Top Banner
Copyright by Hiroko Kawaguchi Warshauer 2011
225

Copyright by Hiroko Kawaguchi Warshauer 2011

Dec 31, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Copyright by Hiroko Kawaguchi Warshauer 2011

Copyright

by

HirokoKawaguchiWarshauer

2011

Page 2: Copyright by Hiroko Kawaguchi Warshauer 2011

TheDissertationCommitteeforHirokoKawaguchiWarshauerCertifiesthat

thisistheapprovedversionofthefollowingdissertation:

TheRoleofProductiveStruggleinTeachingandLearning

MiddleSchoolMathematics

Committee:

SusanEmpson,Supervisor

JamesBarufaldi

EdmundT.Emmer

AnthonyPetrosino

PhilipUriTreisman

Page 3: Copyright by Hiroko Kawaguchi Warshauer 2011

TheRoleofProductiveStruggleinTeachingandLearning

MiddleSchoolMathematics

by

HirokoKawaguchiWarshauer,B.A.;M.S.

Dissertation

PresentedtotheFacultyoftheGraduateSchoolof

TheUniversityofTexasatAustin

inPartialFulfillment

oftheRequirements

fortheDegreeof

DoctorofPhilosophy

TheUniversityofTexasatAustin

December2011

Page 4: Copyright by Hiroko Kawaguchi Warshauer 2011

Dedication

TomyhusbandMaxandchildrenAmy,Nathan,Lisa,andJeremy

Page 5: Copyright by Hiroko Kawaguchi Warshauer 2011

v

Acknowledgements

Iamdeeplygratefultomydissertationadvisor,SusanEmpson,who

suggestedthetopicofmydissertationandwhoprovidedgentleguidance,keen

insights,andinfinitepatienceoverthecourseofmyresearchandwriting.Ithank

herforsupportingmylearningasIexperiencedtheverytopicIchosetostudy:

productivestruggle.

Iamalsogratefultomycommitteemembers,UriTreisman,Anthony

Petrosino,EdmundEmmer,andJamesBarufaldiforallIlearnedintheirclassesat

theUniversityofTexas.Throughtheirmasterfulteaching,Igainedmeaningful

insightsintolearning,teaching,professionaldevelopment,researchdesigns,andthe

challengesinherentineducation.ThefeedbackIreceivedfromthemwas

invaluable.

Iwanttoexpressmyappreciationtothesixteacherswhoallowedmeto

observetheirclassesandwhosharedwithmetheirreflectionsofteaching.Ihave

comeawaywithadmirationandrespectfortheirdepthofknowledge,creativityin

teaching,andthekindnessandrespecttheydemonstratetotheirstudents.

MythankstoMichaelKellermanwhoreadandcopyeditedthefinaldraftand

enhanceditsreadabilityandtoNamakshiNamakshiforherhelpincreating

graphicsandreadingdrafts.

Page 6: Copyright by Hiroko Kawaguchi Warshauer 2011

vi

MychairandcolleaguesatTexasStateUniversity‐SanMarcoswerea

constantsourceofsupportandencouragement.TocolleaguesTerryMcCabefor

sharinghisloveofteachingandracquetball,toAlejandraSortofortranslatingforms

intoSpanishonamoment’snotice,toAlexWhite,SamuelObara,StanWayment,

BryanNankervis,andallthoseIranintointhehalls,myappreciationforaskingand

gentlyremindingmetokeepfocusedonmakingprogress.

EachsummerIfoundrenewalontheNorthCarolinabeachsurroundedby

Elaine,mymother‐in‐law,andmyhusband’ssiblings,David,Tom,Leo,Susanand

theirfamilies.Theirlove,encouragement,andbrightoptimisminthepowerthat

individualscanaccomplishgreatthingshavealwaysbeenasourceofinspiration.

TocousinSarahWarshauerFreedman,thankyouforthewalkonthe

CarolinabeachjustasIwasponderingaboutadissertationtopic.Ourconversation

thenandyoursuggestionssinceaddedtowhathascometobe.Tomybrothers,

YoshihiroandJiroKawaguchi,thankyouforyourunconditionallove.Mydear

friends,MimiRosenbush,LisaLefkowitz,LillianDegand,DiannMcCabe,Deanna

Badgett,RobertGonzalez,andStephenRedfield,thankyouforyourfriendship

whichhasbeenconstantandenduring.

Tomychildren,Amy,Nathan,Lisa,andJeremy,thankyouforbringingsuch

joy,laughter,andrichnessintomylife.IamgratifiedasIseeyoupursuingyour

dreamswiththesamedetermination,enthusiasm,caring,andsenseofhumorthat

youhavepossessedsinceyouwereveryyoung.

Page 7: Copyright by Hiroko Kawaguchi Warshauer 2011

vii

Myhusband,Max,hasbeenmybiggestsupporter;providingchallenges,

inspiration,andcomfort.Thequestionsheasked,theeditshemade,the

encouragementhegaveallkeptmethinkinganewandmoredeeply.Itisthanksto

workingwithteachersandstudentsthroughMathworksthatIhadanidealsetting

toconductmyresearch.

Finally,tomyparents,MotohiroandSuzukoKawaguchi,whonamedme,

“scholarlychild,”Ithankthemforalwaysencouragingmetodomyverybest,

whetherinmathematics,music,orsportsandforinstillinginmeadeeploveof

learning.

Page 8: Copyright by Hiroko Kawaguchi Warshauer 2011

viii

TheRoleofProductiveStruggleinTeachingandLearning

MiddleSchoolMathematics

HirokoKawaguchiWarshauer,Ph.D.

TheUniversityofTexasatAustin,2011

Supervisor:SusanEmpson

Students’strugglewithlearningmathematicsisoftencastinanegativelight.

Mathematicseducatorsandresearchers,however,suggestthatstrugglingtomake

senseofmathematicsisanecessarycomponentoflearningmathematicswith

understanding.Inordertoinvestigatethepossibleconnectionbetweenstruggle

andlearning,thisstudyexaminedstudents’productivestruggleasstudentsworked

ontasksofhighercognitivedemandinmiddleschoolmathematicsclassrooms.

Students’productivestrugglereferstostudents’“efforttomakesenseof

mathematics,tofiguresomethingoutthatisnotimmediatelyapparent”(Hiebert&

Grouws,2007,p.287)asopposedtostudents’effortmadeindespairorfrustration.

Asanexploratorycasestudyusingembeddedmultiplecases,thestudy

examined186episodesofstudent‐teacherinteractionsinordertoidentifythekinds

andnatureofstudentstrugglesthatoccurredinanaturalisticclassroomsettingas

studentsengagedinmathematicaltasksfocusedonproportionalreasoning.The

Page 9: Copyright by Hiroko Kawaguchi Warshauer 2011

ix

studyidentifiedthekindsofteacherresponsesusedintheinteractionwiththe

studentsandthetypesofresolutionsthatoccurred.

Theparticipantswere3276thand7thgradestudentsandtheirsix

mathematicsteachersfromthreemiddleschoolslocatedinmid‐sizeTexascities.

Findingsfromthestudyidentifiedfourbasictypesofstudentstruggles:getstarted,

carryoutaprocess,giveamathematicalexplanation,andexpressmisconception

anderrors.Fourkindsofteacherresponsestothesestruggleswereidentifiedas

situatedalongacontinuum:telling,directedguidance,probingguidance,and

affordance.Theoutcomesofthestudent‐teacherinteractionsthatresolvedthe

students’struggleswerecategorizedas:productive,productiveatalowerlevel,or

unproductive.Thesecategorieswerebasedonhowtheinteractionsmaintainedthe

cognitiveleveloftheimplementedtask,addressedtheexternalizedstudent

struggle,andbuiltonstudentthinking.

Findingsprovideevidencethatthereareaspectsofstudent‐teacher

interactionsthatappeartobeproductiveforstudentlearningofmathematics.The

struggle‐responseframeworkdevelopedinthestudycanbeusedtofurther

examinethephenomenonofstudentstrugglefrominitiation,interaction,toits

resolution,andmeasurelearningoutcomesofstudentswhoexperiencestruggleto

makesenseofmathematics.

Page 10: Copyright by Hiroko Kawaguchi Warshauer 2011

x

TableofContents

ListofTables....................................................................................................... xiii

ListofFigures ......................................................................................................xiv

Chapter1:Rationale..............................................................................................1

Introduction...................................................................................................1

StruggleandLearning...................................................................................2

StruggleandTask..........................................................................................3

StruggleandTeaching ..................................................................................4

ResearchQuestions.......................................................................................5

StudyDesign ..................................................................................................6

Chapter2:ConceptualFramework......................................................................8

Introduction...................................................................................................8

OverviewofConceptualFramework...........................................................9

NatureofMathematics ...............................................................................12

RoleofStruggleinLearningMathematics ................................................14

LearningMathematicsByDoing .......................................................14

ModelofStruggle ...............................................................................19

ProductiveStruggleinLearning .......................................................20

ResearchConnectsStruggleandConceptualLearning...................21

NatureandTypesofTasksthatSupportProductiveStruggle ................25

ImportanceofMathematicalTasks ..................................................25

TaskFramework ................................................................................27

LevelsofCognitiveDemand ..............................................................28

ModelingStruggleandTasks ............................................................30

KindsofTasksthatSupportProductiveStruggle ...........................32

Teacher’sResponsetoStruggle .................................................................35

ResponsesthatSupplyInformationtoStudents .............................39

ResponsesthatConnecttoStudents’PriorKnowledge..................40

Page 11: Copyright by Hiroko Kawaguchi Warshauer 2011

xi

ResponsesthatClarifytheStudentStruggle....................................42

ResponsesthatQuestionStudents’Thinking ..................................43

ResponsesthatBuildStudentAgency ..............................................46

Summary.............................................................................................50

Chapter3:Methodology .....................................................................................53

Participants..................................................................................................54

Procedure ....................................................................................................56

DataCollection ...................................................................................56

DataAnalysis ......................................................................................60

CodingStruggle .........................................................................62

CodingTasks:TaskDescriptions ............................................63

CodingTasks:ByLevelsofCognitiveDemand ......................66

CodingTeacherResponse ........................................................70

CodingResolutionoftheStudents’Struggle...........................72

Trustworthiness..........................................................................................73

Chapter4:Results ................................................................................................77

Overview ......................................................................................................77

Tasksimplementedintheclassrooms ......................................................79

Students’Struggle .......................................................................................81

Descriptionandexamples .................................................................81

DiscussionofStudentStruggle .........................................................89

TeacherResponse .......................................................................................94

Overviewofteacherresponsecategories ........................................94

DefiningTeacherResponseTypes....................................................95

DescriptionsandImpactonThreeDimensions ............................100

1.Telling..................................................................................100

2.DirectedGuidance ..............................................................105

3.ProbingGuidance ...............................................................115

4.Affordance...........................................................................123

Page 12: Copyright by Hiroko Kawaguchi Warshauer 2011

xii

DiscussionofTeacherResponses ...................................................128

InteractionResolutions ............................................................................133

TypesofInteractionResolutions ....................................................133

InteractionFrameworkandPatterns.............................................135

ExampleTaskWithDifferingResolutions .....................................137

Example4.1:ProductiveStruggle–Lowerlevel ..................137

Example4.2:ProductiveStruggle.........................................144

Example4.3:UnproductiveStruggle .....................................148

DiscussionofInteractionResolutions............................................151

Chapter5:Conclusion .......................................................................................155

ResearchQuestionsandConclusions ......................................................155

Limitation ..................................................................................................160

Implication.................................................................................................163

AppendixA:Pre‐ObservationTeacherInterview(PRTI) ...............................166

AppendixB:Post‐ObservationTeacherInterview(PSTI)..............................167

AppendixC:TaskDebrief(TDB).......................................................................168

AppendixD:StudentInterview(SI) .................................................................169

AppendixE:TaskDifficultySurvey .................................................................170

AppendixF:ActivityBooklet............................................................................171

AppendixG:Ms.Torres’Lessons .....................................................................189

AppendixH:Samplewarm‐upproblems ........................................................191

References ..........................................................................................................194

Vita ....................................................................................................................211

Page 13: Copyright by Hiroko Kawaguchi Warshauer 2011

xiii

ListofTables

Table2.1:Struggleanditsmanifestations ........................................................19

Table2.2:ProductiveStruggleintheClassroomInteractionsofTeachingand

LearningintheContextofMathematicalActivitiesandTasks ...31

Table3.1: CharacteristicsofTeacherParticipants ........................................55

Table3.2: Observedclassfrequencyandhours .............................................56

Table3.4: Activity1:BarrelofFun .................................................................67

Table3.5: Activity2:BagsofMarbles ............................................................67

Table3.6: Activity3:TipsandSales*.............................................................68

Table3.7: Activity4:DetectingChange..........................................................69

Table4.1: KindsofStudentStrugglesandtheirPercentFrequencies .........82

Table4.2:TeacherResponseSummary ...........................................................99

Page 14: Copyright by Hiroko Kawaguchi Warshauer 2011

xiv

ListofFigures

Figure2.1:PreliminaryStruggleandResponseFrameworkinTaskContext49

Figure4.1:Findtheprobabilityoflandingintheunshadedregion. .............88

Figure4.2: TeacherResponseRange...............................................................96

Figure4.3: ProductiveStruggleFrameworkinaninstructionalepisode ...135

Page 15: Copyright by Hiroko Kawaguchi Warshauer 2011

1

Chapter1:Rationale

INTRODUCTION

Students’strugglewithlearningmathematicsisoftencastinanegativelight

andviewedasaprobleminmathematicsclassrooms(Hiebert&Wearne,2003;

Borasi,1996;Sherman,Richardson,&Yard,2009).Teachers,parents,educators

andpolicymakersroutinelylookforwaystoovercomethe“problem”,seenasaform

oflearningdifficulty,andattempttoremovethecauseofthestrugglethrough

diagnosisandremediation(Adams&Hamm,2008;Borasi,1996).Fromthisone

wouldhardlyexpectthatfocusingonstudents’struggleinmathematicscouldbe

viewedinapositivelightandasalearningopportunity.

