the generator speed error,can be calculaed fo r each generating u n i t . Since th ei n p u t speed variation i s the same fo r each generatingunit of a coherent group, the variation of mechanicalpower for the coherent group i sP M ( s ) = I M j ( 5 )M j ~ ~ ~ ( 4 )

    T h e transfer f u n c t i o n s G . ( s ) of E q u a t i o n ( 3 )consist of two elements i n s e r i e a , th e governor trans-fe r f u n c t i o nG ( s ) = P G ( s ) and th e turbine transfer functionG A W ( s )G ( s ) = PM(s)T P G V ( s )For each governor and t u r b i n e , th e transfer func-t i o n s GG an d G T are evaluated numerically fo r dis-crete values of the variable s along th e i m a g i n a r ya x i s . Th e aggregated transfer function P M ( s ) / A u ( s ) i s

    ( 1 ) obtained by summation.Th e aggregated governor-turbine transfer functioncalculated fo r one group of th e Western system i srepresented i n th e Bode d i a g r a m of F i g u r e 2 .

    i n er t ia c o ns t an t (generator + turbine)in MWsMV Am e c h a n i c a l power i n p .u .

    electromagnetic power in p . u .D damping f a c t o r

    Equivalent ModelDifficulties were e n c o u n t e r e d in t he choice o f asingle equivalent m o d e l t h a t w o u l d accurately fi t thefrequency response of c o h e r e n t g r o u p s constituted ofboth steam and h y dr o g e ne r at o rs . Therefore, when t h i scircumstance occurs, th e s tea m un it s are grouped t oform an equivalent s t e a m unit a n d t h e hydro units toform an e q ui v al e nt h y dr o unit w h i c h are both attachedto the same bus.

    Open-Loop Transfer Function E q u i v a l e n t ModelW / ( E P m e ) Rotor Dynamics

    ) p / A W Governor + Turbinem) i T / V T Excitation System +Synchronous MachineV s o / U P ow er S ys te m Stabilizers o ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

    H

    pmp e

    2H dw _:i i dt

    I G ( s ) - A w ( s )i3

    Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on May 25, 2009 at 23:34 from IEEE Xplore. Restrictions apply.

  • 8/22/2019 Dynamic Aggregation of Generator Unit Models

    3/10

    1062Equivalent

    Magnitude Aggregated --r p . u . o f 100 MV A sp.u. o f synchronous s p e e d I \

    _1 0 0 . h a g

    = > , p a s e \

    - 1 0 .

    1 .. 0 1 . i 1 frequency [ H z ]Figure 2 . Bode plots of th e aggregated and equivalentgovernor-turbine transfer function fo r a coherent groupof the Wes te rn System.

    The transfer function of an equivalent hydro gov-ernor i s specified as

    * Th e error function E j w i ) - G 2 )i G ( j w i ) li s calculated.

    * A numerical grad ient technique i s used forcorrecting th e u n kn o wn p a ra m et e rs to minimizethis error. In addition, it i s required thatth e error be zero for w=O. T he p ro ce ss isinterrupted when a technically small error i sobtained. Th e parameters so found ar e th oseof the equivalent model. The transfer func-tion of the equivalent m od el f ou nd by thismethod i s represented as well in Figure 2 .

    Valve and Valve Rate LimitsThe valve limit for the equivalent model i s cal-culated as the sum of the individual gate limits.No valve rate limit i s calculated for the equiv-alent, since this parameter i s not represented in sev-eral of th e WSCC models.

    EQUIVALENT SYNCHRONOUS MACHINE AND E XCI TATION MODEL SI n Table I , the transfer function i T / V T was des-ignated as excitation system a nd s yn ch ro no us machine.In Figure 3 these entities ar e s e pa r at e ly r e pr e-sented. The key assumption that the machines are onthe same bus permits one to consider th e transfer func-t i o n between the terminal current and the terminalvoltage, which i s l i n e a r . Th e block diagram of Figure3 applies to both th e individual and th e equivalentmachine.

    ( l + S T 2 )G G ( s ) = K 2( l + s T ) ( l + s T 3 )with unknown parameters K , T 1 , T 2 , T 3 . Th e transferfunction of an e q u i v a l e n t hydro unit is s p e c i f i e d as

    * _ l ~ - s T wG ( s )G T ( l+sTw/2hydrowith u n kn o wn p a ra m et er Tw. The transfer function of a nequivalent s t e a m governor and t u r b i n e i s s p e c i f i e d as

    * l + s T 2 1G ( s) - _ _ _ _ _ _ _GT ( l + s T ) ( l + s T ) l + s T 4steamwith unknown parameters T 1 , T 2 , T 3 , T 4 .

