Top Banner
INSTITUTO UNIVERSITARIO AERON ´ AUTICO Faculta de Ingenier´ ıa Dise ˜ no e implementaci ´ on de circuito impreso multicapa dedicado para sistema de control embebido basado en plataforma CIAA. Por: Juan Jos´ e Julca Yaya Director: Ing. Javier Fern´ andez 15 de diciembre de 2016
122

Diseno e implementaci˜ on de circuito´ impreso multicapa ...

Jul 08, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

INSTITUTO UNIVERSITARIO AERONAUTICO

Faculta de Ingenierıa

Diseno e implementacion de circuitoimpreso multicapa dedicado para

sistema de control embebido basado enplataforma CIAA.

Por: Juan Jose Julca Yaya

Director: Ing. Javier Fernandez

15 de diciembre de 2016

Page 2: Diseno e implementaci˜ on de circuito´ impreso multicapa ...
Page 3: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

“Diseno e implementacion de circuito impreso multicapa

dedicado para sistema de control embebido basado en

plataforma CIAA.”

Por

Juan Jose Julca Yaya

Resumen

Se disena e implementa un circuito impreso de cuatro capas para un sistema de

control embebido, aplicando reglas de diseno orientadas a preservar la compatibili-

dad electromagnetica del mismo. Luego, mediante simulacion del diseno en software

especializado, se tratara de predecir el comportamiento del circuito.

Cordoba, 15 de diciembre de 2016

Page 4: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

Contenidos

1 Introduccion 1

2 Marco Teorico 32.1. Circuitos Impresos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1. Software de diseno . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42.1.2. Esquematicos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42.1.3. Huella . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52.1.4. Editor de Esquematico . . . . . . . . . . . . . . . . . . . . . . . . . . . 62.1.5. Editor de PCB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2. Interferencia Electromagnetica . . . . . . . . . . . . . . . . . . . . . . . . . . 72.2.1. Compatibilidad Electromagnetica . . . . . . . . . . . . . . . . . . . . . 72.2.2. Regulaciones de EMC . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3. Radiaciones de Circuitos Digitales . . . . . . . . . . . . . . . . . . . . . . . . 92.3.1. Modo Diferencial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92.3.2. Modo Comun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4. Comportamiento de componentes pasivos en radiofrecuencia . . . . . . . . . 102.4.1. Pistas de cobre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122.4.2. Capacitores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132.4.3. Factor de disipacion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152.4.4. Capacitores en paralelo . . . . . . . . . . . . . . . . . . . . . . . . . . 152.4.5. Inductores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172.4.6. Chips de ferrite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Diseno del esquematico del PCBen software CAD 213.1. PCB basado en plataforma CIAA . . . . . . . . . . . . . . . . . . . . . . . . . 213.2. Biblioteca de componentes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213.3. Division del esquematico . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223.4. Esquematico Principal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

II

Page 5: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CONTENIDOS Pagina III

3.4.1. Circuito Oscilador . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223.4.2. Boton de Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243.4.3. Conversores analogico-digitales . . . . . . . . . . . . . . . . . . . . . 253.4.4. Conversor digital-analogico . . . . . . . . . . . . . . . . . . . . . . . . 263.4.5. Salidas de alimentacion . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5. Fuente Conmutada . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263.5.1. Filtro LC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273.5.2. Diodo de freewheeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 283.5.3. Capacitor de entrada . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293.5.4. Otras consideraciones . . . . . . . . . . . . . . . . . . . . . . . . . . . 293.5.5. Ripple a la salida . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.6. Fuente Lineal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323.7. PWR/GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.7.1. Capacitor de desacoplo . . . . . . . . . . . . . . . . . . . . . . . . . . 393.8. GPIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.8.1. Interruptores de entrada . . . . . . . . . . . . . . . . . . . . . . . . . . 443.9. Dispositivos I2C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.9.1. Resistencias de pull up . . . . . . . . . . . . . . . . . . . . . . . . . . 453.10.Dispositivos varios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.10.1.LEDs indicadores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503.10.2.Modulo XBee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513.10.3.Modulo GPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513.10.4.Sensor de Corriente . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523.10.5.Memoria SD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523.10.6.Sensor de presion diferencial . . . . . . . . . . . . . . . . . . . . . . . 543.10.7.Sensor de voltaje de baterıa . . . . . . . . . . . . . . . . . . . . . . . . 55

3.11.Debugger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563.12.Diseno de un Debugger basado en FT2232H . . . . . . . . . . . . . . . . . . 56

4 Diseno de PCB de 4 capas 594.1. Esquematico a PCB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 594.2. Biblioteca de Huellas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 604.3. Stack Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 604.4. Reglas de Diseno . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4.1. Reduccion de loops de GND . . . . . . . . . . . . . . . . . . . . . . . 614.4.2. Caminos de baja inductacia para senales de alta frecuencia . . . . . . 654.4.3. Crosstalk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Julca Yaya, Juan Jose Diciembre de 2016 Pagina III

Page 6: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CONTENIDOS Pagina IV

4.4.4. CTC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 674.4.5. Ruteo de los capacitores de desacoplo . . . . . . . . . . . . . . . . . . 72

4.5. Reglas de fabricacion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 734.6. Generacion de archivos de fabricacion . . . . . . . . . . . . . . . . . . . . . . 784.7. Capas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5 Simulacion de PCB disenado 835.1. De Altium a SIwave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 835.2. Simulacion de Campo Cercano . . . . . . . . . . . . . . . . . . . . . . . . . . 855.3. Resultados de simulacion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6 Implementacion 89

7 Diseno de PCB de 2 capas para Debugger 917.1. Debugger implementado . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 927.2. Prueba de funcionamiento . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

8 Conclusiones y trabajos futuros 95

Anexo A Esquematicos 97

Anexo B Simulacion con 20 inversores 107

Bibliografıa 109

Julca Yaya, Juan Jose Diciembre de 2016 Pagina IV

Page 7: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

Indice de figuras

2.1. Esquematico de conector de memoria SD. . . . . . . . . . . . . . . . . . . . . . . 5

2.2. Huella del conector de memoria SD. . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3. Tension V usando el cable como antena. . . . . . . . . . . . . . . . . . . . . . . 11

2.4. Irradiacion en modo comun. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5. Dimensiones de pista que definen inductancia. . . . . . . . . . . . . . . . . . . . 12

2.6. Modelo que aproxima un capacitor real. . . . . . . . . . . . . . . . . . . . . . . . 13

2.7. Respuesta frecuencia-impedancia de un capacitor ceramico. . . . . . . . . . . . 14

2.8. Curvas frecuencia vs. impedancia correspondientes a CCER, CTANT y CPAR. . . 16

2.9. Modelo de un inductor real. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.10.Respuesta frecuencia-impedancia . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.11.Modelo de un chip de ferrite. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.12.Curva frecuencia vs. impedancia correspondiente a un chip de ferrite. . . . . . . 20

3.1. Estructura del esquematico. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2. Circuito del oscilador Pierce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3. Circuito del boton de reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4. Circuito de simulacion del boton reset. . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5. Resultado de la simulacion del boton reset . . . . . . . . . . . . . . . . . . . . . 26

3.6. Circuito de la fuente conmutada . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.7. Circuito de simulacion SMPS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.8. (izquierda) tiempo vs. voltaje de salida (derecha) tiempo vs. corriente del Zenerpara RL=5 Ω. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.9. (izquierda) tiempo vs. voltaje de salida (derecha) tiempo vs. corriente del Zenerpara RL=50 Ω. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.10.Ripple de voltaje para tres corrientes cuando la entrada es Vin = 16 V . . . . . . . 31

3.11.Ripple de voltaje para tres corrientes cuando la entrada es Vin = 24 V . . . . . . . 32

3.12.Regulador lineal con salida 3.3 V y filtrado con ferrites . . . . . . . . . . . . . . . 33

3.13.Esquema de simulacion de la fuente lineal con ruido inyectado. . . . . . . . . . . 34

3.14.Respuesta del regulador lineal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

V

Page 8: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

Indice de figuras Pagina VI

3.15.Ampliacion de figura 3.14 en estado de regimen. . . . . . . . . . . . . . . . . . . 35

3.16.Inversor con transistores de 0.35 µm de ancho de canal. . . . . . . . . . . . . . . 36

3.17.Circuito de simulacion con inversor. . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.18.Resultados de la simulacion del inversor. . . . . . . . . . . . . . . . . . . . . . . 37

3.19.Fuente ideal afectada por conmutaciones del inversor. . . . . . . . . . . . . . . . 38

3.20.Fuente ideal afectada por 60 inversores. . . . . . . . . . . . . . . . . . . . . . . . 38

3.21.Alimentacion con capacitor de desacoplo Ideal, Tantalio y Ceramico. . . . . . . . 40

3.22.Simulacion con 20 inversores a 10 MHz y tiempo de crecimiento 10 ns. . . . . . 42

3.23.Esquematico de alimentacion del microcontrolador NXP LPC4337. . . . . . . . . 43

3.24.Esquematico de interruptores. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.25.Esquematico de conexion del bus I2C del microcontrolador. . . . . . . . . . . . . 46

3.26.Esquematico del LSM303D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.27.Esquematico del 24AA1025. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.28.Esquematico del LPS331. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.29.Esquematico del L3GD20H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.30.Esquematico del PC9685PW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.31.Esquematico de Leds indicadores. . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.32.Esquematico XBEE XB24-API-001. . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.33.Esquematico GPS EM 506. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.34.Sensor de Corriente. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.35.Memoria SD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.36.Sensor de Presion Diferencial. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.37.Sensor de Voltaje de Baterıa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.38.Esquematico del puerto de Debug. . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.39.Esquematico del debugger externo. . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1. Stack Up del fabricante. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2. Stack Up en Altium. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3. Conexion con plano de masa perfecto. . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4. Diferencia de potencial entre las referencias GND1 y GND2. . . . . . . . . . . . 63

4.5. Circuito IC2 e IC1 conectados a GND . . . . . . . . . . . . . . . . . . . . . . . . 64

4.6. Esquematico anexo al de la figura 3.36. . . . . . . . . . . . . . . . . . . . . . . . 64

4.7. Union de GND local del microcontrolador a plano de masa en un solo punto. . . 65

4.8. Distribucion de corriente de retorno. . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.9. Abertura en el plano de masa debajo de una pista portadora de senal. . . . . . . 66

4.10.Plano de masa continuo sobre las pistas de alta frecuencia del oscilador a cristal. 67

4.11.CTC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Julca Yaya, Juan Jose Diciembre de 2016 Pagina VI

Page 9: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

Indice de figuras Pagina VII

4.12.Minimizacion de area solapada entre pistas. . . . . . . . . . . . . . . . . . . . . . 684.13.CTI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 694.14.Pista fuente y pista vıctima de CTI. . . . . . . . . . . . . . . . . . . . . . . . . . . 704.15.Amplicacion de regla para disminuir el CTI. . . . . . . . . . . . . . . . . . . . . . 714.16.Ruteo de los capacitores de desacoplo. . . . . . . . . . . . . . . . . . . . . . . . 724.17.Configuracion de reglas de espaciado entre elementos. . . . . . . . . . . . . . . 744.18.Configuracion de regla de mınimo diametro de perforacion. . . . . . . . . . . . . 744.19.Pistas sin polıgono a GND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 754.20.Pistas con polıgono a GND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 754.21.Conexion directa de vıa a GND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 764.22.Conexion aliviada de vıa a GND. . . . . . . . . . . . . . . . . . . . . . . . . . . . 764.23.Distancia polıgonos - pistas/vıas. . . . . . . . . . . . . . . . . . . . . . . . . . . . 774.24.Configuracion de distancia mınima despejada desde el borde del PCB. . . . . . 774.25.Pistas interiores a plano de GND que rodea todo el PCB. . . . . . . . . . . . . . 784.26.GERBER de la capa Top. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 794.27.GERBER de la capa GND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 794.28.GERBER de la capa SIGNAL PWR. . . . . . . . . . . . . . . . . . . . . . . . . . 804.29.GERBER de la capa Bottom. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 804.30.Pre-visualizacion de PCB implementado (vista frontal). . . . . . . . . . . . . . . . 814.31.Pre-visualizacion de PCB implementado (vista trasera). . . . . . . . . . . . . . . 82

5.1. Exportacion de modelo ODB++ desde Altium Designer. . . . . . . . . . . . . . . 845.2. Vista de todas las capas del PCB en formato ODB++. . . . . . . . . . . . . . . . 845.3. Importacion de ODB++ en SIWave. . . . . . . . . . . . . . . . . . . . . . . . . . . 845.4. Modelo Importado en SIWave. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 855.5. Seleccion de simulacion en campo cercano. . . . . . . . . . . . . . . . . . . . . . 855.6. Pico de campo electrico en 600 MHz. . . . . . . . . . . . . . . . . . . . . . . . . 865.7. Pico de campo electrico en 700 MHz. . . . . . . . . . . . . . . . . . . . . . . . . 87

6.1. PCB multicapa implementado (Vista frontal). . . . . . . . . . . . . . . . . . . . . 896.2. PCB multicapa implementado (Vista trasera). . . . . . . . . . . . . . . . . . . . . 90

7.1. Capa ((Top)) del debugger. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 917.2. Capa ((Bottom)) del debugger. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 927.3. Vista superior de la placa Debugger. . . . . . . . . . . . . . . . . . . . . . . . . . 927.4. Vista inferior de la placa Debugger. . . . . . . . . . . . . . . . . . . . . . . . . . . 937.5. Sistema embebido conectado al debugger corriendo una aplicacion. . . . . . . . 93

A.1. Esquematico Principal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Julca Yaya, Juan Jose Diciembre de 2016 Pagina VII

Page 10: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

Indice de figuras Pagina VIII

A.2. PWR-GND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99A.3. Fuente Conmutada. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100A.4. USB-OTG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101A.5. ONBOARD PERIPHERALS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102A.6. DEBUG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103A.7. GPIO I. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104A.8. GPIO II. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

B.1. Simulacion con 20 inversores. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Julca Yaya, Juan Jose Diciembre de 2016 Pagina VIII

Page 11: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

Indice de tablas

2.1. Lımites de raduacion FCC a 3 m. . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1. Tabla de seleccion rapida de capacitor/inductor de filtro . . . . . . . . . . . . . . 283.2. Inductacia equivalente en serie Capacitores Ceramicos y de Tantalio. . . . . . . 393.3. Resistencia equivalente en serie de varios capacitores. . . . . . . . . . . . . . . 403.4. Especificaciones relevantes del bus I2C. . . . . . . . . . . . . . . . . . . . . . . 46

4.1. Resultado de CTI para metodo de separacion de pistas. . . . . . . . . . . . . . . 714.2. Especificaciones de fabricacion. . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

IX

Page 12: Diseno e implementaci˜ on de circuito´ impreso multicapa ...
Page 13: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

Capıtulo 1

Introduccion

Todo sistema de control digital embebido requiere de sensores, actuadores y circuitosanalogicos y digitales de acondicionamiento y control, donde cada uno de estos elementosse interconecta a traves de conexiones electricas de un metal determinado en una placaque contiene todo el circuito. Esta placa se denomina ((Placa de circuito impreso)) (por sussiglas en ingles PCB ((Printed circuit board))).

La forma en que se realiza las conexiones electricas en el PCB depende del disenadory existen infinitas formas de realizarlas de tal forma que se respete el diagrama electricodel diseno (mapa de conexiones de cada parte del circuito). El criterio del disenador pararealizar esta tarea define, ademas del tamano, facilidad de uso y estetica, el grado decompatibilidad electromagnetica del PCB.

Compatibilidad electromagnetica (por sus siglas en ingles EMC ((Electromagnetic com-patibility))), como se vera mas adelante, es un termino que se refiere dos aspectos decualquier dispositivo electronico: Cuan susceptible es un equipo a ser afectado por cam-pos electromagneticos (CEM) externos, y a la medida en que es capaz este mismo equipode afectar otros o a sı mismo.

En aplicaciones crıticas, como un sistema de control de vuelo o un sistema medicode soporte de vida, el control de medidas de EMC no solo es importante, es mandatorio.Existen normas que establecen niveles maximos de radiacion de cualquier PCB disenado,como por ejemplo las reglas de la Federal Communications Commission (por sus siglasen ingles FCC).

Para lograr que el equipo que se desarrolla sea electromagneticamente compatible,se recurre a un conjunto de reglas de diseno que afectan el grado de EMC. Estas reglasen gran parte de la bibliografıa consultada son denominadas ((Rules of thumb)), frase quepodrıa traducirse a ((Reglas de oro)) y son reglas que deberan ser analizadas para validarsu aplicacion durante el desarrollo de este trabajo.

La aplicacion de estas reglas se realizaran en el marco del diseno e implementacion de

1

Page 14: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 1. INTRODUCCION Pagina 2

un PCB para un sistema de control embebido, el cual es un retrabajo de un prototipo fun-cional [1] realizado integrando modulos comerciales con conectores genericos de 2.54 mm

de espaciado en una placa de desarrollo EDU-CIAA [2], hacia un solo PCB de propositoespecıfico.

En el capıtulo 2 se presenta un marco teorico que plantea los conceptos mas impor-tantes que el autor considera importantes para el analisis y determinacion de reglas dediseno aplicables al desarrollo del PCB.

En el capıtulo 3 se detallan los lineamientos y calculos de diseno del diagrama electricodel PCB. El capıtulo 4 muestra como las reglas seleccionadas son aplicadas a la realiza-cion del PCB mediante el uso de software especializado.

En el capıtulo 5 se muestra el procedimiento de simulacion del campo electromagneti-co irradiado del PCB disenado, luego, en el capıtulo 6 se mostrara la implementacion yuna prueba funcional basica. Finalmente en el capıtulo 8 se detallan las conclusiones deltrabajo realizado y el planteamiento de trabajos futuros de acuerdo a la experiencia adqui-rida.

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 2

Page 15: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

Capıtulo 2

Marco Teorico

En este capıtulo se desarrollan conceptos que se usaran durante el desarrollo del pre-sente trabajo.

2.1. Circuitos Impresos

Un circuito impreso o PCB (del ingles, Printed Cicuit Board) 1 es una placa que constade dos partes:

Plano conductor.

Dielectrico de separacion.

El plano conductor es una superficie de material conductor (generalmente y especıfica-mente en este trabajo, cobre). Esta capa de cobre tiene un grosor determinado y su fabri-cacion procura que este grosor sea constante en toda la superficie.

La forma en que los fabricantes detallan el grosor de la capa de cobre es dando in-formacion de volumen de cobre por superficie, en general las unidades que se usan sonunidades del sistema imperial: Onzas por pulgada cuadrada (oz/in2).

Por ejemplo, la placa que se utilizo posee cuatro capas de cobre de 1 oz/in2, si seconsidera que la densidad del cobre es de 8950 kg/m3, se llega a que el grosor de cadacapa es de 0.035 mm.

Cada capa de cobre es separada por material dielectrico que aısla electricamente lascapas de cobre contiguas una de la otra. Una placa de 4 capas (de cobre) posee 3 planosdielectricos cuyo grosor es determinado por el fabricante.

1Ambos terminos seran usados indistintamente durante el desarrollo del trabajo.

3

Page 16: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 2. MARCO TEORICO Pagina 4

La configuracion de grosor de capas de cobre y dielectrico (numero y grosor de cadauna) es llamada ((Stack Up)). En la capa de cobre se crearan los caminos electricos y lasterminales de soldado (del ingles ((Pad))) que definen la funcionalidad del PCB.

2.1.1. Software de diseno

La herramienta de diseno del PCB define la terminologıa y el tipo de archivos de expor-tacion para el uso de otros programas para el analisis de compatibilidad electromagneticade este trabajo.

Existen varias herramientas como Eagle, KiCAD, Altium Designer, Cadence Allegro,etc., todas bajo la denominacion software CAD (del ingles Computer-Aided Design). Porejemplo, la plataforma EDU-CIAA, fue disenada usando KiCAD, el cual es el unico softwarede distribucion libre de los mencionados.

Para este trabajo se empleo Altium Designer2, que es un software de uso generalizadoen la industria de manufactura y diseno de PCB. Altium cuenta con tres herramientasprincipales para el desarrollo de un PCB: editor de esquematicos, editor de PCB y gestorde biblioteca de esquematico y PCB.

2.1.2. Esquematicos

La palabra ((esquematico)) puede hacer referencia a cualquiera de 3 niveles de jerar-quıa en el desarrollo del PCB:

Equematico general: Este indica el conexionado del circuito global, puede conectarsub-esquematicos de los cuales solo son visibles sus puertos de entrada y salida, deesta forma se puede obtener una vista resumida de todo el diagrama del circuito. Esteesquematico es de mucha utilidad para circuitos con gran cantidad de componentes(como el caso de este trabajo).

Sub-esquematico: Es un diagrama de una seccion especıfica, se puede tratar deuna etapa de acondicionamiento de senal o una etapa de amplificacion, describe deforma detallada el conexionado de cada componente.