MathematicseducatorsandresearchersJamesHiebertandDouglasGrouws

suggest,however,thatstrugglingtomakesenseofmathematicsisanecessary

componentoflearningmathematicswithunderstanding(Hiebert&Grouws,2007).

Theideathatstruggleisessentialtointellectualgrowthhasalonghistory.Dewey

referredtotheprocessofengagingstudentsin“someperplexity,confusion,or

doubt”(1933,p.12)asessentialforbuildingdeepunderstandingwhilePiaget

(1960)wroteoflearners’struggleasaprocessofrestructuringtheirdisequilibrium

towardsnewunderstanding.Cognitivetheoristshavereferredtocognitive

dissonanceasanimpetusforcognitivegrowth(e.g.Festinger,1957)whileothers

haveidentifiedexperimentation(Polya,1957)andsense‐making(Handa,2003)as

importantingredientsforunderstanding.Hatano(1988)relatedcognitive

incongruitywiththedevelopmentofreasoningskillsthatdisplayconceptual

understanding.BrownwellandSims(1946)argued,likeDewey,thatstudentsmust

haveopportunitiesto“muddlethrough”(p.40)intheprocessofresolving

Page 16: Copyright by Hiroko Kawaguchi Warshauer 2011

2

problematicsituationsratherthanconditioningstudentsthroughrepetition.More

recently,Hiebert&Wearne(2003)stated,“allstudentsneedtostrugglewith

challengingproblemsiftheyaretolearnmathematicsdeeply”(p.6).

Whilethephenomenonwecallstrugglemaybeinternal,itisalsoobservable

inmostclassrooms.Inthecontextofclassroominteractions,studentsmayvoice

confusionoverdirections,thewordingofaproblem,thequestionbeingaskedor

howtodeviseastrategy(Polya,1957;Lave&Wenger,1991).Studentsmayvoicea

commentsuchas,“Idon’tgetit”.Ateachermaydetectstudents’misconceptions

thatyieldcompetingclaims,uncertainty,andcognitiveconflictinthestudents’

thinking(Zaslavsky,2005).Anerrorwhilesolvingaproblemmayleadtoan

unreasonableanswerthatpuzzlesastudent(Borasi,1996;Inagaki,Hatano,&

Morita,1998).Astudentmaybeveryengagedinworkingonamathematics

problembutthenreachanimpasseandget“stuck”(Burton,1984,p.46).What

opportunitiesdotheseinstancesprovideforteaching?

STRUGGLEANDLEARNING

Struggleanditsconnectiontolearningarecentraltotheissueofhowto

strengthenandimprovestudentlearningandunderstandingofmathematics

(Hiebert&Grouws,2007).Twokeyfeaturesofclassroommathematicsteaching

emergefromresearchthatlinksteachingwithstudents’conceptualunderstanding:

• teachersandstudentsattendexplicitlytoconcepts;and

• studentsstrugglewithimportantmathematicalideas.

(Hiebert&Grouws,2007)

Byconceptualunderstanding,HiebertandGrouwsmean“themental

connectionsamongmathematicalfacts,procedures,andideas”(2007,p.380).This

Page 17: Copyright by Hiroko Kawaguchi Warshauer 2011

3

isincontrasttoproceduralunderstanding,whichreferstothe“accurate,smooth,

andrapidexecutionofmathematicalprocedures”and“intentionallydoesnot

includeflexibleuseofskillsortheiradaptationtofitnewsituations”(2007,p.380).

Teachershaveanopportunitytofacilitatethedirectionthatstudents’

strugglescouldtake,eitherproductiveorunproductive.Bystudents’productive

struggle,Imeanstudents’“efforttomakesenseofmathematics,tofiguresomething

outthatisnotimmediatelyapparent”(Hiebert&Grouws,2007,p.287)asopposed

tostudents’effortmadewithoutdirectionorpurpose.

STRUGGLEANDTASK

Anexampleofstudents’strugglethatcanbeproductiveinlearning

mathematicsisgrapplingwithchallengingproblems(Hiebert&Wearne,2003).

Mathematicaltasks,inparticularthosethatplacehighlevelcognitivedemandson

studentsincludingmakingsenseoftheproblem,focusingonconceptsandconnections

amongconceptsandsharing,explaining,andjustifyingone’ssolution(Boston&

Smith,2009;Hiebert,Carpenter,Fennema,etal,1996;Ball,1993,Doyle,1988),

provideaclassroomcontextforstudentstoengageininteractingwithproblems,

classmates,andteacherstodeveloptheirconceptualknowledgeandunderstanding

(Hatano,1988,Hiebert,1986;Zaslavsky,2005;Goldman,2009;Fawcett&Gourton,

2005).Tasksthatinvolveproblemsolvingcalluponstudents’conceptualand

proceduralknowledgetoconsideralternativestrategieswhenanapproachdoesnot

work,examineone’sresourcesandknowledgeuponwhichtobuild,reflectonone’s

thinking,andexplainandjustifyone’ssolutions(NCTM,2000;Franke,Kazemi,&

Battey,2007;Kulm,1999;Kulm,Capraro,&Capraro,2007).Engagingstudentsin

challengingtasksgivesstudentsopportunitiesto:strugglewithproblems;connect

Page 18: Copyright by Hiroko Kawaguchi Warshauer 2011

4

facts,procedures,andideas;anddevelopadeeperconceptualunderstandingof

mathematics(Hiebert&Grouws,2007;Hiebert&Wearne,2003;Kahan&Wyberg,

2003;Kahan&Schoen,2009).

STRUGGLEANDTEACHING

Moststudies,however,suggestthatU.S.mathematicsteachingrarelyengages

studentsinproductivestrugglewithkeymathematicalideas(e.g.Hiebert&Wearne,

2003;Rowan,Correnti,&Miller,2002;Stigler,Gonzales,Kawanaka,Knoll,&

Serrano,1999).Schoolinstructionisoftenplaguedbyarushforquickanswers

(Hiebert,Carpenter,Fennema,etal,1996;Dewey,1933)andfailstogivestudents

sufficienttimetoengageinthinkingdeeplyaboutproblems(Holt,1982).Teachers

maydesigntasksthatareintendedtoplacehighlevelsofcognitivedemandon

students,butthenallowtaskstodeclineintheirdemandwhenstudentsencounter

frustrationordiscomfort(Henningsen&Stein,1997;Romagnano,1994;Stigler&

Hiebert,2004;Santagata,2005).Forexample,teachersstepinquicklywhenthey

observestudentsstrugglingandexplainhowtodotheproblem,leavinglittleofthe

challengingmathematicsforthestudentstodo(Smith,2000).Classroom

interactionswhereateachermayresponddismissivelytoastudent’squestion,

produceananswertoaproblemwithlittlestudentparticipation,orbeunawareofa

student’sconfusioncanresultinstudentstrugglethatisunproductive.Inan

analysisofmathematicsclassroominstruction(Weiss&Pasley,2004;Weiss,Pasley,

Smith,Banilower,&Heck,2003),only15%ofthelessonsobservedwereclassified

asprovidingstudentsopportunitiesforthinking,reasoning,andsense‐making.

Empiricalresearchintheareaofstudents’struggleandhowitisaddressed

productivelyintheclassroomislimited.ResearchinvolvingtheQUASARProject

Page 19: Copyright by Hiroko Kawaguchi Warshauer 2011

5

(Silver&Stein,1996;Stein&Lane,1996)foundevidenceofincreasesinstudents’

conceptualunderstandingwhenstudent‐teacherinteractionsfocusedonfacilitating

productivestrugglethroughmathematicaltasksofhighercognitivedemand(Stein,

Grover,&Henningsen,1996;Stein&Lane,1996).Hiebert&Wearne(1993)

demonstratedthatthroughclassroomdiscourseandteacherguidance,students

exhibitedstrugglesinmakingsenseofthemathematicsandexpressedtheir

emergingunderstandings.ResearchconductedbyInagaki,Hatano,&Morita(1998)

showedhowstudentsengagedinstrugglingwithconflictingorincorrect

mathematicalideasduringclassroominteractionwereabletomakesenseofthe

mathematicsandimprovetheirunderstandinginafollow‐upassessment.

Examplessuchastheprecedingstudiessupporttheclaimthatthereisalink

betweenteachingthatfacilitatestudents’opportunitytoengageinproductive

struggleinclassroomcontextsandincreasesinstudents’conceptualunderstanding.

Inmystudy,Iproposetoexaminethephenomenonofstudents’struggletomake

senseofmathematicsinthenaturalcourseofmiddleschoolclassroominstruction

usinganinquiry‐basedcurriculum.Iwillfocus,inparticular,onstudents’struggle

withmathematicalconceptsthatismadevisibleinsomewayintheclassroom

environment,suchasthroughmistakes,misconceptions,orconfusion;andstruggle

thatappearstobeproductiveornon‐productivetostudentlearning.

RESEARCHQUESTIONS

Thekindofguidanceandstructureteachersprovidemayeitherfacilitateor

underminetheproductiveeffortsofstudents’struggle(Tarretal,2008;Stein,

Smith,Henningsen,&Silver,2000;Doyle,1988).Acloseexaminationof

interactionsintheclassroombothbetweenteacherandstudentsandamong

Page 20: Copyright by Hiroko Kawaguchi Warshauer 2011

6

studentshelpedtorevealthenatureofthestrugglesstudentswerehavingin

makingsenseofmathematics.Ialsoobservedandanalyzedthefeaturesofteaching

andthechoicesteachersmadetoguidethestudentsinwaysthatwereeither

productiveornotproductiveindevelopingstudents’understandingoftheir

problemandthestrategiesandreasoningneededtosolveit.

Mystudyfocusedonthefollowingresearchquestions:

1. Whatarethekindsandpatternsofstudents’strugglethatoccurwhile

studentsareengagedinmathematicalactivitiesthatarevisibletotheteacher

and/orapparenttothestudentinmiddle‐schoolmathematicsclassrooms?

2. Howdoteachersrespondtostudents’strugglewhilestudentsareengagedin

mathematicalactivitiesintheclassroom?Whatkindsofresponsesappearto

beproductiveinstudents’understandingandengagement?

Thepurposeofthisexploratorystudywastoprovidefurtherinsightinto

whatstudents’productivestrugglelookslikeandhowteachingthatengagesand

supportsstudents’productivestruggleinmiddleschoolmathematicsclassrooms

givesstudentsopportunitiestobuildanddeepen(ortoinhibit)theirconceptual

understandingofmathematics.

STUDYDESIGN

Iobservedtheclassroomsofsixmiddle‐schoolteacherslocatedinthree

differentmid‐sizedTexascities.Theteachersusedthesamemathematicstextbook

thatwaswrittentoencourageteacherstoengagestudentsinmathematical

exploration,aswellassense‐makingofmathematicalideasamongstudents

(McCabe,Warshauer,&Warshauer,2009).

Page 21: Copyright by Hiroko Kawaguchi Warshauer 2011

7

Mystudyidentifiedalltheepisodesduringinstructionwherestudentsmade

mistakes,expressedmisconceptions,orclaimedtobelostorconfused,andtowhich

teachersresponded.Interactionsbetweenstudentsandteachersgenerally

advancedtowardsomeresolutionofthestudents’difficultiesandattemptsatsense‐

making.Usinganembeddedcasestudymethodology(Yin,2009)withinstructional

episodesastheunitofanalysiswithinthelargerunitoftheteachers,Iidentifiedand

describedthenatureofthestudents’struggle.Additionally,Irecognizedthe

instructionalpracticesofteachersthateithersupportedandguidedordidnot

supportorguidethestudents’sense‐andmeaning‐makingofthemathematicsin

thelessonepisodes.Iusedmyobservationnotes,interviewsofteachersandtarget

students,andvideoand/oraudiotapesofclassroomlessonstodescribeandanalyze

theinteractivetechniquesandpracticesteachersusedthatfocusedonstudents’

productivestruggle.

Page 22: Copyright by Hiroko Kawaguchi Warshauer 2011

8

Chapter2:ConceptualFramework

INTRODUCTIONTeachingthatprovidesstudentsopportunitiestostrugglewithimportant

mathematicalideashasbeenidentifiedinmathematicseducationresearchasoneof

thekeyfeaturesofteachingthatsupportsthedevelopmentofstudents’conceptual

understandingofmathematics(Hiebert&Grouws,2007;Hiebert&Wearne,1993;

Stein,Grover,&Henningsen,1996;Borasi,1996).Students’learningof

mathematicswithunderstandingisviewedascriticalinmeetingthedemandsofthe

21st‐century,particularlyinasocietyexperiencingrapidchange,wherepossessing

proceduralunderstandingwithoutconceptualunderstandinglimitsflexibilityand

creativityinsolvingproblems(NationalMathematicsAdvisoryPanel,2008;Pink,

2006;NCTM,2000;Bransford,Brown,&Cocking,1999;NationalResearchCouncil,

1989).Aportrayalofwhataproductivestudents’strugglelookslikesetinthe

naturalisticsettingofclassroominstructioncanrevealandprovideinsightintohow

aspectsofteachingcansupportratherthanhinderthisinstructionalprocesswhich

researchsuggestsisofbenefittostudents’understandingofmathematics

(Kilpatrick,Swafford,&Findell,2001;Hiebert&Grouws,2007).