    The last transfer f u n c t i o n represents a p p r o x i -mately a s t e a m governor with a non-reheat turbine andwas chosen as th e m o s t a p p r o p r i a t e to represent suc-c e s s f u l l y the e q u i v a l e n t transfer f u n c t i o n of a steamunit with the minimum number of parameters. The de-tails of the process of identification are e x p l a i n e dwith th e example of F i g u r e 2 :* Fo r discrete complex f r e q u e n c i e s , j w i , thetransfer function of the individual governor-turbines are calculated and summed-up. Theresult i s a curve on th e Bode plot referredto as the " a g g r e g a t e d transfer function"G ( j w i ) .* S t an d ar d v a lu es a re a s s i g n e d to the unknownparameters of th e e q u i v a l e n t governor andt W r b i n e and the e q u i v a l e n t transfer f u n c t i o nG ( j u i ) i s calculated.

    ( t h e symbol * indicates e q u i v a l e n t variablesand p a r a m e t e r s )

    S Y S T E MS T A B I L I Z E R J

    Figure 3 . Synchronous machine and excitationsystem model.The equivalent i s formed i n three steps. F i r s t ,th e transfer function i s aggregated without the excita-tion i n p u t . This p r o v i d e s the parameters of the e q u i v -alent synchronous machine.

    Then th e equivalent of th e excitation system i s formed.Since the output of the individual excitation systemsare applied to synchronous machines that have differentc h a r a c t e r i s t i c s , it i s necessary to w e i g h those out-puts to fo rm the equivalent field v o l t a g e . F i n a l l y ,t h e equivalent p ow er s ys te m stabilizer i s determined.The coherent groups may be constituted of combinationsof the following models:Synchronous M a c h i n e s : Th e two-axes model with o n efield w i n d i n g i n the direct a x i s and one d a m p i n g wind-i n g in th e quadrature axis i s used fo r each individualmachine ( F i g u r e 1 5 i n A p p e n d i x ) . The round r o t o r ma-

    Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on May 25, 2009 at 23:34 from IEEE Xplore. Restrictions apply.

  • 8/22/2019 Dynamic Aggregation of Generator Unit Models

    4/10

    chine and " cl as si ca l m od el " a re considered a s specialcases. Th e transients of the stator are neglected.Excitation Systems: Seven different models or rotatingand static excitation systems are represented [ 7 , 8 ] .Power System Stabilizers: Three models are repre-sented, with either speed deviation, shaft s l i p oraccelerating power as input signal. Only power systems t ab i li z er s w i th the same input are aggregated.Formation of the Equivalent Synchronous Machine

    Assuming coherency:0 The differences of rotor angles between ma-c h i n e s of a c oh er en t g ro up remain constant.* The terminal voltage i s the same for eachmachine of t he g ro up .These assumptions ar e used to d em on st ra te i n theAppendix that a dynamic equivalent can also be repre-sented as a two-axes model. Th e justification i s th eequivalence of th e e l e c t r o m a g n e t i c power output.T he t ot al p.u. electromagnetic power output P ofth e coherent group i s :

    =e ( V q j i q j + V d j i d j )With th e terminal voltage and t h e stator current ex -pressed for each machine i n i t s own reference axes.

    Since the terminal voltage i s common, th e totalelectric power i s expressed as :

    e Q E l Q j +VD E D j ( 5 )where D and Q r ep re se nt c om po ne nt s o n an arbitrarypair of orthogonal axes.

    It i s shown in Appendix that j i D and j i Qrelated to VD and V Q b y the expression: are

    1063The position of th e equivalent axes and th e para-meters of the e q ui v a le n t m o d el are calculated to mini -miz e the difference between the electric power outputP of the equivalent and Pe eTh e aggregation of the synchronous machine pro-ceeds as follows: ( s e e Appendix)* First th e position of the axes 0 i s calcu-lated, such that YDD' Y , , and Y Q F i nEquation ( 6 ) are made negligibly small i n thefrequency range.* Then th e pa ra met er s o f the equivalent-modelare adjusted separately for each axis byfitting the g p e r a t i o n a l admittance Y * withY and Y with Y D QD Q QD Q D _This i s obtained by adjusting th e parameters ofth e equivalent to fi t i t s o pe ra ti on al a dm it ta nc es toth e operational admittances of the aggregated machinesFigure 4 represents an example of t h i s procedure.

