Top Banner

of 126

Drop Structure Design

Jun 02, 2018

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/10/2019 Drop Structure Design

    1/126

    1998 William Barclay Parsons Fellowship Parsons Brinckerhoff Monograph 14

    Scott Williamson, P.E. Lead Engineer Parsons Brinckerhoff Quade & Douglas, Inc.

    August 2001

    Drop StructureDesign for

    Wastewater and

    StormwaterCollection Systems

  • 8/10/2019 Drop Structure Design

    2/126

  • 8/10/2019 Drop Structure Design

    3/126

    FOREWORD

    1.0 INTRODUCTION

    2.0 DROP STRUCTURE BASIC FUNCTIONS AND TYPES

    3.0 PLANNING AND DESIGN CONSIDERATIONS

    4.0 DESIGN METHODOLOGY

    5.0 DROP STRUCTURE APPURTENANCES

    APPENDIX A: REVIEW OF DROP STRUCTURE/TUNNEL SYSTEMS

    APPENDIX B: SUMMARY OF DROP STRUCTURES BY GEOGRAPHICAL

    LOCATION AND INLET TYPE

    REFERENCES

    CONTENTS

  • 8/10/2019 Drop Structure Design

    4/126

  • 8/10/2019 Drop Structure Design

    5/126

    CHAPTER 2

    CHAPTER 3

    CHAPTER 4

    CHAPTER 5

    APPENDIX A

    LIST OF FIGURES

  • 8/10/2019 Drop Structure Design

    6/126

    CHAPTER 2

    CHAPTER 3

    CHAPTER 4

    LIST OF TABLES

  • 8/10/2019 Drop Structure Design

    7/126

    1.0 INTRODUCTION

  • 8/10/2019 Drop Structure Design

    8/126

  • 8/10/2019 Drop Structure Design

    9/126

  • 8/10/2019 Drop Structure Design

    10/126

  • 8/10/2019 Drop Structure Design

    11/126

    2.0 DROP STRUCTURE BASIC FUNCTIONSAND TYPES

  • 8/10/2019 Drop Structure Design

    12/126

  • 8/10/2019 Drop Structure Design

    13/126

    2.0 DROP STRUCTURE BASIC FUNCTIONSAND TYPES

    2.1 BASIC FUNCTIONS

    1 The term "collection system" as used in this monograph generally refers to the wastewater or storm-water collection system providing flow to the drop structure. "Collection system" may also be used to describethe system as a whole.

    2 The terms "tunnel" or "tunnel system" refer to the system downstream of the drop structure.

  • 8/10/2019 Drop Structure Design

    14/126

    2.2 GENERAL DROP STRUCTURE TYPES ANDCOMPONENTS

    Diversion Chamber.

    Inlet Structure.

    Dropshaft.

  • 8/10/2019 Drop Structure Design

    15/126

    Deaeration Chamber.

    Vent Pipe.

    Adit.

    Appurtenant Structures

  • 8/10/2019 Drop Structure Design

    16/126

    Vertical Shaft

    Vent

    Adit

    Main Tunnel

    Deaeration Chamber

    SurfaceSewers

    Surface

    JunctionChamber

    ApproachChannel

    InletStructure

    Figure 2.1 Typical Drop Structure Components

  • 8/10/2019 Drop Structure Design

    17/126

  • 8/10/2019 Drop Structure Design

    18/126

    Historical Perspective on the Development of Drop Structures

    Figure 2.3 Types of Plunge Flow Inlets

  • 8/10/2019 Drop Structure Design

    19/126

    2.3 OTHER TYPES OF DROP STRUCTURES

  • 8/10/2019 Drop Structure Design

    20/126

    2.4 COMPARISONS OF DROP STRUCTURE TYPES

    ConcreteEncasement

    Exterior Drop

    FlowDam

    Manhole

    Figure 2.4 Typical Drop Manhole (Sanitary Sewer)

  • 8/10/2019 Drop Structure Design

    21/126

    TYPE/INLETCONFIGURATION ADVANTAGES DISADVANTAGES

    Table 2.1 Drop Structure Evaluation Based on Inlet Type

  • 8/10/2019 Drop Structure Design

    22/126

    TYPE/INLETCONFIGURATION ADVANTAGES DISADVANTAGES

    Table 2.1 Drop Structure Evaluation Based on Inlet Type (Cont.)

  • 8/10/2019 Drop Structure Design

    23/126

  • 8/10/2019 Drop Structure Design

    24/126

    h

    hCM.

    CM3/MIN.

    Q

    Q = 1.5 M 3/SEC

    140

    120

    100

    80

    60

    40

    20

    0

    1

    1

    2

    2

    4

    4

    3

    3

    5

    5

    Figure 2.5 Comparison of Air Entrainment for Various Inlet Types (11)

  • 8/10/2019 Drop Structure Design

    25/126

    Figure 2.6 Comparison of Dimensions for Various Drop Structure Types*

    7'-0" Shaft Diam.

    7'-0" AditDiam.

    14'

    7'- 4"

    Guide WallCenter Column

    25'

    Main Tunnel

    DeaerationChamber

    4 5 ' + 1 -

    35

    7'-0" InletPipe

    Diam.InletPipe

    ElbowInlet

    8'-2" Shaft Diam.

    Main Tunnel

    3'- 0"

    Inlet Ramp

    Outlet Ramp

    Adit

    *Design Flow = 280 cfs

    E-15Plunge

    Inlet Type

    HelicoidalRamp Type

    VortexChamber

    5'-7" Shaft Diam.