InmostU.S.middleschoolmathematicsclassrooms,onetypicallyfinds

studentsengagedinamathematicslessonswithateacherexplainingaconceptor

task,facilitatingaconversation,observingstudents’activities,oraddressing

studentswhomaybestrugglingwiththeirwork(Kawanaka,Stigler,&Hiebert,

Page 23: Copyright by Hiroko Kawaguchi Warshauer 2011

9

1999).Theseactivitiesandinteractionsarenotnecessarilymutuallyexclusive

eventsandoftenoccurconcurrentlyalongwithnon‐mathematicalactivitiesthatadd

timeandcomplexitytoclassroomroutinessuchastakingattendance,pickingup

homework,orestablishingrulesandsocialnorms(Kennedy,2005).Whilestudents

mayappeartoprogresstowardsorachievethelesson’sintendedlearningobjectives

withoutdifficulty,moreoftenthannot,studentsvoicetheirconfusion,

misunderstanding,oracontradictionintheirthinkingandsense‐makingthat

requirestheteachertorespond.Whatisobservableinmanyclassrooms,andthus

servesastheprimaryfocusofmystudy,isthisphenomenonwecallstudent

struggles.Mystudywillinvestigatethoseaspectsofstudentstrugglesthatbecome

productiveinstudents’understanding.

OVERVIEWOFCONCEPTUALFRAMEWORKHiebertandGrouws(2007),intheSecondHandbookonResearchon

MathematicsTeachingandLearning,usedthetermstudents’struggle“tomeanthat

studentsexpendefforttomakesenseofmathematics,tofiguresomethingoutthatis

notimmediatelyapparent”(p.387).They“donotusestruggletomeanneedless

frustrationorextremelevelsofchallengecreatedbynonsensicaloroverlydifficult

problems…orthefeelingsofdespairthatsomestudentscanexperiencewhenlittle

ofthematerialmakessense”(p.387).Thisstruggleoccursinthecontextof

students“solvingproblemsthatarewithinreachandgrapplingwithkey

mathematicalideasthatarecomprehensiblebutnotyetwellformed”(p.387).In

Page 24: Copyright by Hiroko Kawaguchi Warshauer 2011

10

otherwords,struggleisaparticularkindofphenomenonthatmayoccurasstudents

engageinamathematicalactivityorproblemthatischallengingbutreasonably

withinthestudents’capabilities,possiblywithsomeassistance.Thesekindsof

difficulties,namelythestrugglesthatpushthestudentsintheirthinking,canplayan

importantroleindeepeningstudents’understandingifdirectedcarefullytowarda

resolution(Hiebert&Grouws,2007).

Asacognitiveprocess,astudent’sstruggletomakesenseofmathematicscan

beviewedasinternaltothelearner.Ontheotherhand,students’strugglemaybe

visibletoanobserverwhenstudentsexternalizethedifficultytheyareexperiencing.

Theoriesoflearninghaveincorporatedbothkindsofstruggle.

Otherresearchersandlearningtheoristshavearguedthataconnection

existsbetweenstudentengagementinastruggletomakesenseofmathematical

ideasanddeeperunderstandingoftheunderlyingconcepts(Piaget,1960;Dewey,

1926;Inagaki,Hatano,&Morita,1998;Stein,Grover,&Henningsen,1996).From

this,Iusethenotionofstruggleasacomponentofstudents’engagementin

mathematicalactivity.Thestrugglemaytakeondifferentformsdependingonthe

levelofstudentthinkingdemandedbytheactivity.

Strugglemaytaketheformof:studentsarguingovercompetingclaims;or

expressingtheiruncertaintyoverquestionableprocessesorconclusions(Inagaki,

Hatano,Morita,1998;Zaslavsky,2005;Hoffman,Breyfogle,&Dressler,2009);or

simplyshuttingdowninthefaceoffrustration(Dweck,1986).Theseinstances

Page 25: Copyright by Hiroko Kawaguchi Warshauer 2011

11

provideopportunitiesforteacherstorespondtoandsupportstudents’struggles

productively.Researchsuggests,therefore,thatstudentsmaystrugglewith

decidingwhatconceptsorprocedurestouseinsolvingaproblem,determininghow

toproceedinacalculationorexplaininghowsomethingworks,orunderstanding

whyaconclusionfollows.Strugglemaytaketheformofstudentsvoicingconfusion

inawhole‐classdiscussionorseekingclarificationfromtheteacherinaone‐on‐one

setting(Inagaki,Hatano,&Morita,1998;Borasi,1996;Santagata,2005).

Myconceptualframework,therefore,isbuiltonthreemaincomponents:

1. Theroleofstruggleinlearningmathematicswithunderstanding

2. Thenatureandtypesofmathematicaltasksandtheirrelationshipto

students’struggle

3. Thewaysteachers’respondtostudents’struggleinclassroom

interactions.

Becausemystudyaboutstruggleisinthecontextoflearningmathematics

withunderstandingandtheinfluenceofteachingonthedevelopmentofthat

understanding,itisimportanttoconsiderwhatconstitutesthenatureof

mathematicsandwhatitmeanstoengageinandbecompetentinthediscipline

(Schoenfeld,1988).Ifirstpresentmyviewofthenatureofmathematicsandthen

elaborateonandreviewtheliteratureconcerningthethreecomponentsofmy

conceptualframework.

Page 26: Copyright by Hiroko Kawaguchi Warshauer 2011

12

NATUREOFMATHEMATICSOverthecourseofhistory,differingperspectiveshaveresultedfromthe

question:whatismathematics?ThePlatonists’viewsuggestsmathematicsisabout

discoveringtruthsandideasthatexisteternally,whiletheFormalists’view

mathematicsasasetofrulesoraxiomsfromwhichtheoremsarelogically

developed(Hersh,1997).Hershandothermathematiciansandmathematics

educatorstakeamorehumanisticposition,viewingmathematicsasasocialactivity

(Freudenthal,1991;Hersh,1997;Bass,2005).Mystudyusesthisperspectiveof

mathematicsasasocialphenomenon,wherepeoplecreateobjectsandstudythe

patternsandrelationshipsoftheseobjectswithinasocialculture(Hersh,1997;

White,1993;NCTM,2000;AAAS,1993).

Ialsotaketheviewthatmathematicsisadynamicdisciplinethatinvolves

exploringproblems,seekingsolutions,formulatingideas,makingconjectures,and

reasoningcarefullyandnotastaticdisciplineconsistingonlyofastructuredsystem

offacts,procedures,andconceptstobememorizedorlearnedthroughrepetition

(Schoenfeld,1992;Hiebertetal,1996;Romberg,1994).

Observationsaboutquantitativeandspatialpatternsandrelationshipslead

mathematicianstoaskquestions,andmakeinquiries,generalizations,claims,and

predictions.Theinferencesandpossibleexplanationsinmathematicsthenarethe

conjecturesandtheoremsthataremadethroughobservedpatternsand

connections.Whatisuniquelymathematicalisthenotionofaproofthatservesto

communicate,explainandprovideaconvincingargumentforanidea,aproperty,a

Page 27: Copyright by Hiroko Kawaguchi Warshauer 2011

13

patternorrelationshiptoothers(Hersh,1993).Whilenotionsofproofsuggesta

formallystructuredargument,theimportantpartofprovingistomakethe

mathematicalideashumanlyunderstandableandverifiable(Thurston,1994).Thus,

theroleofproofwilldependontheaudience,sothatinmiddleschoolclassrooms,

forexample,aspectsofexplaining,verifying,communicating,andeven

systematizingmathematicsinitiatethestudentsintheprocessofmathematical

justification(Knuth,2002).

Intheprocessofproving,newmathematicscanbecreatedordiscovered

(deVilliers,1999;Knuth,2002);thisdemonstratesthatmathematicsisahuman

activityinvolvingbothcreativityandimagination.Theseactivitiesalsoinclude

makingconjectures,seekingwarrants,findingrelationships,andpursuingideasthat

maybedestinedforfailurebutrevealnewstrategyoptionsandalternatives.

Mathematiciansconfrontnewideas,untriedstrategies,andunknownsolutionsby

acknowledgingthatalongwithfailure,grapplingwithandevenstrugglingwith

waystosolveproblemsispartoftheprocessof“doingmathematics”(Holt,1982;

Polya,1957;Hiebert&Grouws,2007).

Thenatureofmathematicsisthereforedefinednotjustbyfactual,

procedural,andconceptualknowledge,butalsobyarangeofprocessesthat

constitutedoingmathematics(Kilpatrick,Swafford,&Findell,2001;Hiebert&

Grouws,2007;NCTM,2000).Fortheremainderofthischapter,Iusethiscontextof

whatlearninganddoingmathematicsmeanstodescribethethreecomponentsof

Page 28: Copyright by Hiroko Kawaguchi Warshauer 2011

14

myconceptualframework,beginningwiththerolestruggleplaysinlearning

mathematics.

ROLEOFSTRUGGLEINLEARNINGMATHEMATICS

LearningMathematicsByDoingMathematiciansoftenengagein“tryingtofigurethingsout”and“grappling

withproblems”astheyinvestigateproblemswithsolutionsnotyetknowntothe

investigatorortothegeneralmathematicscommunity.Similarly,students’learning

ofmathematicscanbeconceivedasparallelingthisprocess,wherestudentsengage

inexploringproblemsthattheyneitherunderstandnorknowhowtodo.Learning

mathematicswithunderstandingthenincludesengagingin“doingmathematics”

throughaprocessofinquiryandsense‐making(Schoenfeld,1992;Lakatos,1976)

thatbynecessityinvolvesstudents“expendingefforttofigureoutsomethingthatis

notimmediatelyapparent”(Hiebert&Grouws,2007)i.e.toexperiencestruggle

(Brown,1993).Cobb(2000)suggeststhatbyengagingin“doingmathematics,”

withstruggleasacomponent,“studentsactivelyconstructmeaningasthey

participateinincreasinglysubstantialwaysinthere‐enactmentofestablished

mathematicalpractices”(p.21).Asanexample,ArnoldRoss,scholar,

mathematician,teacher,andfounderoftheRossMathematicsProgramatOhioState

University,encouragedhisstudentsto“thinkdeeplyofsimplethings,“amottostill

usedinhisprogramtopromotemathematicalexploration,inquiry,andsense‐

making(RetrievedNovember4,2009,fromhttp://www.math.ohio‐

Page 29: Copyright by Hiroko Kawaguchi Warshauer 2011

15

state.edu/ross/RossBrochure09.pdf.)Encouragingstudentstoparticipateintheir

meaning‐makingsignifiesstudentsareaffordedopportunitiestothinkdeeplyabout

problemsandtoacceptstruggleaspartoftheprocessoflearningmathematics.

Sometheoriesoflearningincorporatetheconceptofstruggleasacognitive

processinternaltothelearnerandothersexaminestruggleasacomponentof

learninginasocialsettingasanobservablepartofparticipationinclassroom

activity.Whilethefocusofmystudyistoexaminetheexternalizedformsof

strugglethatoccurintheclassroomsettingthroughasocialcognitivelens,bywhich

Imeanboththepersonalconstructionsandsocialinteractionswhichplayimportant

rolesinstudentlearning(Cobb,Yackel,&McClain,2000),Iaminformedbystudies

inboththecognitiveandsocialculturaltheoriesoflearning.Inthefollowingsection,

Idescribethepertinenttheoriesandstudiesofmathematicslearningthatinclude

formsofstruggle.

CognitiveStruggleinTheoriesofLearning

Overthelastcentury,learningtheorieshavereferredtoconceptsakinto

struggleanditsconnectiontolearningwithunderstanding.Forinstance,Dewey

(1910,1926,1929,and1933)madereferencestoaprocessofengagingstudentsin

“someperplexity,confusion,ordoubt”(1910,p.12).Inthissetting,Deweyreferred

toaparticularthoughtprocesshecalledreflectivethinkingthatinvolved“anactof

searching,hunting,inquiring,tofindmaterialthatwillresolvethedoubt,settle,and

disposeoftheperplexity”(p.12).AccordingtoDewey(1929),schoolinstruction

Page 30: Copyright by Hiroko Kawaguchi Warshauer 2011

16

plaguedbyapushforthe“quickanswer”shortcircuitsthenecessaryfeelingof

uncertaintyandinhibitsthesearchforalternativemethodsofsolution.Brownwell

andSims(1946)argued,likeDewey,thatstudentsshouldbegivenopportunitiesto

“muddlethrough”(p.40)theprocessofresolvingproblematicsituationsratherthan

conditioningstudentsthroughrepetition.

Festinger’s(1957)workinthetheoryofcognitivedissonancereferredtothe

notionofcognitiveperplexityasanimpetusforcognitivegrowth.Morerecently,

Hatano’s(1988)extensiveresearchinbothmathematicsandscienceeducation

relatedcognitiveincongruitywiththedevelopmentofreasoningskillsthatdisplay

conceptualunderstanding.ThemathematicianPolya(1957)wroteextensively

aboutproblem‐solvingandtheprocessbywhichonesolvesproblems.InHowto

SolveIt,Polyawrote,“...andifyousolveitbyyourownmeans,youmayexperience

thetensionandenjoythetriumphofdiscovery”(1957,p.v).Thetension,as

describedbyPolya,inlearninghowtosolveproblemscanbeviewedasafeeling

thataccompaniesthestruggletomakeconnectionsamongmathematicalfacts,

procedures,andideas.ThisdescriptionisconsistentwithPiaget’snotionof

workingtowardsequilibriumornewunderstandingwhendisequilibriumis

introducedthroughanewproblem.Learnersrestructuretheirconceptual

frameworkorschematoreachcognitiveequilibriumbyincorporatingtheirnew

understanding(Piaget,1960;Carter,2008).