    Magnitude[ p . u . ] magnitude

    . - 1 0 0 .

    p h a s e1 0 .-90-

    phase EquivalentAggregated

    -180_. 0 1 . 1 1 ' . f r e q u e n c y [ H z I

    i D ( S ) / Y D D ( S ) Y D Q ( s ) VD Y D FaiD(s) + ~ ~ ~ ~ ~ ~ ~ e F D6 )

    iQ( s) y Q D ( s ) Y Q Q ( s ) /VQ y QFwhere Y D D ( s ) , Y D Q ( s ) , Y Q D ( S ) and Y Q Q ( s ) d e p e n d o nth e parameters of th e individual m a c h i n e s and on th eposition of th e axes D and Q .

    The e q u i v a l e n t machine b e i n g a two-axes model aswell, it s electric power output i s :* * *P V= + V ie Q Q D D

    withD ( s ) 1 0

    i ( s ) Y Q D ( s )

    ( 7 )

    DQ(s (eDF0V QI ~ + eFD (8)

    Figure 4 . Bode plot of the aggregated and equivalentadmittance i n the direct a x i s , fo r acoherent group of t he We st er n System.Aggregation of th e E x c i t a t i o n System Models [ 6 , 7 ]

    Each i n d i v i d u a l e x c i t a t i o n system i s representedby a single-input single-output block d i a g r a m . In thecase of t he We st er n System data b a s e , the excitation i sone of th e models of the Western System C o o r d i n a t i n gCouncil [ 8 ] .

    Ignoring the regulator l i m i t s , th e linear transferf u n c t i o n of on e e x c i t e r i s GE j ( s ) .The terminal voltage V T i s th e c o m m o n i n p u t toeach e x c i t e r . A s s u m i n g this input small e n o u g h thatnone of the regulators reaches i t s l i m i t , the outputefd i s expressed fo r each e x c i t e r as:e fd ( s ) = G ( s ) AV ( s ) ( 9 )

    where A V T ( V R E F + V s o - V T ) i s t h e terminal voltageerror.

    Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on May 25, 2009 at 23:34 from IEEE Xplore. Restrictions apply.

  • 8/22/2019 Dynamic Aggregation of Generator Unit Models

    5/10

    1064The field voltages e , applied to the indivi-dual synchronous machine moSels result in a contribu-tion to the total current denoted as A i D ( s e e Appen-d i x ) .

    I i s = I D( s fd (s) A V . ~ i (s)e s) AV(s)) T(Y d f ( s ) GE A V T ( s ) ) ( 1 0 )

    The transfer f u n c t i o nA i D ( s )I = ( Y d f . ( s ) C O s G j ( s ) )A V T ( s ) )j

    has to be identified with the transfer f u n c t i o n betweenthe same variables i n t h e e q u i v a l e n t model: Figure 6 . IEEE type 1 excitation system model.A i ( s ) e ( s )D - Y ( s ) * FDA V T ( s ) A V T ( s ) ( 1 1 )It i s convenient to rewrite t h i s condition as

    G * ()= e F D =E (s) A T Id f

    COs4 i GE (s) (12)y D (s) Iand consider th e e x p r e s s i o n between brackets as a" w w e i g h t - f a c t o r " W . ( s ) that accounts fo r the p a r a m e t e r sof th e s y n c h r o n o u s ] machines to which th e excitationsystems are connected. This i s r e p r e s e n t e d in F i g u r e5 .

    V T

    Magnitude Equivalent--ggregated10 0

    1 0 .0 Phase

    -4 5

    - 9 0. 0 1 . 1 l f r e q u e n c y l H z ]

    I

    Figure 5 . Formation of the e q u i v a l e n t field v o l t a g e b yweighting th e output of the i n d i v i d u a l exci-tation systems.At this stage, Y D ( s ) i s known from th e p a r a m e t e r sof the e q u i v a l e n t s y n - c r o n o u s m a c h i n e . Th e r i g h t - h a n dside of E q u a t i o n ( 1 2 ) c a n thus b e c al cu la te d fo r dis-c r e t e f r e q u e n c i e s .

    E q u i v a l e n t ModelA W o d e l of Type I ( F i g u r e 6 ) with a trahsfer func-tion G E ( s ) represents the e q u i v a l e n t . I g n o r i n g th enonlinear l i m i t s , the parameters o f t h i s model area d j u s t e d , u s i n g a g r a d i e n t s e a ; c h to minimize t h e meansquare of the e r r o r between G E ( s ) and the r i g h t - h a n ds i d e of E q u a t i o n ( 1 2 ) . F i g u r e 7 r e p r e s e n t s th e resultof t h i s i d e n t i f i c a t i o n fo r a group of the Western sys-tem.