    6 8 ' - 0 "

    2 3 ' - 6 "

    Main Tunnel

    Main Tunnel5'-0"

    Adit

    10'-0" Diam.Deaeration

    Chamber

    7'-0" Diam.InletPipe

    Vent Pipe

    6'6" Adit

    Diam

    2'9" Vent Diam

    TangentialInlet Type

    D-4 PlungeInlet Type

    18'

    16'48' 9'5"

    16'

    7'0"

    7'0" ShaftDiam

  • 8/10/2019 Drop Structure Design

    26/126

  • 8/10/2019 Drop Structure Design

    27/126

  • 8/10/2019 Drop Structure Design

    28/126

  • 8/10/2019 Drop Structure Design

    29/126

    3.0 PLANNING AND DESIGN CONSIDERATIONS

  • 8/10/2019 Drop Structure Design

    30/126

    3.1 FLOW VARIABILITY AND COLLECTION SYSTEM TYPE

    Table 3.1 Typical Concentrations of Components in UntreatedWastewater (9)

    PARAMETER WEAK MEDIUM STRONG

    350 720 1200

    250 500 850

    100 220 350

    105 20

    110 220 400

    80 160 290

    250 500 1000

    20 40

    84

    85

    15

    30 50 100

    20 30 50

    50 100 200

    50 100 150

    400

    Total

    Solids, total

    Total Dissolved Solids

    Suspended Solids

    Settleable Solid

    BOD (5)

    Total Organic Carbon

    COD

    Nitrogen (total as N)

    Phosphorous (total as P)

    Chlorides

    Sulfate

    Alkalinity

    Grease

    Coliform

    Volatile Organic Compounds (micrograms/L)

    /100 ml /100 ml /100 ml10 6 10 7 10 9

    (*) All values are provided in units of milligrams per liter unless otherwise noted.

    CONCENTRATION*

  • 8/10/2019 Drop Structure Design

    31/126

  • 8/10/2019 Drop Structure Design

    32/126

    3.2 ENERGY DISSIPATION

  • 8/10/2019 Drop Structure Design

    33/126

    D r o p s

    h a f t

    D r o p s

    h a f t

    D r o p s

    h a f t

    A d i t T u n n e

    l

    I m p a c t

    C u p

    A d i t T u n n e

    l

    A d i t

    P l u n g e

    P o o

    l

    P o o

    l - F o r m

    i n g

    W e i r

    H i g h S t r e n g t

    h

    C o n c r e t e

    A

    C o f

    D o w n s

    h a f t

    L

    R o c

    k

    W e a r

    R e s

    i s t a n t

    L i n i n g

    W

    e a r -

    R e s

    i s t a n t

    L i n i n g a t

    t h e

    B a s e o f

    t h e A

    L C O S A N D r o p

    S t r u c

    t u r e

    ( P i t t s b u r g h , P

    A )

    E m u l s i o n

    D e a e r a t e d

    W a t e r

    " C a s s e r o

    l e " I m p a c t

    C u p

    B a f

    f l e a t

    t h e

    B a s e o f a

    P l u n g e -

    F l o w

    D r o p

    S t r u c

    t u r e

    D

    D r o p s

    h a f t

    B a f

    f l e A d i t T u n n e

    l

    D e f

    l e c t o r

    B a f

    f l e a t

    t h e

    B a s e o f a

    P l u n g e -

    F l o w

    D r o p

    S t r u c

    t u r e

    D r o p s

    h a f t

    A i r T u n n e l

    B a f

    f l e

    5 ' - 9

    "

    D r a

    i n

    F i g u r e

    3 . 1

    E n e r g y

    D i s s

    i p a

    t o r s

    i n P l u n g e

    I n l e t D r o

    p S t r u c

    t u r e s

  • 8/10/2019 Drop Structure Design

    34/126

    Vortex Inlets

    Plunge Pools

    Other Energy Dissipation Devices and Methods

  • 8/10/2019 Drop Structure Design

    35/126

    3.3 DROP STRUCTURE LOCATION

  • 8/10/2019 Drop Structure Design

    36/126

  • 8/10/2019 Drop Structure Design

    37/126

    Figure 3.2 Alternative Sites for Drop Structure Location

    Proposed Deep Tunnelroposed Deep Tunnel lignment

    Alternat ive lternative TunnelTunnelConnector

    Existing Pumpxisting PumpStation andtation andPotential Dropotential DropStructure Sitetructure Site

    TunnelConnector

    Alternat ive "B"lternative BSite fo r Dropite fo r DropStructure

    Existing Collectionxisting CollectionSystem

    New Surfaceew SurfaceSewer Connectionewer Connection

    Proposed Deep Tunnel Alignment

    Industrial Zonendustrial ZoneIndustrial Zone

    Industrial Zonendustrial ZoneIndustrial Zone

    Commercial /ommercial Residential

    Zone

    Commercial /Residential

    Zone

    Al ternat ive A TunnelConnector

    Existing PumpStation andPotential DropStructure Site

    TunnelConnector

    B

    A

    Al ternat ive "B"Site fo r DropStructure

    Existing CollectionSystem

    New SurfaceSewer Connection

  • 8/10/2019 Drop Structure Design

    38/126

    Figure 3.3 Drop Structure Footprint and Dimensions

    3.4 AIR ENTRAINMENT AND VENTILATION

    100'

    75'