Page 31: Copyright by Hiroko Kawaguchi Warshauer 2011

17

Ibasetheconceptofstudents’struggleonthetheorythatstudentsdevelop

conceptualunderstandingbymaking“thementalconnectionsamongmathematical

facts,procedures,andideas”(Hiebert&Grouws,2007).JustasPiaget(1960)used

thetermdisequilibriumtorefertocognitiveconflictbetweenconceptionsalready

heldbythelearnerandnewideasandexperiences,incorporatingnewknowledge

wouldtheninvolvechallenginglearners’currentthinkingandcreatingnew

connections(Glaser,1984).

ObservableStruggleinLearning

Inusingasocialconstructivistperspectiveoflearning,Iacknowledgethat

bothpersonalconstructionsandsocialinteractionsplayimportantrolesinstudents

comingtounderstandmathematics(Cobb,Yackel,&McClain,2000).Ideally,

studentslearningmathematicswithunderstandingoccursintheclassroomas

studentsengageintheprocessofexploringproblems,lookingforpatterns,making

conjectures,sharingstrategies,connectingmultiplewaysofrepresentingconcepts,

explainingthroughreasonedandlogicalarguments,andquestioningoutcomesand

conclusionsatbothpersonalandsociallevels(Yackel&Cobb,1996;Schoenfeld,

1988).However,studiessuggestclassroomenvironmentsoftenfallshortofthe

idealsettingto“domathematics”(Schoenfeld,1988).Amoretypicalclassroom

environmentisamixtureof“doingmathematics”withmoretraditionalclassroom

settingsthatinvolvestudentsobservingasteachersdemonstrateandexplainways

todocertaintypesofproblemsandthenhavingstudentspracticeproblemsusing

Page 32: Copyright by Hiroko Kawaguchi Warshauer 2011

18

thedemonstratedmethods(Stigler&Hiebert,1999).Whilestudents’strugglemay

ariseinawidespectrumofclassroomenvironments,studiessuggestthatsettings

thatarerisk‐freewherestudentscanexternalizetheirstruggleandwhere

consequencesof“wrong”answersarenotseenasfailuresbutratheropportunities

toexplore,grow,andlearnservetobettersupportandmotivatestudentstopersist

andstruggle(Holt,1982;Borasi,1996;Carter,2008).Theinteractionofthe

studentswiththeteacherscanplayacriticalroleinhowstudentsperceivethevalue

oftheirstruggle.

AVygotskianperspectiveunderscorestheimportanceoftheclassroomasa

sitewheretheinterrelationshipoftheinternalmentalfunctioningofthelearnerand

thesocialinteractionsthatoccuramongstudentsandteachershelpdirectlearners’

struggletowardsunderstanding(Vygotsky,1978,1986).Theroleofproofand

justificationisanexampleofakeymathematicalpracticethatmustbeunderscored

inthepromotionofmathematicalunderstanding(Hanna,2000;Knuth,2002;Maher

&Marino,1996;Thurston,1994).Forexample,studentsmakemistakesanda

teacherusestheseinstancesassitesforlearningandasopportunitiesforstudents

toquestion,explain,justify,andevenextendtheirideaswiththeirpeers(Sherin,

Mendez,&Louis,2000;Hoffman,Breyfogle,&Dressler,2009;Borasi,1996).Such

classroominteractionsaffordstudentswithopportunitiestoparticipateinasense‐

makingactivitythatcanhelpdevelopstudents’thinking(Lave&Wenger,1991;

Fawcett&Gourton,2005).

Page 33: Copyright by Hiroko Kawaguchi Warshauer 2011

19

ModelofStruggleIintroducethefollowingmodeltoillustratehowIviewstruggle,anduseitas

abaseuponwhichIwillbuildtheothercomponentsofmyconceptualframework.

AsInotedabove,strugglemayormaynotbevisible.Inaddition,students’

strugglemaybepresentorabsentasstudentsengageinmathematicaltasks.Ifthe

struggleispresent,thenitmaybeeitherexternallymanifestedbythestudentand

thusobservableoritmayoccurinternallyandthereforenotbevisibletothe

observer.

Table2.1:Struggleanditsmanifestations

Struggle None Internal External None

Manifestation Tooeasy Independentsense‐making

Visiblesigns Toohard

Inoneextreme,strugglemaybeabsentorminimalbecauseastudent

executesthetaskwithoutdifficulty.Theunderlyingreasonfortheabsenceofthe

strugglemaybeduetothelevelofthetask.Attheotherendofthespectrum,

strugglemaynotbedetectediflittleofthematerialmakessensetothestudentorif

thestudentisdisengagedinthetask.Givingacalculusproblemtomiddleschool

students,forexample,wouldbebeyondthescopeofmostofthesestudents’

understandingandcouldresultinstudentsgivingupratherthanstrugglingthrough

theproblem.

Page 34: Copyright by Hiroko Kawaguchi Warshauer 2011

20

Myresearchwillfocusonobservingthevisiblestrugglesastheyare

externalizedinclassroomsandtoexaminethoseactivitiesandinteractionsthat

facilitatestruggleasaproductivepartofmathematicslearningandunderstanding

(e.g.Stein,Grover,&Henningsen,1996;Henningsen&Stein,1997;Schwartz&

Martin,2004).Inthefollowingsection,IelaborateonwhatImeanbyproductive

struggle.

ProductiveStruggleinLearningInthecontextofviewinglearningasagenerativeprocessofmeaning‐making

andmathematicsasadynamicdiscipline,studentandteacherengagementsin

mathematicalactivitiesarepossiblesitesforstudentstruggles.Theroleofstudent

struggleinsupportinganddirectingstudentlearningcanbeexaminedfromthis

perspective.Productivestruggleisthenaphenomenonthatoccursinaclassroom

interactionbetweenteachersandstudentsasstudentsattempttomakesenseof

mathematicsand“tofiguresomethingout,thatisnotimmediatelyapparent”

(Hiebert&Grouws,2007,p.287).Itmaybefirstobservedwhenstudentsexpress

formsofperplexity,doubt,uncertainty,orconflictwhileengagedinworkingona

task,activity,orproblem.WhatIcallproductivestruggleisaphenomenonthat

directstheprocessofstudents’struggletowardsunderstanding,reasoning,or

sense‐makingofthemathematicswithpossiblesupportfromtheteacherorpeers

andgivesstudentsasenseofagencyindoingmathematics(Kilpatrick,Swafford,&

Findell,2001).Inotherwords,therearesignsofproductivestrugglewhen

Page 35: Copyright by Hiroko Kawaguchi Warshauer 2011

21

studentswhowerestrugglingindicateabettersenseofwhattodotogetstarted

withaproblem,howtocarryoutprocesses,orwhyaproblemanditssolutionmake

sense.Inothersituations,studentsarebetterabletoreconcileamisconception,

explainorjustifytheirwork,determineanerrorintheirwork,orrecallfactual

informationusefulfortheirtask.Metaphorically,onemayconsideraderailedtrain

putbackontrackoraperson’sdiscoveryofapossiblepassageuponreachingan

impasseorroadblock.

ThisisincontrasttowhatIidentifyasunproductivestruggle,aphenomenon

inwhichstudentswhoshowsignsofstrugglemakenoprogresstowardssense‐

making,explaining,orproceedingwithaproblemortaskathand.Astudentmay

voiceresignationandgiveup,takeupanothertask,orobtainananswerfroma

teacherorstudent,therebyremovingthestrugglebutnotproductivelybuilding

mathematicalunderstanding.

Inthenextsection,Ireviewseveralstudiesofmathematicsclassroomsthat

supporttheclaimthatproductivestrugglesleadtostudents’developmentofgreater

conceptualunderstanding.

ResearchConnectsStruggleandConceptualLearningResearchershavelookedatavarietyofstudents’attemptstomakesenseof

mathematicsthatinvolvedsomedifficulty:whenstudentswrestlewithproblems

usingmultiplestrategies(Carpenter,Fennema,Peterson,Chiang,andLoef,1989),

undertaketasksofhighcognitivedemand(Stein,Grover,&Henningsen,1996),or

Page 36: Copyright by Hiroko Kawaguchi Warshauer 2011

22

mustexplaintheirthinking(HiebertandWearne,1993).Studentsfromthese

studiesshowedhigherlevelsofperformanceandgainsintheirmathematics

assessments.However,notmanyresearchershavedirectlystudiedthe

phenomenonofproductivestruggleasIhaveframedit;thekindsofstrugglethat

mayoccuratvariousstagesofataskwhenstudentsencounterdifficultyfiguringout

howtogetstartedorcarryouttheirtask,areunabletopiecetogetherandexplain

theiremergingideas,orexpressanerrorinsolvingaproblem.

MoredirectlyrelatedtomyinvestigationisastudybyJapaneseresearchers

Inagaki,Hatano,andMorita(1998)thatexaminedstudentssharingtheircorrectas

wellasincorrectanswersanddemonstratingtheirconfusionalongwiththeir

emergingunderstanding.Theresearchersexaminedwhole‐classstudent‐to‐student

interactionsoffourth‐andfifth‐gradestudents.Theclassroomdiscussionfocused

onstudents’sharingtheirsolutions,bothcorrectandincorrect.Theteacherdidnot

intervenetoidentifythecorrectnessoftheanswers.Rather,chosenstudent

presenterswereresponsibleforjustifyingtheirsolutionsontheboardtotheclass

andtheirclassmatescouldquestionsolutionsthatconfusedthemordidnotmake

sense.Recallingstruggle,“tomeanthatstudentsexpendefforttomakesenseof

mathematics,tofiguresomethingoutthatisnotimmediatelyapparent,”(Hiebert&

Grouws,2007,p387),thediscussionthatfollowedshowedstudentsstrugglingto

explaintheirsolutionortomakesenseoftheanswergivenbytheirclassmate.The

studentsthenhadtodecideforthemselveswhatmadesensefromthegiven

Page 37: Copyright by Hiroko Kawaguchi Warshauer 2011

23

explanationsandjustifications.Findingsfromthisstudyshowedthatengagingin

sense‐makingofsharedsolutions,bothcorrectandincorrect,resultedinimproved

understandingofmathematicscontent.

Thereareadditionalcasestudiesofclassroomsthataddsupporttotheclaim

thatteachersengagingstudentsinproductivestrugglewithimportantmathematics

buildsstudents’conceptualunderstanding(Ball,1993;Fawcett,1938;Heaton,

2000;Lampert,2001;Schoenfeld,1985).Forexample,Carter(2008)foundgreater

persistenceinproblemsolvingamonghersecond‐grademathematicsclasswhen

shecreatedalearningenvironmentthatacknowledgedstruggleasanexpectedpart

oflearning.AmottousedinCarter’sclassresemblesaquotemadeatavery

differenttimeandcontextbyabolitionistandorator,FrederickDouglass(1857),"If

thereisnostruggle,thereisnoprogress”.TheclassmottousedinCarter’sclass,“If

youarenotstruggling,youarenotlearning”(p.136),emphasizestheimportanceof

studenteffortandpersistenceinlearning.Furthermore,confusionwasacceptedas

astateonegoesthrough,ratherthanapermanentstate.

Inaseven‐yearstudyofminorityandlow‐incomestudentsinNewark,New

Jersey,RobertaSchorr,aRutgers’educationresearcher,foundevidencethat

studentsbecomeengagedandsuccessfulinmathematicswhenallowedtostruggle

withchallengingmathproblems,“…thereisahealthyamountoffrustrationthat’s

productive…”(Yeung,B.(2009,September10).RetrievedonDecember29,2009,

fromwww.edutopia.org/math‐underachieving‐mathnext‐rutgers‐newark#).

Page 38: Copyright by Hiroko Kawaguchi Warshauer 2011

24

Severalstudiesoutsideofmathematicseducationprovideevidenceof

conceptuallearningasanoutcomeofstruggle.AresearchstudybyRobertBjork

(1994)reviewedcognitivetrainingstudiesandfoundthatthosetraineeswho

experienceddifficultiesmasteringtargetedskillsdevelopeddeeperormoreuseful

competenciesintheend.Theprocessofovercomingdifficultiesandobstacles

seemedtoprovokethinkingthatledtoamoregeneralizableandtransferable

learning.Bjorkreasonedthatthisistheresultoflearnershavingtoconstructtheir

understandingbyconnectingtowhattheyalreadyknew,therebylearningcontent

andskillsmoredeeply.

Inanotherstudy,CaponandKuhn(2004)foundthatinlearningnew

businessconcepts,theMBAstudentswhoattemptedtosolveproblemsratherthan

justlisteningtoalectureanddiscussioncouldmoreeffectivelyexplainarelated

concept.Theresultssuggestthatteachingthatincludedtasksofactiveengagement

suchasworkingonsolvingproblemspromotedadeeperconceptualunderstanding

thanthosethatmadeonlypassivedemandsonstudents.

Descriptionsoftasksprovidenotonlyacontextbutalsoalinkbetween

learningandteaching.Inparticular,thestrugglesstudentsexperienceare

generatedwithinthecontextofclassroomactivityaroundtasksthatplacedifferent

demandsonstudents’cognitiveprocesses.Thestudents’experienceinthe

classroomoftasksofvaryingcognitivedemandcanproducedifferentresultsin

theirlearning(Hiebert&Wearne,1993;Stein,Grover,&Henningsen,1996).Inthe

Page 39: Copyright by Hiroko Kawaguchi Warshauer 2011

25

nextsection,Iexaminethenatureandtypesofmathematicaltasksthathelp

facilitatestudents’productivestrugglesthroughinteractionandactiveengagement

amongstudentsandteachers.