    Figure 7 . Bode plot of the aggregated and e q u i v a l e n texcitation transfer function fo r o n e coher-ent group of th e W e s te r n System.Regulator Limits

    The equivalent limits are calculated a s s u m i n g thata step i n p u t equal to th e regulator limit i s a p p l i e dsimultaneously to each exciter system. Fo r such a stepi n p u t , th e output i s ( F i g u r e 8 ) .

    e (s ) =FD s 11i

    v R M A X / ( K E + S E ) W . ( s )+ T E / ( E + ( 1 3 )

    [.. -II

    Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on May 25, 2009 at 23:34 from IEEE Xplore. Restrictions apply.

  • 8/22/2019 Dynamic Aggregation of Generator Unit Models

    6/10

    V R M A X-a

    Figure 8 . Simplified e xc it er m od el for la rg e s tepinput.Using th e initial and f in al v al u e theorem [ 6 ] :

    u = w , A f or accelerating powerFigure 9 . Block diagram of an excitation system withpower system s t a b i l i z e r .

    E * W.(s=o)j E j i

    V S L I M I( 1 4 )

    Fo r th e equivalent model, th e same limit i s :V *RMAXT E *Since the parameter T E * i s already kn ow n fr omfitting the linea r t ran sfer function, this relationdetermines VRMAX*.L i me ( t ) =t 4 o

    I (XEV+MS * W . ( 0 ) ( 1 5 )iMAXjiFo r t he e q ui v al en t model, th e same limit i s :

    VRMAX *E( K +SEMAX)* FDMAX*

    Since VRA is already known, this relationdetermines

    ~ \ *( KE + SEMAX) and EFD MA

    Exci ter S at ura ti o n CoefficientTwo discrete values of th e s at ur at io n f un ct io nS ( E f d ) are g i v e n fo r each e x c i t e r , at E f d MA X and. 5 5 E d MAX' An e x p o n e n t i a l relation i s assumed fo rt h i s sun E on . The e q u i v a l e n t function i s * c a l c u l a t e dat two p o i n t s ( i n i t i a l o p e r a t i n g p o i n t an d E f d M A X ) . I t

    i s assumed that t h i s function i s e x p o n e n t i a l as w e l l .POWER SYSTEM STABILIZERS

    A power system stabilizer introduces a correctionto th e reference voltage of an excitation system. T h i scorrection i s f u n c t i o n a l l y related to an i n p u t s i g n a las described on th e block d i a g r a m of F i g u r e 9 .The models i n th e WSCC data b as e h av e either th efrequency d e v i a t i o n , th e shaft s l i p o r t h e a c c e l e r a t i n gpower o f the g e n e r a t i n g unit as i n p u t . T h e r e are threetypes of power system s t a b i l i z e r s , d e p e n d i n g on thei n p u t s i g n a l . We found that o n l y s t a b i l i z e r s with th esame i n p u t s i g n a l could be a g g r e g a t e d .

    VR EF

    Figure 1 0 . Block diagram of the equivalent excitersystem and power system stabilizer.

    T he p a ra me te r s of th e equivalent excitation s y s t e mof Figure 1 0 are already known at this stage (they haveb e en d et er mi ne d wi th o ut s t ab i li zer signal). A n equiva-lent stabilizer remains to be added in order that thedependance o f the field voltage on the stabilizer inputsignal be represented.Since this input signal u ( s ) i s the same fore v e r y stabilizer of a coherent group, the relation i s :*

    Ae ( s )us) Wis) GE s ' s.s

    I( 1 6 )

    Whereas, fo r th e equivalent,

    Ae FD()u ( s)

    * *= G (s) * G (s)E S ( 1 7 )

    *The parameters of G ( s ) are adjusted to minimizeth e mean square p.u. error between t h e transfer func-tions o f E qu at io ns ( 1 6 ) and ( 1 7 ) .

    These aggregated and equivalent transfer functionsare shown on Figure 11 for a group of the Western Sys-tem.

    Th e equivalent limit of the power system stabiliz-er is such that

    * *VS G v G ( 0 ) W.(0) (18)SLIM GE()SLIM.Ej

    1 0 6 5

    d e F DL i m dt =t + + 0

    I V R E F

    Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on May 25, 2009 at 23:34 from IEEE Xplore. Restrictions apply.