    Main Tunnel

    Flow

    Odor ControlFacility

    DiversionChamber

    Vortex Chamber

    DeaerationChamber

    75

  • 8/10/2019 Drop Structure Design

    39/126

    Air Entrainment

  • 8/10/2019 Drop Structure Design

    40/126

  • 8/10/2019 Drop Structure Design

    41/126

    Adit Connection with Main Tunnel

    Figure 3.4 Horizontal Connection to Main Tunnel

    Main Tunnel

    Flow Adit

    Drop Structure

    60 to 75 Angle of

    Entry

  • 8/10/2019 Drop Structure Design

    42/126

  • 8/10/2019 Drop Structure Design

    43/126

  • 8/10/2019 Drop Structure Design

    44/126

    Figure 3.6 Tunnel to Adit Connection from Chicagos TARP

    F l o w

    Main Tunnel

    Adit

    Steps

    1

    1.5

  • 8/10/2019 Drop Structure Design

    45/126

  • 8/10/2019 Drop Structure Design

    46/126

  • 8/10/2019 Drop Structure Design

    47/126

    Figure 3.7 Hydraulic Gradeline in H4-Type Vortex Drop Structure atDesign Flow

    Annular Flow withCentral Air Core

    HGL

    HGL

  • 8/10/2019 Drop Structure Design

    48/126

    3.5 ODOR AND CORROSION CONTROL

    Need for Odor Control

  • 8/10/2019 Drop Structure Design

    49/126

    Table 3.2 Odorous Compounds in Untreated Wastewater and

    Detectable Limits*

    ODOROUSCOMPOUND

    THRESHOLD OFDETECTION (PPM BYVOLUME)

    RECOGNITION(PPM BYVOLUME)

    ODORDESCRIPTION

    Ammonia 17 37 home cleaningproducts

    Chlorine .08 .314 swimming pools

    Dimethyl Sulfide .001 .001 decayed cabbage

    Diphenyl Sulfide .0001 .0021 decayed cabbage

    Methyl Mercaptan .0005 .001 decayed cabbage

    Ethyl Mercaptan .0003 .001 decayed cabbage

    Hydrogen Sulfide

  • 8/10/2019 Drop Structure Design

    50/126

    Methods and Alternatives for Odor Control

  • 8/10/2019 Drop Structure Design

    51/126

    Figure 3.8 Examples of Processes Used for Odor Control

    Soil/Compost Filter

    Wet Scrubber System(Countercurrent Packed Tower)

    Odorous Air

    Fan

    Soil or CompostClean Air

    Gravel

    Clean Air

    Scrubber Liquid

    Recycled PumpSumpDrain

    Odorous Air

    Air Distribution Pipe

    ActivatedCarbon(Dual Bed)

    Activated Carbon Filter

    Mist Eliminator

    Spray System

    PackingMedia Support Plate

    Odorous Air

    Clean Air

    Fan

  • 8/10/2019 Drop Structure Design

    52/126

    Selection

  • 8/10/2019 Drop Structure Design

    53/126

    Table 3.3 Costs for Odor Control*

    Table 3.4 Example: Matrix Evaluation of Gas Phase Odor ControlTreatment

    METHOD DESIGN AIR FLOWM3 /MIN

    CAPITAL COSTS ANNUAL COSTS

    28 $43,750 $9,100 Activated Carbon280 $189,000 $70,500

    28 $57,500 $3,000Wet Scrubber

    280 $113,000 $28,500

    *Costs based on values included in the USEPA Manual for Odor Control ; dollar values indexed to 1999 from 1984values based on ENR index of 1.486.

    TECHNOLOGY CRITERIA SCORE

    Efficiency Reliability Stability Land Handling Capital

    Cost

    O&M

    Cost

    ActivatedCarbon

    ChemicalScrubbers

    Biofilters

    10

    8

    4

    10

    8

    6

    8

    6

    4

    8

    6

    3

    8

    6

    8

    8

    8

    10

    6

    6

    6

    58

    48

    41

    Scoring: 10 = Most favorable; 2 = Least favorable

  • 8/10/2019 Drop Structure Design

    54/126

    Figure 3.9 At-Grade Odor Control Facility

    Corrosion Protection and Prevention

  • 8/10/2019 Drop Structure Design

    55/126

    Table 3.5 Effect of Sewer Conditions on Hydrogen Sulfide Corrosion

    STEP INHYDROGEN

    SULFIDECORROSION

    PROCESS

    CONDITIONVARIABLE

    EFFECT OFINCREASING

    VARIABLE ONCORROSION

    COMMENTS

    Production of DissolvedSulfide inWastewater

    Concentration of organicmaterial and nutrients

    Increases Rate-controlling factor unless sulfateconcentration is very low

    Sulfate concentration Increases Not a limiting factor at 20-100 mg/l

    Dissolved oxygen Decreases Sulfate reduction inhibited above 1.0 mg/l

    pH Varies Sulfate-reducing bacteria viable at pH 5.5-9.0;optimal at pH 7.5-8.0

    Temperature Increases Growth rate of sulfate-reducing bacteria istemperature-dependent

    Stream velocity Decreases Velocity affects slime layer and deposition of organic solids in pipe

    Submerged surface area Increases Submerged slime layer produces sulfides

    Detention time Increases Organic matter dissolved and oxygen decreasedwith time

    Release of HydrogenSulfide toSewer Atmosphere

    Dissolved oxygen Decreases Sulfides oxidized at concentrations greater than1.0 mg/l

    pH Decreases Ionized and un-ionized hydrogen sulfide nearlyequal at pH 7.0; un-ionized fraction dominates aspH is further reduced

    Metals concentrations Decreases Insoluble metallic sulfides formed by iron, zinc,copper, lead, and cadmium remove dissolvedsulfides from stream

    Stream flow velocity Varies Turbulence increases release of hydrogen sulfideto atmosphere, but also increases sulfideoxidation by improved aeration

    Depth of flow Varies Water surface area controls hydrogen sulfide gastransfer rate

    Temperature Increases Minimal effect due to offsetting aeration andoxygen solubility changes

    Moisture Increases Required for bacterial existence; multiple speciesof bacteria active depending on pH

    Oxidation of HydrogenSulfide toSulfuric Acid

    Ventilation Decreases Removes moisture and increases aeration

    Source: USEPA Design Manual: Odor and Corrosion Control in Sanitary Sewerage Systems and Treatment Plants .