NATUREANDTYPESOFTASKSTHATSUPPORTPRODUCTIVESTRUGGLE

ImportanceofMathematicalTasksTasksareacentralpartofateacher’sinstructionaltoolkit,andwhat

students’learnisoftendefinedbythetaskstheyaregiven(Christiansen&Walther,

1986).Inordertomovestudentstowarddevelopingadeepconceptual

understandingofmathematics,classroomteachingmustincorporateopportunities

forstudentstograpplewithmeaningfultasks(Lampert,2001;NCTM1991;

Schoenfeld,1994).Inaddition,studentsmustbegivenopportunitiestomakesense

ofimportantideasinmathematicsandtoseeconnectionsamongtheseideas

(Boaler&Humphreys,2005).

Tasksdefinetheactivitiesstudentsengageinandprovidestudentssocial

experiencestoparticipateinactivenegotiation,sense‐making,andreasoningthat

areinternalizedashighermentalprocessesthroughenactment(Vygotsky,1962,

1978;Rogoff&Wertsch,1984;Wertsch,1998;Bakhtin,1982).Whatisimportant

inthetaskandclassroomactivityistheworkthestudentsarerequiredtodo(Doyle,

1988).Theteachersdefinenotonlytheproductsstudentsaretoproducebutalso

theprocessesandresourcesstudentsmayuse,andthenormsbywhichthe

students’workareevaluated.

Page 40: Copyright by Hiroko Kawaguchi Warshauer 2011

26

Mathematicseducatorsandresearchersvoicesimilarpointsofview

regardingtasks.HenningsenandStein(1997)stated,inregardtofindingsintheir

workwiththeQUASARProject,afive‐yearstudyofmathematicsreforminurban

middleschools,“thenatureoftaskscanpotentiallyinfluenceandstructuretheway

studentsthinkandcanservetolimitortobroadenstudents’viewsofthesubject

matterwithwhichtheyareengaged”(p.546).Krainer(1993)asserted,“powerful

tasksareimportantpointsofcontactbetweentheactionsoftheteacherandthoseof

thestudent”(p.68).Studiesshowthatmathematicaltasksatstagesofconception,

selection,set‐up,implementation,andexecutionbytheteacherandthenthe

enactmentandinteractionbystudentsandteacherplayedcriticalrolesinthefocus,

demand,andvalueofwhatstudentslearnedasmathematics(Smith&Stein,1998;

Schoenfeld,1992;Doyle,1983;Hiebert&Wearne,1993).InAddingItUp(Kilpatrick,

Swafford,&Findell,2001),theauthorsstatethat,“tasksarecentraltostudents’

learning,shapingnotonlytheiropportunitytolearnbutalsotheirviewofthe

subjectmatter”(p.335).NCTM(2000)andSimon&Tzur(2004)bothpointto

mathematicaltasksasthekeypartoftheinstructionalprocessthatprovidestools

forpromotingthelearningofparticularandimportantmathematicalconcepts.

Itisinstructivewhenstudyingvariousformsofstruggletoalsoexaminethe

taskcontextandsituationthatengagesandsupportsthestudents’learning

preciselybecausetaskshelpshapestudents’cognitivegrowthandtheprocessesby

whichstudentsconstructtheirunderstanding.

Page 41: Copyright by Hiroko Kawaguchi Warshauer 2011

27

TaskFrameworkTasksofvaryingcognitivedemandsproducedifferentresultsinstudent

learning(Hiebert&Wearne,1993),dueinparttothedifferentexperiencesstudents

haveintheclassroom.Researchersalsosuggestthattasksdesignedtoprompt

higher‐orderthinkingaremorelikelytoproducedeeperconceptualunderstanding

thantasksdesignedtoofferskillspractice(Doyle,1988;Hiebert&Wearne,1997).

Bycognitivedemand,Imeanthesortofstudentthinkingthatthetaskdemands

(AmericanEducationalResearchAssociationResearchPoints,2006.Retrieved

January5,2010from

http://www.aera.net/uploadedFiles/Journals_and_Publications/Research_Points/R

P_Fall06.pdf).Raisingthelevelofdemandonstudents’cognitiveprocessesmay

thereforeresultingeneratingmorestrugglewithinthecontextofclassroom

activity.

Iuseataskframeworkbasedoncognitivedemand(Stein,Smith,Henningsen,

andSilver,2000)inordertogainaclearerpictureofthekindsoftaskswherethese

productivestrugglesoccur.TheQUASARresearchers(Silver&Stein,1996)created

aMathematicalTasksFrameworkthatfirstsituatesmathematicaltasksinthree

stagesasitunfoldsintheclassroomsetting:(1)asdesignedbythecurricular

material,(2)asset‐upbyateacher,and(3)asimplementedbystudents.The

frameworkthenanalyzestasksatfourlevelsofcognitivedemand(Smith&Stein,

1998).Inthefollowingsection,IdescribethelevelsofcognitivedemandIwilluse

inmystudy,basedontheMathematicalTasksFramework.

Page 42: Copyright by Hiroko Kawaguchi Warshauer 2011

28

LevelsofCognitiveDemandSteinetal.,(1996)identifiedfourlevelsofcognitivedemand.Fromlowestto

highesttheyare:memorization,procedureswithoutconnectionstoconceptsor

meaning,procedureswithconnectionstoconceptsandmeaning,and“doing

mathematics.”Isummarizethecharacteristicsofeachlevelbelow:

• Memorization

o involveseitherreproducingpreviouslylearnedfacts,rules,formulas,

ordefinitionsorcommittingfacts,rules,formulas,ordefinitionsto

memory;and

o involvesverysimilarreproductionofpreviouslyseenmaterial.

• Procedureswithoutconnectionstoconceptsormeaning

o arealgorithmic;

o havenoconnectiontotheconceptsormeaningthatunderliethe

proceduresbeingused;and

o arefocusedonproducingcorrectanswersratherthandeveloping

mathematicalunderstanding.

• Procedureswithconnectionstoconceptsormeaning

o focususeofproceduresforpurposesofdevelopingdeeperlevelsof

understandingofmathematicalconceptsandmeaning;

o usuallyrepresentedinmultiplewayswithconnectionsamong

multiplerepresentations;

Page 43: Copyright by Hiroko Kawaguchi Warshauer 2011

29

o suggestexplicitlyorimplicitlypathwaystofollowthatarebroad

generalproceduresthathavecloseconnectionstounderlying

conceptualideasasopposedtonarrowalgorithmswithconceptsthat

arenottransparent;and

o engagewithconceptualideasthatunderlietheproceduretocomplete

thetasksuccessfully.

• Doingmathematics

o requirescomplexandnon‐algorithmicthinking;

o requiresexplorationandunderstandingthenatureofmathematical

concepts,processes,orrelationships;

o demandsself‐monitoringorself‐regulationofone’sowncognitive

processes;

o requiresaccesstorelevantknowledgeandexperiencesandmake

appropriateuseofthem;

o requiresanalysisoftaskandexaminetaskconstraintsthatmaylimit

possiblesolutionstrategiesandsolutions;and

o requiresconsiderablecognitiveeffortandmayinvolvesomelevelof

anxietyforthestudentbecauseoftheunpredictablenatureofthe

solutionprocessesthatarerequired.

Page 44: Copyright by Hiroko Kawaguchi Warshauer 2011

30

(SmithandStein,1998withacknowledgementbytheauthorstoworksbyStein,

Grover,andHenningsen,1996;Stein,Lane,andSilver,1996;NCTM,1991;Resnick,

1987;Doyle,1988).

Alearningenvironmentthatprovidesstudentsopportunitiestostruggle

withmathematics,Ihypothesize,engagesstudentsathighlevelsofcognitive

demand.Inparticular,thosetasksinvolving“doingmathematics”becausethey

requirenon‐algorithmicandcomplexthinking,haveagreaterlikelihoodofcausing

struggleamongthestudent.Thecognitiveeffortrequiredatthelevelof

“procedureswithconnectiontoconceptsandmeaning”couldalsogeneratestruggle

asstudentsmakesenseofthetask,makeconnectionstotheirpriorknowledge,and

formulatestrategiesinordertocompletetheirtask.Tasksatthelowerlevelcan

generateothertypesofstrugglesuchasforgettingausefulalgorithmorinabilityto

executeacalculation.

ModelingStruggleandTasksInordertosituateproductivestruggleasapossibleoccurrencein

interactionsamongteacher,students,andmathematicalcontent,Iexpandthemodel

ofstruggleintroducedearliertoincludethelevelsofimplementedtasksascontext

andsettingfortheclassroominteractionsandstudents’struggle.

Page 45: Copyright by Hiroko Kawaguchi Warshauer 2011

31

Table2.2:ProductiveStruggleintheClassroomInteractionsofTeachingandLearningintheContextofMathematicalActivitiesandTasks

StruggleCognitiveLevelofImplemented

Tasks

NoneTooeasy

InternalIndependentsense­making

ExternalVisiblesigns

NoneToohard

Memorization

Procedureswithout

connections

Procedureswithconnections

“Doingmathematics”

Thetask‐strugglemodelwillrelatethenatureofstudents’struggleandthe

taskcontextinwhichitoccurs.Ataskofhighercognitivedemandmayprovoke

minimalstruggleforsomestudentswhoareabletoformulateappropriate

strategiesandcarryoutthetaskorsolvetheproblemwithoutsignsofstruggle.In

general,however,tasksofhighercognitivedemandwouldmostlikelyprovide

greaterincidencesofstruggle(Stein,Grover,&Henningsen,1996).Astudentmay

alsostrugglewithataskoflowcognitivedemand,suchasfindingaleastcommon

denominatorifthestudenthasforgottentheprocedureforfindingleastcommon

multiples.Therefore,instudyingvariousformsofstruggle,itisinstructivetoalso

Page 46: Copyright by Hiroko Kawaguchi Warshauer 2011

32

examinethetaskcontextandsituationthatengagesandsupportsthestudents’

learning.

Thesourceofthestrugglemayhaveabasisinmathematicalconceptsand

procedures,suchastheaboveexampleofforgettinghowtofindtheleastcommon

multiple.Othersourcesmayincludestrugglesrecallingmathematicalterminology,

theculturalcontextoftheproblem,ortheEnglishlanguageitself(Secada,1992,

Khisty&Morales,2004).Suggestedinthismatrixoftasksbystruggleisazoneof

proximaldevelopment(ZPD)orthegreyzoneofvariousshadingsindicatedinTable

2.2,whereteacheractionandresponsecanprovidetheneededsupporttomovethe

studentsforwardintheirunderstanding(Vygotsky,1962;1978;Wertsch,1985).By

linkingthekindsofteacherresponsestotheformsofvisiblestudentstruggles

occurringinclassroominteractions,wecanrelatetheroleofteachingthatsupports

thestrugglestowardproductiveresolutions.

Inowdescribestudiesthathaveincludedaspectsofstudents’struggleinthe

contextoftasksandrelatedinteractions.

KindsofTasksthatSupportProductiveStruggleTasksthatevokeuncertaintyforthelearnersuchascompetingclaims,

unknownpathwaysorquestionableconclusions,andnon‐readilyverifiable

outcomesplacesignificantlymorecognitivedemandonthelearnerandasaresult

canfostermathematicalunderstandingandmeaningfullearning(Zaslavsky,2005).

Zaslavsky’s(2005)studyhighlightedtheimportanceofanappropriateclassroom

Page 47: Copyright by Hiroko Kawaguchi Warshauer 2011

33

settingandtherolethatsocialinteractionsandtheexchangeofpersonalviewpoints

andpreferenceshaveinutilizinguncertaintyasaforceinlearningmathematics.

Othertasksthatexplorecontradictions,investigateerrors,orexamine

misconceptionsserveasusefullearningactivitieswhileaddressingstrugglesthat

studentshaveinresolvingtheirmistakesormisunderstandings(Hiebertetal,1997;

Lampert,2001;Kazemi&Stipek,2001).Theinteractionscreateapressfor

conceptuallearningbygivingstudentsopportunitiestoreconceptualizeaproblem,

explorecontradictionsinsolutions,andpursuealternativestrategies(Kazemi&

Stipek,2001;Borasi,1996;Townsend,Lannin,&Barker,2009).

Classroominstructionthatrequiresstudentstoexplaintheirsolutionsto

problems,whethercorrectorincorrect,cangivestudentsopportunitiestoargue

theirpointsofviewandfortheirpeerstostruggleinunderstandingorquestioning

others’thinking(Inagaki,Hatano,&Morita,1998).Similarly,havingstudents

describeandexplainalternativestrategies,askingstudentsmorequestionsand

providingstudentswithtimetoexplaintheirresponsesrevealstoteacherswhere

studentsarestrugglingwithemergingideas(Hiebert&Wearne,1993).Tasksbased

oninventionorprojectsoftenrequirestudentstobothconnecttotheirprior

knowledgeasastartingpointandtoseeknovelsolutionpathsthatarenot

straightforward.Studentswhoengagedinsense‐makingandstruggleintheprocess

ofexperimentation,consideration,andrejectionofideas,werebetterpreparedfor

Page 48: Copyright by Hiroko Kawaguchi Warshauer 2011

34

futurelearningandshowedpositiveeffectsonstudentlearning(Schwartz&Martin,

2004;Barron,etal,1998).