Esquematico de un componente: Cada componente tiene un numero de patas opines que deben ser conectadas de forma especıfica para lograr su funcionalidad,por ejemplo, el pin de alimentacion, el pin de GND, el pin de salida de voltaje, etc.Por cada componente existe un esquematico asociado que le otorga a cada pin undesignador y un nombre.

2Se referira a este software solamente como ((Altium)).

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 4

Page 17: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 2. MARCO TEORICO Pagina 5

El designador se relaciona con la ubicacion fısica de cada pin y el nombre indica por logeneral la abreviacion de la funcion que realiza el pin. Por ejemplo, el pin de realimentacionde un integrado ((IC1)) puede tener el designador ((5)) y llevar el nombre ((FB)) que hacereferencia a ((feedback)). ((IC1-5)) hace referencia al pin de realimentacion de este integradoespecıfico.

En la figura 2.1 se muestra un esquematico del conector de memoria SD 3M, donde sepuede apreciar los designadores (fuera de polıgono amarillo) y los nombres de cada pin(dentro de polıgono amarillo).

Figura 2.1: Esquematico de conector de memoria SD.

2.1.3. Huella

La huella de un componente o ((Footprint)) 3 se refiere al sector de cobre que requiere elcomponente para ser montado en una placa, esta define el tamano de los pads de agujero

3Ambos terminos se emplearan indistintamente durante el desarrollo de este trabajo.

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 5

Page 18: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 2. MARCO TEORICO Pagina 6

Figura 2.2: Huella del conector de memoria SD.

pasante definiendo el diametro interno y externo o de SMD (del ingles Surface-MountDevice), definiendo las dimensiones y forma del pad.

En Altium cada huella esta asociada a cada pin del esquematico de componente atraves del designador. La huella correspondiente al esquematico mostrado en la figura2.1, se presenta en la figura 2.2, se observa en la ampliacion de la misma figura como lospads (color rojo) llevan como nombre el correspondiente designador del esquematico.

2.1.4. Editor de Esquematico

El editor de esquematicos de Altium permite diagramar el conexionado electrico decada componente que se emplee en el diseno. El usuario debe crear lıneas de conexionque serviran como guıa para la distribucion que se realiza en el editor de PCB.

Entre otras funciones, el editor puede generar un diagrama jerarquico en el que un soloesquematico general contiene varios subesquematicos que tienen sus propias conexionesinternas y crear puertos de voltaje y GND que son validos en todos los esquematicos.

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 6

Page 19: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 2. MARCO TEORICO Pagina 7

2.1.5. Editor de PCB

El editor de PCB es en donde se disena el PCB en sı. De acuerdo a las conexionescreadas en el editor de esquematico, se crean conexiones llamadas ((ratlines)), que simple-mente son lıneas que unen los pads de cada componente en los nodos correspondientesen concordancia con el diagrama electrico4.

En el editor de PCB se deben configurar las reglas de diseno, como separacion entrepistas, maximo ancho de pistas etc. Se crean los componentes a partir del esquematidoy con las reglas configuradas el disenador debe elegir una distribucion de todos estos yrealizar las conexiones necesarias mediante una pista de cobre directa sobre la mismacapa de cobre o usando vıas.

2.2. Interferencia Electromagnetica

La interferencia electromagnetica (por sus siglas en ingles, EMI) es el grado en queradiaciones de campo electromagnetico de alguna fuente que afecta el funcionamiento deun circuito (vıctima) y tambien el grado en que funcionamiento del circuito afecta a otrosequipos (vıctima vista como fuente).

En general, para cualquier dispositivo, se habla de tres formas de EMI:

Interferencias causadas por otros al dispositivo.

Interferencias que se causa el dispositivo a otros.

Interferencias que el dispositivo se causa a sı mismo.

2.2.1. Compatibilidad Electromagnetica

Por sus siglas en ingles EMC (de Electromagnetic Compatibility) 5, se refiere a la habi-lidad en que un sistema electronico puede [3]

Funcionar apropiadamente en el ambiente electromagnetico de trabajo (susceptibili-dad).

No ser una fuente de ruido en ese ambiente electromagnetico (emision).

4Las ratlines sirven como guıa para el disenador y son eliminadas cuando se realiza alguna conexionelectrica entre los pads que son unidos por este.

5Ambos terminos se utilizaran indistantemente en el desarrollo de este trabajo.

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 7

Page 20: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 2. MARCO TEORICO Pagina 8

Susceptibilidad

Capacidad de un dispositivo de interactuar con energıa electromagnetica no deseada.El antonimo es ((inmunidad)).

Emision

Se refiere al potencial que presenta el dispositivo de causar interferencias. Las medidasde EMC estan orientadas a limitar la energıa electromagnetica emitida (o irradiada) y porlo tanto a controlar el ambiente electromagnetico en que se desempena este dispositivo.

El equipo que emite interferencias no necesariamente es susceptible a las mismas,pero tambien es posible que el dispositivo sea sensible a sus propias emisiones.

Dada la gran diversidad de dispositivos electronicos que pueden hacer de fuentes endistintos rangos de frecuencia y dado que serıa muy complicado y costoso incluir en eldiseno de ciertos dispositivos (de bajo costo) consideraciones que los vuelvan inmunesal EMI, existen normas que limitan los niveles de emision que pueden alcanzar todos losdispositivos electronicos.

2.2.2. Regulaciones de EMC

En este trabajo se tomo como referencia la norma de la Comision Federal de Comu-nicaciones (por sus siglas en ingles, FCC) 6. En particular se vio la parte 15, subparte B,((Estandares tecnicos para equipamiento de computo)).

Esta norma alcanza cualquier producto que utilice circuitos digitales que funcionan confrecuencias superiores a 9 KHz [4]. y contempla dos clases:

Clase A: Dispositivo industrial.

Clase B: Dispositivo residencial.

De 0.15 a 30 MHz se contemplan las emisiones a la red de alimentacion alterna domesticay de 30 [MHz] a 1 GHz se controla las emisiones que genera el dispositivo bajo prueba.El ultimo punto es de interes para el desarrollo del PCB (no se usa la red de alimentacionalterna).

La tabla 2.1 muestra los lımites de las emisiones para un dispositivo de clase B.

6Existen otras normativas como las de la Union Europea, CISPR (del frances: Comite InternationalSpecial des Perturbations Radioelectriques), cuyo contenido, para el alcance de este trabajo, es el mismo.

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 8

Page 21: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 2. MARCO TEORICO Pagina 9

Lımites FCC Clase B de emisiones irradiadas medidas a 3 m.

Frecuencia (MHz) Intensidad del campo (µV/m) IntensidaD de campo (dBµV/m)

30-88 100 40.0

89-216 150 43.5

216-960 200 46

> 960 500 54.0

Tabla 2.1: Lımites de raduacion FCC a 3 m.

Nota. Fuente: CFR (Council on Foreign Relations) - Tıtulo 47 - Capıtulo I - Subcapıtulo A- Parte 15 - Subparte B - Seccion 15.109, Radiated emission limits.

2.3. Radiaciones de Circuitos Digitales

Un circuito digital genera campo electromagnetico en modo diferencial o en modocomun.

2.3.1. Modo Diferencial

Las radiaciones en modo diferencial son causadas por una senal de corriente querecorre un loop 7 formado por pistas o conectores de cualquier circuito.

Este modo se puede modelar pensando a la estructura que genera la interferencia co-mo una antena loop de dimensiones pequenas (menor a λ/4). A continuacion se mostrarauna expresion que estima el campo electrico a 3 m de una antena loop.

La magnitud del campo electrico lejano | ~E| en un loop de corriente pequeno (d << λ,donde d es el diametro del loop y λ es la longitud de onda de la senal que pasa por este)se puede resumir a la ecuacion 2.1 [5].

| ~E| = 120π2I sin(θ)

r

Af 2

C2(2.1)

Donde:

r es la distancia a la que se mide el campo en m.

I es la corriente que pasa por el loop en A.

f es la frecuencia en I en Hz.

θ es el angulo de azimuth con el que se observa el loop.7Se emplea el termino en ingles ((loop)) en lugar del termino en castellano ((lazo)), para guardar la relacion

con el termino ((antena loop)), termino usado en la bibliografıa consultada.

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 9

Page 22: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 2. MARCO TEORICO Pagina 10

A es el area del loop en m2.

C es la velocidad de la luz, 3× 108 m/s.

Simplificando las constantes se tiene:

| ~E| =(13.16× 10−15

) I sin(θ)Af 2

r(2.2)

La ecuacion 2.2 muestra que la dependencia de la frecuencia es cuadratica y su validezes en el espacio libre, sin embargo, las mediciones de EMC son realizadas en un areaabierta bajo un plano de masa, esta superficie reflectora creada por el plano de masaotorga una ganancia de +6 dB a la magnitud de campo electrico [3], entonces se reformulala expresion para el campo agregando un factor multiplicador de valor 2 (el equivalente enveces de +6 dB). Si tambien se reemplaza r = 3 m se tiene una expresion aproximadapara la magnitud de campo | ~ETEST | que se medirıa en un loop de corriente en las pruebasde EMC.

| ~ETEST | =(8.77× 10−15

)I sin(θ)Af 2 (2.3)

La ecuacion 2.3, de forma resumida, indica que el campo electrico a 3 [m] de distanciade un loop por donde pasa corriente a una frecuencia tal que d << λ, depende de laintensidad de la corriente, el angulo respecto de la perpendicular al plano del loop, el areay el cuadrado de la frecuencia.

La dependencia cuadratica de la frecuencia exige que se deba evitar armonicos en loposible para disminuir la magnitud del campo electrico irradiado. Otra opcion es reducirla magnitud de la corriente que pasa por los cables. La ultima posibilidad es en generalminimizar el area de los loops de corriente, teniendo especial cuidado con las senales dealta frecuencia.

2.3.2. Modo Comun

Las radiaciones en modo comun son causadas por la diferencia de voltaje causadasen el plano de masa por la corriente de retorno de los circuitos. Cuando algun cable esconectado al plano de masa estas diferencias de tension causadas los alimentan y hacenque funcionen como antenas, esto se presenta en las figuras 2.4 y 2.3:

2.4. Comportamiento de componentes pasivos en

radiofrecuencia

Los componentes pasivos como resistencias bobinas y capacitores cambian su res-puesta conforme aumente la frecuencia del voltaje o tension, a continuacion se trataran

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 10

Page 23: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 2. MARCO TEORICO Pagina 11

Figura 2.3: Tension V usando el cable como antena.

Figura 2.4: Irradiacion en modo comun.

Nota. Fuente: Ott, Henry Electromagnetic Compatibility Engineering (pg. 465) .

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 11

Page 24: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 2. MARCO TEORICO Pagina 12

las distintas respuestas de cada uno de estos componentes.

2.4.1. Pistas de cobre

Las conexiones en un PCB entre distintas terminales (o pads) son realizadas con pistasde cobre (((tracks)) o ((traces))), idealmente esta conexion es de conductividad infinita einductancia nula. En la practica esta situacion no se cumple.

El alejamiento de comportamiento de las pistas de su respuesta ideal se atenua con elaumento de frecuencia. La conductividad finita no es tanto un problema pero la inductanciade una pista puede llegar a causar problemas de degradacion de senal.

La inductancia (L) de una pista es determinada por el grosor del cobre, el largo y anchode la pista, y la distancia de la pista al plano de masa [6] segun la ecuacion 2.4.

L = 2X ln

(5.98h

0.8w + t

)nH (2.4)

Donde:

X es el largo de la pista en cm.

h es la separacion entre el plano de masa y la pista en cm.

w es el ancho de la pista en cm.

t es el grosor del cobre en cm.

Las dimensiones mencionadas se pueden visualizar en la figura 2.5.

w

t

Figura 2.5: Dimensiones de pista que definen inductancia.

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 12

Page 25: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 2. MARCO TEORICO Pagina 13

2.4.2. Capacitores

El comportamiento del capacitor real puede ser modelado empleando el circuito decomponentes ideal mostrado en la figura 2.6[7].

Figura 2.6: Modelo que aproxima un capacitor real.

La impedancia (ZC) a los extremos del circuito mostrado en la figura 2.6 se puedeexpresar con la ecuacion 2.5.

ZC = Rs +Rp

1 + (ωRpC)2+ j

(ωL−

ωR2pC

1 + (ωRpC)2

)Ω (2.5)

Donde:

Rs es la resistencia que representa las perdidas en disipacion de calor (se puedeexpresar en funcion del factor de disipacion, del cual se hablara mas adelante) en Ω.

Rp es la resistencia que modela las corrientes de fuga en el dielectrico en Ω.

L inductancia de los terminales y las placas que forman el capacitor en H.

C capacidad en F .

ω es la frecuencia angular (ω = 2πf ).

Si se toman los siguientes valores correspondientes a un capacitor ceramico de encapsu-lado 0603: C = 0.1 µF , Rs = 0.05 Ω, Rp = 100 GΩ, L = 850 pH y se grafica la magnitud dela impedancia que presenta este modelo en funcion de la frecuencia usando la ecuacion2.5, se obtiene el resultado mostrado en la figura 2.7.

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 13

Page 26: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 2. MARCO TEORICO Pagina 14

Figura 2.7: Respuesta frecuencia-impedancia de un capacitor ceramico.

Como se ve en la figura 2.7, existen dos zonas marcadas para el comportamientofrecuencia-impedancia del capacitor. La primera zona, de pendiente negativa correspondea la zona capacitiva (la impedancia disminuye conforme aumenta f ) que es una zona quecoincide hasta un determinado rango de frecuencia con la curva de impedancia para uncapacitor ideal (curva discontinua) determinada por la ecuacion 2.6.

|ZL IDEAL| =1

ωC(2.6)

La parte del grafico con pendiente positiva corresponde a la zona inductiva (linea continua)del capacitor.

Entre 106 y 108 Hz, se da la transicion entre las dos zonas (punto de inflexion), lafrecuencia en este punto es denominada ((frecuencia de resonancia)) (fr).

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 14

Page 27: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 2. MARCO TEORICO Pagina 15

Es de mucha importancia conocer la caracterıstica en frecuencia de los capacitores quese emplean en el diseno del PCB, especialmente cuando estos se utilicen para desacoplarcircuitos que trabajan en altas frecuencias.

2.4.3. Factor de disipacion

Por sus siglas en ingles, DF, es el cociente entre la Resistencia Equivalente en Serie(ESR, por sus siglas en ingles) y la reactancia del capacitor (Xc). Es expresado comomuestra la ecuacion 2.7.

DF =ESR

XC

× 100 % (2.7)

La ESR es la resistencia (sin tomar en cuenta las partes reactivas) que se ve a los extre-mos del capacitor, se aproxima con la ecuacion 2.8.

ESR ≈ Rs (2.8)

DF es la inversa del factor de calidad, Q.

DF =1

Q(2.9)

2.4.4. Capacitores en paralelo

El comportamiento en frecuencia del capacitor depende de la ESR y de la inductanciaequivalente en serie (ESI, por sus siglas en ingles). La ESI no es otra cosa que el valorde inductancia L en el modelo mostrado en la figura 2.6.

Para saber si el capacitor es adecuado o no para desacoplar un circuito que funciona auna determinada frecuencia, se debe observar si la impedancia del capacitor es relativa-mente baja alrededor de esta frecuencia. Una forma rapida de determinar esto, es ver si lafrecuencia de trabajo del circuito a desacoplar esta en un rango comprendido entre 0.01fr

y 100fr.Distintos capacitores tienen distintos valores de ESR y ESI, que determinan una fr.

A su vez, fr determina en que rango de frecuencia la impedancia esta por debajo deun determinado nivel. Por ejemplo, la figura 2.7 muestra que el capacitor presenta unaimpedancia por debajo de 10 Ω entre 100 KHz y 1 GHz, pero se encuentra por encima de1 KΩ por debajo de 1 KHz.

Para presentar una situacion concreta, en la figura 2.8 se muestran tres respuestas enfrecuencia:

Respuesta en frecuencia de un capacitor ceramico de encapsulado 0603 con C =

1 µF , ESR = 0.05 Ω y ESI = 850 pH (CCER, curva continua).

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 15

Page 28: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 2. MARCO TEORICO Pagina 16

Respuesta en frecuencia de un capacitor de tantalio encapsulado ((A)), de 1 µF ,ESR = 1.5 Ω y ESI = 2600 pH (CTANT , curva discontinua).

Respuesta en frecuencia de ambos capacitores en paralelo (CPAR, curva punteada).

Figura 2.8: Curvas frecuencia vs. impedancia correspondientes a CCER, CTANT y CPAR.

Como se puede apreciar en la figura 2.7, la impedancia que presenta el capacitor equi-valente es determinada por el capacitor de tantalio en baja frecuencia y por el capacitorceramico en alta frecuencia. El rango de frecuencias en que la impedancia del capacitorCPAR esta por debajo de 10 Ω, es aproximadamente de 10 Khz a 1 GHz, rango que mejorala respuesta individual de CCER y CTANT .

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 16

Page 29: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 2. MARCO TEORICO Pagina 17

2.4.5. Inductores

Un inductor real se puede modelar con el circuito de la figura 2.9. La impedancia (ZL)

Figura 2.9: Modelo de un inductor real.

que presenta el circuito de la figura 2.9 corresponde a la ecuacion 2.10.

ZL =Rs + jωL

(1− ω2LCd) + jωRsCd

Ω (2.10)

Donde:

Rs es la resistencia del conductor no ideal con el cual se fabrica el inductor en Ω.

Cd es la capacidad equivalente constituida por el paralelo de todas las capacidadesparasitas que se forma entre cada par de espiras contiguas del inductor en F .

L es la inductancia en H.

La figura 2.10 muestra como varıa la magnitud de la impedancia (—ZL—) en funcion de lafrecuencia.

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 17

Page 30: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 2. MARCO TEORICO Pagina 18

Figura 2.10: Respuesta frecuencia-impedancia

Como se puede apreciar en la figura 2.10, al igual que el capacitor, el inductor tiene unazona inductiva y una zona capacitiva. A frecuencias bajas, la impedancia aumenta (zonainductiva), y luego de la frecuencia de resonancia el comportamiento es el de un capacitor(zona capacitiva).

2.4.6. Chips de ferrite

Los chips de ferrite (del ingles, ((Ferrite Bead))) son dispositivos pasivos cuyo compor-tamiento en frecuencia se aprovecha para filtrar senales de alta frecuencia. Para entendersu comportamiento se parte de analizar el comportamiento del circuito equivalente que semuestra en la figura 2.10 [8]. De la figura 2.10 se puede llegar a la ecuacion ??, que es laexpresion para la impedancia del chip de ferrite.

ZFB = Rs+ω2RpL

2

R2p(1− ω2CL)2 + (ωL)2

+ jωR2

pL(1− ω2CL)

R2p(1− ω2CL)2 + (ωL)2

Ω (2.11)

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 18

Page 31: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 2. MARCO TEORICO Pagina 19

Figura 2.11: Modelo de un chip de ferrite.

Donde:

Rp es la resistencia de AC, se da cuando el ferrite es puramente resistivo (en f = fr),se expresa en Ω.

RS es la resistencia de los conductores imperfectos en Ω.

C es la capacidad que domina el comportamiento del ferrite en altas frecuencias, seexpresa en F .

L es la inductancia que domina el comportamiento del ferite en bajas frecuencias, seexpresa en H.

Por ejemplo, si se evalua la magnitud de esta impedancia (|ZFB|) con RS = 300 mΩ,Rp = 300 Ω, C = 2 pF y L = 1 µH para distintas frecuencias se obtiene la respuestamostrada en la figura 2.12.

La figura 2.12 evidencia la existencia de 3 zonas en el comportamiento en frecuenciadel chip de ferrite: Zona inductiva, capacitiva y resistiva. En un principio la curva guardacierta similaridad con la curva del inductor mostrada en la figura 2.10 por las zonas induc-tivas y capacitivas. La diferencia yace en la zona resistiva, la cual es una zona alrededorde la frecuencia de resonancia en que la magnitud de la impedancia tiene una variacionpequena en relacion a la variacion abrupta que se observa en al curva de la figura 2.10.

Los chips de ferrite pueden ser usados para filtrar altas frecuencias y para emplearlosde forma correcta se debera verificar la curva de funcionamiento y asegurarse que losruidos de alta frecuencia que se desean filtrar sean del orden de fr (el ferrite del ejemploserıa ideal para filtrar ruidos de 100 MHz).

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 19

Page 32: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 2. MARCO TEORICO Pagina 20

Figura 2.12: Curva frecuencia vs. impedancia correspondiente a un chip de ferrite.

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 20

Page 33: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

Capıtulo 3

Diseno del esquematico del PCBen software CAD

En este capıtulo se describen los procedimientos de diseno del esquematico del PCB,el cual se encuentra basado en el prototipo de sistema de control embebido realizado enla plataforma CIAA [1].