  • 8/10/2019 Drop Structure Design

    56/126

    Table 3.6 Typical Wastewater Characteristics that Promote Hydrogen

    Sulfide Generation

    PARAMETER CONCENTRATION(MG/L UNLESS NOTED)

    Biochemical Oxygen Demand 280

    Temperature, degrees C > 30

    pH 6.8 - 7.0

    Sulfate (drinking water supply) 20 - 40

    Total alkalinity (drinking water supply), as CaCO3 190

    Hydrogen sulfide (average) 0.10 - 0.85

    Metals * 0.7 - 12.7

    Suspended solids 300

    *Sum of Cd, Cr, Cu, Hg, Mn, Ni, Pb, Zn concentrations for average loading condition

  • 8/10/2019 Drop Structure Design

    57/126

    Table 3.7 Methods to Control Hydrogen Sulfide Corrosion

    APPROACH METHOD OBJECTIVE ADVANTAGES DISADVANTAGES

    Good operation and

    maintenance

    Maintain flowvelocity to minimizesolids depositionand systemventilation.

    No additional costs. Effectiveness limited by physicallimitations of system andoperating conditions.

    Air injection Increase oxygen inwastewater usingcompressed air or venturi aspirators.

    No chemicalinvolved or costs for chemicals.

    Low efficiency.Control limited.Possible off-gassing of odors.

    Oxygen injection Increase oxygen inwastewater usingon-site generation or liquid oxygen.

    High efficiencycompared to air injection.Less hazardoushandling comparedto other chemicals.

    Must be injected via pressurizedpipe (e.g., force main or other means).

    Improve

    OxygenBalance inWastewater

    Nitrate addition(e.g., Bioxide)

    Provide chemicalsource of oxygenpreferred over

    sulfate by bacteria.

    Slow-reacting.Low chemicalhazard.

    Simple equipmentrequirements.

    High chemical cost. Adds nitrogen .

    Chlorine gassolution addition

    Oxidize dissolvedsulfides to sulfate.

    Widely available.Economical in bulkquantity.

    Hazardous chemical.Efficiency dependent on mixing.

    Sodiumhypochloritesolution injection

    Oxidize dissolvedsulfides to sulfate.

    Safe vs. chlorinegas.

    Unstable in storage.More cumbersome and costly inbulk quantity.

    Hydrogen peroxidesolution injection

    Oxidize dissolvedsulfides to sulfate.

    Rapid reaction rate.Simple equipment.

    High chemical cost.Unstable in storage.

    ChemicalOxidation of Sulfides inWastewater

    Potassiumpermanganateaddition

    Oxidize dissolvedsulfides to sulfate.

    Simple equipment . High chemical cost.Dosage determined byexperience on specific system.

    Precipitationof SulfidesfromWastewater

    Iron salts such asferrous sulfate or ferric chloride

    Formation of solidparticles of insolublemetallic sulfide.

    Simple equipment.Usually available.

    Increases metal loadingdownstream.

    Alkaline pHShock of Wastewater

    Periodic (weekly)dosing with sodiumhydroxide solution

    Upset slime layer and temporarilyreduce sulfidegeneration.

    Minimal capitalinvestment.Moderate chemicalcost.

    Hazardous chemical handling.Unpredictable effectiveness.

    Sources: USEPA, 1985; Sulfide in Wastewater Collection and Treatment Systems; ASCE, 1989.

  • 8/10/2019 Drop Structure Design

    58/126

    Table 3.8 Lining Materials

    MATERIAL RELATIVE COST

    Polymer Concrete HighPotassium Silicate Concrete High

    Filled Epoxy Moderate

    Fiberglass Reinforced Vinylester Moderate

    Polyester, Vinylester and Epoxy Based Systems Moderate to High

  • 8/10/2019 Drop Structure Design

    59/126

    Figure 3.10 1.8-m Concrete Pipe with PVC Lining

    Table 3.9 Plastic Membranes Used for Corrosion Protection

    MATERIAL RELATIVE COST

    Polyvinylchloride Moderate

    High Density Polyethylene Moderate

    Polypropylene Moderate

    Polyvinylidene Fluoride High

    Ethylene and Chlorotrifluoroethylene Copolymer High

  • 8/10/2019 Drop Structure Design

    60/126

    Table 3.10 Comparison of Linings and Membranes

    Table 3.11 Corrosion-Resistant Pipe Materials

    CHARACTERISTIC INORGANIC ORGANIC PVC HDPE PVDF PP

    Low Maintenance X X X X

    Resistant toHydrogen Sulfide

    X X X X X X

    Resistant toMicrobacterial

    X X X X

    Resistant toHydrostaticPressure

    X X X X

    Cracks w/Substrate X X

    MechanicallyBonded

    X X X X

    X

    GENERIC MATERIAL RELATIVE COST

    Polyvinylchloride Moderate

    High-Density Polyethylene High

    Reinforced Concrete Low

    Reinforced Plastic Mortar High

    Ductile Iron, Cement Mortar Lined Moderate

    Filament-wound Fiberglass-Reinforced Plastic High

  • 8/10/2019 Drop Structure Design

    61/126

    3.6 SUBSURFACE CONDITIONS AND CONSTRUCTION

  • 8/10/2019 Drop Structure Design

    62/126

    Figure 3.11 Construction Methods and Subsurface ConditionsEncountered at TARP Drop Structures

    Tunnel

    Deaeration Chamber

    SewageFlow

    A i r F l o w

    S e w a g e

    F l o w

    ExitConduit

    Air Shaft 2 0 '

    8 0 '

    0 ' 8 0 '

    6 0 '

    1 9 0 '

    2 6 '

    M i n

    . 1 7 0 '

    M a x . 3

    3 5 '

    M i n

    .