  • 8/22/2019 Dynamic Aggregation of Generator Unit Models

    7/10

    106 6

    Figure 1 1 . Bode plot of the aggregated and equivalentA e f d power s y s t e m stabilizer t r an s fe r f un c ti o nfor one group of th e Western System.INTERFACE OF T HE D YN AM IC AGGREGATION PROGRAMWITH COHERENCY A ND S TA BI LI TY PROGRAMS

    The dynamic aggregation program i s designed to usethe same set of data and th e same i n p u t formats as astability program. In a d d i t i o n , it r e q u i r e s th e l i s tof coherent generating units i n each group.The output i s a reduced set of data fo r a stabil-i t y program.The dynamic aggregation program has b een designedto interface through files with th e other programs.

    APPLICATIONAGGREGATION OF THE COHERENT GROUP S OF THEWESTERN SYSTEM

    PROGRAM PERFORMANCEOn e coherent gro up of the We st er n S ys te m has beenused as an example of the d yn am ic a gg re ga ti on tech-nique.This group includes 8 un it s w it h hydro-mechanicalgovernors. Two of t hem h ave a rotating exciter, 5 havea static exciter and a power system stabilizer with

    a c ce le ra t in g p o we r input, one has a discontinuous exci-tation system. The B od e d ia gr am s of the aggregate ande q ui v al en t t r an s fe r functions for this group are plot-ted in Figure 2 , 4 , 7 and 1 1 .The aggregation of the g o ve rn o rs , m a ch i ne s, exci-tation systems and power system stabilizers was per-formed for all the c o he r en t g r ou ps of the Western Sys-tem.The total time fo r coherency analysis, networkreduction and formation of a reduced system i s esti-mated to be a fraction of th e time required fo r a sta-bility run of the f ul l s ys te m.

    VALIDATION T E S T FOR A 4-MACHINE SYSTEMThe objective of this test was to verify that theassumptions and th e criteria of fitting transfer func-t i o n s were meaningful, and to check th e prototype pro-grams for the aggregation of the synchronous machinesand exciter systems.T he c oh er en cy analysis program was no t yet avail-a b l e , thus a group of four supposedly coherent ma-c h i n e s , connected to an infinite bus through a trans-mission line ( F i g u r e 1 2 ) was selected for a stabilitysimulation. The disturbance was a voltage d i p of 50%a p p l i e d at th e infinite bus for . l s .

    V T

    Load Bu s

    Figure 1 2 : Test case of the equivalent synchronousmachine and excitation system in thetime domain.Two cases were c o n s i d e r e d :

    ObjectiveThe purpose of th e a g g r e g a t i o n of the coherentgroups of th e Western System wa s to a ss es s the d i f f i -culties encountered in a p p l y i n g th e method to a l a r g e -scale system fo r o b t a i n i n g a reduced m o d e l , and toevaluate th e performance of the a g g r e g a t i o n program.

    ProcedureThe Western Systems Coordinating C o u n c i l ( W S C C )power-flow and s t a b i l i t y data base p r o v i d e d t h e datafo r a coherency a n a l y s i s p e r f o r m e d with a method des-cribed i n a c o m p a n i o n paper [ 4 ] . A l i s t of 8 7 coherentgroups was obtained out of the i n d i v i d u a l 3 3 7 m a c h i n e s .44 groups had o n l y o n e generator. T h i s l i s t wa s pro-vided as i n p u t to the d y n a m i c a g g r e g a t i o n program inaddition to the WSCC s t a b i l i t y data base.

    * In Case 1 , th e same fault i s simulated withth e individual machines and individual exci-ter systems modelled and a g a i n with th eequivalent machine and e q u i v a l e n t exciters y st e m m od el .The t e r m i n a l voltage, and total electricpower are plotted i n F i g u r e s 1 3 and 1 4 .Th e t e r m i n a l voltage a nd t ot al electric powerobtained with the e q u i v a l e n t machine modelare plotted o n the same f i g u r e s .There i s a g o o d agreement between the termi-na l voltages an d to tal electric p ow er o ut pu tsobtained with the individual models and withth e e q u i v a l e n t . This i s remarkable since thecoherency between th e individual generatorsha d a tolerance of almost 20 d e g r e e s .

    Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on May 25, 2009 at 23:34 from IEEE Xplore. Restrictions apply.