3.1. PCB basado en plataforma CIAA

La CIAA (Computadora Industrial Argentina) es la plataforma sobre la cual se realizoel prototipo del sistema de control embebido que se desea implementar en un PCB deproposito especıfico. Para la implementacion del prototipo se utilizo la version educativade la CIAA, llamada ((CIAA EDU NXP)) que usa un microcontrolador NXP LPC4337. Eldiseno entonces, se debe basar en este prototipo realizado, lo cual impone las siguientesconsignas:

El PCB debe integrar todos los sensores con los que cuenta el prototipo.

Los sensores deberan de conectarse al microcontrolador de la misma forma que elprototipo de tal forma que se pueda reutilizar el mismo firmware.

Se deberan incorporar unicamente los sensores y dispositivos necesarios para elfuncionamiento del sistema de control embebido.

3.2. Biblioteca de componentes

Todos los componentes tienen un diagrama electrico o esquematico, este hace refe-rencia a sus terminales fısicos por pines. Por ejemplo, el microcontrolador LPC4337 tiene

21

Page 34: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 3. DISENO DEL ESQUEMATICO DEL PCBEN SOFTWARE CAD Pagina 22

un esquematico de 144 pines. Los componentes a su vez pueden ser divididos en sub-componentes, o partes. Por ejemplo el LPC4337 tiene sus 144 pines repartidos en 19partes, los pines estan agrupados segun su funcionalidad.

El circuito general realiza las conexiones entre los pines de cada componente, a suvez los esquematicos propios de cada componente son organizados en una biblioteca decomponentes.

Altium ofrece una herramienta para gestionar las bibliotecas, se verifico la correctoasignacion de pines de cada uno de los componentes segun su hoja de datos. La impor-tancia de este procedimiento radica en que luego se generara un mapa de conexiones enel desarrollo del PCB, que asocia cada designador de pin con una conexion fısica en unplano del componente (mapa o ((footprint))). Un pin mal asignado en esta instancia puedesignificar un cambio de polaridad en la alimentacion, por ejemplo.

3.3. Division del esquematico

El diseno del esquematico se realizo en Altium Designer, programa que permite crearvarios subesquematicos unidos en un esquematico principal (estructura jerarquica). Laestructura jerarquica permite organizar el diseno en bloques, la estructura que se definiocomo se muestra en la figura 3.1.

3.4. Esquematico Principal

El esquematico principal (se muestra en la figura A.1 del anexo) contiene las conexio-nes que se detallan a continuacion.

3.4.1. Circuito Oscilador

El microcontrolador LPC4337 funciona con un clock generado por un oscilador Pierce acristal, el circuito basico de este tipo de oscilador se muestra en la figura 3.2. En esta figurase muestran sus componentes: un amplificador inversor, una resistencia de realimentacion(Rf ), un cristal (X) y dos capacitores (C1 y C2).

El amplificador inversor realimenta a traves del cristal, el cual sirve como filtro a unafrecuencia determinada (en este caso 12 MHz). Los capacitores C1 y C2 proveen uncorrimiento de fase, que en conjunto con los 180 que establece el amplificador inversorconstituyen un corrimiento de fase nulo, en otras palabras la senal en la entrada y en lasalida estan en fase. Si se agrega que la ganancia del amplificador inversor cumple G > 1

se cumple el criterio de Barkhausen. La resistencia Rf es una resistencia de polarizacion

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 22

Page 35: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 3. DISENO DEL ESQUEMATICO DEL PCBEN SOFTWARE CAD Pagina 23

Esquematico Principal

Fuente Conmutada/Lineal

PWR/GND

GPIO

Dispositivos I2C

Dispositivos varios

Debugger

Figura 3.1: Estructura del esquematico.

que mantiene al inversor en su region lineal de trabajo. La hoja de datos del LPC4337recomienda que se usen valores entre 18 y 27 pF , se determinaron: C1 = C2 = 20 pF .

Tanto el cristal como los capacitores se conectan a los pines 12 y 13 del microcontro-lador tal como se muestra en la figura A.1 del anexo. No se requiere proveer ni Rf ni elamplificador inversor, los cuales son incluidos en el microcontrolador.

Figura 3.2: Circuito del oscilador Pierce

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 23

Page 36: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 3. DISENO DEL ESQUEMATICO DEL PCBEN SOFTWARE CAD Pagina 24

3.4.2. Boton de Reset

Se incluye un boton para aplicar un reset por hardware al microcontrolador. El botones del tipo normal abierto, tal como se muestra en la figura 3.3. Tambien se incluye unasalida de reset por el conector P1, la cual tiene un diodo de proteccion (catodo a la salidadel conector y anodo hacia el pin reset).

Un lado del boton se encuentra a GND, mientras que el otro al pin 128 del micron-trolador (pin reset activo por bajo). Este punto se mantiene en nivel alto a traves de unaresistencia de pull up. El capacitor en paralelo a la entrada de reset hace que se manten-ga el nivel bajo que se presenta al presionar el boton por al menos 10 ms pese a que elboton regrese a su estado normal abierto. Para comprobar esta afirmacion, se realizo unasimulacion en LTspice, la cual se presenta en la figura 3.4.

Figura 3.3: Circuito del boton de reset.

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 24

Page 37: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 3. DISENO DEL ESQUEMATICO DEL PCBEN SOFTWARE CAD Pagina 25

Figura 3.4: Circuito de simulacion del boton reset.

Se utilizo para modelar el boton una llave programada para cerrarse por 1 ms con untiempo de transicion de 1 ns, el resultado de la simulacion en estado transitorio se muestraen la figura 3.5, la cual muestra en trazo azul el tiempo en que esta abierto el switch si nohubiera un capacitor en paralelo y la respuesta con el capacitor. Se observa que cuandoesta presente el capacitor, presionar el boton de reset por 1 ms implica dejar el boton reseten estado bajo (menor a 2.2 V ) por al menos 10 ms. Al mismo tiempo de establecer un nivelprolongado de permanencia en nivel bajo, se filtra el efecto rebote (del ingles, ((bouncing)))que presenta cuando se acciona cualquier tipo de interruptor mecanico.

3.4.3. Conversores analogico-digitales

Se utilizan 6 de los 7 canales del ADC, 3 son usados para las senales de entradadel sensor de voltaje, corriente y presion diferencial, mientras que otros 3 son llevados aun conector. Todos los conversores tienen una resistencia en serie de 1.2 KΩ, el motivode esta resistencia en serie es reducir en una pequena proporcion la maxima tension deentrada al hacerse un divisor resistivo con los 1.2 MΩ que tienen todos los conversorescomo impedancia de entrada. Tambien funcionan como limitador de corriente por si el pinse configura por software a un nivel bajo aun cuando esta presente la senal del sensor.Los pines ADC del microcontrolador son:

Pines 2, 143 y 149 para sensores del controlador.

Pines 138,142,144 como entradas ADC en el conector de salida del conector P1.

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 25

Page 38: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 3. DISENO DEL ESQUEMATICO DEL PCBEN SOFTWARE CAD Pagina 26

Figura 3.5: Resultado de la simulacion del boton reset

3.4.4. Conversor digital-analogico

El pin 6 del microcontrador puede ser configurado como un DAC, este pin estara dispo-nible en el conector P1 del esquematico principal. Una resistencia de 470 Ω funciona comolimitador de corriente.

3.4.5. Salidas de alimentacion

Por el conector P1 tambien se provee salidas de tension de 5 y 3 V , tambien conexionesa GND y GND analogica. La conexion a las tensiones se realizan por medio de un fusibleresetable PTC (del ingles Positive temperature coefficient) de montaje superficial (TH1)que limita la corriente a 300 mA.

3.5. Fuente Conmutada

El sistema de control embebido debera funcionar alimentandose de baterıas que noproveen los niveles de tension que requieren los integrados que lo componen, los cualesson 5 V y 3.3 V , por ello se debera recurrir a distintos reguladores de voltaje.

Un factor determinante es que el sistema debe mantener el menor nivel de consumoposible, por lo tanto para obtener la tension de 5 V se debera priorizar la eficiencia. Eltipo de regulador que destaca en este aspecto es uno conmutado, entonces se diseno

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 26

Page 39: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 3. DISENO DEL ESQUEMATICO DEL PCBEN SOFTWARE CAD Pagina 27

una fuente de poder conmutada o SMPS (por sus siglas en ingles Switching Mode Po-wer Supply). El circuito a implementar es especıficamente un ((Buck Converter)), que esun tipo de regulador conmutado que fija la salida a una tension menor que la entrada.Se partio del diagrama basico del circuito propuesto en la hoja de datos del LM2596 deON-Semiconductor, a partir de este se anadieron circuitos de proteccion (descritos masadelante en esta seccion) para hacer mas robusta la fuente. El esquematico del reguladora 5 V se presenta en la figura 3.6.

Figura 3.6: Circuito de la fuente conmutada

3.5.1. Filtro LC

Para simplificar el proceso de seleccion de estos componentes, se tomo el valor de latabla de la hoja de datos del regulador para una eleccion rapida del inductor L1 y capacitorC21.

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 27

Page 40: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 3. DISENO DEL ESQUEMATICO DEL PCBEN SOFTWARE CAD Pagina 28

Tabla 3.1: Tabla de seleccion rapida de capacitor/inductor de filtroNota. Fuente: Nota de aplicacon SNVS124D de Texas Instrument (pg. 23) .

La fila resaltada de la tabla 3.1, la cual corresponde a voltaje de salida 5 V y corrientemaxima de 3 A, detalla los siguientes valores : L1 = 47 µH y que C21 = 330 µF . El inductorpara el valor mostrado y para la corriente, adicionalmente se determino que los tipos en-capsulados o ((shielded)) pueden suprimir el campo irradiado, mejorando la EMC del PCBfinal. Para el capacitor de salida tambien se elige uno que presente tanto la capacidady voltaje determinados como que se clasifique de baja resistencia equivalente en serie o((Low ESR)) (por sus siglas en ingles, Equivalent Series Resistance).

3.5.2. Diodo de freewheeling

La eleccion del diodo de freewheeling (D3) se oriento por el camino del bajo consumode potencia. Por este diodo circulara la misma corriente salida durante el tiempo que elswitch bloquea la tension de entrada. Esta corriente junto con la caıda directa del diodo VDdeterminan la potencia del diodo PD segun la ecuacion 3.1.

PD = Imax × VD (3.1)

Un diodo Schottky presenta menor tension directa frente a un diodo de recuperacion rapida(fast recovery diode). El primero presenta caıdas tıpicas entre 0.3 a 0.6 V mientras queel segundo 0.8 a 1.1 V . Como se desea mantener la eficiencia lo mas alto posible seconsidero usar el BC540, el cual es un dispositivo que se acomoda tanto a los voltajes de

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 28

Page 41: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 3. DISENO DEL ESQUEMATICO DEL PCBEN SOFTWARE CAD Pagina 29

polarizacion directa e inversa como al nivel de corriente (acorde con la hoja de datos, estediodo excede en al menos 50 % cada una de las especificaciones mencionadas).

3.5.3. Capacitor de entrada

Este capacitor (C20) suprime los posibles transitorios de la lınea de alimentacion y sedesigna teniendo en cuenta la corriente de ripple RMS, IC RMS, con la formula provista enla hoja de datos del LM2596.

IC RMS > 1.2× IMax ×VoutVin

(3.2)

Si se toma como valor mınimo de alimentacion de entrada como 16 V , esto ocasiona unvalor de corriente de ripple del capacitor de IC RMS = 1.125 A. Ademas de esto, se debeprocurar tambien en este caso un capacitor del tipo LOW ESR. El capacitor que cumplecon estos requisitos y que se pudo tener acceso fue uno electrolıtico de motanje superficialde 470 µF , 50 V , 0.06 Ω y 1.19ARMS.

3.5.4. Otras consideraciones

La tension de alimentacion ingresa a traves de la bornera TB1 (bornera a tornillo dedos terminales con 5.08 mm de separacion entre los mismos) y llega al primer elementode proteccion, el diodo rapido D1 que evita funcionamiento en conexion reversa. El fusiblereseteable TH1 protege contra posibles sobrecorrientes. Es importante definir las carac-terısticas especıficas de este de acuerdo a la tension de entrada y a la corriente de entradaal regulador para una corriente de salida del regulador. Se eligio uno de 30 V y 0.35 A peropuede ser cambiado para voltajes/corrientes mayores si fuese necesario.

El jumper J1 hace que se obvie el regulador de voltaje, siempre y cuando el usuario seasegure de conectar a la entrada de voltaje 5 V . El diodo D2 es un supresor de transito-rios SZP6SMB11CAT3 de On Semiconductor, protege al regulador de picos de entrada ydescargas estaticas y segun la hoja de datos tiene un tiempo de respuesta menor a 1 ns.

El diodo LED en serie con resistencia R2 de 1 KΩ sirven para indicar visualmente quela fuente esta funcionando, la corriente que pasa por esta es menor a 3 mA si se consideraque la caıda de tension del tıpica para diodo LED rojo de montaje superficial es 2 V .

El diodo Zener Z1 en paralelo provee proteccion adicional que limita el sobrepasamientode la salida en el transitorio. Para evaluar el comportamiento de esta etapa de proteccionse simulo en LTSpice el circuito que se presenta en la figura 3.7.

Se simularon dos casos, para carga RL= 5 y 50 Ω, lo cual para una salida de 5 V implicauna corriente de salida de 1 A y 100 mA, respectivamente. Para ambos casos se grafica-ron las formas de onda de la tension de salida con y sin el uso del Zener y adicionalmente

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 29

Page 42: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 3. DISENO DEL ESQUEMATICO DEL PCBEN SOFTWARE CAD Pagina 30

Figura 3.7: Circuito de simulacion SMPS.

la corriente que pasa por el Zener (cuando esta presente, valga la redundancia). Ambassimulaciones se hacen en regimen transitorio, los resultados se presentan en las figuras3.8 y 3.91: De analizar los dos graficos, se puede deducir que la proteccion contra so-

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

t [mseg]

0

1

2

3

4

5

6

7

Vo [

V]

0

0.2

0.4

0.6

0.8

1

Iz [

A]

Vo Con Zener

Vo Sin Zener

Corriente Zener

Figura 3.8: (izquierda) tiempo vs. voltaje de salida (derecha) tiempo vs. corriente del Zenerpara RL=5 Ω.

brevoltaje del Zener en paralelo tambien ayuda a disminuir el sobrepasamiento inicial delregulador (el maximo de la curva verde sobre el maximo de la curva azul) y adicionalmentese acorta el tiempo de establecimiento al valor de regimen. El pico de corriente del Zeneren este caso dura menos de 1 ms, lo que no representa un nivel peligroso de disipacionpara el dispositivo que se implementara (potencia maxima de 0.5 W ).

1Ambas figuras tienen dos ejes Y uno para tension (eje Y izquierdo) y otro para corriente (eje Y derecho)

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 30

Page 43: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 3. DISENO DEL ESQUEMATICO DEL PCBEN SOFTWARE CAD Pagina 31

0 1 2 3 4 5 6 7

t [mseg]

0

1

2

3

4

5

6

7

8

Vo [

V]

0

0.2

0.4

0.6

0.8

1

1.2

Iz [

A]

Vo Con Zener

Vo Sin Zener

Corriente Zener

Figura 3.9: (izquierda) tiempo vs. voltaje de salida (derecha) tiempo vs. corriente del Zenerpara RL=50 Ω.

3.5.5. Ripple a la salida

Un factor importante de la SMPS es el nivel de ripple a la salida. La aproximacion quese tomo fue usar el mismo esquema de simulacion de la figura 3.7 para observar el nivelde ripple que vera a la salida para dos tensiones de entrada y para cada tension evaluarcon 3 cargas: 50, 5 y 1.66 Ω, que derivan en tres corrientes distintas de salida: 100 mA, 1 y3 A. El resultado de las simulaciones se presenta en las figuras 3.10 y 3.11.

7.5 7.505 7.51 7.515 7.52

t [ms]

4.964.98

5

Vo [V

] Salida para I=100mA

7.5 7.505 7.51 7.515 7.52

t [ms]

4.964.98

5

Vo [V

] Salida para I=1A

7.5 7.505 7.51 7.515 7.52

t [ms]

4.964.98

5

Vo [V

]

Salida para I=3A

Figura 3.10: Ripple de voltaje para tres corrientes cuando la entrada es Vin = 16 V .

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 31

Page 44: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 3. DISENO DEL ESQUEMATICO DEL PCBEN SOFTWARE CAD Pagina 32

7.5 7.505 7.51 7.515 7.52

t [ms]

4.964.98

5

Vo

[V

]Salida para I=100mA

7.5 7.505 7.51 7.515 7.52

t [ms]

4.964.98

5

Vo

[V

]

Salida para I=1A

7.5 7.505 7.51 7.515 7.52

t [ms]

4.964.98

5

Vo

[V

]

Salida para I=3A

Figura 3.11: Ripple de voltaje para tres corrientes cuando la entrada es Vin = 24 V .

Como se puede apreciar en las figuras 3.10 y 3.11 el nivel de ripple no varia de formasignificativa cuando varia la tension de entrada, pero sı lo hace cuando varıa la corrientede salida. Cuando se suministra una corriente de salida de I = 100 mA se presenta unnivel de ripple VR = 40 mV pp, mientras que para una corriente de I = 1 A, el ripple es deVR = 70 mV pp.

3.6. Fuente Lineal

Si bien es cierto el nivel de ripple encontrado para la fuente conmutada es relativa-mente pequeno respecto de la salida nominal (70 mV es el 1.4 % de 5 V ) y no afecta deninguna forma los circuitos digitales, se debe tener en cuenta que no se ha contempladoningun otro factor que pueda degradar la fuente (ruido termico y picos de corriente de losmismos circuitos digitales, por ejemplo). Si se generaliza este ripple para una posible eta-pa conmutada con salida de 3.3 V , que requiere el microcontrolador y otros dispositivos,se pueden tener errores considerables de mediciones en sensores analogicos.

Para consolidar lo expuesto se puede recurrir al siguiente ejemplo: Si se asume elmismo nivel de ripple que se encontro para el regulador conmutado de 5 V para la salidade un segundo regulador conmutado de 3.3 V , el cual alimenta al microcontrolador y asus conversores analogicos digitales; y se desea adquirir datos del sensor de presion

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 32

Page 45: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 3. DISENO DEL ESQUEMATICO DEL PCBEN SOFTWARE CAD Pagina 33

diferencial MPXV7002, que tiene una sensibilidad da por la ecuacion 3.3.

S = 1KPa

V(3.3)

Un nivel de ripple en la alimentacion de 70 mV pp causa un error en la medicion (DeltaS)que se puede expresar con la ecuacion 3.4.

∆S = 1KPa

V× 70 mV = 70 Pa (3.4)

Este error no tiene en cuenta ni el error del sensor ni el ruido que se acopla, se puedeexperar mayor error en la medicion. Para afrontar este problema se plantea una situacionde compromiso entre la eficiencia de la fuente y el nivel de ripple que se maneja, el cual seencuentra en usar un regulador lineal LDO (por sus siglas en ingles, Low Drop Out) en seriecon el conmutado de 5 V para generar los 3.3 V , adicionalmente, se filtrara este voltajegenerado usando chips de ferrite o ((Ferrite Beads)) para alimentar sensores analogicos.El esquematico disenado en Altium para esta etapa se muestra en la figura 3.12.

Figura 3.12: Regulador lineal con salida 3.3 V y filtrado con ferrites

Para verificar el funcionamiento del circuito de la figura 3.12 se realizo nuevamente unesquema de simulacion en LTSPICE, el cual consiste en colocar en cascada el reguladorlineal mostrado con el regulador conmutado (5 V de SMPS); adicionalmente se inyecto unafuente de ruido a la salida de 3.3 V que a su vez es modulada con una onda sinusoidalde 300 MHz. El motivo de esta modificacion es que los ferrites que se usaron como filtropara la tension y masa analogica son los MI0805M221R-100, los cuales segun su hoja dedatos presentan una resistencia de 220 Ω a 100 MHz y de esa forma se esta seguro queel ancho de banda de ruido estara por encima de esta frecuencia y se podra verificar sufuncionamiento en la simulacion. El esquema de simulacion se presenta en la figura 3.13.

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 33

Page 46: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 3. DISENO DEL ESQUEMATICO DEL PCBEN SOFTWARE CAD Pagina 34

Figura 3.13: Esquema de simulacion de la fuente lineal con ruido inyectado.

En la figura 3.13 el bloque ((5V SMPS)) es un diagrama resumido de la fuente SMPSde la figura 3.8 (incluso se han preservado los 5 Ω de carga para que el regulador lineal sealimente de una lınea con ripple de al menos 70 mV pp). El regulador lineal se ha cargadocon 50 Ω y la parte filtrada con 150 Ω. El comportamiento del regulador determinado alejecutar la simulacion se muestra en la figura 3.14.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

t [ms]

0

0.5

1

1.5

2

2.5

3

3.5

Vo [V

]

Tensión de salida del regulador lineal

Figura 3.14: Respuesta del regulador lineal.