    M a x .

    8 1 '

    Top of Rock

    Air Vent Chamber

    ConnectingPipe

    CollectingStructure

    Min. Diam: 4'Max. Diam: 19'

    Overburden:Conventional

    Open-Cut Excavation

    Overburden:ConventionalExcavation or

    Slurry Wall

    Rock:Drill and Blast,

    Raise Bore,Down Drill

    Rock:Drill and Blast

    Range of Depths

  • 8/10/2019 Drop Structure Design

    63/126

    Constructibility Considerations in Soft Ground and Rock

  • 8/10/2019 Drop Structure Design

    64/126

    Construction Methods and Risks

  • 8/10/2019 Drop Structure Design

    65/126

    Figure 3.12 Pipe Jacking Sequence

  • 8/10/2019 Drop Structure Design

    66/126

    Tunnel Boring Machine with Rock-Cutting Head

    Tunnel Boring Machine for Soil Tunnel Boring Machine for Soil

    Figure 3.13 Cutting Heads on Tunnel Boring Machines

  • 8/10/2019 Drop Structure Design

    67/126

    Settlement

  • 8/10/2019 Drop Structure Design

    68/126

    Figure 3.14 Placing Pipe for Jacking

  • 8/10/2019 Drop Structure Design

    69/126

    Contract Interface

    3.7 OPERATIONS AND MAINTENANCE

    Access

  • 8/10/2019 Drop Structure Design

    70/126

    Screening and Sedimentation

  • 8/10/2019 Drop Structure Design

    71/126

  • 8/10/2019 Drop Structure Design

    72/126

  • 8/10/2019 Drop Structure Design

    73/126

    4.0 DESIGN METHODOLOGY

  • 8/10/2019 Drop Structure Design

    74/126

  • 8/10/2019 Drop Structure Design

    75/126

    4.0 DESIGN METHODOLOGY

    4.1 ROLE OF HYDRAULIC MODELING IN DROP

    STRUCTURE DESIGN

    Model Theory and Extension of Model Studies To Design ofPrototype

  • 8/10/2019 Drop Structure Design

    76/126

    4.2 VORTEX DROP STRUCTURES

  • 8/10/2019 Drop Structure Design

    77/126

    Tangential Inlet Vortex Type (H4 Type)

  • 8/10/2019 Drop Structure Design

    78/126

    Figure 4.1 Schematic Design of the H4 Type Drop Structure (1)

    Odor Control Vortex Structure

    Approach Channel

    Diversion Chamber

    Vent

    Adit

    Main Tunnel Deaeration Chamber

    Vortex Structure

    ApproachChannel

    Vortex Opening e

    Diversion Chamber

    b = 27.5

    = 16.8 (Typ)

    LT

    Lc

    Incoming LinkSewers

    Q

    Q

    B

    Vertical Shaft

  • 8/10/2019 Drop Structure Design

    79/126

    Figure 4.2 Dimensions of the Large-Scale Model of the H4-Type DropStructure (1)

    16.8

    20 1/8"

    4' 8"

    DeaerationChamber

    Vent

    Adit

    Inlet Box

    11 1/2"

    8 5/8"

    30"

    20 1/4"

    10 1/8"

    12' 8"

    5 1/8"

    7'27.5

    24'

    11 1/2"

    2 7/8"

  • 8/10/2019 Drop Structure Design

    80/126

    1) Determine minimum value of geometric scale ratio:

    2) Select model scale ratio:

    3) Determine model values for the required deaeration chamber length:

    4) Determine the initial dimensions of prototype drop structureusing the model scale ratio L r:

    Table 4.1 Multipliers Used to Determine Initial Dimensions of DropStructures

    D1=LR X 0.96 D 1= Dropshaft Diameter

    D2=Lr x 1.69 D 2= Deaeration Chamber Diameter

    D3=Lr x 0.84 D 3= Deaeration Chamber Outlet Diameter

    LC=L r x LC m LC= Deaeration Chamber Length

    LV=Lr x 4.67 L V= Air Vent Locatione=L r x 0.24 Note: minimum e = 0.45m; e= vortex opening prior to vertical shaft

    Lt=(B-e)/Tan

    16.8 oLt =Approach Channel Transition Length

    Where B = approach channel diameter, and e = constricted opening invortex generator

  • 8/10/2019 Drop Structure Design

    81/126

  • 8/10/2019 Drop Structure Design

    82/126

    Figure 4.3 Diversion Structure Dimensions

    R1 = D1 x 1.5

    R2 = D2 x 1.5

    X = R 1 + 0.5 D 3 + C

    Z = R 1 + 0.5 D 1 + C

    C = Minimum distance required toaccommodate pipe wall thicknessand structural reinforcement