  • 8/22/2019 Dynamic Aggregation of Generator Unit Models

    8/10

    Total Electric PowerP e [ p . u . of 10 0 MVA]

    8 .e q u i v a l e n t model

    f u l l system.time

    1 . 1 . 5Figure 1 3 . Comparison, i n the t i m e d o m a i n , of t h etotal electric p ow er o ut pu t of th e fullmodel and t h e reduced model.

    Terminal Voltage1.04

    1 . 0 0

    . 9 2

    .8 8

    .8 4

    1067CONCLUSIONS

    The following work ha s been performed:* A c on si st en t method has been developed toaggregate th e r es pe ct iv e g en er a ti n g u n it com-ponents ( m a c h i n e s , excitation system, tur-bine-governors a nd p ow er s ys te m s ta bi li ze rs )on the basis o f c oh erenc y, to form the com-ponents of an equival ent generating u n i t .* T he p ar am et er s of t h e equivalent models arei d e n t i f i e d by prescribing a criteria whichc o r r e s p o n d s to f i t t i n g transfer functions i nth e complex plane.* Th e individual and equivalent models are com-p a t i b l e with exis ti ng s ta bi li ty programs.* The method has been applied to a wide rangeof generating unit dynamic models includingal l those in the WS CC d at a base.The key conclusions which can be drawn from thisstudy can be stated a s :* Th e feasibility of the method, demonstrated

    by the formation of equivalents fo r the Wes-t er n S ys te m.* Th e capability of th e program to handle largescale transient s ta bi li ty g en er at in g unitd at a b as es in a reasonable t i m e .Th e proposed method i s a practical approach toreducing th e dynamic order of a p ow er system represen-t a t i o n .Th e program developed will form one of th e ke yelemehts i n a comprehensive package of programs fo r

    forming dynamic equivalents.

    Further tests in the t im e d om ai n on th e WSCC Sys-t em will be performed t o evaluate the accuracy of thereduced models. Satisfactory results were already ob-tained in th e preliminary test with four machines.

    APPENDIXSYNCHRONOUS MACHINE MO DE L A ND'OPERATIONAL ADMITTANCE MATRIXi r d X Q Rfd fd q XZI~ ~ Refd ~ ~ ~ ~ ~ ~ l qa d x V q I aq

    equivalent modelfull system d -a x i s q a x i s

    . 5 . 6 1. 1 . 5Figure 1 4 . Comparison, in the time domain, o f theterminal voltage of the full m od el a ndthe reduced model.

    * In Case 2 , no exciter system was modelled,but the field voltages were kept c o n s t a n tinstead. The same fault was simulated withth e individual machine models, and again w i t hthe equivalent machine model. The conclu-sions were the same as in Case 1 .

    timei d c o m p o n e n t in direct axis of p.u. s ta to r c ur re nti component in quadrature axis of p.u. stator c u r r e n t

    2 . Svd component in direct axis o f p.u. terminal voltagev component in quadrature axis of p.u. terminalq voltage

    Figure 1 5 . T wo axes model of the synchronous machine.Referring to Figure 1 5 and to the usual definition ofthe per unit reactances and time-constants, t h e Laplaceequation of the two-axes synchronous m a c h i n e r e a d s as:

    4

    Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on May 25, 2009 at 23:34 from IEEE Xplore. Restrictions apply.

  • 8/22/2019 Dynamic Aggregation of Generator Unit Models

    9/10

    1 0 6 8

    ~ d q ~/ v d e t Y f f d (19)f'q\ ( : q d 0, \0/ewhere th e position of the reference axis q with respectto the direction of th e terminal voltage is the r oto rinternal angle 6 . ( F i g u r e 1 6 )

    andy d qy q d

    y d f ,

    - 1 + s T ' d o )xd + s x ' T vX d +sd do

    1 + s T ' )q ox + s x ' T 'q q qo

    -Kx + s x ' T 'd q do

    - 4 - - ~ 1 - - V Tq ~ . = 6 . j - 0-~~~ J

    D d .Figure 1 6 . Definition of reference a x e s.