Si se amplia la figura 3.14 en un intervalo dentro de su estado de regimen se puedeobservar dos situaciones favorables para esta configuracion: un bajo nivel de ripple enrelacion a la fuente conmutada, y la eficacia del filtrado con ferrites. La ampliacion esmostrada en la figura 3.15.

El nivel de ripple es menor a 40 µV pp, si se retoma el ejemplo del sensor MPXV7002

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 34

Page 47: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 3. DISENO DEL ESQUEMATICO DEL PCBEN SOFTWARE CAD Pagina 35

3 3.002 3.004 3.006 3.008 3.01 3.012 3.014 3.016 3.018

t [ms]

3.30238

3.3024

3.30242

3.30244

Vo

[V

]Ripple de salida (incluye ruido).

3 3.002 3.004 3.006 3.008 3.01 3.012 3.014 3.016 3.018

t [ms]

3.30235

3.3024

Vo

[V

]

Ruido filtrado por ferrites

Figura 3.15: Ampliacion de figura 3.14 en estado de regimen.

se tendra un error por ripple dado por la ecuacion 3.5.

∆S = 1KPa

V× 40 µV = 40 mPa (3.5)

Este resultado es mucho mas satisfactorio que el de la contraparte conmutada. El otro ladodel compromiso es la perdida de eficiencia, segun la hoja de datos la corriente de reposomaxima del regulador NCP1117 es 10 mA, que es 100 veces menor a la salida maxima de1 A por lo que la formula para el calculo de eficiencia de fuentes lineales LDO se puederesumir a:

ηreg3.3V =VinVout

=3.3 V

5 V× 100 % = 73 % (3.6)

Este resultado es menor al tıpico 90 % que exhibe el regulador conmutado con LM2596.

3.7. PWR/GND

Este esquematico detalla la forma en que se desacoplan los pines de alimentacion delmicrocontrolador, el mismo concepto y criterio de desacoplo se generalizara a todos loscircuitos digitales que se implementen.

Desacoplar se refiere a aislar la fuente de los picos de corriente que generan los circui-tos digitales. Un elemento caracterıstico de la logica digital es un inversor CMOS (por sussiglas en ingles Complementary Metal-Oxide Semiconductor), un circuito digital cualquie-ra, como un modulo I2C, puede contener decenas de miles de inversores. Si se consideraal inversor como un celula basica contenida en circuitos digitales mas complejos, bastaevaluar el efecto que tiene un inversor sobre una fuente ideal que lo alimenta sin ninguntipo de desacople.

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 35

Page 48: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 3. DISENO DEL ESQUEMATICO DEL PCBEN SOFTWARE CAD Pagina 36

Un inversor CMOS se contruye con dos transistores, un N-MOS y un P-MOS. Parasimular se eligieron modelos SPICE para transistores de 0.35 µm de ancho de canal, tec-nologıa aun vigente que acepta ser manejada por niveles de 3.3 V . El circuito de simulaciondel inversor se muestra en la figura 3.16.

Figura 3.16: Inversor con transistores de 0.35 µm de ancho de canal.

Se creo un circuito de simulacion que trabaja a niveles de 3.3 V (figura 3.17). Se inyectaen los pines GATE de ambos transistores una onda cuadrada a la entrada de 5 KHz y contiempo de crecimiento de 10 us. Se alimento al inversor con una fuente ideal con resistenciaen serie de 0.5 Ω y una inductancia que corresponde a una pista de cobre de 1 cm de largo,2 mm de ancho y grosor correspondiente a un PCB con 1 oz/in2 2, 5.6 nH.

La salida, como es de esperarse, se invierte. Lo que se busca resaltar es que existe unperiodo de transicion entre un cambio de nivel a la salida (producto de un cambio inverso ala entrada, valga la redundancia), por ejemplo en la salida, durante una transicion de nivelalto (N-MOS en alta impedancia y P-MOS en baja impedancia) a un nivel bajo (N-MOS enbaja impedancia y P-MOS en alta impedancia). Se pasa momentaneamente por un nivelde impedancia media de ambos transistores, la cual ocasiona un pico de corriente, comose muestra en la figura 3.18. El efecto de este pico de corriente sobre la fuente ideal semuestra en la figura 3.19.

La figura 3.19 muestra que un solo inversor puede causar variaciones en la fuente dealimentacion de hasta 0.07 mV respecto de su valor en estado de regimen. Este nivel de

2Se empleo el calculador de inductacias de la siguiente pagina: http://chemandy.com/calculators/flat-wire-inductor-calculator.htm.

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 36

Page 49: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 3. DISENO DEL ESQUEMATICO DEL PCBEN SOFTWARE CAD Pagina 37

Figura 3.17: Circuito de simulacion con inversor.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

t [ms]

0

2

Vo [V

]

Entrada y Salida del inversor.

Vi

Vo

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

t [ms]

0

0.05

I [m

A]

Corriente de transición.

Figura 3.18: Resultados de la simulacion del inversor.

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 37

Page 50: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 3. DISENO DEL ESQUEMATICO DEL PCBEN SOFTWARE CAD Pagina 38

0 0.05 0.1 0.15 0.2 0.25 0.3

t [ms]

3.29892

3.29894

3.29896

3.29898

3.299

Vo

[V

]

Figura 3.19: Fuente ideal afectada por conmutaciones del inversor.

voltaje no es una cifra significativa. Para inspeccionar cual serıa el efecto de varios inver-sores se considero construir el mismo circuito de simulacion con 60 de estos (no se esperaun crecimiento lineal) y alimentar estos en grupos arbitrarios por 5 fuentes desfasadas si-milares a la de la figura 3.17(este circuito de simulacion se muestra en la figura B.1 delanexo). El resultado se visualiza en la figura 3.20.

0 0.05 0.1 0.15

t [ms]

3.298

3.2981

3.2982

3.2983

3.2984

3.2985

3.2986

3.2987

3.2988

3.2989

3.299

Vo [V

]

Figura 3.20: Fuente ideal afectada por 60 inversores.

Para el caso de la figura 3.20, la fuente experimenta una variacion maxima de ±1 mV ,tambien se resalta el caracter oscilatorio que adquiere cuando los inversores no estan enfase. Si se considera que existen miles de circuitos mas complejos en todos los dispositi-vos digitales que se emplearan, se puede esperar variaciones en la fuente de alimentacionde varios ordenes por encima del que se ha visto en ambos ejemplos, en este caso el aco-

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 38

Page 51: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 3. DISENO DEL ESQUEMATICO DEL PCBEN SOFTWARE CAD Pagina 39

plamiento de estas corrientes a la fuente puede degradarla significativamente, exponiendoel sistema general al fallos por su propio funcionamiento.

Un metodo de uso masivo para este tipo de situaciones es el uso de un capacitor dedesacoplo.

3.7.1. Capacitor de desacoplo

Un capacitor de desacoplo (en ingles ((Bypass Capacitor))) puede aminorar la degrada-cion de la fuente que se muestra en la figura 3.20. Basicamente el capacitor de desacoploprovee la corriente de conmutacion de los circuitos digitales antes que esta provenga dela fuente. Para tener una idea del efecto de su empleo, se coloco un capacitor de 10 µF

en paralelo con la fuente luego de la inductacia de 5.6 nH, que ya se dijo, simula lasinductancias de las pistas de conexion.

Tambien se opto por simular el mismo circuito reemplazando el capacitor ideal de 10 µF

con dos capacitores reales, modelados considerado solo la ESR y la ESI. Ambos parame-tros fueron obtenidos de las tablas 3.2 y 3.3. Nota. Fuente: Cain, Jeffrey COMPARISON

Tamano de Encapsulado Inductancia (pH)

Ceramico

603 850

805 1050

1206 1250

1210 1020

Tantalio

R 1600

A 2200

B 2250

C 2800

Tabla 3.2: Inductacia equivalente en serie Capacitores Ceramicos y de Tantalio.

OF MULTILAYER CERAMIC AND TANTALUM CAPACITORS (p. 3)

Para la simulacion se eligio de estas tablas:

Capacitor ceramico 10 µF , encapsulado 0805, ESL=1050 pH ESR=600 mΩ.

Capacitor de tantalio 10 µF , encapsulado ((A)), ESL=2200 pH ESR=1600 mΩ.

El resultado puede visualizarse en la figura 3.21. Se puede observar del resultado mostra-

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 39

Page 52: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 3. DISENO DEL ESQUEMATICO DEL PCBEN SOFTWARE CAD Pagina 40

Tabla 3.3: Resistencia equivalente en serie de varios capacitores.

0 0.05 0.1 0.15t [ms]

3.2985

3.299

Vo

[V]

Alimentación con capacitor ideal

0 0.05 0.1 0.15t [ms]

3.2985

3.299

Vo

[V]

Alimentación con capacitor de tantalio

0 0.05 0.1 0.15t [ms]

3.2985

3.299

Vo

[V]

Alimentación con capacitor cerámico

Figura 3.21: Alimentacion con capacitor de desacoplo Ideal, Tantalio y Ceramico.

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 40

Page 53: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 3. DISENO DEL ESQUEMATICO DEL PCBEN SOFTWARE CAD Pagina 41

do que el uso de un capacitor de tantalio o ceramico no desacoplan las corrientes tan biencomo uno de ideal, esto era de esperarse. La informacion de mayor valor se encuentra encomparar los dos capacitores modelados con ESR y ESL, el mejor comportamiento, paraun mismo valor de capacidad lo posee el ceramico, que presenta menor ESR y ESL quesu contraparte de tantalio. Se espera que independientemente del valor de capacidad, auna determinada frecuencia la respuesta del capacitor es definida por sus caracterısticasde ESR y ESI y no por su capacidad nominal.

Se verificara la ultima afirmacion comparando el capacitor de tantalio con uno ceramico100 nF de menor tamano (encapsulado 0603): C0603C104K8RACTU. Segun su hoja dedatos presenta un Factor de Disipacion o Dissipation Factor (por sus siglas en ingles DF)de 5 %, para encontrar la ESR de este capacitor se recurre a la siguiente formula (la tabla3.3 no incluye el valor para este encapsulado).

DF =ESR

Xc

= 0.05 (3.7)

Si se considera una frecuencia de f = 10 MHz, la reactancia capacitiva Xc puede serexpresada con la ecuacion 3.8.

Xc = 2πfC = 2π(10× 106)(1009) = 6.283 Ω (3.8)

Ahora se calcula la ESR con la ecuacion 3.9.

ESR = (0.05)(6.283) = 314.16 mΩ (3.9)

Se realizara una simulacion aumentando la frecuencia de las conmutaciones a 10 MHz yconfigurando el tiempo de crecimiento a 10 ns, tambien se redujeron el numero de inver-sores a 20. La simulacion se repetira en dos configuraciones de desacoplo:

Desacoplo con dos capacitores de tantalio en paralelo, ambos de 10 µF (ESR =

1.6 Ω y ESI = 2200 pH

Desacoplo con capacitor de tantalio en paralelo a ceramico C0603C104K8RACTU(100 nF , ESR = 0.314 Ω y ESI = 850 pH).

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 41

Page 54: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 3. DISENO DEL ESQUEMATICO DEL PCBEN SOFTWARE CAD Pagina 42

0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13t [us]

3.2987

3.2988

3.2989

3.299

3.2991

Vo

[V]

Alimentación con 2 capacitores de tantalio 10 [uF]

0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13t [us]

3.2987

3.2988

3.2989

3.299

3.2991

Vo

[V]

Alimentación con cap tantalio 10 [uF] y cerámico 100 [nF]

Figura 3.22: Simulacion con 20 inversores a 10 MHz y tiempo de crecimiento 10 ns.

Como se puede observar en la figura 3.22, pese a que se esperarıa menor variacion dela alimentacion con dos capacitores de tantalio de 10 µF (que suman un total de 20 µF ),frente a uno 10 µF del mismo tipo con uno de 100 nF (que suman un total de 10.1µF , sinembargo, el grafico muestra que para el primer caso la alimentacion presenta una variacionpico de 0.4 mV mientras que el segundo 0.2 mV . Esto sucede porque a la frecuencia enque se simulo el circuito los capacitores de mayor valor entran en su region inductiva,mientras que el capacitor de menor valor aun sigue en su region capacitiva.

La simulacion comprueba que para efectos de usar un capacitor de desacoplo el valorde ESR y ESI que presente importa tanto como el valor de la capacidad misma, tambiense comprueba la famosa regla de oro o ((Rule of thumb)) de desacoplar la fuente de ali-mentacion con un capacitor de 100 nF . Esta regla comprobada se visualizara en el uso decapacitores de 100 nF en encapsulado 0805, los cuales se escogieron sobre la version deencapsulado 0603 considerando no solo la capacidad de desacoplo, sino que tambien lafacilidad de soldado en el PCB final y disponibilidad en el mercado (descartando importa-ciones).

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 42

Page 55: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 3. DISENO DEL ESQUEMATICO DEL PCBEN SOFTWARE CAD Pagina 43

La directa aplicacion de este regla sobre el diseno realizado se puede observar enla figura 3.23. En la figura 3.23 se puede apreciar en un solo bloque todos los pines de

Figura 3.23: Esquematico de alimentacion del microcontrolador NXP LPC4337.

alimentacion del microcontrolador (Bloque ((IC1R))). Se puede observar como todos lospines con prefijo ((VDD)) son desacoplados con un capacitor de 100 nF . Un caso que sepuede resaltar es el pin 137 ((VDDA)), que se usa un desacoplo como el planteado en elanalisis anterior usando dos capacitores ceramicos de 10 µF tamano 1206 y uno de 100 nF

tamano 0805. Todos los pines desacoplados se llevan a una pista de masa local ((LGND)),la cual se conecta al plano de masa en un solo punto, mas detalles de esta decision dediseno se veran en el capıtulo 3.

Todos los circuitos digitales empleados en las siguientes secciones seran desacopla-dos de la misma forma.

3.8. GPIO

En este esquematico se detallan las conexiones de los pines de proposito general delmicrocontrolador. Estas conexiones pueden ser vistas en los esquematicos correspondien-

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 43

Page 56: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 3. DISENO DEL ESQUEMATICO DEL PCBEN SOFTWARE CAD Pagina 44

tes en las figuras A.7 y A.8 del anexo, en resumen se conectan pines para las siguientesfunciones:

8 salidas/entradas digitales de proposito general.

8 salidas/entradas digitales para radiocontrol.

Puerto serie para modulo XBee.

Puerto serie para GPS.

Salida para funcion ((sleep)) del modlo XBee.

Habilitador y deteccion de la tarjeta SD.

Puerto SPI para tarjeta SD.

6 salidas para LEDs en la placa.

4 entradas provenientes de switches en la placa.

3.8.1. Interruptores de entrada

La placa incluye 4 interruptores normalmente abiertos conectados de acuerdo al es-quematico mostrado en la figura 3.24.

Figura 3.24: Esquematico de interruptores.

En el esquematico mostrado se observa como la entrada del microcontrolador tiene laresistenca R6 de 1 KΩ en serie, la cual se incluye como proteccion. Si no estuviera estaresistencia y el pin se configura por software como salida (baja impedancia) y se asigna unnivel alto, presionar el switch ocacionarıa un cortocircuito, la resistenci R6 limita la corrienteante esta situacion a 3.3/1000 = 3.3 mA. Cuando el pin esta configurado como entrada, R6pierde significancia (la impedancia del pin es de al menos 2 ordenes mas). La resistenciaR10 de 10 KΩ es una resistencia de pull-up, cuando el switch esta abierto, lleva la entrada

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 44

Page 57: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 3. DISENO DEL ESQUEMATICO DEL PCBEN SOFTWARE CAD Pagina 45

del microcontrolador a nivel alto. Al presionarse el switch el pin de entrada ve un nivel bajoy una corriente de 0.03 mA pasa por R10.

3.9. Dispositivos I2C

En el diseno existen tres sensores, una memoria y un controlador de salidas moduladaspor ancho de pulso que se comunican con el microcontrolador por protocolo I2C (delingles Inter-Integrated Circuits), este es un tipo de bus creado por Philips (actualmenteNXP) que permite comunicacion entre dispositivos por solo 2 cables. No es el tema deeste documento detallar el funcionamiento de este bus, pero sı los cuidados que hay quetener al implementar circuitos que lo usen. Los dispositivos que se conectan al bus I2Cdel microntrolador son:

LSM303D: Acelerometro y magnetometro 3D.

LPS331: Sensor de presion absoluta.

L3GD20H: Giroscopo de 3 ejes.

24AA1025: EEPROM de 1 Mb.

PCA9685PW: Controlador PWM de 12 bit y 16 salidas.

La figura 3.25 muestra el sımbolo esquematico de conexion del bus I2C en los respectivospines del microcontrolador. El nombre de las dos lıneas del bus son ((I2C SCL)) e ((I2CSDA)), como se muestra, ambas lıneas estan conectadas a 3.3 V a traves de un resistor depull-up. Todos los dispositivos mencionados se conectaran a estas dos lineas y trabajan a3.3 V , por lo que ningun cambiador de nivel sera requerido.

Para disenar la conexion de estos dispositivos se deben verificar dos aspectos: el valorde los resistores de pull-up y la capacidad maxima entre las lıneas. La tabla 3.4 muestraalgunas especificaciones del bus I2C con las que se realizara el diseno:

3.9.1. Resistencias de pull up

El maximo y mınimo valor que puede adoptar esta resistencia se puede obtener de lassiguientes expresiones [9]:

Rp(max) =tr

0.8473× Cb

(3.10)

Rp(min) =VDD − VOL

IOL

(3.11)

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 45

Page 58: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 3. DISENO DEL ESQUEMATICO DEL PCBEN SOFTWARE CAD Pagina 46

Figura 3.25: Esquematico de conexion del bus I2C del microcontrolador.

Standard-mode

Frecuencia de clock SCL (fS) 100[KHz]

Tiempo de crecimiento (tr) 1000[ns]

Capacidad maxima de cada lınea (Cb) 400[pF ]

Salida de tension a nivel bajo (VOL) 0.4[V ]

Salida de corriente a nivel bajo(IOL) 3[mA]

Tabla 3.4: Especificaciones relevantes del bus I2C.

Nota. Fuente: Hoja de especificaciones UM10204 de NXP I2C-bus specification and usermanual (p. 54).

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 46

Page 59: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 3. DISENO DEL ESQUEMATICO DEL PCBEN SOFTWARE CAD Pagina 47

Tanto la memoria EEPROM, como el controlador PWM en sus respectivas hojas tecnicasestablecen una capacidad de entrada de 10 pF , no se muestra este parametro para lossensores de aceleracion, presion y giroscopo. Estos tres sensores son del mismo encap-sulado ((LGA-16)), de dimensiones menores que los demas encapsulados, por lo que sepuede esperar capacidad menor que los dos primeros casos. Para hacer una estimacionde la capacidad total se asumira 10 pF por sensor. La capacidad total Cb total es 50 pF .

Si se toma el tiempo de crecimiento mostrado en el cuadro 3.4 y la capacidad total es-timada; y luego se reemplazan estos dos valores en la ecuacion 3.10 se tiene el resultadoque se muestra en la ecuacion 3.12.

Rp(max) =1× 10−6

(0.8473)50× 10−12= 200 KΩ (3.12)

Reemplazando los valores del cuadro 3.4 en la ecuacion 3.11 se obtiene Rp(min).

Rp(min) =3.3− 0.4

3× 10−3= 966.67 Ω (3.13)

El valor nominal elegido que cumple estas caracterısticas es Rp = 10 KΩ. Se muestraen las figuras 3.26-3.30 la implementacion de cada sensor contenida en el esquematicoI2C, que incluye el desacoplo de fuente recomendado en las respectivas hojas de datosde cada sensor.

Figura 3.26: Esquematico del LSM303D.

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 47

Page 60: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 3. DISENO DEL ESQUEMATICO DEL PCBEN SOFTWARE CAD Pagina 48

Figura 3.27: Esquematico del 24AA1025.

Figura 3.28: Esquematico del LPS331.

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 48

Page 61: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 3. DISENO DEL ESQUEMATICO DEL PCBEN SOFTWARE CAD Pagina 49

Figura 3.29: Esquematico del L3GD20H.

Figura 3.30: Esquematico del PC9685PW.

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 49

Page 62: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 3. DISENO DEL ESQUEMATICO DEL PCBEN SOFTWARE CAD Pagina 50

3.10. Dispositivos varios

Esta seccion comprende los circuitos de entrada y salida que incluye la placa ası comomodulos analogicos.