    C

    D2

    D3

    C

    D1

    IncomingSewer

    IncomingSewer

    Tapered Radiusfor OutgoingPipe Diameter

    To DropInlet

    Flow

    FlowR2

    R1

    C

    Z

    X

  • 8/10/2019 Drop Structure Design

    83/126

  • 8/10/2019 Drop Structure Design

    84/126

    D e s

    i g n

    D i s c h a r g e

    ( C F S )

    A i r F l o w

    A i r F l o w

    R a t e

    i n V e n

    t ( C F S )

    A i r F l o w

    R a t e

    t o T u n n e

    l ( C F M )

    0

    2 0 0

    4 0 0

    6 0 0

    8 0 0

    1 0 0 0

    1 2 0 0

    1 4 0 0

    1 6 0 0

    1 8 0 0

    2 0 0 0

    1 6 0 0

    1 5 0 0

    1 4 0 0

    1 3 0 0

    1 2 0 0

    1 1 0 0

    1 0 0 0 9 0

    0 8 0 0

    7 0 0

    6 0 0

    5 0 0

    4 0 0

    3 0 0

    2 0 0

    1 0 0 0

    F i g u r e

    4 . 4

    A i r F l o w

    i n V e n

    t a n

    d A d i t a

    t D e s i g n

    D i s c

    h a r g e

    f o r t

    h e

    T a n g e n

    t i a

    l I n l e t

    T y p e

    V o r t e x D r o p

    ( H - 4

    T y p e

    ) ( 1 )

  • 8/10/2019 Drop Structure Design

    85/126

  • 8/10/2019 Drop Structure Design

    86/126

    Drop Structure with Helical Inlet and Ramps

    Figure 4.5 Drop Structure with Helical Inlet and Ramps (13)

    Adit

    RampOutlet

    Section B-B

    Section C-C

    Section A-A

    HelicalRamp

    ConveyanceTunnel

    (Tailwater Depth)

    Dropshaft

    HelicalRamp

    GuideWall

    Center Column

    InflowPipe Inflow

    PipeGuide

    Wall

    Center Column

    D1

    Di A Zi

    Z l

    P i

    B

    C C

    d

    b

    W

    Po

    D3

    Bo

    Bo

    Po

    D1

    B

    Bi

  • 8/10/2019 Drop Structure Design

    87/126

    Helical Drop Structure Dimensions

  • 8/10/2019 Drop Structure Design

    88/126

    Table 4.2 Helical Dimensions for Design Flows from 25 to 280 CFS (1)

    Figure 4.6 Peak Air Concentration with Varying Tailwater Levels(helical drop structure) (13)

    DropshaftPeak FlowCFS

    DropDiameter D1

    InflowPipeDiameter Di

    InletRampPitchPi

    InletRampWidthBi

    InletRampDistZi

    OutletRampPitchPo

    OutletRampWidthBo

    Outflow PipeDiameter D3

    25 3.500 3.167 2.135 1.225 3.115 1.610 1.197 1.833

    60 4.667 4.167 2.847 1.633 4.154 2.147 1.596 2.167

    115 5.833 5.250 3.558 2.042 5.191 2.683 1.994 2.500

    280 8.167 7.333 4.982 2.858 7.269 3.757 2.792 3.000

    Z1/D3 = 1.0

    Z1/D3 = 1.5

    Z1/D3 = 2.0

    0.14

    0.12

    0.10

    0.08

    0.06

    0.04

    0.02

    0.00

    -0.020.30 0.35 0.40 0.45 0.50 0.55 0.60

    D3/D1

    P e a

    k A i r C o n c e n t r a

    t i o n

    C p

  • 8/10/2019 Drop Structure Design

    89/126

    Scroll and Spiral Inlet Type

    Figure 4.7 Dimensional Relationships for Scroll andSpiral Inlet Types (1)

    Inlet

    Dropshaft

    r

    h

    D

    Hyo

    do

    vr

    v vz

    r 2

    r m

    c r 3

    r 1

    d8

    r 3

    r 4

    v0

    b

    a

    ee

    e e

    vr v

    vz

    e = (b+s)

    r 2 = r 1 - 2 e

    r 3 = r 1 - 4 e

    r 4 = r 1 - 5 e

    a = r 1 + e -

    17

    r 1 = d s + 6 e + r + c12

    b2

    b b

    e e

    ee

    r 2

    r 6

    r 5

    r 4D

    A

    A

    D

    b

    b

    r 3

    r 1

    J zJ k

    hk hk

    D

    Section A-A

    e = b27

    r 1 = D + 6e12

    r 2 = D + 4e12

    r 3 = D + 212

    r 4

    = D + e1

    2

    r 5 = D + e12

    5212

    r 6 = D + e12

    Spiral (14)

    Scroll (1) Spiral (Plan)

  • 8/10/2019 Drop Structure Design

    90/126

    4.3 PLUNGE DROP STRUCTURES

    Plunge Inlet Type

  • 8/10/2019 Drop Structure Design

    91/126

  • 8/10/2019 Drop Structure Design

    92/126

    N

    B

    W

    B

    C K

    L

    K

    M

    E

    L

    C L A d i t

    T u n n e l D i a m .

    E

    W

    3 0 t o 7 5

    A

    C

    C

    S

    S e c

    t i o n

    A - A

    S e c

    t i o n

    B - B

    E l e v a

    t i o n

    S e c

    t i o n

    C - C

    C

    B

    Q

    P P

    H F

    3 '

    D S p a c e B e t w e e n

    3 ' - 0 "

    S l o t s

    G

    R

    A

    1 0 ' R .

    1 . 5

    G

    3 G

    1 . 5 G

    S h a f t I . D

    .

    2 x

    ( A )

    M i n

    .

    M i n

    .