Thosestudentsengagedintasksthatwereset‐upandimplementedwith

high‐levelofcognitivedemandshowedthehigheststudentlearninggainsinstudies

suchastheQUASARProject(Silver&Stein,1996;Stein&Lane,1996).Whilethe

QUASARresearchersobservedthathigh‐leveltasksdonotguaranteehigh‐level

studentengagement,theyalsonotethatlow‐leveltasksalmostneverresultinhigh‐

levelengagement(Smith&Stein,1998).Inastudyontechnologicaltasks,Borchelt

(2007)foundthatamongtheeightcodingcategoriesoftasksthatemergedinhis

data,thecategoryoffrustration,wherestudentsexperienceanxietyandinsecurity

inapproachestoproblemsolving,isoneofthecharacteristicsofatasksupporting

thehighestlevelofcognitivedemand.

ThefindingsfromtheQUASARProject(HenningsenandStein,1997)

stronglysuggestthatinorderforstudentsto“domathematics”,theclassroommust

provideanenvironmentwherestudentscanengageinworthwhileandhigh‐level

activitiesinwhichstrugglingwithproblemsandtasksisanexpectedpartofthe

dailyroutine.Theirresearchidentifiedthosesupportfactorsincluding:tasksbuilt

onstudents’priorknowledge;appropriateamountoftime;high‐levelperformance

modeled;sustainedpressureforexplanationandmeaning;scaffolding;studentself‐

monitoring;andtheteacherdrawingconceptualconnections,allofwhichhelped

maintainengagementofstudentsatahigh‐levelofthinkingandreasoning.The

Page 49: Copyright by Hiroko Kawaguchi Warshauer 2011

35

supportfactors“relatedtotheappropriatenessofthetaskforthestudentsandto

supportiveactionsbyteachers,suchasscaffoldingandconsistentlypressing

studentstoprovidemeaningfulexplanationsormakemeaningfulconnections”(p.

546).

Thus,aclosestudyoftheinteractionsbetweenteacherandstudentsinwhich

aformofstudents’struggleoccursduringengagementinamathematicalactivityis

ofvitalimportanceinexaminingwhetherandhowthestrugglecanbeproductively

resolvedornot.Iwillnowaddressthethirdcomponentofmyconceptual

frameworkandreportonstudiesthatidentifysupportiveactionstakenbyteachers

duringtaskenactments.Iwilldiscuss,inparticular,thoseteacherresponseslinked

tothekindsofstrugglethatoccurinthemidstofmathematicalactivities.

TEACHER’SRESPONSETOSTRUGGLE

Thethirdcomponentofmyconceptualframeworkfocusesontheroleof

teacher’sresponseinfacilitatingstudents’struggleinaproductivemanner.As

studentsandteachersparticipateintheenactmentoftasksintheclassroom,

studentsengageintheprocessofmakingsenseofthesetasks.Aswellplannedas

thetasksmaybe,studentscanencounterdifficultyduringvariousstagesofthe

lessonenactmentprocessfromitsintroductionanddevelopmenttoitsclosure.The

externalizationofstudents’strugglecanengagetheclassroomcommunity,oratthe

veryleasttheteacher,insomeresponseaction.Myconceptualframeworkwas

informedbystudiesthatfocusedoninteractionsamongtheclassroomparticipants

Page 50: Copyright by Hiroko Kawaguchi Warshauer 2011

36

andexaminedthekindsofsupportandguidancetheinteractionsaffordedin

resolvingthestruggles.Ontheonehand,explicitactionsandmovesbyteachersor

peerscanworktobuildcommunityunderstandingandresolvestudents’struggle

withoutdeprivingstudentsoftheopportunitytothinkforthemselves.Ontheother

hand,theurgebyteacherstohelpstrugglingstudentscanresultinloweringor

removingthecognitivedemand(Henningsen&Stein,1997)bysuchactionsas

tellingstudentstheanswer(Chazan&Ball,1999),directingthetaskintosimpleror

mechanicalprocesses(Stein,Grover,&Henningsen,1996),orgivingguidancethat

funneledstudents’thinkingtowardsananswerwithoutbuildingnecessary

connectionsormeaning(Woodetal,1976;Herbel‐Eisenmann&Breyfogle,2005).

Teachers’supportisdictatedbythecontext,situation,studentneedsand

theirownbeliefsandknowledge.Responsesthathelpstudentsmakeconnections

orsupplysomeneededinformationmaybeanecessarypartofsupportingstudents’

productivestruggle.Mystudyattemptstodelineatebetweenteachers’actionsthat

directstudents’struggleproductivelytowardsense‐making,asinunderstandingthe

what,how,orwhyofthetaskasopposedtoactionsthatcoulddirectstudents’

struggleunproductivelytowardsanansweroraprocedurethattranspireswithout

studentsalsoseeingthemathematicalconnectionsormeaningtotheiractions.

Researchershaveinvestigatedthekindsofscaffolding:thediscourse,

questioning,andmotivationalstrategiesusedbyteachersintheirinteractionwith

studentsthatsupportstudentlearning(e.g.Lampert,1990;O’Connor&Michaels,

Page 51: Copyright by Hiroko Kawaguchi Warshauer 2011

37

1996;Dweck,1986;Anghileri,2006;Williams&Baxter,1996).Mysynthesisof

existingresearchonteachingandlearninginteractionsfocusesonexaminingthe

natureofteachers’responsesandthewayssuchactionscanhelpmanageaspectsof

theinteractionsthateitherdirectlyorindirectlysupportproductivestruggleasa

valuablepartoflearning.Iusethefollowingtypesofteacherresponsesthatwill

guidemydataanalysis.

• Supplyinformation:

o Giveanswer

o Remindrelevantaspect

o Suggestmethodortechnique

o Giveexample

o Evaluatecorrectness

o Modelmethodortechnique

• Connecttostudents’priorknowledge:

o Refertoexampleofpreviousworkrelatedtocurrenttask

o Suggestanalogyandcomparisonofconcepts

o Providevisualrepresentation

o Modifyorabandontheproblem

• Attendtoandclarifythestruggle:

o Statetheproblemorsharestrugglewithothersintheclass

Page 52: Copyright by Hiroko Kawaguchi Warshauer 2011

38

o Revoicestudent’sstrugglebyreframing,refocusing,orrephrasing

withgreaterclarity

• Askguidingquestions:

o Supportandbuildonstudentideas

o Considersimplercase

o Refocusstudentsonpartsofthetask

• Askprobingquestions:

o Elicitfromstudentswhatisknown,whattheyseek

o Pressforclarityandarticulationofquestionandreasoning

o Examinepossiblemisconceptions

o Providereflectivetoss

• Provideencouragementandagency:

o Acknowledgestudents’thinkingandselectportionsusefultostruggle

o Examineerrorsasvaluabletolearning

o Affordmoretimeforthinking

Thenatureofinteractioninaclassroomistheunpredictabilityofwhatcan

happenbetweenteachersandstudentsinthemoment‐to‐momentworkingsof

mathematicalactivity,particularlyasteachersattempttobalancethecomplexities

andconstraintsofclassroomsettings(Kennedy,2005).Astudentstrugglingwithan

aspectofamathematicaltaskmayseeksomeformofsupportinordertoresolvethe

tensionthatconfrontshimorher.Theimpactofsupportingstudentsinlearning

Page 53: Copyright by Hiroko Kawaguchi Warshauer 2011

39

canvaryfromonelearnertoanotherandwhattheycometoknowasmathematics

(Gresalfi,2004;Ball&Bass,2003).Bestintentionedlessonscangivewaytothe

immediateneedsofthestudentatthemomentofenactment(Steinetal,2000;

Wells,1996)andthechoicesteachersmakeinresponsetothesituationcancreate

differentlearningopportunities“accordingtothepedagogicpurposestheyhavein

mindatparticularmoments”(Haneda,2004,p.181).Forexample,intheirfindings

fromtheQUASARProject,Stein,Grover,andHenningsen(1996)reportedthat

teachers’useofscaffoldingservedasoneofthesupportfactorsthathelped

maintainthestudentsengagementwithataskatahigh‐level.However,inmany

instances,theteachers’responsesprovidedsomuchinformationthatthecognitive

demandofthetaskwasreducedalongwithstudents’opportunitytostruggle

productivelywiththemathematics.Theinteractionsbetweenteachersand

students,therefore,requireconstantbalancingofchallengesandsupportasthe

tasksunfold(Mariani,1997;Michell&Sharpe,2005).Inwhatfollows,Ielaborate

onthecategoriesproposedaboveforteachers’responsesthataddressstudent

strugglesanddescribetheirpossibleintendedpurpose.

ResponsesthatSupplyInformationtoStudentsOnceateacherobservesastudentstruggle,theteachermakesadecision

regardinganactiontotake.Onecategoryofteacherresponseistoprovide

informationtothestrugglingstudent.Throughthistypeofaction,thestudentsmay

thenbemoretask‐enabledthanpriortotheinteraction(Maybin,Mercer&Stierer,

Page 54: Copyright by Hiroko Kawaguchi Warshauer 2011

40

1992).Thetypeofinformationmayrangefromgivingtheanswertotheproblem,

showingstudentshowtosolvetheproblem(Smith,2000),givingsufficienthintsor

addingkeymissingpiecestohelpstudentscontinuetheirwork.Theresponsemay

beacorrectiontostudents’workorstatementoraselectionofthecorrectanswer

fromseveralchoicesthestudentsarestrugglingover(Santagata,2005).Itcould

consistofprovidingstudentsameaningfulcontexttoanabstractconcept(Anghileri,

2006,p.42).Teachersmayrespondbysupplyingthestudentsausefultechniqueor

methodorareminderofaresourcesuchasthetextorworkontheboardthatmay

promptsomeusefulconnections.Ateachermayfurthersupplyanexamplethat

illustratesormodelsausefulstrategythatprovidessupportofmathematicalideas

oranalyticscaffoldingforstudents(Williams&Baxter,1996).Inshort,theteacher

tellsstudentssomeinformationthatappearstobeusefulforimplementingthetask,

thoughintheprocessmayaffectitslevelofcognitivedemand.

ResponsesthatConnecttoStudents’PriorKnowledgeStudieshavehighlightedtheimportantrolethatpriorknowledgeplaysin

students’learning(e.g.Piaget,1952,1962;Rittle‐Johnson,2009,Rittle‐Johnson&

Koedinger,2005;Bransford,Brown,&Cocking,1999).Teachersmaymodifythe

problem,intermsofcognitivedemand,orevenabandontheactivityiftheyfindthe

taskinappropriate(Stein,Grover,&Henningsen,1996).Teacher’sresponsewith

examplesthatconnectstudents’thinkingwiththeirpriorknowledgecangive

studentsusefulstrategiesandskillsinapproachingtheirpresenttask.These

Page 55: Copyright by Hiroko Kawaguchi Warshauer 2011

41

examplesmayrelateconceptscoveredinthepastwiththecurrentworkstudents

aredoing.Teachers’useofanalogiesisanotherstrategythattargetsconnecting

students’currentstrugglewithelementsoftheirpriorknowledge(Richland,

Holyoak,&Stigler,2004).Analogyresponsecanhelpstudentsrelatetheircurrent

situationwitharelatedconceptthatthestudentknowsbutdidnotthinktoconnect

duetosurfacedifferences.Theanalogybuildsonstudents’priorknowledgeand

movesthemforwardintheirsense‐makingofthenewconcept.Forexample,

supposestudentsareaddingtwoalgebraicfractions, 1x2 yand 1

xy2,andareunclear

whattodo.Ateachermayremindthestudentsaboutworkingwithnumerical

fractionswithunlikedenominatorssuchas 112 and 118 .Theintentoftheanalogy

thenistoencouragestudentstousestrategiestheyalreadyunderstandandapply

thesethentothenewideaswithwhichtheyarestruggling.Theteacher’suseofan

analogyhelpsstudentsconnectandextendtheirpriorknowledgeaswellasconnect

proceduralusagetomathematicalconceptssuchastheadditionoffractions

(Richland,Holyoak,&Stigler,2004).

Additionalsupportandinformationforconceptsorproceduresmaybe

neededwhenstudentsstrugglewithmakingaconnectionsbetweensuchexamples

asfindingtheleastcommondenominatorforalgebraicproblemsandnumerical

problems.Teacher’sresponsewithanappropriatevisualrepresentationcanserve

toextendamethodusedforthenumericaltasktothealgebraictask.Forexample,

considerthecaseoffindingaleastcommonmultiplefor12and18intheexample

Page 56: Copyright by Hiroko Kawaguchi Warshauer 2011

42

above.AVenndiagramcanbeusedtorepresenttwosetscontainingfactorsforthe

numbers12and18withthecommonfactorsof2and3intheintersectionofthe

twosets.Thisrepresentationgivesavisualizationofhowthefactorsof12and18

aredistributedandshared.Ingeneral,Kaput(2001)notedthatusingavisual

representationgivesstudentsandteachersadditionalwaystopresent,share,and

storethemathematicalobjectsandrelationshipsbeyondverbalandsymbolic

representations.Byencouragingstudentstothinkofvisualmodels,teachershavea

moreinformedwayofrespondingandguidingstudentsastheysometimestakea

“zig‐zagroute”towardunderstanding(Lakatos,1976).

ResponsesthatClarifytheStudentStruggleAnothertypeofresponsereportedintheliteratureistoaskthestudentto

restatetheproblemfortheteacherortosharetheproblemorquestionthestudent

ishavingtotheclass.Thisdiscoursestrategyisintendedtobringstudentsinto

intellectualsocializationandmaintaintheirthinkingandwaysofactingsothat

otherparticipantsinthelearningcommunitycanjointlyowntheirstruggle.Askew

&Wiliam(1995)arguedthataprocessofcooperativelyfiguringthingsout

determineswhatcanbesaidandunderstoodbybothteacherandstudents.A

productiveresolutiontounderstandingcanresultfromastruggleforshared

meaning.