3.10.1. LEDs indicadores

La placa incluye 6 LEDs indicadores, cada uno esta conectado a su pin de controlcorrespondiente en el microcontrolador a traves de un MOSFET canal N (Q1-6) como semuestra en la figura 3.31. El MOSFET canal N es el 2N7002, su proposito es reducir elconsumo de corriente a traves del microcontrolador, extrayendo la corriente necesaria parahacer funcionar los LEDS de la fuente de alimentacion conmutada.

Figura 3.31: Esquematico de Leds indicadores.

La resistencia R14 de 10 KΩ en serie con la salida limita la corriente en caso de uncortocircuito entre los terminales Gate y Source del MOSFET, ademas en funcionamientonormal se limita la velocidad de conmutacion del MOSFET, pues este solo entra en con-duccion cuando la capacidad entre Gate y Source CGS esta cargada, la resistencia limita larapidez de esta carga, por lo tanto limita la velocidad de conmutacion. La resistencia R18de 330 KΩ es una resistencia de pull-down que descarga CGS cuando el dispositivo noesta en funcionamiento (al mismo tiempo disminuye de forma poca significativa el tiempode apagado del MOSFET).

Cuando Q1 esta en conduccion, la corriente que pasa por el diodo es limitado por laresistencia R22 de 680 Ω, obviando la resistencia de encendido de Q1, RsON , que es de al

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 50

Page 63: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 3. DISENO DEL ESQUEMATICO DEL PCBEN SOFTWARE CAD Pagina 51

menos dos ordenes por debajo de R22 y considerando la caıda directa del diodo 2 V , setiene la corriente limitada a 4.4 mA.

3.10.2. Modulo XBee

XBee es una placa de radiofrecuencia que permite comunicacion inalambrica a travesde protocolo serial, el PCB incluye un conector de 2 mm de separacion entre pines, sudiagrama de conexion se presenta en la figura 3.32.

Figura 3.32: Esquematico XBEE XB24-API-001.

Unicamente se han considerado las conexiones de comunicacion por puerto serieTx/Rx y un pin digital con el que el microcontrolador pueda poner al XBee en modo debajo consumo (Sleep). Opera a 2.4 GHz.

3.10.3. Modulo GPS

El modulo GPS es un modulo EM-506, en el PCB solo se incluye el conector para estedispositivo. La informacion de ubicacion se da por puerto serie. Su diagrama de conexionse muestra en la figura 3.33.

Si bien este modulo se alimenta de 5 V , la salida de su puerto Tx es de nivel 3.3 V ,el cual es compatible con el microcontrolador sin ningun acondicionamiento. Opera a1.575 GHz.

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 51

Page 64: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 3. DISENO DEL ESQUEMATICO DEL PCBEN SOFTWARE CAD Pagina 52

Figura 3.33: Esquematico GPS EM 506.

3.10.4. Sensor de Corriente

Los sensores de corriente deben ser acondicionados para que su resolucion este acor-de con los niveles de corriente que acotan el consumo del dispositivo que se mide. Elconsumo depende de muchos factores, numero de servos que se deben mover, el torqueque estos desarrollen, numero de amplificadores de RF, etc.

Se decidio no incluir un medidor de corriente ya configurado para una resolucion yrango especıfico porque se desconoce el consumo final de corriente de los actuadoresque se controlaran. Se considero dejar un conector que provee alimentacion de 5 V , GNDy entrada para cualquier sensor de corriente analogico.

Como se muestra en la figura 3.34, la entrada del sensor pasa por un divisor resistivo,cuyo punto medio debe ser llevado a un maximo de los 3.3 V de trabajo de microcon-trolador (se puede cambiar R53 a cualquier valor para lograrlo), un filtro pasabajos RC yfinalmente un buffer basado en el amplificador operacional LM324. Se eligio este opera-cional por su disponibilidad en el mercado.

3.10.5. Memoria SD

La memoria SD se incorpora a traves de un conector SD de montaje superficial. Seeligio el tipo de memoria SD de tamano standard, la cual puede ser llevada al tipo Micro-SD con un adaptador. El protocolo de comunicacion es SPI con tres pines que trabajancon 3.3 V , nuevamente no se requiere ningun traductor de nivel.

El conector es un 3M SD series, e incorpora pines de proteccion contra escritura y

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 52

Page 65: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 3. DISENO DEL ESQUEMATICO DEL PCBEN SOFTWARE CAD Pagina 53

Figura 3.34: Sensor de Corriente.

deteccion de la insercion de la memoria SD (WP y CD respectivamente), los cuales sonruteados a puertos digitales del microcontrolador usando una resistencia de pull-up porcada puerto. El esquematico de conexion de la memoria se muestra en la figura 3.35.

Figura 3.35: Memoria SD.

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 53

Page 66: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 3. DISENO DEL ESQUEMATICO DEL PCBEN SOFTWARE CAD Pagina 54

3.10.6. Sensor de presion diferencial

Para medir la presion diferencial se usa un sensor MPXV7002. Segun su hoja de datos,este sensor se alimenta de 5 V , y tiene como salida una tension referenciada a GNDque tiene como maximo valor 4.5 V de acuerdo a la diferencia de presion entre las dostomas. Ademas tiene un offset de voltaje de 2.5 V , de esta forma el sensor puede detectarpresiones positivas o negativas respecto de una de las tomas de aire.

Para este diseno solo se consideran presiones positivas, por este motivo se acondicio-nara la senal de salida del sensor para que esta sea transformada a un valor digital conmayor resolucion. El esquematico se muestra en la figura 3.36.

Figura 3.36: Sensor de Presion Diferencial.

Con dos amplificadores operacionales del LM324 se realiza el acondicionamiento desenal, uno se utiliza en configuracion resta (IC16 B de la figura 3.36) y otro como bufferpara el divisor resistivo que define el voltaje de offset que se restara (IC16 A de la figura3.36).

Las resistencias R46 y R47, R44 y R45 definen la ganancia (G) de la senal resta a lasalida de IC16B segun la ecuacion 3.14.

G =R46

R44=R56

R45(3.14)

Esta ganancia lleva la maxima salida esperada (mas un margen de seguridad) a 3.3 V ,

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 54

Page 67: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 3. DISENO DEL ESQUEMATICO DEL PCBEN SOFTWARE CAD Pagina 55

que es la maxima tension de entrada que soporta el puerto ADC asignado a adquirir estasenal.

3.10.7. Sensor de voltaje de baterıa

Consiste en un circuito que con divisor de tension y un amplificador operacional confi-gurado como buffer sensa la tension de la bateria:

Figura 3.37: Sensor de Voltaje de Baterıa.

El divisor resistivo, definido por R49 y R50 puede ser modificado alterando el valor deestas resistencias de tal forma que se cumpla la siguiente condicion.

Vi ×R50

R49 +R50< 3.3 V (3.15)

Donde Vi es la tension que alimenta el PCB (entrada al regulador SMPS).

Los valores de R49 y R50 que se muestran en la figura 3.37 fueron elegidos parauna maxima tension Vi(MAX) = 24 V , de tal forma que la salida correspondiente delamplificador operacional es 2.99 V . Entre el divisor y el buffer hay un filtro pasabajos R-Ccon frecuencia de corte de 1.6 KHz, el cual filtra ruido y limita en banda el amplificadoroperacional.

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 55

Page 68: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 3. DISENO DEL ESQUEMATICO DEL PCBEN SOFTWARE CAD Pagina 56

3.11. Debugger

La placa disenada no incorpora un debugger, por tratarse de una placa de uso final,pero si incluye un puerto de conexion de 10 pines para un adaptador JTAG, el cual consisteen un conector de montaje superficial de 2 filas por 5 columnas con espaciado (((pitch)))vertical y horizontal de 1.27 mm.

Las senales que se emplean para programar y/o depurar el microcontrolador son TMS,TCK, TDO, TDI y RESET. Todas estas senales son conectadas de acuerdo al conectorestandarizado de 10 pines como indica la figura 3.38.

Figura 3.38: Esquematico del puerto de Debug.

3.12. Diseno de un Debugger basado en FT2232H

Para comprobar el funcionamiento del puerto JTAG mostrado en la figura 3.38, se di-seno una placa externa que realiza el mismo circuito de debugger JTAG que la EDU-CIAA.El esquematico se puede observar en la figura 3.39.

El integrado FT2232H contiene dos puertos de comunicacion USB a varios otros pro-tocolos (ambos puertos independientes). En particular se usa el puerto A configuradocomo conversor USB-Puerto Serie (RS2232) y el puerto B como MPSSE (del ingles, Multi-Protocol Synchronous Serial Engine), el cual se puede configurar como SPI, I2C y JTAG.

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 56

Page 69: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 3. DISENO DEL ESQUEMATICO DEL PCBEN SOFTWARE CAD Pagina 57

Figura 3.39: Esquematico del debugger externo.

En la figura 3.39 se muestra las conexiones de las senales JTAG al integrado respe-tando la hoja de datos y el circuito modelo provisto en esta.

Un detalle importante es que la configuracion del FT2232 se guarda en la EEPROM96L46, la cual se conecta por SPI.

La conexion a la PC que realiza la depuracion (debug) es realizada por un puerto USBmini, este puede proveer tension o no al debugger y al target siempre y cuando el jumperJ1 este conectado. Adicionalmente al debugger en la PC aparecera un puerto serie quepuede ser conectado al PCB por un conector de 2.54 mm de pitch.

El clock de este sistema utiliza un cristal de 12 MHz y tanto las senales del reloj,como la senal diferencial del puerto USB fueron ruteadas con pares diferenciales gene-rados automaticamente con Altium Designer. Para el caso del puerto USB, que tiene unafrecuencia de hasta 480 MHz en configuracion de alta velocidad, se requiere que los ter-minales USB-P y USB-N tengan una impedancia de 90 Ω. Por esto se configura con Altiumdesigner la impedancia deseada que se calcula con los parametros del PCB (se detallaesto mas adelante).

El oscilador de 12 MHz requiere que las dimensiones de la pista no superen un decimode su longitud de onda (Regla de diseno), entonces siempre que las pistas no superenC/(12×106×10) = 2.5 m no se tendra la necesidad de controlar la impedancia, aun ası seprocurara que las pistas tengan la misma longitud, razon por la cual tambien se configuracomo par diferencial.

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 57

Page 70: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 3. DISENO DEL ESQUEMATICO DEL PCBEN SOFTWARE CAD Pagina 58

La implementacion de esta placa se vera en el capıtulo 4.

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 58

Page 71: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

Capıtulo 4

Diseno de PCB de 4 capas

Para reducir el tamano del PCB se necesita aumentar la densidad de componentes,por ello se decidio hacer el PCB de 4 capas en lugar de 2. Las 4 capas, nombradas encorrecto orden son:

TOP (Capa Superior).

GND (Plano de GND).

SIG-PWR (Plano interno de senales y alimentacion).

BOT (Capa inferior).

Otra ventaja de usar 4 capas es el mejor aislamiento entre las senales que van por lascapas TOP y BOT, pues existe un plano de GND entre ellas.

4.1. Esquematico a PCB

El proceso de creacion del PCB implica acomodar la huella de cada componente enla localizacion que uno desea, una vez se haya logrado una disposicion que se considereadecuada se va a proceso de ruteo. Rutear es crear pistas de cobre que conectan los padsde los diversos componentes.

Cada componente tiene una huella que esta asociada al respectivo esquematico. AL-tium permite, una vez creado el esquematico, generar a partir de este una plantilla dePCB.

La plantilla de PCB consiste en un formate de PCB vacıo todas las huellas corres-pondientes a cada componente agrupadas por sub-esquematico sin conexionado. Todasestas huellas tienen un indicador de conexion llamado ((ratline)). Un ratline es una linearecta que une dos pines, la linea indica que debe haber una pista de cobre que conecte

59

Page 72: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 4. DISENO DE PCB DE 4 CAPAS Pagina 60

ambos pines. Hasta que no se haya creado una pista que efectue la conexion, el ratalineno desaparece.

4.2. Biblioteca de Huellas

Las huellas que se usan para desarrollar el PCB en general son provistas en la biblio-teca standard de Altium, sin embargo existen muchos componentes que no cuentan conesta. El proceso de seleccion de la biblioteca de huellas es fundamental, pues no solopermite que un componente encaje perfectamente en la huella, tambien implica que elcomponente se pueda soldar con el metodo que se haya determinado para este proceso.

Se busco que las huellas sean lo suficientemente grandes para que se pueda soldarcomodamente con una estacion de soldado estandar. Para este efecto se tomo comoreferencia la norma IPC-2221A, tomando siempre las recomendaciones catalogadas como((Low Density)) o Baja Densidad, que presenta pads y agujeros mas grandes.

4.3. Stack Up

El Stack Up (apilamiento de capas de PCB), es definido por el fabricante, el que fueproporcionado para la implementacion de este trabajo se muestra en la figura 4.1.

Figura 4.1: Stack Up del fabricante.

Con esta informacion se debe configuro el Stack Up de Altium como se muestra en lafigura 4.2.

4.4. Reglas de Diseno

Para asegurar la robustez en el diseno, se optaron por seguir varias reglas de disenoorientadas a prevenir problemas de compatibilidad electromagnetica. Estas reglas son:

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 60

Page 73: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 4. DISENO DE PCB DE 4 CAPAS Pagina 61

Figura 4.2: Stack Up en Altium.

Reduccion de loops de GND.

Caminos de baja inductancia para senales de alta frecuencia.

Reduccion de crosstalk (capacitivo e inductivo).

Optimo ruteo de capacitores de desacoplo.

4.4.1. Reduccion de loops de GND

Todos los puertos, por mas que sean de tension, son fuentes o sumideros de corrientes.Dichas corrientes tienen uno o varios caminos de retorno a su fuente dependiendo de lafrecuencia de la senal de corriente. Si se trata de una senal de baja frecuencia (orden delos KHz o menor) cualquier camino conductivo sirve de camino de retorno, por otro lado,si es de alta frecuencia (orden de los MHz o mayor) el camino de retorno es el camino demenor inductancia).

Un loop de corriente o GND loop es causado cuando una senal tiene mas de unacamino retorno (varios caminos de baja resistencia en baja frecuencia o varios caminosde baja inductancia en alta frecuencia. Este camino de retorno esta siempre apuntando aun punto de potencial de referencia, el cual es GND.

El terminal GND o plano de masa es la referencia de tension (se considera que estareferencia de tension es de 0 V ). Si el plano de masa es de material conductor perfecto(conductancia infinita e inductancia nula), entonces todos los circuitos conectados a esteplano de masa tienen exactamente la misma referencia sin importar el lugar en que seconecten al plano de GND ni la corriente de retorno que le corresponde. Esta situacion semuestra en la figura 4.3.

En la practica esto no se cumple. La conexion a un plano de masa puede ser modeladacon una red R−L (Resistencia-Inductor), de esta forma si la fuente de corriente y la carga

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 61

Page 74: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 4. DISENO DE PCB DE 4 CAPAS Pagina 62

Figura 4.3: Conexion con plano de masa perfecto.

estan conectadas en puntos distintos del plano de masa, a traves de distintas redes RL porlas que pasan distintas corrientes, estos puntos pueden estar a una diferencia de tensiondeterminada por la corriente de retorno de su red o la de otro circuito que pasa por elmismo nodo.

Por ejemplo, en la figura 4.4 se muestra el caso en que la fuente y la carga estana diferentes referencias debido al camino que toma su respectiva corriente I1. Se debeobservar que la corriente parte de la fuente IC1 hacia la carga ZL1 y luego puede tomardos caminos, el camino que pasa por Lg1 - Rg1 - GND2 y el que pasa por Lg2 - Rg2 - Lg3- Rg3 - GND1, dividiendose en I1B e I1A, respectivamente.

Si ZA = Rg2 + Rg3 + jω(Lg2 + Lg3) y ZB = Rg1 + jωLg1, y se tiene que I1A e I1B

responden a las ecuaciones 4.1 y 4.2, respectivamente.

I1A = I1×(

ZB

ZA + ZB

)(4.1)

I1B = I1×(

ZA

ZA + ZB

)(4.2)

La diferencia de tension entre las referencias que ven fuente IC1 y la que ve la carga ZL1esta dada por la siguiente ecuacion.

∆Vg = Vg1 − Vg2 = I1A(Rg3 + jωLg3)− I1B(Rg1 + jωLg1) (4.3)

Si bien es cierto esta situacion que no se puede evitar, pues todo material conocido tieneuna inductancia y una resistencia, sı es posible evitar situaciones que agraven la diferenciade potencial entre referencias, especialmente en circuitos analogicos se alta sensibilidad.Un ejemplo se presenta en la figura 4.5.

Como muestra la figura 4.5, ademas de los puntos de conexion al plano de masa, existeuna red (Rg-Lg) que conecta los puntos de referencia. Existen dos posibles caminos para

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 62

Page 75: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 4. DISENO DE PCB DE 4 CAPAS Pagina 63

Figura 4.4: Diferencia de potencial entre las referencias GND1 y GND2.

la corriente de retorno, para el caso de IC2, la gran parte de esta corriente ira por el caminode menor resistencia/inductancia (Rg2 y Lg2), una parte se ira por el otro camino (Rg Lg

Rg3 Lg3). Respectivamente las partes son I2a e I2b.

Si el circuito IC2 es un circuito de alta corriente (un orden por encima de la corrientede IC1), el efecto que causa la parte de esta corriente (I2) sobre la referencia de IC1 esimportante, Vg2 es modulada por I2, de esta forma se afecta al circuito IC1 (de menorcorriente). Este es el fenomeno atribuido a los loops de GND.

Se debera tener especial cuidado en unir cada terminal GND de cada integrado alplano de masa, evitando usar pistas que creen caminos alternativos para la corriente deretorno que pasen por las conexiones a GND de otros integrados.

Un ejemplo de aplicacion de esta regla se da en la conexion a GND del microcontrola-dor, para este ruteo se eligio una topologıa tipo Single Point, que es una forma de rutearlos pines GND de cada componente uniendo estos al plano de masa en un unico punto.Para conseguir esto, en el diseno de esquematico se debe crear un componente dedicadopara este fin (componente marcado como ((STAR)) mostrado en la figura 4.6).

La figura 4.7 muestra la union de la masa local al plano de GND.

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 63

Page 76: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 4. DISENO DE PCB DE 4 CAPAS Pagina 64

Figura 4.5: Circuito IC2 e IC1 conectados a GND

Figura 4.6: Esquematico anexo al de la figura 3.36.

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 64

Page 77: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 4. DISENO DE PCB DE 4 CAPAS Pagina 65

Figura 4.7: Union de GND local del microcontrolador a plano de masa en un solo punto.

4.4.2. Caminos de baja inductacia para senales de alta frecuencia

En las senales de alta frecuencia (mayores a 100 KHz) las corrientes de retorno tomanel camino de menor inductancia, si una pista lleva una una senal de alta frecuencia y bajoesta hay un plano de masa, la densidad de corriente de retorno (por el plano de masa) sedistribuye en el plano de masa bajo la pista como se muestra en la figura 4.8.

Como muestra la figura 4.8, la mayor parte de la corriente de retorno en el plano de ma-sa se concentra bajo la pista que lleva la senal, entonces este camino se trata del caminode menor inductancia. A medida que se aumente la frecuencia de la senal mayor sera laconcentracion justo debajo de la pista que transporta la senal en relacion los alrededores.

Si por algun motivo el plano de masa no es continuo en el camino de la corriente deretorno, se altera el camino de menor inductancia en la corriente de retorno. Dependiendode la intensidad de la corriente y el tamano de la discontinuidad (o abertura en el plano demasa) se generara un loop de corriente que causara irradiaciones, que a su vez causanEMI. Esta situacion es representada en la figura 4.9.

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 65

Page 78: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 4. DISENO DE PCB DE 4 CAPAS Pagina 66

Figura 4.8: Distribucion de corriente de retorno.

Nota. Fuente: Texas Instruments High Speed PCB Layout Techniques (p. 5).

Figura 4.9: Abertura en el plano de masa debajo de una pista portadora de senal.

Como regla general en el diseno del PCB se evitaran aberturas en el plano de ma-sa justo bajo las pistas que portan senales de alta frecuencia. Un ejemplo de aplicacionespecıfica de esta regla se muestra en la figura 4.11.

Como se muestra en el plano de masa de la figura 4.10, se procuro que este seacontinuo bajo las pistas de las senales X1 N y X1 P (Par diferencial que conecta el cristalde 12 MHz al microcontrolador). Se debe tener cuidado cuando se define la localizacionde las vıas de alimentacion y masa en las inmediaciones, no se deben crear aberturas enel plano de masa bajo las pistas que portan estas senales.

4.4.3. Crosstalk

Crosstalk es la alteracion causada por el campo electrico o magnetico de una senalque afecta una senal adyacente .

El crosstalk es principalemte un fenomeno de campo cercano, dependiendo de la ubi-

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 66

Page 79: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 4. DISENO DE PCB DE 4 CAPAS Pagina 67

Figura 4.10: Plano de masa continuo sobre las pistas de alta frecuencia del oscilador acristal.

cacion relativa de las pistas ((fuente)) y ((vıctima)). Se puede analizar este fenomeno princi-palmente como [10]:

Crosstalk capacitivo (campo electrico) (CTC). Producido por voltaje y de naturalezacapacitiva.