    A

    T

    S e e

    D e t a i

    l " A "

    D e t a i

    l " A "

    3 5

    6 "

    S h a f t I . D

    .

    9 ' - 0

    "

    7 ' - 2

    "

    5 ' - 8

    "

    A

    4 ' - 6

    "

    3 ' - 7

    "

    2 ' - 1

    0 "

    B

    2 ' - 9

    "

    2 ' - 6

    "

    2 ' - 6

    "

    C

    1 ' - 0

    "

    1 ' - 0

    "

    0 ' - 9

    "

    D ( M a x . )

    1 0 ' - 0 "

    7 ' - 6

    "

    5 ' - 6

    "

    E

    9 ' - 0

    "

    6 ' - 8

    "

    5 ' - 0

    "

    F

    2 0 ' - 3 1 / 2 "

    1 5 ' - 0 1 / 2 "

    1 1 ' - 2 1 / 2 "

    G

    V a r

    i a b l e ,

    E q u a l

    t o P i p e

    D i a m e t e r

    ( B u t

    N o t

    T o E x c e e

    d I . D

    . o f S h a f t )

    H ( M a x . )

    1 2 ' - 0 "

    9 ' - 8

    "

    8 ' - 0

    "

    H ( M i n

    . )

    9 ' - 0

    "

    6 ' - 8

    "

    5 ' - 0

    "

    W (

    M i n

    . )

    6 ' - 9

    "

    4 ' - 9

    "

    4 ' - 0

    "

    H & W

    ( M i n

    . ) ( S q

    . F t . )

    8 1

    4 5

    2 5

    K

    2 7 ' - 0 "

    2 0 ' - 3 "

    1 4 ' - 1 0 "

    L

    2 9 ' - 0 "

    2 1 ' - 6 "

    1 6 ' - 0 "

    M

    5 6 ' - 0 "

    4 1 ' - 9 "

    3 0 ' - 1 0 "

    N ( M i n

    . )

    4 ' - 0

    "

    3 ' - 6

    "

    3 ' - 0

    "

    P ( M a x . )

    1 ' - 6

    "

    1 ' - 3

    "

    1 ' - 0

    "

    N x

    P ( M i n

    . ) ( S q . F t

    . )

    6

    4 . 4

    3

    Q

    3 2 ' - 6 "

    2 4 ' - 0 "

    1 8 ' - 1 "

    S ( M i n

    . )

    5 ' - 0

    "

    4 ' - 6

    "

    4 ' - 0

    "

    D e s

    i g n

    D i s c h a r g e

    ( c f s ) 6 0 0

    2 8 0

    1 4 0

    H e a

    d L o s s

    9 ' - 0

    "

    5 ' - 5

    "

    4 ' - 7

    "

    F i g u r e

    4 . 8

    D i m e n s i o n s

    f o r

    t h e

    C h i c a g o

    T y p e

    E - 1

    5 D r o

    p S t r u c

    t u r e

    ( 2 )

  • 8/10/2019 Drop Structure Design

    93/126

  • 8/10/2019 Drop Structure Design

    94/126

    F i g u r e

    4 . 9

    D i m e n s i o n s f o r

    t h e

    C h i c a g o

    T y p e

    D - 4

    D r o p

    S t r u c

    t u r e

    ( 2 )

    A

    A

    B

    B B

    E

    F

    S e c

    t i o n

    A - A

    S e c

    t i o n

    B - B

    G

    A J

    E

    E

    A

    A

    C

    H

    D C

    D

    I n l e t C o n

    d u i t

    W a t e r

    C o n

    d u i t

    V e n

    t

    A d i t

    D e a e r a t

    i o n

    C h a m

    b e r

    F V e n

    t e d C o v e r

    T o p

    V i e w

    G

    A

    B B

    H

    J

    A

    2 0 ' - 0 "

    1 5 ' - 0 "

    1 2 ' - 0 "

    5 ' - 8 "

    B

    8 ' - 0 "

    6 ' - 0 "

    5 ' - 0 "

    2 ' - 0 "

    C

    4 8 ' - 0 "

    3 6 ' - 0 "

    2 9 ' - 0 "

    1 2 ' - 0 "

    D

    4 0 ' - 0 "

    3 0 ' - 0 "

    2 4 ' - 0 "

    1 0 ' - 0 "

    E

    2 5 ' - 0 "

    1 9 ' - 0 "

    1 5 ' - 0 "

    6 ' - 3 "

    F

    5 5 ' - 0 "

    4 2 ' - 0 "

    3 3 ' - 0 "

    1 3 ' - 9 "

    G

    9 0 ' - 0 "

    6 7 ' - 0 "

    5 3 ' - 0 "

    2 2 ' - 6 "

    H

    2 0 ' - 0 "

    1 5 ' - 0 "

    1 2 ' - 0 "

    5 ' - 8 "

    J

    2 8 ' - 0 "

    2 1 ' - 0 "

    1 7 ' - 0 "

    7 ' - 0 "

    D e s

    i g n

    D i s c

    h a r g e

    ( c f s )

    4 5 0 0

    2 2 0 0

    1 2 5 0

    1 4 0

    H e a

    d

    L o s s

    2 0 ' - 0 "

    1 5 ' - 0 "

    1 2 ' - 0 "

    5 ' - 8 "