    Th e e q u a t i o n of every m a c h i n e of a c o h e r e n t g r o u pi s p r o j e c t e d o n a common p a i r of axes, D an d Q . T h edirection of th e axis Q with respect to the terminalvoltage b e i n g denoted a s 0 , and c . = ( 6 . j - 9 ) , the totalcurrent becomes:i D DD y D Q DFl

    I J ~ + eFDYQQ vQ YF

    ~ ~ ~ ~ ( 2 0 )

    with YDD = - (dqj Y q d j )

    DQ I

    S i n f C o s 4j j

    dq j C o s 2 - Yd. i n 2 .qdj IQD = dq j S i n 2 . + Yd. Cos.i i~~~ qjY = -YQQ DD

    Y D F e F D Y d f j Cos f * e f d jF FD j j ~ ~ ~Y * e I Y d f j S i n 4. e f d j

    Fo r Equation ( 2 0 ) to r e p r e s e n t a t w o - a x e s s y n c h r o n o u smachine, it i s n e c e s s a r y to have an angle e such thatYQ F and the diagonal elements Y D D and Y Q Q vanish.Th e diagonal elements do not vanish fo r an arbitrarydirection G of t h e axes of t h e equivalent machine.They do so i f they are rotated by the a m o u n t A E ) , with:

    t an 2 AO = -Q DDDQ QD ( 2 1 )Since th e admittances Y D D , Y , Y and Y O D a refrequency dependant, t h i s c o n d i t i o n aRd the conaitionY Q F = 0 c a n only be a p p r o x i m a t e d . A good a p p r o x i m a t i o nwas found when Equation ( 2 1 ) i s satisfied for s + j - .

    ACKNOWLEDGEMENTST h i s work was sponsored by th e Electric PowerResearch Institute under Project RP- 76 3 a nd managed fo rEPRI by Timothy Yau. The Pacific Ga s and ElectricCompany contributed by providing system data and trans-i e n t stability cases. The individual assistance ofClifford C . Young, Ji m F . Luini and John Rostoni ofPacific Ga s and Electric Company i s gratefully appre-c i a t e d .

    REFERENCES[ 1 ] J . M . U n d r i l l , J. A. Casazza, E. M . Gulachenski,L . K. Kirchmayer, " E l e c t r o m e c h a n i c a l Equivalentsfo r Us e in Power System Stability Studies," I E E E

    Trans., Vo l. P AS -9 0, September/October 1 9 7 1 , pp.2060-2071.[ 2 1 Systems Control, Inc., "Coherency-Based DynamicEquivalents fo r Transient Stability Studies,"Final Report on EPRI Project RP -9 0- 4, P ha se II,January 1 9 7 5 .[ 3 ] R . W. deMello, R . Podmore, K. N. Stanton, "Coher-ency-Based Dynamic Equivalents: Applications i nTransient Stability Studies," 1975 PICA ConferenceProceedings, pp . 2 3-31.[ 4 ] R . Podmore, "Identification of Coherent Generatorsfo r D y n a m i c E q u i v a l e n ts , " p a p e r F771555-5. IEEEWinter Power Meeting, Ne w York, January 1977.[ 5 ] " D y n a m i c Models fo r Steam and Hydro Turbines inPower System S t u d i e s , " I E E E Committee Report,IEEE Trans., V ol . P AS -9 2, November/December 1973,pp . 1904-1915.[ 6 ] "Excitation System D y n a m i c C h a r a c t e r i s t i c s , " I E E ECommittee Report, I E E E Trans., Vol. P A S - 9 2 ,J a n u a r y / F e b r u a r y 1 9 7 3 , pp . 64-75.[ 7 ] IEEE Committee Report, " C o m p u t e r R e p r e s e n t a t i o n ofExcitation S y s t e m s , " I E E E Trans., Vol. P A S - 8 7 ,June 1 9 6 8 , pp. 1460-1464.[ 8 ] Dynamic Equivalents fo r Transient StabilityS t u d i e s " , Final Report prepared fo r EPRI P r o j e c tRP-763 b y S ys te ms C o n t r o l , I n c . , A p r i l 1977.

    Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on May 25, 2009 at 23:34 from IEEE Xplore. Restrictions apply.