Crosstalk inductivo (campo magnetico) (CTI). Producido por corriente y de naturalizainductiva.

4.4.4. CTC

Como regla general el CTC se produce cuando las pistas son dispuestas una sobre otraen distintos planos. Las senales se acoplan de una pista a la otra a traves del capacitorformado por ambas pistas y el material dielectrico que las separa. Se ilustra este conceptoen la figura 4.11.

Como se muestra en la figura 4.11, las dos pistas forman un capacitor parasito quedeja pasar senales de alta frecuencia de un lado a otro.

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 67

Page 80: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 4. DISENO DE PCB DE 4 CAPAS Pagina 68

Figura 4.11: CTC.

Nota. Fuente: Glen Dash. Minimizing Ringing and Crosstalk.

Se sabe que la impedancia de este capacitor debe ser inversamente proporcional a lafrecuencia y a la capacidad, es decir minimizar esta capacidad (o la frecuencia) resulta enla reduccion del CTC.

Si bien es cierto que el diseno cuenta con un plano de masa intermedio entre cualquiersenal de la capa TOP, existen senales entre el plano BOTTOM y SIG PWR que estanpropensas a este tipo de acoplamiento. Como regla general de diseno, para estos dosplanos, se buscara minimizar el area de solapamiento entre las pistas de senales de altavelocidad (digitales en general), disminuyendo de esta forma la capacidad y por lo tanto elCTC.

A modo de ejemplo, se presenta en la figura 4.12 la distribucion de pistas del PCBen que se ve esta regla aplicada. En la figura 4.13, las pistas azules corresponden al

Figura 4.12: Minimizacion de area solapada entre pistas.

plano BOTTOM, mientras que el las amarillas al plano SIG PWR. Se puede comprobarque pistas que traen senales digitales en ambos planos son dispuestas de tal forma que elarea de solapamiento es mınima. Por ejemplo, se puede verificar en esta misma figura elcaso de las pistas rotuladas como ((XBEE TX)) y ((XBEE RX)) en el plano SIG PWR, que

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 68

Page 81: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 4. DISENO DE PCB DE 4 CAPAS Pagina 69

solapan con las pistas rotuladas ((SD CLK)), ((SD CD)), ((SD CS)) en el plano BOTTOM enun area reducida.

CTI

En este tipo de crosstalk las senales se acoplan entre pistas en el mismo plano, laforma en que se acopla la senal es mostrada en la figura 4.13. La imagen muestra comodadas dos pistas en el mismo plana, dispuestas de forma paralela y separadas por unadistancia determinada, forman un transformador. En este sentido, una pista por la quepasa corriente se comporta como un bobinado primario que induce una corriente a la otrapista como si esta fuera un bobinado secundario.

Figura 4.13: CTI.

Nota. Fuente: Glen Dash. Minimizing Ringing and Crosstalk.

La figura 4.14 muestra el comportamiento del CTI. El circuito tiene una vıctima y unafuente. Se puede pensar que en la fuente hay una corriente que se desplaza de izquierdaa derecha de la salida del primer inversor a la entrada del segundo.

En la pista vıctima dos corrientes son inducidas: una que se desplaza hacia R2 y otrahacia R1. Tanto R1 como R2 son las impedancias vistas por cada corriente, no importa sison una carga resistiva o la impedancia de salida de algun circuito digital.

Es importante observar los dos graficos de las tensiones desarrolladas en ambas im-pedancias, como se puede ver en la parte inferior de la figura 4.14, la forma con mayorintensidad y contenido de frecuencias es la senal causada por la corriente que se desplazahacia R1 (VR1).

El grado de CTI es determinado por tres factores dimensionales:

Distancia total en que ambas pistas son paralelas (d1).

Distancia perpendicular entre el borde de ambas pistas (d2).

Distancia de las pistas al plano de masa (d3).

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 69

Page 82: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 4. DISENO DE PCB DE 4 CAPAS Pagina 70

Figura 4.14: Pista fuente y pista vıctima de CTI.

Nota. Fuente: Glen Dash. Minimizing Ringing and Crosstalk.

Ademas de los factores dimensionales, se debe tomar en cuenta el contenido de frecuen-cia de la senal, el cual no es determinado del todo por la frecuencia de la senal misma. Loque determina el contenido de frecuencias de una senal es su tiempo de crecimiento (delingles Rise Time), mientras este sea menor, mayor sera el contenido de frecuencia de lasenal.

Para aminorar los efectos de CTI se puede variar cualquiera de los tres factores di-mensionales que se mencionaron, aunque aquel cuya manipulacion presenta el mejorresultado (mayor reduccion de CTI) es la distancia entre pistas sobre el mismo plano.

En la tabla 4.1 se presenta el CTI medido en mV para dos pistas por las que pasansenales de comunicacion JTAG. Este caso particular trata a la senal TCK como fuente y aTDI como vıctima. La frecuencia de estas senales es de 50MHz y el tiempo de crecimientode 1 ns [11].

En la tabla 4.1, se muestra la relacion entre la separacion de las pistas en milesi-mas de pulgada (mil) y aunque no se brinda una expresion para estimar el CTI en mV

para cualquier espaciado, se puede apreciar que la mayor variacion se da durante losprimeros300 mil de separacion.

La aplicacion de esta regla al PCB disenado se dio en el planteamiento de una situacionde compromiso densidad de pistas - separacion entre pistas. Como no existen circuitosde mayor frecuencia que el circuito oscilador a cristal y las conexiones JTAG, se opto porseparar las pistas del oscilador y hacer las pistas del conector JTAG lo mas cortas posiblescolocando el conector a menos de 1 cm del microcontrolador (ver figura 4.15).

Como se puede apreciar en la figura 4.15 se separaron las senales del JTAG a unmınimo de 25 mil. Para otras senales de menor frecuencia y mayor tiempo de crecimientocomo las Tx y Rx del puerto serie y SDA y SCL del puerto I2C se establecio una distancia

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 70

Page 83: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 4. DISENO DE PCB DE 4 CAPAS Pagina 71

Tabla 4.1: Resultado de CTI para metodo de separacion de pistas.

Nota. Fuente: D. Anish & G. Kranthi Kumar & Rohita Jagdale. Minimization of Crosstalk inHigh Speed PCB.

Figura 4.15: Amplicacion de regla para disminuir el CTI.

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 71

Page 84: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 4. DISENO DE PCB DE 4 CAPAS Pagina 72

mınima de 20 mil entre pistas.

4.4.5. Ruteo de los capacitores de desacoplo

Para rutear los capacitores de desacoplo, se deben seguir ciertas consideraciones queson coherentes con lo presentado en la seccion 3.7.

Como ya se presento, el capacitor de desacoplo provee la corriente de conmutacionque surge en las transiciones de los circuitos digitales, para que cumpla esta funcion dela mejor forma, este debe estar conectado al respectivo integrado que desacopla en uncamino de menor inductancia que la lınea de alimentacion.

El camino de menor inductancia es conseguido conectando el capacitor lo mas cercaposible del integrado, tambien se considero poner el capacitor antes de la conexion ala linea de alimentacion. La figura 4.16 muestra la forma general en que se ruteo loscapacitores de desacoplo.

Figura 4.16: Ruteo de los capacitores de desacoplo.

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 72

Page 85: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 4. DISENO DE PCB DE 4 CAPAS Pagina 73

4.5. Reglas de fabricacion

Cuando se disena el PCB se deben tener en cuentas las restricciones inherentes alproceso de fabricacion, las que se tuvieron en cuenta son:

Reglas para pistas y perforaciones.

Reglas para el plano de GND.

Distancia desde el borde de la placa.

Reglas para pistas y perforaciones

De acuerdo al fabricante, los tamanos mınimos son las mostrados en la tabla 4.2.

Especificacion Dimension

Mınimo ancho de pista 0.15 mm

6 mil

Mınimo espacio entre pistas 0.15 mil

6 mil

Mınimo diametro de perforacion 0.3 mm

Tabla 4.2: Especificaciones de fabricacion.

Altium tiene como ayuda al disenador, alertas que avisan cuando se violan determina-das reglas de diseno, como por ejemplo colocar pistas mas cerca que el mınimo permitido.Estas reglas se configuraron como se muestra en la figura 4.17.

En la figura 4.17 se muestra la regla correspondiente al espaciado de las pistas, se de-be notar que estos fueron considerados para coincidir con las especificaciones mostradasen la tabla 4.2. Para el caso del renglon ((Poly)), el cual se refiere a la distancia que tienecualquier polıgono de relleno (usado para generar plano de masa alrededor de una zonacon pistas) se puso a 0.2 mm.

El mismo procedimiento se realizo para el mınimo diametro de perforacion segun sevisualiza en al figura 4.18.

Reglas para el Plano de masa

Las conexiones a GND estan constituidas por la capa dedicada para GND y por lospolıgonos de masa creados en las otras capas. Los polıgonos (tambien conocidos como

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 73

Page 86: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 4. DISENO DE PCB DE 4 CAPAS Pagina 74

Figura 4.17: Configuracion de reglas de espaciado entre elementos.

Figura 4.18: Configuracion de regla de mınimo diametro de perforacion.

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 74

Page 87: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 4. DISENO DE PCB DE 4 CAPAS Pagina 75

((Copper Pour))) son superficies dibujadas sobre una zona llena de pistas que cubren elespacio no ocupado, tienen opcion de ser conectados a cualquier lınea, por ejemplo GND.

Se definen dos reglas de diseno que afecta la distribucion de los planos GND, estasson el tipo de conexion y la distancia mınima entre el relleno del polıgono y la pista (comose muestra en las figuras 4.19 y 4.20).

Figura 4.19: Pistas sin polıgono a GND.

Figura 4.20: Pistas con polıgono a GND.

La capa de GND permite que cualquier circuito en la capa superior o inferior puedaconectarse a GND a traves de una vıa, lo que permite mayor densidad de componentesal no tener que rutear GND por la capa donde va el integrado o componente. La formaen que se conecta esta vıa admite dos posibles formas ((Direct)) (Conexion directa, figura4.21) y ((Relief)) (Conexion aliviada, figura 4.22).

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 75

Page 88: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 4. DISENO DE PCB DE 4 CAPAS Pagina 76

Figura 4.21: Conexion directa de vıa a GND.

Figura 4.22: Conexion aliviada de vıa a GND.

La conexion directa tiene mas contacto electrico que la aliviada; esta ultima es usadapara facilitar el soldado de cualquier pata o pad que conecta el integrado a GND, estose justifica por el hecho que al haber menos contacto con el plano de masa (el cual esuna superficie metalica grande en relacion a cualquier pad), se disipa menos calor y lasoldadura puede entrar en fusion mas rapido.

Se opto por hacer prevalecer caminos de baja inductancia al plano GND que propor-ciona la conexion directa sobre la facilidad de soldado que ofrece la conexion aliviada.

Una vez configurado el tipo de contacto se define la segunda regla de interes, que es ladistancia que se deja libre entre el polıgono, se fijo esta distancia a 0.5 mm para dejar unmargen de error de 60 % respecto de la distancia mınima entre pistas. Esto puede verseen la figura 4.23.

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 76

Page 89: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 4. DISENO DE PCB DE 4 CAPAS Pagina 77

Figura 4.23: Distancia polıgonos - pistas/vıas.

Distancia desde el borde de la placa

Para mejorar la EMC de la placa se recurre a otras dos recomendaciones para desa-rrollo de PCB que implican los polıgonos:

Separacion del plano de GND del borde de la placa. La separacion de las pistas enun PCB del borde de la placa afecta la medida en que se irradia campo por los bordes[12], por ello se incluye una guarda o zona sin cobre entre el borde de la placa y elcomienzo de cualquiera de las cuatro capas, esta distancia se configura a 0.5 mm

Rodear todo el PCB de GND, de tal forma que todas las pistas que portan senalqueden rodeadas. Esta regla aplica a las capas que portan senales (todas menoscapa de GND).

Las figuras 4.24 y 4.25 muestran la configuracion y aplicacion directa de esta regla dediseno.

Figura 4.24: Configuracion de distancia mınima despejada desde el borde del PCB.

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 77

Page 90: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 4. DISENO DE PCB DE 4 CAPAS Pagina 78

Figura 4.25: Pistas interiores a plano de GND que rodea todo el PCB.

4.6. Generacion de archivos de fabricacion

Para fabricar el PCB, se deben generar archivos GERBER a partir del diseno en eleditor de PCB de Altium con el comando ((Fabrication Outputs)), estos archivos son losque el fabricante usa para producir las placas. Los archivos se generaron con formate enunidades del sistema internacional (SI) y en resolucion de 0.1 µm.

Las capas a las que se le genera el archivo GERBER (presentadas en el orden departe superior a inferior del PCB) son:

Top-Overlay.

Top-Soldermask.

Top-Layer.

GND-Layer.

SIGNAL PWR-Layer.

Bottom-Layer.

Bottom-Soldermask.

Bottom-Overlay.

4.7. Capas

A continuacion, en las figuras 4.26-4.29, se muestran las capas que componen el PCBdisenado, estas son: Top, Bottom, GND y Signal PWR. Estas son el resultado de todo elproceso de desarrollo con las reglas de diseno aplicadas.

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 78

Page 91: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 4. DISENO DE PCB DE 4 CAPAS Pagina 79

Capa Top

Figura 4.26: GERBER de la capa Top.

Capa GND

Figura 4.27: GERBER de la capa GND.

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 79

Page 92: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 4. DISENO DE PCB DE 4 CAPAS Pagina 80

Capa SIGNAL PWR

Figura 4.28: GERBER de la capa SIGNAL PWR.

Capa Bottom

Figura 4.29: GERBER de la capa Bottom.

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 80

Page 93: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 4. DISENO DE PCB DE 4 CAPAS Pagina 81

Pre-visualizacion de PCB implementado

Se genero una pre-visualizacion del PCB disenado, esto ayuda en gran medida a saberlas dimensiones finales del PCB con los componentes soldados. Para generar esta visua-lizacion se consiguieron los modelos tridimensionales de cada componente en formatoSTEP.

El resultado se muestra en las figuras 4.30 y 4.31.

Figura 4.30: Pre-visualizacion de PCB implementado (vista frontal).

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 81

Page 94: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 4. DISENO DE PCB DE 4 CAPAS Pagina 82

Figura 4.31: Pre-visualizacion de PCB implementado (vista trasera).

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 82

Page 95: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

Capıtulo 5

Simulacion de PCB disenado

Para detectar posibles fuentes de emision se recurre a un software de simulacion decampos electromagneticos. El software es SIWave.

SIwave es una herramienta especializada en simulacion de campos electromagneticosa la cual hay que cargarle los modelos de la placa PCB. Las siguientes secciones descri-ben el procedimiento para poder simular el campo cercano que se genera alrededor delPCB.

5.1. De Altium a SIwave

SiWave requiere que el modelo del PCB se encuentre en un formato compatible y conun numero determinado de extensiones, a su vez, Altium puede exportar los modelos delPCB disenado en varios otras extensiones con formatos configurables.

Las extensiones que pueden ser exportadas por Altium y a su vez son compatibes conSIWave son archivos de tipo ((STEP)) ((DFX)), ((ODB++)). Se probo cada configuracion y laque determino el mejor resultado fue la exportacion de archivo ODB++ (figura 5.1).

ODB++ son un formato de archivos de fabricacion similares a los GERBER que fueronlos requeridos por el fabricante del PCB. Existen ciertas particularidades de ODB++ quelo hacen un buena alternativa frente a los archivos GEBER, las cuales no se discutiran eneste trabajo.

Se importara el sistema de archivos generado por el comando ((Fabrication Outputs- ODB++ Files)) en un proyecto de SIWave segun se muestra en al figura 5.3. Una vezimportado el archivo se tendra acceso a toda la geometrıa, se resalta que la importaciondibuja tanto las pistas de cobre como el plano de GND y las vias que atraviesan todas lascapas. Se muestra la vista del modelo importado en la figura 5.4.

83

Page 96: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 5. SIMULACION DE PCB DISENADO Pagina 84

Figura 5.1: Exportacion de modelo ODB++ desde Altium Designer.

Figura 5.2: Vista de todas las capas del PCB en formato ODB++.

Figura 5.3: Importacion de ODB++ en SIWave.

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 84

Page 97: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 5. SIMULACION DE PCB DISENADO Pagina 85

Figura 5.4: Modelo Importado en SIWave.

5.2. Simulacion de Campo Cercano

Para identificar posibles problemas de EMI se recurrio a una simulacion de campocercano, que muestra la intensidad de campo electrico e intensidad de campo magneticoen un cubo a 1 m de distancia del PCB. La seleccion de la simulacion se muestra en lafigura 5.5.

Figura 5.5: Seleccion de simulacion en campo cercano.

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 85

Page 98: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 5. SIMULACION DE PCB DISENADO Pagina 86

La simulacion se realizo en un rango de frecuencia de 30 MHz a 1 GHz de tal formaque se cubra el rango de frecuencias a las que hace mencion la normativa clase A y B dela FCC, la frontera que se analiza es un cubo a 1 m de distancia de los planos cartesianostangentes a la placa.

5.3. Resultados de simulacion

El resultado del barrido en frecuencia en campo cercano muestra dos picos de campoelectrico, uno en 600 MHz y otro en 700 MHz. El resultado se presenta en las figuras 5.6y 5.7.

Figura 5.6: Pico de campo electrico en 600 MHz.

La simulacion en campo cercano brinda una estimacion de las frecuencias que pre-sentaran mayor intensidad de radiacion; esta informacion es de importancia para poder

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 86

Page 99: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 5. SIMULACION DE PCB DISENADO Pagina 87

Figura 5.7: Pico de campo electrico en 700 MHz.

predecir el comportamiento en campo lejano, el cual es el que se evalua en las pruebasde certificacion de EMC.

Pese a que no existe un correlacion entre las mediciones de campo cercano y lasmediciones de campo lejano [13], la unica guıa que se puede seguir es que a mayorintensidad de campo cercano, mayor sera la de campo lejano.

En resumidas cuentas el analisis del campo cercano solo puede dar, de alguna for-ma, una nocion para estimar en que zona del PCB hay mayores radiaciones, es decir,se evidencian sectores especıficos en que el disenador debe modificar la disposicion deelementos para conseguir menos radiaciones (si estas se encuentran por encima de losniveles maximos establecidos en la norma de la FCC).

Otra informacion importante que se puede extraer es sobre la naturaleza del campoirradiado (electrico o magnetico). Saber que campo es dominante permite al disenadorsaber que reglas de diseno debe verificar para reducir las emisiones y hacer correcciones

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 87

Page 100: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 5. SIMULACION DE PCB DISENADO Pagina 88

al diseno del PCB.Cuando se mida el campo irradiado del PCB implementado, se debera tener en cuenta

un exhaustivo analisis de aquellas frecuencias que representan un pico en las simulacio-nes.

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 88

Page 101: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

Capıtulo 6

Implementacion

A partir de los GERBER generados en el diseno de PCB se obtienen las placas decuatro capas fabricadas. Luego del proceso de soldado de todos los componentes seobtuvo el resultado mostrado en las figuras 6.1 y 6.2.

Figura 6.1: PCB multicapa implementado (Vista frontal).

89

Page 102: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 6. IMPLEMENTACION Pagina 90

Figura 6.2: PCB multicapa implementado (Vista trasera).

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 90

Page 103: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

Capıtulo 7

Diseno de PCB de 2 capas paraDebugger

Para poder realizar pruebas sobre la placa es necesario disenar e implementar el cir-cuito debugger presentado en la seccion 3.12, este PCB se diseno con los mismos linea-mientos de compatibilidad electromagneticos del sistema de control embebido.

A continuacion, en las figuras 7.1 y 7.2 se muestran imagenes de los archivos de fabri-cacion del debugger.

Figura 7.1: Capa ((Top)) del debugger.

91

Page 104: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 7. DISENO DE PCB DE 2 CAPAS PARA DEBUGGER Pagina 92

Figura 7.2: Capa ((Bottom)) del debugger.

7.1. Debugger implementado

El debugger implementado se muestra en las figuras 7.3 y 7.4, para su fabricacion serecurrio al metodo de la transferencia de toner para un PCB de doble capa.

Figura 7.3: Vista superior de la placa Debugger.

7.2. Prueba de funcionamiento

El debugger disenado se conecto al sistema de control por el puerto JTAG de 10 pines.Empleando el IDE del proyecto CIAA, el cual esta basado en Eclipse, se cargo un ejemplobasico de prendido y apagado de leds.

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 92

Page 105: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

CAPITULO 7. DISENO DE PCB DE 2 CAPAS PARA DEBUGGER Pagina 93

Figura 7.4: Vista inferior de la placa Debugger.