O’ConnorandMichaels(1993)reportedteachers’useofrevoicingasatool

thatcanhelpstudentsclarifysolutionsorproblems,remindthemofaconnectionto

Page 57: Copyright by Hiroko Kawaguchi Warshauer 2011

43

priorknowledge,animatetheparticipantsintheinteraction,alignthetask

expectation,andshareinreformulatingorreframingtheproblem(p.328).

Revoicingandingeneralrebroadcastingthestrugglehasthepotentialtobean

effectiveteacherresponsetoproductivestruggle,particularlywhenstudentsareat

animpasseandareunabletomakeprogresswithaproblem.

ResponsesthatQuestionStudents’ThinkingRespondingtostudentsstrugglebyaskingquestionsservesvarious

purposes.Aspartofadiscourseinteractionbetweenteacherandstudents,

questionscangivedirectiontostudents’thinkingandopportunitiesforstudentsto

organizeideasastheyengagewithatask(Sorto,McCabe,Warshauer,&Warshauer,

2009).Whenastudentexhibitsstruggle,questionsthatelicitareasonedguess

ratherthana“savage”guess(Polya,1945)couldinformtheteacherofthestudent’s

difficulty.Questions,particularlywhencarefullysequencedtodevelopandbuildon

students’ideas,canthusservetoassessthestudents’thinkingandsupportand

directthem(Cazden,2001).However,questionscanalsoservetoreducecognitive

demandiftheemphasisisplacedmerelyonrightorwronganswersorfactualrecall.

Questionscandirectstudentstorestatetheirproblem,clarifyandarticulate

theirmeaningorrestructuretheiremergingideas.Respondingwith“whydoyou

thinkthat?;“whatdidyoudothere?”;or“howdidyougeta5here?”mayserveto

connectstudents’workwiththeirthinkingwhilerefocusingstudentsonimportant

mathematicalpointsthattheymayhavemissed(Anghileri,2006).Havingstudents

Page 58: Copyright by Hiroko Kawaguchi Warshauer 2011

44

verbalizetheirthinkingcanhelpthemdevelopwaysofmathematically

communicatingandexplainingtoothersaswellasrevealpossiblemisconceptions

thatwouldhaveotherwisegoneunnoticed(deBock,Verschaffel,&Janssens,2002;

Forman&Ansell,2002;O’Connor&Michael,1993,1996).Inaddition,bycarefully

questioningandlisteningtoaspectsofstudents’responses,theteachercanmake

carefulselectionsandbuilduponstudents’ideasandthinking.

Thinkingaboutandairingemergingideasinarelativelyrisk‐free

environmentgivestudentsopportunitiesnotonlytoclarifytheirthinkingbutalso

addcoherencetotheirthinkingthroughtheactofsaying(Wells,1999).Whilea

teachermayrespondwithevaluativecommentsasinatypicaldiscoursepattern

suchasInitiation‐Response‐Evaluation,withholdinganevaluativecommentand

respondingwithafollow‐upsimilartothereflectivetossreferredtobyvanZeeand

Minstrell(1997)encouragedstudentstoreflectonanddevisewaystoovercome

theirstruggle.Inherdissertationresearch,Pierson(2008)focusedonexploring

discoursepatternsofmiddleschoolmathematicsstudentsandteachersthat

incorporatedasfollow‐upanexpectationor“prospectiveness”ofstudentsto

respond,muchlikeareflectivetoss,ratherthananevaluativecomment.Theuseof

probingquestionsandquestionsthatdemandedintellectualworkresultedina

moreproductiveexchangeandincreasedstudentlearningthanthosequestionsthat

didnot(Pierson,2008).Follow‐upquestionsthatrequireastudent‐generated

explanationcanstimulatethestudents’priorknowledgewhileconnectingtonew

Page 59: Copyright by Hiroko Kawaguchi Warshauer 2011

45

conceptsthatmustbeassimilatedintothestudents’existingschema(Piaget,1952,

1962).AsWebb(1991)noted,“thiscognitiverestructuringmayhelptheexplainer

tounderstandthematerialbetter,aswellashelphimorherrecognizegapsin

understanding”(p.368).

Questionsthatprobestudents’thinkingormisunderstandingcanprovide

studentsadditionalinformationthathelpsdirecttheirthinking.Inacasestudyby

WilliamsandBaxter(1996),theteachers’andstudents’useofprobingquestionsin

adiscourse‐orientedclassroomproductivelysupportedstudentsthroughepisodes

ofconfusionandsense‐making.Onefindingfromthisstudy,however,suggeststhat

thequestionsanddiscoursemustbemeaningfulinorderforthestudentstolearn

fromtheinteraction.

Questionscanalsostimulateconsiderationofotherpointsofviewby

redirectingthequestiontootherstudents.Theresponseoftheteachershouldbe

relativetothedifficultiesthestudentsarehavingandthekindsandsequencesof

questionsforwhichtheyseekclarification,description,explanation,justification,

interpretation,andreason(vanZee&Mistrell,1997).Whatisimportantthroughout

thisprocessofrespondingtostudents’struggleisthenecessaryencouragementand

supportthathelpstudentscontinuetoengageinthetask,seekaresolution,andnot

giveup.Oneshouldnotethatstudentbeliefsaboutself‐efficacy(Bandura,1997;

Pajares,1996),thatistheperceptionthatonehasthecapacitytoachieveasetgoal,

Page 60: Copyright by Hiroko Kawaguchi Warshauer 2011

46

playsaroleinthepersistencewithwhichastudentiswillingtostruggle,asnotedin

thefindingsregardingproblemsolvingbyPajares&Miller(1994).

ResponsesthatBuildStudentAgencyTheestablishedteacher‐studentrelationshipplaysanimportantroleinwhat

studentscometovalueintheirinteractionswiththeteacher.Statementssuchas

“you’reontherighttrack”canpromptastudent’ssenseofagencyandconfidenceto

continueorrevisetheirideas(Doerr,2006):however,aresponsesuchas“you’re

wayoff”servestorejectthestudent’seffortasawholewithoutsalvagingany

portionofit(vanZee&Minstrell,1997;O’Connor&Michaels,1996).Theformer

responsecangivestudentssomesenseofcompetenceandprovidesmotivationfor

persistingintheireffortwhilethelatterprovideslittleencouragementfortheir

effort.Similarly,aresponseof“nicejob”positionsastudent’scontributionas

competent.Teacherresponsescancapitalizeonincorrectanswersasimportant

contributionsthatacknowledgethestudentsascompetentandfurnishesinsightto

understanding(Gresalfi,Martin,Hand,&Greeno,2009).

Studiessuggestthatmotivationisanaffectivefactorthatplaysacriticalpart

inhowstudentsandteachersengageandinteractmeaningfullyintasks(Ames,

1992;Dweck,1986).Gresalfietal.(2009)refertotheconstructionofstudent

competenceandagencyasavaluablepartofhowstudentstakeupopportunitiesto

participateandlearnintheclassroom.Strugglecandissipateunproductivelyif

studentsdisengagefromtheirtaskoractivity.Therefore,thestudent‐teacher

Page 61: Copyright by Hiroko Kawaguchi Warshauer 2011

47

interactionsinaclassroomenvironmentcanservetocontributeorhinderstudents’

willingnesstopersistandstruggle(Ecclesetal.,1993)aswellastoconstructtheir

senseofagencyinaproductivestruggle(Gresalfietal.,2009).

Forexample,thewaymistakesarehandledinstudent‐teacherinteractions

caninfluencestudents’motivationandlearningperformance(Ames&Archer,

1988).Whilebehavioristtheoriesoflearningviewmistakesasobstaclesfor

learningandabehaviortobeavoided(Skinner,1958),aconstructivisttheoryviews

mistakesasatoolforlearningandasopportunitiestofacilitatestudents’meta‐

cognitiveawareness(Palincsar&Brown,1984).

Researchhasshownthatexposinganddiscussingerrorsandmisconceptions

improveslearning(Borasi,1994).Eggleton&Moldavan(2001)notethatbyhelping

studentsconfronttheirerrorsandresolvetheincongruity,themistakescanbeseen

asasourceoflearningandsense‐making.Participationintheprocessof“doing

mathematics”andthewillingnesstouseerrorsaslearningopportunitiesrather

thanobstaclestomakingsenseofmathematicalideasleadstoconceptuallearning

intheclassroom.Whenteacherresponsescanchangestudent’sstatementof“Idon’t

getit”toastatementof“Idon’tgetityet”thestruggleshowssignsofproductively

movingthestudentforwardinhisorherengagementwiththemathematics

(Eggleton&Moldavan,2001).

Ateacherresponsethat:(1)allowsmoretimeontask,(2)acknowledgesthe

students’effortandcompetenceparticularlyinthefaceofdifficulty,and(3)

Page 62: Copyright by Hiroko Kawaguchi Warshauer 2011

48

increasesthequalityofengagementwithoutloweringthecognitivedemand,are

moreapttoencouragethestudenttopersistdespitethestudentstruggles(Ames,

1992;Anderman&Maehr,1994).Atthesametime,thestudents’self‐theorycan

interactwiththeteachers’supportstructuresandaffectthemotivationthestudents

bringtotheirtaskengagement(Weinert&Kluwe,1987;Sullivan,Tobias,&

McDonough,2006).Aresponsethatemphasizescompetition,socialcomparison,

andabilityself‐assessment(Ecclesetal,1993)reflectsanorientationthatstudies

suggestdirectsstudentstooptforeasiertasksorgiveuptoavoidfailure(Ames,

1992;Dweck&Leggett,1988;Harter,1981).Therefore,teachersmustcomplement

theabovecomponentswithappropriateattributionstoenablestudentstoconfront

possiblefailuresinthefuture.Whenteachersexpressthestudents’struggleas

naturalinsolvingproblemsandtheireffortconstructive,studentsgainintrinsic

support.Studentsmaintainengagementandpersistencewhenteachers’responses

acknowledgestudents’competence,effortandinvolvementintheintellectualwork

demandedofthetasksanddonotfocusonjust“therightanswer”totheproblemor

task(Holt,1982;Dweck,2006,1986).

Suchateachers’stancecanencouragestudentsto“wanttosucceedonthis

task”(Ecclesetal.,1993,p.564)fortheirownlearningandnotforhowtheyare

perceivedbyothersintermsofsuccessorfailure(Dweck,2006;Holt,1982).When

studentsarestrugglingtomakesenseofaproblem,timeaffordedcanmakethe

differencebetweenstrugglethatisproductiveandstrugglethatisnot.Important

Page 63: Copyright by Hiroko Kawaguchi Warshauer 2011

49

tooisthelengthanddepthoftheresponseusedbytheteacher(Pierson,2008;

Maloch,2002).Therushforquickanswersattimesliketheseareadetrimentto

allowingstudentstheopportunitytoclarifyandarticulatetheiremergingideas,

addressgapsintheirunderstanding,andlistentootherviewpoints(Kawanaka,

Stigler&Hiebert,1999).

FrameworkforProductiveStruggle

InowextendthemodelofTasksandStruggleproposedearlierand

incorporatethenatureandpatternsofTeacherResponses.Iwilltaketheteacher

responsedataandanalyzethemusingthefollowingthreedimensionsofhowthe

teacher’sresponses(1)maintainthecognitivedemandofthetask,(2)respond

directlytothestudents’struggles,and(3)buildonstudents’thinking.Research

abovesuggeststheseelementsareimportantinhowproductivelytheinteraction

canberesolved.

Figure2.1:PreliminaryStruggleandResponseFrameworkinTaskContext

!"#$#%&'()*#'+*,

-).)-#%+/%0+1*'2'.)%3)("*3

4*'2'2"2) 4*2)5"02%6273)*2%625711-)%&'()*#'+*#,%

%89"2:%9+8:%89;

<720+()%&'()*#'+*,

=&+'*1%("29>

!)"09)5%?)#@+*#)%&'()*#'+*#,

0+1*'2'.)%3)("*3:%"335)##

#25711-):%#273)*2%29'*$'*1

?)#+-.)

!"#$%&'()*+,)'-

."#/('0%12(%#-'#0'-0%3,

4"#/('0%12(%#5),6#0'-0%3,

7"#8'#&+,6

!"#9%,#:,+(,%1

."#;+((<#'2,#+#3('0%::

4"#9)=%#&+,6%&+,)0+>#

######%?3>+-+,)'-

7"#@?3(%::#&):0'-0%3,)'-

#####'(#%(('(

!"#A233><#)-B'(&+,)'-

."#;'--%0,#,'#3()'(

####C-'5>%1D%

4"#8)(%0,#+-1#D2)1%#

#####,6)-C)-D

7"#E2%:,)'-#,'#0>+()B<

#####:,(2DD>%F#3('G%#,6)-C)-DF

#####+-1#0'--%0,#)1%+:

H"#IBB'(1#,)&%#+-1#

####%-0'2(+D%#3%(:):,%-0%

!"#/('120,)=%

."#J-3('120,)=%

Page 64: Copyright by Hiroko Kawaguchi Warshauer 2011

50

Asanexploratorystudy,myproposedframeworkwasbasedonthe

literatureandmypreliminaryobservationsfromclassroomvisits.Myresearchgoal

andthepurposeofmystudywastogatherdatafrommyfieldobservationsthat

wouldrevealwithgreaterclaritythenatureofteacherresponsesthatsupportthe

kindsandpatternsofstudents’strugglethatoccurwhilestudentsareengagedin

mathematicalactivitiesandtofurtherrefinemyframework.