  • 8/10/2019 Drop Structure Design

    95/126

  • 8/10/2019 Drop Structure Design

    96/126

  • 8/10/2019 Drop Structure Design

    97/126

    5.0 DROP STRUCTURE APPURTENANCES

    5.1 ACCESS SHAFTS

  • 8/10/2019 Drop Structure Design

    98/126

    Figure 5.1 Access Shafts

    Access Through Tunnel Crown

    Offset Access from Main Tunnel

  • 8/10/2019 Drop Structure Design

    99/126

    5.2 SYSTEM MONITORING AND CONTROLS

    Flow Control Gates

  • 8/10/2019 Drop Structure Design

    100/126

  • 8/10/2019 Drop Structure Design

    101/126

    Figure 5.2 Flow Control Structure Schematic

    Hydraulic Supply and Return Lines

    Weatherproof Enclosure

    Access Hatch

    Power Supply

    Hydraulic Power Unit

    Control Panel

    SS Hydraulic Cylinder

    Guides forStop Logs

    Sluice Gate

    FiberglassGratedPlatform

    Flow

  • 8/10/2019 Drop Structure Design

    102/126

    Flow and Rainfall Monitoring

  • 8/10/2019 Drop Structure Design

    103/126

    H

    N e t w o r k

    A c c e s s

    D i v e r s i o n

    C h a m b e r

    D r o p s h a f t

    A c c e s s

    S h a f t

    L T

    L T

    L T

    A L T

    H 2 5

    F S L

    R T U

    R T U

    R T U

    O p e r a

    t o r

    T e r m

    i n a l

    O p e r a

    t o r

    T e r m

    i n a l

    M u l t i - P o i n t

    M o d e m

    D i a l - I n

    A c c e s s

    P o r

    t a b l e

    C o m p u

    t e r

    C o n t r o l

    R o o m

    M a i n t e n a n c e

    A c c e s s

    S e r v e r

    L a p t o p

    C o m p u

    t e r

    D a t a R a d

    i o

    L i n k

    L T

    D a t a

    R a d

    i o

    S e w e r a g e

    F a c

    i l i t y

    ( P u m p

    S t a t i o n /

    W W T P )

    D a t a

    R a d

    i o

    S C A D A

    T e r m

    i n a l

    S C A D A

    T e r m

    i n a l

    D a t a C o m m u n

    i c a t

    i o n

    L i n k s

    O d o r

    C o n

    t r o l

    F i g u r e

    5 . 3

    S c

    h e m a

    t i c

    D i a g r a m

    o f a

    M o n

    i t o r i n g a n

    d C o n

    t r o

    l S y s t e m

  • 8/10/2019 Drop Structure Design

    104/126

    5.3 DEBRIS SCREENING

  • 8/10/2019 Drop Structure Design

    105/126

  • 8/10/2019 Drop Structure Design

    106/126

  • 8/10/2019 Drop Structure Design

    107/126

    APPENDICES

  • 8/10/2019 Drop Structure Design

    108/126

  • 8/10/2019 Drop Structure Design

    109/126

    APPENDIX AREVIEW OF DROP STRUCTURE/TUNNEL SYSTEMS

  • 8/10/2019 Drop Structure Design

    110/126

  • 8/10/2019 Drop Structure Design

    111/126

    APPENDIX A: REVIEW OF DROP STRUCTURE/ TUNNEL SYSTEMS

    CHICAGO, ILLINOIS

  • 8/10/2019 Drop Structure Design

    112/126

    MILWAUKEE, WISCONSIN

    PITTSBURGH, PENNSYLVANIA

  • 8/10/2019 Drop Structure Design

    113/126

    SINGAPORE

    MONTREAL, QUEBEC (CANADA)

  • 8/10/2019 Drop Structure Design

    114/126

    TORONTO, ONTARIO (CANADA)

  • 8/10/2019 Drop Structure Design

    115/126

    PHOENIX, ARIZONA

    ROCHESTER, NEW YORK

  • 8/10/2019 Drop Structure Design

    116/126

    MINNEAPOLIS/ST. PAUL, MINNESOTA

    GOVALLE, TEXAS

  • 8/10/2019 Drop Structure Design

    117/126

    SYDNEY, AUSTRALIA

    CLEVELAND, OHIO

  • 8/10/2019 Drop Structure Design

    118/126

    RICHMOND, VIRGINIA

    SAN FRANCISCO, CALIFORNIA

    DEARBORN, MICHIGAN

  • 8/10/2019 Drop Structure Design

    119/126

  • 8/10/2019 Drop Structure Design

    120/126

    Figure A.1 Pump Station, Richmond, VA

    Pumps

    Tunnel

    Tunnel

    Access MHSluice Gate

    Grade

    PumpDischarge

    Existing48' Water

    SubmersiblePumps

    TransitionStructure

    Plan

    Screen Room

    Screen Room

    Screen

    BridgeCrane

    VortexDrop

    EL-108.30

    EL-81.00

    EL-7.00

    VortexDrop

    BobcatOpening

    A

    A

  • 8/10/2019 Drop Structure Design

    121/126

    Figure A.2 Schematic Drop Structure with Vortex Inlet,Pittsburgh, PA

    A

    A

    A

    Dropshaft

    F l o

    wInlet

    Dropshaft

    Shaft Inlet TankGround Surface

    Air Relief

    Tunnel

    FlowEnergy

    Dissipation Chamber

    Enlarged Section

    T o

    G r o u n

    d S u r f a c e

    Figure A-2 Schematic Drop Structure with Vortex Tank-Type InletPittsburgh, Pennsylvania (8)

  • 8/10/2019 Drop Structure Design

    122/126

  • 8/10/2019 Drop Structure Design

    123/126

    REFERENCES

  • 8/10/2019 Drop Structure Design

    124/126

  • 8/10/2019 Drop Structure Design

    125/126

    REFERENCES

  • 8/10/2019 Drop Structure Design

    126/126