Esta primera prueba fue exitosa, como se puede apreciar en la figura 7.5.

Figura 7.5: Sistema embebido conectado al debugger corriendo una aplicacion.

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 93

Page 106: Diseno e implementaci˜ on de circuito´ impreso multicapa ...
Page 107: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

Capıtulo 8

Conclusiones y trabajos futuros

Se logro el objetivo de disenar e implementar una placa de cuatro capas con conside-raciones de EMC. El sistema desarrollado es robusto y de menor tamano que el prototipofuncional al que se busca reemplazar.

Todo el desarrollo fue encaminado con reglas de diseno para preservar la EMC delPCB, cada regla empleada fue analizada y validada teoricamente. Tambien se pudo, me-diante el empleo de software de simulacion, identificar posibles frecuencias a las que estePCB podrıa presentar niveles de radiacion por encima de la norma FCC.

Queda como trabajo pendiente realizar pruebas de funcionamiento a los otros circuitosintegrados que componen el PCB; esto se realizara a medida que se desarrolle el firmwarepara cada periferico.Tambien queda como trabajo pendiente, la utilizacion de puntas decampo cercano para corroborar la validez de las simulaciones. El siguiente paso serıautilizar una antena omnidireccional para realizar pruebas midiendo la intensidad del campoelectrico a 3 m y verificar el cumplimiento de la norma FCC.

95

Page 108: Diseno e implementaci˜ on de circuito´ impreso multicapa ...
Page 109: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

Anexo A

Esquematicos

Se presenta en distintas paginas de tamano A3, los esquematicos generados con Al-tium.

97

Page 110: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

ANEXO A. ESQUEMATICOS Pagina 98

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

D D

C C

B B

A A

Title

Number RevisionSizeA3

Date: 15/12/2016 Sheet ofFile: D:\Academico\..\CIAA-mod.SchDoc Drawn By:

GPS_TXGPS_RX

SD_MOSISD_MISO

LED3LED4LED5

LED1

P0

P2P3

P1

LED0

LED2

XBEE_SLEEP

Gpio1GPIO1.SchDoc

U2_RXD

U2_TXDXBEE_RXXBEE_TX

SD_CDSD_SCLKSD_CS

PWM_OE

Gpio2GPIO2.SchDoc

3.3V ADCGND-A

Vi

SMPSSMPS.SchDoc

PWR/GNDPWR-GND.SchDoc

12 MHz

X1

20pFC17

20pFC18

SW1Switch SMD

GND

3.3V3.3V ADC

GND-A

LED1LED2

LED0

LED3

P0P1P2P3

LED4LED5

ONBOARD_IOONBOARD_IO

U2_TXD

U2_RXDRESET

DEBUGDEBUG.SchDoc

RESET P128

WAKEUP0 P130

RST/WUIC1O

LPC4337JBD144EADC1 P2ADC0/DAC P6

ADC7 P136

ADC4 P138ADC3 P139

ADC6 P142

ADC2 P143

ADC5 P144

ADCIC1P

LPC4337JBD144E

XTAL2 P13

XTAL1 P12

RTCX1 P125

RTCX2 P126

RTC_ALARM P129XTAL

IC1Q

LPC4337JBD144E

Cristal 12MHz, no se incluye cristal para RTC

Botón Reset con pull up y capacitor a masa.

XBEE_TX

GPS_RX

XBEE_RX

GPS_TX

SD_CD

SD_MISO

SD_SCLK

SD_MOSI

SD_CS

Vi

DP_OUT_A

Vi_S_OUT

I_S_OUT

XBEE_SLEEP

ONBOARD_PERONBOARD_PER.SchDoc I2C_SCL

I2C_SDAPWM_OE

I2C_IOI2C_IO.SchDoc

DAC

ADC_A

ADC_B

ADC_C

DAC

ADC_AADC_B

ADC_C

I2C_SCL

I2C_SDA

I2C_SCLI2C_SDA

GND-AGND

5V

3.3V ADC

3.3V

12TH2

MF-MSMF030-212

TH3

MF-MSMF030-2

1.2KR55

1.2KR56

1.2KR57

1.2KR581.2KR59

1.2KR60

470R61

USB_OTGUSB-OTG.SchDoc

100nFC19

100KR1

10MR37

D12LL4148

123456789

10111213141516

P1

conector 2x8 2.54mm

GND

GND

RST

D13

LL4148

RST

10KR62

3.3V

LGND

X1_P

X1_N

Juan José Julca Yaya

CIAA-Pilot TFG

PIC1701 PIC1702

COC17

PIC1801 PIC1802

COC18

PIC1901

PIC1902 COC19 PID1201

PID1202 COD12

PID1301 PID1302

COD13

PIIC10P128

PIIC10P130

COIC1O

PIIC10P2

PIIC10P6

PIIC10P136

PIIC10P138

PIIC10P139

PIIC10P142

PIIC10P143

PIIC10P144

COIC1P

PIIC10P12

PIIC10P13

PIIC10P125

PIIC10P126

PIIC10P129

COIC1Q

PIP101

PIP102

PIP103

PIP104

PIP105

PIP106

PIP107

PIP108 PIP109

PIP1010

PIP1011

PIP1012

PIP1013

PIP1014

PIP1015

PIP1016

COP1

PIR101

PIR102 COR1

PIR3701

PIR3702 COR37

PIR5501 PIR5502 COR55

PIR5601 PIR5602 COR56

PIR5701 PIR5702 COR57

PIR5801 PIR5802 COR58

PIR5901 PIR5902 COR59

PIR6001 PIR6002 COR60

PIR6101 PIR6102 COR61

PIR6201

PIR6202 COR62

PISW101

PISW102

COSW1

PITH201 PITH202

COTH2

PITH301 PITH302

COTH3

PIX101 PIX102

PIX103 PIX104 COX1

PIR102

PIR6202

PITH301

PIP1013

PITH202

PIIC10P138

PIR5801

NLADC0A

PIIC10P144

PIR5901

NLADC0B

PIIC10P142

PIR6001

NLADC0C

PIIC10P6

PIR6101

NLDAC

PIC1901

PIP101

PIP107

PIP1016

PISW102

PIP1015

PIP105 NLI2C0SCL PIP106 NLI2C0SDA

PIC1701

PIC1801

PIX102

PIX104

PID1202

PID1302 PIP1014

PIIC10P2 PIR5501

PIIC10P125

PIIC10P126

PIIC10P129

PIIC10P130

PIIC10P136

PIIC10P139 PIR5701

PIIC10P143 PIR5601

PIP102 PIR6002

PIP103 PIR5802

PIP104 PIR5902

PIP108 PIR6102 PIP109

PIP1010

PITH201

PIP1011

PIP1012

PITH302

PIR5502

PIR5602

PIR5702

PIR6201

PIC1902

PID1201

PID1301

PIIC10P128

PIR101

PISW101

NLRST

PIC1702

PIIC10P13 PIR3701 PIX101 NLX10N

PIC1802

PIIC10P12 PIR3702 PIX103

NLX10P

Figura A.1: Esquematico Principal.

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 98

Page 111: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

ANEXO A. ESQUEMATICOS Pagina 99

1

1

2

2

3

3

4

4

D D

C C

B B

A A

Title

Number RevisionSize

A4

Date: 15/12/2016 Sheet ofFile: D:\Academico\..\PWR-GND.SchDoc Drawn By:

GND

3.3V

3.3V

GND-A

3.3V ADC

GND-A

3.3V

VSSIO1P4

VDDIO1P5

VDDREG4 P25

VDDIO2P36

VSSIO2P40

VDDIO3P41

VDDREG3 P59

VDDIO4P71

VSSIO3P76

VDDIO5P77

VDDREG1 P94

VDDIO6P107

VSSIO4P109

VDDIO7P111 VBAT P127

VDDREG2 P131

VSSA P135

VDDA P137

VDDIO8P141

USB0_VDDA3V3_DRIVER P16

USB0_VDDA3V3 P17

USB0_VSSA_TERM P19

USB0_VSSA_REF P23

POWER/GNDIC1R

LPC4337JBD144E

100nFC1

100nFC2

100nFC3

100nFC4

100nFC5

100nFC6

100nFC7

100nFC8

100nFC9

100nFC10

100nFC11

100nFC12

100nFC13

10uFC14

100nFC15

100nFC16

SSTAR

LGND

LGND

LGND

LGND

Unión GND global y GND local en un solo punto

LGND

LGND

PWR-GND

Juan José Julca Yaya

PIC101 PIC102 COC1

PIC201 PIC202 COC2

PIC301 PIC302 COC3

PIC401 PIC402 COC4

PIC501 PIC502 COC5

PIC601 PIC602 COC6

PIC701 PIC702 COC7

PIC801 PIC802 COC8

PIC901 PIC902 COC9

PIC1001 PIC1002 COC10

PIC1101 PIC1102 COC11

PIC1201 PIC1202 COC12

PIC1301

PIC1302 COC13

PIC1401

PIC1402 COC14

PIC1501

PIC1502 COC15

PIC1601

PIC1602 COC16

PIIC10P4

PIIC10P5 PIIC10P16

PIIC10P17

PIIC10P19

PIIC10P23

PIIC10P25

PIIC10P36

PIIC10P40

PIIC10P41

PIIC10P59

PIIC10P71

PIIC10P76

PIIC10P77

PIIC10P94

PIIC10P107

PIIC10P109

PIIC10P111

PIIC10P127

PIIC10P131

PIIC10P135

PIIC10P137

PIIC10P141

COIC1R

PIS01

PIS02

COS

PIC102

PIC202

PIC302

PIC402

PIC502

PIC602

PIC702

PIC802 PIC901

PIC1001

PIC1101

PIC1201

PIC1502 PIC1602 PIIC10P5 PIIC10P16

PIIC10P17

PIIC10P25

PIIC10P36

PIIC10P41

PIIC10P59

PIIC10P71

PIIC10P77

PIIC10P94

PIIC10P107

PIIC10P111

PIIC10P131

PIIC10P141

PIC1302 PIC1402

PIIC10P137

PIS02

PIC1301 PIC1401

PIIC10P135

PIC101

PIC201

PIC301

PIC401

PIC501

PIC601

PIC701

PIC801 PIC902

PIC1002

PIC1102

PIC1202

PIC1501 PIC1601

PIIC10P4

PIIC10P19

PIIC10P23

PIIC10P40

PIIC10P76

PIIC10P109

PIS01

PIIC10P127

Figura A.2: PWR-GND.

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 99

Page 112: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

ANEXO A. ESQUEMATICOS Pagina 100

1

1

2

2

3

3

4

4

D D

C C

B B

A A

Title

Number RevisionSize

A4

Date: 15/12/2016 Sheet ofFile: D:\Academico\..\SMPS.SchDoc Drawn By:

D2

P6SM

B11

CAT

3

D1

MURS320T3

1 2

TH1

Vin

VoGnd

ON/OFF

FB

IC6

LM2596SX-5.0Z1

SMA

Z5V

6GND

VoVin

IC7

NCP1117

FB3

MI0805M221R-10

3.3V ADC

GND-A

FB4

MI0805M221R-10

Vin

GND

TB1

10uFTantalum

C22

GNDGND

GND

3.3V

5V

Vi

D4

1KR2

D3

B540C330uFC21

47uH

L1

470uF

C20

Regulación conmutada de Bateria a 5V

Regulación lineal de 5V a 3.3VFiltrado adicional para ADC

GND

J1

JUMPER

3.3V

GND

100nFC25

100nFC23

100nFC24

100nFC26

100nFC27

Global bypass

SMPS

Juan José Julca Yaya

PIC2001

PIC2002

COC20

PIC2101

PIC2102 COC21

PIC2201

PIC2202 COC22

PIC2301

PIC2302 COC23

PIC2401

PIC2402 COC24

PIC2501

PIC2502 COC25

PIC2601

PIC2602 COC26

PIC2701

PIC2702 COC27

PID101 PID102

COD1

PID201

PID202

COD2

PID301

PID302 COD3

PID401

PID402 COD4

PIFB301 PIFB302

COFB3

PIFB401 PIFB402

COFB4

PIIC601

PIIC602

PIIC603

PIIC604

PIIC605

COIC6

PIIC701

PIIC702 PIIC703

COIC7

PIJ101 PIJ102

COJ1

PIL101 PIL102

COL1

PIR201

PIR202 COR2

PITB101

PITB102

COTB1 PITH101 PITH102

COTH1

PIZ101

PIZ102 COZ1

PIC2201

PIC2302 PIC2402 PIC2502 PIC2602 PIC2702

PIFB301 PIIC702

PIC2101 PID401

PIIC604

PIIC703

PIJ102

PIL102

PIZ102 PIC2002

PIC2102 PIC2202

PIC2301 PIC2401 PIC2501 PIC2601 PIC2701

PID202 PID301

PIFB401

PIIC603

PIIC605

PIIC701 PIR201

PITB102

PIZ101

PIC2001 PID201

PIIC601

PIJ101

PITH102 PID101 PITB101

POVi

PID102 PITH101

PID302

PIIC602 PIL101

PID402 PIR202

PIFB302 PO303V ADC

PIFB402 POGND0A

PO303V ADC

POGND0A

POVI

Figura A.3: Fuente Conmutada.

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 100

Page 113: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

ANEXO A. ESQUEMATICOS Pagina 101

1

1

2

2

3

3

4

4

D D

C C

B B

A A

Title

Number RevisionSize

A4

Date: 15/12/2016 Sheet ofFile: D:\Academico\..\USB-OTG.SchDoc Drawn By:

GND

USB0_DP P18

USB0_DM P20

USB0_VBJUS P21

USB0_ID P22

USB0_RREF P24

USB0IC1L

LPC4337JBD144E

USB1_DP P89

USB1_DM P90

USB1IC1M

LPC4337JBD144E

CLK0 P45

CLK2 P99

CLOCKIC1J

LPC4337JBD144E

12K1%

R3

Juan José Julca Yaya

USB-OTG

PIIC10P45

PIIC10P99

COIC1J

PIIC10P18

PIIC10P20

PIIC10P21

PIIC10P22

PIIC10P24

COIC1L

PIIC10P89

PIIC10P90

COIC1M

PIR301

PIR302 COR3

PIR301

PIIC10P18

PIIC10P20

PIIC10P21

PIIC10P22

PIIC10P24

PIR302

PIIC10P45

PIIC10P89

PIIC10P90

PIIC10P99

Figura A.4: USB-OTG.

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 101

Page 114: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

ANEXO A. ESQUEMATICOS Pagina 102

1

1

2

2

3

3

4

4

D D

C C

B B

A A

Title

Number RevisionSize

A4

Date: 15/12/2016 Sheet ofFile: D:\Academico\..\ONBOARD_PER.SchDocDrawn By:

3.3V1

Dout2

Din/ (conf)3

DO84

RESET5

PWM0/RSSI6

PWM17

RESERVED8

DTR/SLEEP/DI89

GND10 AD4/DIO4 11CTS/DIO7 12

ON/SLEEP 13Vref 14

AD5/DIO5 15RTS / AD6/DIO6 16

AD3/DIO3 17AD2/DIO2 18AD1/DIO1 19AD0/DIO0 20

IC12

XB24-API-001

XBEE_RX

XBEE_TX

XBEE_RX

XBEE_TX3.3V

GND

GND1

VCC (5V)2

RX3

TX4

GND5

1PPS6

IC13

GPS connector

GND

5V

GPS_RXGPS_TX

GPS_RX

GPS_TX

GPS_RX

GPS_TX XBEE_RXXBEE_TX

GND

SD_CS

SD_MOSI

3.3VSD_SCLK

SD_MISO

FB5

MI0805M221R-10

SD_CD SD_CD

SD_MOSI

SD_MISO

SD_MOSI

SD_MISO

SD_SCLKSD_SCLK GND

GND

GND

10uFC48

10uFC46

10uFC47

10KR31

DAT2 1

CD/DAT3 2

CMD 3

VDD 4

CLK 5

VSS 6

DAT0 7

DAT1 8

9 9

SS

WP WP

CD CD

HH

P6SD CARD 3M

GND

3.3V

10KR32

SD_CSSD_CS

SD_CD N/C 1VS 2

GND 3Vout 4N/C5

N/C6

N/C7

N/C8

IC15

MPXV7002DPT1 100nFC50 C51

1uF

GND

5V

GND

DP_OUT_A

DP_OUT

2

311

411

IC16ALM324ADR

5

672

411

IC16BLM324ADR

810

9

3

411

IC16CLM324ADR

1412

13

4

411

IC16DLM324ADR

10KR42

5V

10KR43

GND

5V

GND

2.5V

2.5V

DP_OUT10K

R44

10K

R45

GND

C5210nF

GND

DP_OUT_A

DP_OUT_A

56K

R46

56K

R47

100

R48

Vi Vi

Vi

4.7KR50

33KR49

GND

C53100nF

1K

R51

GND

Vi_S_OUT

Vi_S_OUTVi_S_OUT

10KR52

10KR53GND

GND

100

R54

GND

C5410nF

I_S_OUT

I_S_OUTI_S_OUT

GND

GND

GND

5V

5V

5V

100nFC44

100nFC43

100nFC45

XBEE RF MODULE GPS INPUT 5VCC (3.3V IN OUT LEVEL) CONECTOR SENSOR DE CORRIENTE

SD CARD (SPI) DIFFERENTIAL PRESSURE MODULE BATERY VOLTAGE CHECK

123

P11

Headerx3

5V

XBEE_SLEEPXBEE_SLEEP

XBEE_SLEEP

Juan José Julca Yaya

ONBOARD_PER

4 10

C64

10nF

PIC4301

PIC4302 COC43

PIC4401

PIC4402 COC44

PIC4501

PIC4502 COC45

PIC4601

PIC4602 COC46

PIC4701

PIC4702 COC47

PIC4801

PIC4802 COC48

PIC5001

PIC5002 COC50

PIC5101

PIC5102 COC51

PIC5201

PIC5202 COC52

PIC5301

PIC5302 COC53

PIC5401

PIC5402 COC54

PIC6401 PIC6402

COC64

PIFB501 PIFB502

COFB5

PIIC1201

PIIC1202

PIIC1203

PIIC1204

PIIC1205

PIIC1206

PIIC1207

PIIC1208

PIIC1209

PIIC12010 PIIC12011

PIIC12012

PIIC12013

PIIC12014

PIIC12015

PIIC12016

PIIC12017

PIIC12018

PIIC12019

PIIC12020

COIC12

PIIC1301

PIIC1302

PIIC1303

PIIC1304

PIIC1305

PIIC1306

COIC13

PIIC1501

PIIC1502

PIIC1503

PIIC1504 PIIC1505

PIIC1506

PIIC1507

PIIC1508

COIC15

PIIC1601

PIIC1602

PIIC1603

PIIC1604

PIIC16011 COIC16A

PIIC1604

PIIC1605

PIIC1606

PIIC1607

PIIC16011

COIC16B

PIIC1604 PIIC1608

PIIC1609

PIIC16010

PIIC16011 COIC16C

PIIC1604

PIIC16011 PIIC16012

PIIC16013

PIIC16014

COIC16D

PIP601

PIP602

PIP603

PIP604

PIP605

PIP606

PIP607

PIP608

PIP609

PIP60CD

PIP60H PIP60S PIP60WP

COP6

PIP1101

PIP1102

PIP1103

COP11

PIR3101

PIR3102 COR31

PIR3201

PIR3202 COR32 PIR4201

PIR4202 COR42

PIR4301

PIR4302 COR43

PIR4401 PIR4402

COR44

PIR4501 PIR4502

COR45

PIR4601 PIR4602

COR46

PIR4701 PIR4702

COR47

PIR4801 PIR4802

COR48

PIR4901

PIR4902 COR49

PIR5001

PIR5002 COR50

PIR5101 PIR5102

COR51

PIR5201

PIR5202 COR52

PIR5301

PIR5302 COR53

PIR5401 PIR5402

COR54

PIIC1601

PIIC1602

PIR4402 NL205V

PIC4402

PIC4502

PIC4702

PIC4802

PIIC1201

PIP604 PIR3102

PIR3202

PIC4302 PIC4602

PIC5002 PIC5102

PIIC1302

PIIC1502 PIIC1604

PIP1101

PIR4202 PIIC1504

PIR4502 NLDP0OUT PIC5202

PIR4802 NLDP0OUT0A

PODP0OUT0A

PIC4301

PIC4401

PIC4501

PIC4601

PIC4701

PIC4801

PIC5001 PIC5101

PIC5201

PIC5301

PIC5401

PIFB502

PIIC12010

PIIC1301

PIIC1305

PIIC1501

PIIC1503

PIIC1505

PIIC1506

PIIC1507

PIIC1508

PIIC16011

PIP603

PIP606

PIP60WP

PIP1103

PIR4301

PIR4701

PIR5001

PIR5301

PIIC1303 NLGPS0RX

POGPS0RX

PIIC1304 NLGPS0TX

POGPS0TX

PIIC16013

PIIC16014

NLI0S0OUT

POI0S0OUT

PIC5302 PIIC16010 PIR5102

PIC5402 PIIC16012 PIR5402

PIC6401

PIIC1607

PIR4602

PIR4801

PIC6402

PIIC1606 PIR4401

PIR4601

PIFB501

PIP60H PIP60S

PIIC1204

PIIC1205

PIIC1206

PIIC1207

PIIC1208

PIIC12011

PIIC12012

PIIC12013

PIIC12014

PIIC12015

PIIC12016

PIIC12017

PIIC12018

PIIC12019

PIIC12020

PIIC1306

PIIC1603

PIR4201

PIR4302

PIIC1605

PIR4501

PIR4702

PIP608

PIP609

PIP1102

PIR5202

PIR4901

PIR5002 PIR5101

PIR5201

PIR5302 PIR5401

PIP60CD PIR3201 NLSD0CD

POSD0CD

PIP601

PIR3101

NLSD0CS

POSD0CS

PIP607 NLSD0MISO

POSD0MISO

PIP602 NLSD0MOSI

POSD0MOSI

PIP605 NLSD0SCLK

POSD0SCLK

PIR4902 NLVi

POVi

PIIC1608

PIIC1609

NLVi0S0OUT

POVi0S0OUT

PIIC1202 NLXBEE0RX

POXBEE0RX

PIIC1209 NLXBEE0SLEEP

POXBEE0SLEEP

PIIC1203 NLXBEE0TX

POXBEE0TX

PODP0OUT0A

POGPS0RX

POGPS0TX

POI0S0OUT

POSD0CD

POSD0CS

POSD0MISO

POSD0MOSI

POSD0SCLK

POVI

POVI0S0OUT

POXBEE0RX

POXBEE0SLEEP

POXBEE0TX

Figura A.5: ONBOARD PERIPHERALS.