  • 8/22/2019 Dynamic Aggregation of Generator Unit Models

    10/10

    1 0 6 9D i s c u s s i o n

    R . H . P a r k ( F a s t L o a d C o n t r o l I n c . , B r e w s t e r , M A ) : A p p a r e n t l y i n t h eW e s t e r n S y s t e m s i t i s c u s t o m a r y t o c a r r y o u t s t u d i e s o f p o w e r s y s t e mb eha vi or du r i ng d i s t u r b a n c e s w i t h a l l i n t e r c o n n e c t e d m a c h i n e sr e p r e s e n t e d . W h e r e t h i s i s n o t d o n e , a s may a p p l y , f o r t h e m o s t p a r t ,e a s t o f t h e R o c k i e s , t h e e f f e c t c a n o n l y b e t o c o n s i s t e n t l y i n t r o d u c e e r -r o r s i n t h e r e s u l t s o f c o m p u t a t i o n .A c c o r d i n g l y , i t w o u l d b e u s e f u l , i f , i n a f u t u r e p a p e r , i n f o r m a t i o nw e r e t o b e p r e s e n t e d t h a t w o u l d e v i d e n c e t h e e x t e n t o f e r r o r t h a tt y p i c a l l y c a n d e v e l o p i n d e p e n d e n c e o n t h e t y p e o f d i s t u r b i n g e v e n t a n dt h e p e r c e n t a g e r e p r e s e n t a t i o n o f t h e t o t a l i n t e r c o n n e c t e d s y s t e m .W h i l e i t i s h i g h l y d e s i r a b l e t o h a v e a v a i l a b l e e f f e c t i v e w a y s o fd e v e l o p i n g e q u i v a l e n t s f o r g r o u p s o f s y s t e m g e n e r a t o r s , i t c o u l d a l s o b ew o r t h g i v i n g a t l e a s t l i m i t e d c o n s i d e r a t i o n t o t h e d e v e l o p m e n t o fe q u i v a l e n t s f o r m o t o r l o a d s .P o s s i b l y t h e r e w o u l d b e s t b e o n e e q u i v a l e n t f o r s m a l l m o t o r s ,w h i c h w o u l d i n c l u d e m o t o r s u s e d i n a i r c o n d i t i o n e r s , o n e f o r m o t o r s o fi n t e r m e d i a t e s i z e , a n d w h e n a p p r o p r i a t e , o n e f o r m o t o r s o f l a r g e s i z e .

    M a n u s c r i p t r e c e i v e d F e b r u a r y 2 2 , 1 9 7 7 .

    A . J . Germond a n d R . P o d m o r e : T h e a u t h o r s t ha nk M r . P a r k f o r h i sc o m m e n t s a n d a r e i n a g r e e m e n t w i t h h i m . I n r e l a t i o n t o h i s f i r s t c o m -m e n t , t h e c o h e re nc y b a se d d y n a m i c e q u i v a l e n c i n g p r o g r a m h a s b e e n e x -p a n d e d t o h a n d l e u l t r a - l a r g e data b a s e s i n t h e r a n g e o f 1 0 , 0 00 b u ss esa n d 2 , 0 0 0 m a c h in es . T h e e x p a n d e d p r o g r a m i s b e i n g u s e d b y t h e ECARC o h e r e n c y S t u d i e s T a s k F o r c e t o c a l c u l a t e d y n a m i c e q u i v a l e n t s f o r t h edata b a s e s w h i c h a r e c o m p i l e d f o r t h e e n t i r e E a st er n U .S . i n t e r c o n n e c -t i o n b y t h e NERC M u l t i - r e g i o n a l M o d e l i n g G r o u p . T h e r e s u l t a n td y n a m i c e q u i v a l e n t s w i l l b e a m u c h m o r e m a n a g e a b l e s i z e f o r t r a n s i e n ts t a b i l i t y s t u d i e s . T h e y w i l l a l s o a l l o w a n a s s e s s m e n t o f how t h e m o r ec o m p l e t e r e p r e s e n t a t i o n o f t h e E a s t e r n U . S . i n t e r c o n n e c t i o n e f f e c t s t het r a n s i e n t s t a b i l i t y r e s u l t s a s s u g g e s t e d b y M r . P a r k .We a g r e e t h a t t h e d e v e l o p m e n t o f d y n a m i c e q u i v a l e n t s f o r m o t o rl o a d s i s a n i m p o r t a n t p r o b l e m w h i c h d e s e r v e s f u r t h e r s t u d y . An ap -p ro ac h w h i c h a g g r e g a t e s m o t o r s w h i c h h a v e s i m i l a r s i z e a n dc h a r a c t e r i s t i c s a p p e a r s t o b e a l o g i c a l o n e . T h e c o n c e p t s a n d t e c h n i q u e sw h i c h h a v e b e e n u s e d f o r a g g r e g a t i n g t h e s y n c h r o n o u s g e n e r a t o rm o d e l s ( e . g . , i d e n t i f y i n g e q u i v a l e n t p a r a m e t e r s b y f i t t i n g b o d ed i a g r a m s ) s h o u l d a l s o b e u s e f u l f o r a g g r e g a t i n g m o t o r m o d e l s .

    M a n u s c r i p t r e c e i v e d D e c e m b e r 2 2 , 1 9 7 7 .