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 102

Page 115: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

ANEXO A. ESQUEMATICOS Pagina 103

1

1

2

2

3

3

4

4

D D

C C

B B

A A

Title

Number RevisionSize

A4

Date: 15/12/2016 Sheet ofFile: D:\Academico\..\DEBUG.SchDoc Drawn By:

3.3V1 TMS 2

G3 TCK 4

G5 TDO 6

X7 TDI 8

G9 RESET 10

J-TAG

P3

RESET

TCK

TDI

TDO

TMS

3.3V

GND

U2_RXD

U2_TXD

U2_RXD

U2_TXD

U2_RXDU2_TXD

TRST

TCK

TDI

TDO

TMS

3.3V

TDIP26

TCKP27

DBGENP28

TRSTP29

TMSP30

TDOP31

DEBUGIC1K

LPC4337JBD144E123

P8

Headerx3

TRST

JTAG 1.27mm pitch 2x5

HEADER 3X1 2.54mm TEST RESET Y PUERTO SERIE

10K

R4

RESET RESET

DEBUG

Juan José Julca Yaya

PIIC10P26

PIIC10P27

PIIC10P28

PIIC10P29

PIIC10P30

PIIC10P31

COIC1K

PIP301 PIP302

PIP303 PIP304

PIP305 PIP306

PIP307 PIP308

PIP309 PIP3010

COP3

PIP801

PIP802

PIP803

COP8

PIR401 PIR402

COR4 PIP301

PIR401 PIP303

PIP305

PIP309

PIIC10P28 PIR402

PIP307

PIP3010 NLRESET

PORESET

PIIC10P27

PIP304 NLTCK

PIIC10P26

PIP308 NLTDI

PIIC10P31

PIP306 NLTDO

PIIC10P30

PIP302 NLTMS

PIIC10P29

PIP803 NLTRST

PIP801 NLU20RXD

POU20RXD

PIP802 NLU20TXD

POU20TXD

PORESET

POU20RXD

POU20TXD

Figura A.6: DEBUG.

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 103

Page 116: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

ANEXO A. ESQUEMATICOS Pagina 104

1

1

2

2

3

3

4

4

D D

C C

B B

A A

Title

Number RevisionSize

A4

Date: 15/12/2016 Sheet ofFile: D:\Academico\..\GPIO1.SchDoc Drawn By:

P0_0 P32

P0_1 P34

P0IC1A

LPC4337JBD144E

P1_5 P48

P1_6 P49

P1_7 P50

P1_8 P51

P1_9 P52

P1_10 P53

P1_11 P55

P1_13 P60

P1_14 P61

P1_15 P62

P1_16 P64

P1_17 P66

P1_18 P67

P1_19 P68

P1_20 P70

P1_12 P56

P1_0 P38

P1_1 P42

P1_2 P43

P1_3 P44

P1_4 P47

P1IC1B

LPC4337JBD144E

P2_0 P75

P2_1 P81

P2_2 P84

P2_3 P87

P2_4 P88

P2_5 P91

P2_6 P95

P2_7 P96

P2_8 P98

P2_9 P102

P2_10 P104

P2_11 P105

P2_12 P106

P2_13 P108

P2IC1C

LPC4337JBD144E

P3_0 P112

P3_1 P114

P3_2 P116

P3_3 P118

P3_4 P119

P3_5 P121

P3_6 P122

P3_7 P123

P3_8 P124

P3IC1D

LPC4337JBD144E

GPS_RX

GPS_TX

GPS_RX

GPS_TX

GPS_RX

GPS_TX

SD_MOSI

SD_MISO

SD_MOSI

SD_MISO

SD_MISO

SD_MOSI

P0

P1

P2

P3

P0

P1

P2

P3

P0

P1

P2

P3

LED0

LED1

LED2

LED3

LED0

LED1

LED2

LED3

LED4 LED4

LED0

LED1

LED2

LED5 LED5

LED3

LED4

LED5

XBEE_SLEEPXBEE_SLEEP

XBEE_SLEEP

GPIO1

Juan José Julca Yaya

PIIC10P32

PIIC10P34

COIC1A

PIIC10P38

PIIC10P42

PIIC10P43

PIIC10P44

PIIC10P47

PIIC10P48

PIIC10P49

PIIC10P50

PIIC10P51

PIIC10P52

PIIC10P53

PIIC10P55

PIIC10P56

PIIC10P60

PIIC10P61

PIIC10P62

PIIC10P64

PIIC10P66

PIIC10P67

PIIC10P68

PIIC10P70

COIC1B

PIIC10P75

PIIC10P81

PIIC10P84

PIIC10P87

PIIC10P88

PIIC10P91

PIIC10P95

PIIC10P96

PIIC10P98

PIIC10P102

PIIC10P104

PIIC10P105

PIIC10P106

PIIC10P108

COIC1C

PIIC10P112

PIIC10P114

PIIC10P116

PIIC10P118

PIIC10P119

PIIC10P121

PIIC10P122

PIIC10P123

PIIC10P124

COIC1D

PIIC10P87 NLGPS0RX

POGPS0RX

PIIC10P88 NLGPS0TX

POGPS0TX

PIIC10P75 NLLED0

POLED0

PIIC10P81 NLLED1

POLED1

PIIC10P84 NLLED2

POLED2

PIIC10P105 NLLED3

POLED3

PIIC10P106 NLLED4

POLED4

PIIC10P108 NLLED5

POLED5

PIIC10P32

PIIC10P34

PIIC10P48

PIIC10P50

PIIC10P51

PIIC10P52

PIIC10P53

PIIC10P55

PIIC10P56

PIIC10P60

PIIC10P61

PIIC10P62

PIIC10P64

PIIC10P66

PIIC10P67

PIIC10P68

PIIC10P91

PIIC10P95

PIIC10P96

PIIC10P98

PIIC10P102

PIIC10P104

PIIC10P112

PIIC10P114

PIIC10P116

PIIC10P118

PIIC10P119

PIIC10P121

PIIC10P122

PIIC10P123

PIIC10P124

PIIC10P38 NLP0

POP0

PIIC10P42 NLP1

POP1

PIIC10P43 NLP2

POP2

PIIC10P49 NLP3

POP3

PIIC10P44 NLSD0MISO

POSD0MISO

PIIC10P47 NLSD0MOSI

POSD0MOSI

PIIC10P70 NLXBEE0SLEEP

POXBEE0SLEEP

POGPS0RX

POGPS0TX

POLED0

POLED1

POLED2

POLED3

POLED4

POLED5

POP0

POP1

POP2

POP3

POSD0MISO

POSD0MOSI

POXBEE0SLEEP

Figura A.7: GPIO I.

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 104

Page 117: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

ANEXO A. ESQUEMATICOS Pagina 105

1

1

2

2

3

3

4

4

D D

C C

B B

A A

Title

Number RevisionSize

A4

Date: 15/12/2016 Sheet ofFile: D:\Academico\..\GPIO2.SchDoc Drawn By:

U2_RXD

U2_TXD

P9_5 P69

P9_6 P72

PF4 P120

P9-PFIC1I

LPC4337JBD144E

P7_0 P110

P7_1 P113

P7_2 P115

P7_3 P117

P7_4 P132

P7_5 P133

P7_6 P134

P7_7 P140

P7IC1H

LPC4337JBD144E

P5_0 P37

P5_1 P39

P5_2 P46

P5_3 P54

P5_4 P57

P5_5 P58

P5_6 P63

P5_7 P65

P5IC1F

LPC4337JBD144E

P6_0 P73

P6_1 P74

P6_2 P78

P6_3 P79

P6_4 P80

P6_5 P82

P6_6 P83

P6_7 P85

P6_8 P86

P6_9 P97

P6_10 P100

P6_11 P101

P6_12 P103

P6IC1G

LPC4337JBD144E

P4_0 P1

P4_1 P3

P4_3 P7

P4_2 P8

P4_4 P9

P4_5 P10

P4_6 P11

P4_7 P14

P4_8 P15

P4_9 P33

P4_10 P35

P4IC1E

LPC4337JBD144E

XBEE_RX

XBEE_TX

XBEE_RX

XBEE_TX

XBEE_RX

XBEE_TX

U2_TXD

U2_RXD

U2_TXD

U2_RXD

SD_SCLK SD_SCLK

SD_SCLK

SD_CD SD_CD

SD_CD

SD_CSSD_CS

SD_CS

PWM_OE PWM_OEPWM_OE

RAD_CH2

RAD_CH1

RAD_CH3

RAD_CH4

RAD_CH5

RAD_CH6

RAD_CH7

RAD_CH8

RAD_CH2RAD_CH1

RAD_CH3RAD_CH4RAD_CH5RAD_CH6RAD_CH7RAD_CH8 DIG_IO1

DIG_IO2DIG_IO3DIG_IO4DIG_IO5DIG_IO6DIG_IO7DIG_IO8

DIG_IO1

DIG_IO2

DIG_IO3

DIG_IO4

DIG_IO5

DIG_IO6

DIG_IO7

DIG_IO8

123456789

10111213141516

P10

conector 2x8 2.54mm

GPIO2

Juan José Julca Yaya

PIIC10P1

PIIC10P3

PIIC10P7

PIIC10P8

PIIC10P9

PIIC10P10

PIIC10P11

PIIC10P14

PIIC10P15

PIIC10P33

PIIC10P35

COIC1E

PIIC10P37

PIIC10P39

PIIC10P46

PIIC10P54

PIIC10P57

PIIC10P58

PIIC10P63

PIIC10P65

COIC1F

PIIC10P73

PIIC10P74

PIIC10P78

PIIC10P79

PIIC10P80

PIIC10P82

PIIC10P83

PIIC10P85

PIIC10P86

PIIC10P97

PIIC10P100

PIIC10P101

PIIC10P103

COIC1G

PIIC10P110

PIIC10P113

PIIC10P115

PIIC10P117

PIIC10P132

PIIC10P133

PIIC10P134

PIIC10P140 COIC1H

PIIC10P69

PIIC10P72

PIIC10P120

COIC1I

PIP1001

PIP1002

PIP1003

PIP1004

PIP1005

PIP1006

PIP1007

PIP1008 PIP1009

PIP10010

PIP10011

PIP10012

PIP10013

PIP10014

PIP10015

PIP10016

COP10

PIIC10P1

PIP1001

NLDIG0IO1

PIIC10P3

PIP1002

NLDIG0IO2

PIIC10P8

PIP1003

NLDIG0IO3

PIIC10P7

PIP1004

NLDIG0IO4

PIIC10P9

PIP1005

NLDIG0IO5

PIIC10P10

PIP1006

NLDIG0IO6

PIIC10P11

PIP1007

NLDIG0IO7

PIIC10P14 PIP1008 NLDIG0IO8

PIIC10P33

PIIC10P37

PIIC10P39

PIIC10P46

PIIC10P54

PIIC10P57

PIIC10P58

PIIC10P63

PIIC10P65

PIIC10P69

PIIC10P72 PIIC10P78

PIIC10P79

PIIC10P83

PIIC10P110

PIIC10P117

PIIC10P133

PIIC10P134

PIIC10P140

PIIC10P132 NLPWM0O\E\

POPWM0O\E\

PIIC10P73

PIP1009 NLRAD0CH1

PIIC10P74

PIP10010 NLRAD0CH2

PIIC10P85

PIP10011 NLRAD0CH3

PIIC10P86

PIP10012 NLRAD0CH4

PIIC10P97

PIP10013 NLRAD0CH5

PIIC10P100

PIP10014 NLRAD0CH6

PIIC10P101

PIP10015 NLRAD0CH7

PIIC10P103

PIP10016 NLRAD0CH8

PIIC10P35 NLSD0CD

POSD0CD

PIIC10P15 NLSD0CS

POSD0CS

PIIC10P120 NLSD0SCLK

POSD0SCLK

PIIC10P115 NLU20RXD

POU20RXD

PIIC10P113 NLU20TXD

POU20TXD

PIIC10P82 NLXBEE0RX

POXBEE0RX

PIIC10P80 NLXBEE0TX

POXBEE0TX

POPWM0O\E\

POSD0CD

POSD0CS

POSD0SCLK

POU20RXD

POU20TXD

POXBEE0RX

POXBEE0TX

Figura A.8: GPIO II.

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 105

Page 118: Diseno e implementaci˜ on de circuito´ impreso multicapa ...
Page 119: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

Anexo B

Simulacion con 20 inversores

Se provee en al figura B.1 la simulacion en LTSpice de la fuente de alimentacion afec-tada por 20 inversores.

107

Page 120: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

ANEXO B. SIMULACION CON 20 INVERSORES Pagina 108

V1

3.3

L1

5.6nR1

3.3k

U1

NMW=1u L=0.35u

U2

PM W=1u L=0.35u

U3

NMW=1u L=0.35u

U4

PM W=1u L=0.35u

U5

NMW=1u L=0.35u

U6

PM W=1u L=0.35u

U7

NMW=1u L=0.35u

U8

PM W=1u L=0.35u

U9

NMW=1u L=0.35u

U10

PM W=1u L=0.35u

U11

NMW=1u L=0.35u

U12

PM W=1u L=0.35u

U13

NMW=1u L=0.35u

U14

PM W=1u L=0.35u

U15

NMW=1u L=0.35u

U16

PM W=1u L=0.35u

U17

NMW=1u L=0.35u

U18

PM W=1u L=0.35u

U19

NMW=1u L=0.35u

U20

PM W=1u L=0.35u

L3

1n

L2

0.5n L4

3n

L5

0.5n

L6

2n

U21

NMW=1u L=0.35u

U22

PM W=1u L=0.35u

U23

NMW=1u L=0.35u

U24

PM W=1u L=0.35u

U25

NMW=1u L=0.35u

U26

PM W=1u L=0.35u

U27

NMW=1u L=0.35u

U28

PM W=1u L=0.35u

U29

NMW=1u L=0.35u

U30

PM W=1u L=0.35u

U31

NMW=1u L=0.35u

U32

PM W=1u L=0.35u

U33

NMW=1u L=0.35u

U34

PM W=1u L=0.35u

U35

NMW=1u L=0.35u

U36

PM W=1u L=0.35u

U37

NMW=1u L=0.35u

U38

PM W=1u L=0.35u

U39

NMW=1u L=0.35u

U40

PM W=1u L=0.35u

L7

1n

L8

0.5n L9

3n

L10

0.5n

L11

2n

C1

10µ

C2

100n

PULSE(0 3.3 0 trise trise ton tp 5)V2

PULSE(0 3.3 12.71n trise trise ton tp 5)V3

PULSE(0 3.3 2.9n trise trise ton tp 5)V4

PULSE(0 3.3 5.7n trise trise ton tp 5)V5

PULSE(0 3.3 8.7n trise trise ton tp 5)V6

VDD

VDD

VDD

VDD

VDD

Gat

e

Gat

e

Gat

e2

Gat

e2

Gat

e3

Gat

e3

Gat

e4

Gat

e4

VDD

Gat

e5G

ate5

VDD

VDD

VDD

VDD

VDD

VDD

VDD

VDD

VDD

Gat

e

Gat

e

Gat

e2

Gat

e2

Gat

e3

Gat

e3

Gat

e4

Gat

e4

VDD

Gat

e5G

ate5

VDD

VDD

VDD

VDD

VDD

Gate

Gate2

Gate3

Gate4

Gate5

.tran 0 500n 0 0.002n

.param trise=10n

.param tp=100n

.param ton=40n

se simuló combinaciones de>>con cap C1 ceramico 10u: 0.6ohm esr y 1050pH esL >> con cap C2 ceramico 100n0,314ohm esr y 850pH esl

--- D:\Academico\01SVN-IUA\Trunk\HARDWARE\CIAA-mod\SIM\cmos_inverter\hf\cmos_60_hf4.asc ---

Figura B.1: Simulacion con 20 inversores.

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 108

Page 121: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

Bibliografıa

[1] C. Alberoni, “Diseno y desarrollo de autopiloto para paracaıda implementado enComputadora Industrial Abierta Argentina,” 2016, Instituto Universitario Aeronautico.

[2] “EDU-CIAA-NXP,” 2014, [Online; accedido el 5 de diciembre de 2016]. Disponible en:http://proyecto-ciaa.com.ar/devwiki/doku.php?id=desarrollo:edu-ciaa:edu-ciaa-nxp

[3] H. Ott, Electromagnetic Compatibility Engineering. Hoboken, New Jersey: Wiley,2009.

[4] F. C. C. 15.109, “Radiated emission limits.” Disponible en: https://www.law.cornell.edu/cfr/text/47/15.109

[5] J. D. Kraus, Antennas. New York: McGraw-Hill, 1988.

[6] E. Hartner, “Beyond the Books - EMC, T-Lines & PCBs,” 2014, [Online; accedido el26 de noviembre de 2016]. Disponible en: http://slideplayer.com/slide/9138212/

[7] C. Bowick, RF Circuit design. Burlington: Newnes, 2008.

[8] J. Eco y A. Limjoco, “Ferrite bead Demystified,” ANALOG DEVICES, Application NoteAN-1368, 2011.

[9] R. Arora, “I2C Bus Pullup Resistor Calculation,” Texas Instrument, Application ReportSLVA689, 2015.

[10] G. Dash, “Minimizing Ringing and Crosstalk,” 1998, [Online; accedido el 20de noviembre de 2016]. Disponible en: http://www.glendash.com/Dash of EMC/Ringing and Crosstalk/Ringing and Crosstalk.htm

[11] R. J. D. Anish, G. Kranthi Kumar, “Minimization of Crosstalk in High SpeedPCB,” 2010, [Online; accedido el 21 de noviembre de 2016]. Disponible en:http://www.wseas.us/e-library/conferences/2010/Cambridge/ICNVS/ICNVS-18.pdf

109

Page 122: Diseno e implementaci˜ on de circuito´ impreso multicapa ...

BIBLIOGRAFIA Pagina 110

[12] D. Berg, M. Tanaka, Y. Ji, X. Ye, L. Drewnieak, T. Hubing, R. DuBroff, y T. V. Doren,“FDTD and FEM/OM Modeling of EMI Resulting from a Trace Near a PCB Edge,” enProceedings of the IEEE International Symposium on Electromagnetic Compatibility.,2000, pp. 135–140.

[13] V. Kraz, “Near-Field Methods of Locating EMI Sources,” en Engineering Magazine.,1995.

[14] L. W. Ritchey, Right the First Time a Practical Handbook on High Speed Pcb andSystem Design 1. California: Speeding Edge, 2003.

[15] E. B. Joffe, Grounds for grounding - A Circuit to System Handbook. New Jersey:Wiley, 2010.

[16] T. Williams, The Circuit Designer’s Companion. Burlington: Newnes, 2005.

[17] S. K. Das y V. H. Shah, “Emission reduction techniques for printed circuit board,” enInternational Journal on recent and Innovation Trends in Computing and Communica-tion Vol.3 Issue 4., 2015.

[18] I. Kobeissi, “Noise reduction techniques for microcontroller-based systems,” enAN1705/D, 2004.

Julca Yaya, Juan Jose Diciembre de 2016 Pagina 110