Inanyclassroom,itisverypossiblethatstudentswillshowsignsof

strugglingwithagiventaskatanystageoftaskenactment.Iproposedtoclassify

students’struggleinthegeneralcategoriesof“whattodo?”“howtodoit?”and

“whydoesitmakesense?”thatIrefinedfrommyresultsandnotedthelevelof

cognitivedemandthetaskimposedonthestudentsastheyenactedthem.Ithen

lookedforthoseteachers’responsesthatappearedtobeproductiveinstudents’

understandingandengagementaswellasdocumentedthosethatappeared

unproductive.

SummaryMystudywillfocusonthefollowingresearchquestions:

1. Whatarethekindsandpatternsofstudents’strugglethatoccurwhilestudents

areengagedinmathematicalactivitiesthatarevisibletotheteacherand/or

apparenttothestudentinmiddle­schoolmathematicsclassrooms?

Page 65: Copyright by Hiroko Kawaguchi Warshauer 2011

51

2. Howdoteachersrespondtostudents’strugglewhilestudentsareengagedin

mathematicalactivitiesintheclassroom?Whatkindsofresponsesappeartobe

productiveinstudents’understandingandengagement?

Mystudydocumentedthephenomenonofstudents’productivestruggleasit

occurredinmiddleschoolmathematicsclassroomsasaprocessthatwasfirst

observedwhenstudentsexpressedformsofperplexity,doubt,uncertainty,or

conflictwhileengagedinworkingonatask,activity,orproblem.Whatthenensued

wastheinteractionofstudentsandteachertoaddressthestruggleproductively(or

not)throughactionsofthetypesindicatedinFigure2.1.Inthosecaseswherethe

strugglesweredirectedproductivelyasaresultoftheseinteractionsandresponses,

thestudentswouldproceedto

• makesenseoftheproblemstatementandunderstanditsmeaningand

goal:or

• organizeconceptsordevelopandrefinestrategiestowardssolving

theproblemorexecutingthetask

inordertomovetheirunderstanding,reasoning,andsense‐makingofthe

mathematicsforwardinaccomplishingthegoalofthetask.

Inaddition,mystudyidentifiedthelevelofcognitivedemandmadebythe

mathematicaltasks,activities,orinstructionwithinwhichstudents’strugglewas

externalizedandmadepublicintheclassroom.Inthatcontext,Iobservedtheways

teacherresponsesprovidedguidance,motivation,andadditionalinstructionto

Page 66: Copyright by Hiroko Kawaguchi Warshauer 2011

52

supportthestudents’struggle.Theinteractionofteachingandlearningthat

occurredatthesesitesofstrugglewentindirectionsthatwereproductiveandat

othertimesnot.Ifstudents’engagementinproductivestruggleofmathematical

conceptscanindeeddeepenstudents’conceptualunderstanding,thenexamining

thoseinteractionsoflearningandteachingthatmanageandfacilitatestudent

strugglesproductivelycaninformeducatorsofitsnatureandvalueforteachingand

learning.

Page 67: Copyright by Hiroko Kawaguchi Warshauer 2011

53

Chapter3:Methodology

Myresearchisanexploratorycasestudyusingembeddedmultiplecasesin

ordertostudytheroleofproductivestruggleinlearningandteachingmathematics.

Specifically,theresearchquestionsIaddressinmystudyare:

1. Whatarethekindsandpatternsofstudents’strugglethatoccurwhilestudents

areengagedinmathematicalactivitiesthatarevisibletotheteacherand/or

apparenttothestudentinmiddle­schoolmathematicsclassrooms?

2. Howdoteachersrespondtostudents’strugglewhilestudentsareengagedin

mathematicalactivitiesintheclassroom?Whatkindsofresponsesappeartobe

productiveinstudents’understandingandengagement?

Mygoalwastostudyclassroominteractionsinnaturalisticsettingsand

documenthowteacherssupportstudentswhoshowsignsofstruggleinlearning

mathematicswhileengagedinsomemathematicalactivity.Usinganembeddedcase

studymethodology(Yin,2009)withinstructionalepisodesasunitofanalysiswithin

thelargerunitofteachers,Iidentifiedanddescribedthenatureofthestudent

strugglesandtheinstructionalpracticesofteachersthatsupported,guidedordidn’t

guidethestudents’senseandmeaning‐makingofthemathematicaltasksinthe

lessonepisodes.Iusedmyfieldnotes,teacherandstudentinterviews,andvideo

and/oraudio‐recordedclassroomlessonstodescribeandanalyzetheinteractions

andpracticesteachersusethatfocusonstudents’productivestruggle.Theintentof

Page 68: Copyright by Hiroko Kawaguchi Warshauer 2011

54

thisstudyistocontributetothisunderstandingbyexaminingandidentifyingthose

aspectsoftheteachingandlearninginteractionskeytoproductivestruggle.

PARTICIPANTSTheparticipantswere6thand7thgrademiddleschoolstudentsandtheir

teachersfromthreemiddleschoolslocatedinmid‐sizeTexascities.Theteachers

taughtthestudentsusingthesamemathematicstextbook,MathematicsExploration

part2(ME2)(McCabe,Warshauer,&Warshauer,2009)astheirprimarytextduring

the2009‐2010schoolyear.Amongothergoals,thetextbookwaswrittento

encourageteacherstoactivelyengagestudentsinmathematicalinquiry.The

teachershadalsoreceivedongoingprofessionaldevelopmentthroughouttheschool

yearbytheauthorsincludingtheresearcheronthetextbookimplementation.A

largerpilotprojecthad16teachersutilizingtheME2textbook.Fromthatpoolof

teachers,Iinvitedtwoteacherstoparticipateinmyresearchfromeachofthree

middleschoolsites,allsixofwhichagreed.Thisselectionwasnotrandombut

basedonpriorclassroomobservationsIhadmadeoffourofthesixpilotteachers.I

hadnotedtheteacher‐studentinteractionsthatweretakingplaceinthesefour

classroomsandhowstudentswereencouragedtoengageinclassroomdiscourse

anddevelopandexpresstheirideasduringmathematicalactivity.Ihad

correspondedwiththeothertwounobservedteachers.Theyhadsharedreflections

oftheirlessonsduringtheyearthatsuggestedhowtheyvaluedencouraging

Page 69: Copyright by Hiroko Kawaguchi Warshauer 2011

55

students’engagementabouttasks,particularlychallengingonesinwhich“figuring

thingsout”wasimportant.

Theteachersfromtwoofthesitestaught7thgradestudentsandtheother

twoteachersfromthethirdsite,amagnetmiddleschool,taught6thgradestudents.

InTable3.1,thecharacteristicsandeducationalinformationregardingtheteachers

aregiven

Table3.1: CharacteristicsofTeacherParticipants

Teachers Gender Ethnicity Certification

Yearsteachingatthisgradelevel

Totalyearsteaching

Ms.Norris(site1)

Female White Grades:6‐12 14yearsin7thgrade

18years

Ms.Torres(site1)

Female Hispanic Grades:6‐12 19yearsin7thand8thgrades

19years

Ms.George(site2)

Female White Grades:EC‐8 2yearsin7thgrade

12years

Mr.Baker(site2)

Male White Grades:5‐8 2yearsin7thand8thgrades

2years

Ms.Harris(site3)

Female White Grades:6‐12 6yearsin6thgrade

8years

Ms.Fine(site3)

Female White Grades:4‐8 2yearsin6thand7thgrades

2years

Page 70: Copyright by Hiroko Kawaguchi Warshauer 2011

56

PROCEDURE

DataCollectionIobservedeachteacherteachingsixtoeightclassesinaone‐weekperiod

witheachclassrangingfrom60minutesto90minutes.Theobservationswere

carriedoutinMay,2010andthefrequency,duration,andscheduleinformationare

showninTable3.2below.TheschoolforthelasttwoteachersusedanA/B

schedule.Ithereforeobservedtwooftheclassesontwoseparatedaysbutobserved

twoofMs.Harris’classesandoneofMs.Fine’sclassesonlyonce.

Table3.2: Observedclassfrequencyandhours

Teachers(site#)

#classesobservedperteacher

#timeseachclassobserved

Durationofeachclass

Totalhoursofobservation

Totalnumberofstudents

Ms.Norris(#1)

2 3 1hour 6hours 56

Ms.Torres(#1)

2 3 1hour 6hours 54

Ms.George(#2)

2 4 1.5hours 12hours 47

Mr.Baker(#2)

2 4 1.5hours 12hours 29

Ms.Harris(#3)

4 1or2 1.5hours 9hours 82

Ms.Fine(#3)

3 1or2 1.5hours 7.5hours 59

Iobserved39classsessionsamongthesixteachersand327studentsfora

totalof52.5observationhours.Theclasssizeofthe15differentclassesranged

Page 71: Copyright by Hiroko Kawaguchi Warshauer 2011

57

from13to29studentswithsomevariationsinclasssizewhenabsencesoccurred

duringtheobservationperiod.Theaverageclasssizewasapproximately18

studentswithamedianandmodeof22students.

Table3.3providesstudentdemographicinformationforthethreeschools

andreflectsthestudentpopulationfortheparticularclassesthatIobserved.

Table3.3: StudentDemographics*

Site#

School White Hispanic Other(AfricanAmerican,Asian,NativeAmerican)

EconomicallyDisadvantaged

LimitedEnglishProficiency

#1 Mid‐sizecitysouthernTexas777studentsGrades6th‐8th

6.7% 89.7% 3.6% 52.9% 6.7%

#2 Mid‐sizecitywestTexas687studentsGrades7th&8th

33.5% 55.9% 10.6% 53.6% 6%

#3 Mid‐sizecitycentralTexas800StudentsGrades6th‐8th

56% 23%

21%

20% 0%

(*Fromhttp://ritter.tea.state.tx.us/perfreport/src/2010/campus.srch.htmlandschooldirectoratsite#3)

Page 72: Copyright by Hiroko Kawaguchi Warshauer 2011

58

Observationsconsistedofvideofootageofeachteacher’smathematicsclass

usingonestationarycamerafocusedontheclassroomandanothermobilecamera

thatIusedtocaptureinteractionswhenteachersrespondedtostudents’struggle.

Thepurposeofusingthestationarycamerawastocapturetheoverallnatureofthe

classroomintermsofactivities,classroomengagement,andactionstakingplacein

theclassroomsimultaneouslywithaparticularstudent’sstruggle,whichmightnot

becapturedonthemobilecamerathatfocusedonthisparticularteacher‐student

interaction.Ialsokeptfieldnotesoftheclassroomactivitywhennotusingthe

videocamera,andwrotereflectionnotesoftheclassroomobservationsaftereach

class.

Attheendofmosttasksoractivities,thestudentsfilledoutaresponsesheet

indicatingtheirperceptionofthedifficultylevelofthetask(SeeAppendixE).Some

classesranoutoftimeandthesurveyscouldnotbeadministered.Iobservedthe

actionsofthestudentsduringclass,particularlythosethatshowedsignsofstruggle

andthennotedtheirtasksurveyresponsestodeterminetheirperceptionofthe

task.Forexample,astudentmayhaveindicatedataskasveryhardonthesurvey

butshowednosignsofstruggleinclass.Anotherstudentmayhaveconsistently

viewedataskaseasybutshowedsignsofstruggle.Thedatagatheredwasusedto

comparethecognitivelevelofthetasksasdesignedtothecognitivelevelofthetask

asperceivedbythestudent.Inaddition,thesurveyresponsescouldindicatesome

patternthatrelatesstudents’perceptionoftheirtasktotheirstrugglebehaviorin

Page 73: Copyright by Hiroko Kawaguchi Warshauer 2011

59

class.Ihypothesizedthatthosestudentswhoviewedataskasdifficultwouldbe

thosewhowouldexhibitsomeformofstruggleinenactingthetask.

Pre‐andpost‐projectinterviewsofeachparticipatingteacherwere

audiotapedandtranscribed.Thepurposeofthesemi‐structuredpre‐interviews

wastolearnwhataretheteachers’viewsofmathematicslearningandhowstudents

cometolearnmathematics,howtheyviewstrugglingstudents,ideasofwhat

students’strugglelookslike,howtheygenerallymanagethestrugglewhenitoccurs

intheclassroom,andwhytheychoosethosekindsofactions.Bysemi‐structured,I

meanthatkeyquestionswereneitherspecificallyformattednorsequencedand

followedtheparticipantsresponsesastheyprogressedinanopen‐endedmanner

(Fontana&Frey,2005).Iaskedtheteacherstothinkofsomeexamplesofhow

studentsmightstruggle,whattheywoulddoinresponse,andhowtheactionhelps

students(Fennema,Carpenter,Franke,Levi,Jacobs,&Empson,1996)(See

AppendixA).Thisgavemeateacher’sperspectiveofwhattobelookingfor,as

studentsappearedtostruggleinclass.

Thepurposeofthesemi‐structuredpost‐interviewswastoaskteachersto

elaborate,explain,discuss,andreflectonwhathappenedduringspecificepisodesof

student‐teacherinteractionswherestrugglewasvisible,andwhytheychosetheir

actions.(SeeAppendixB).Asaformoftriangulation,thiswastoclarifyand

reconciletheintentoftheteachers’actionswithmyinterpretationofwhatI

observed.Theteachers’explanationsoftheseclassroomsnapshotsinformwhat

Page 74: Copyright by Hiroko Kawaguchi Warshauer 2011

60

theyvalueandwhatunderliestheresponsestheymake.Ialsometbrieflywiththe

teachersaftereachclasstodebriefandfollow‐uponanyquestionsIhadregarding

theepisodesjustobservedwhiletheinteractionswerestillfreshintheteachers’

andresearcher’sminds(SeeAppendixC).

Finally,Isingledoutoneortwotargetstudentswhoexhibitedstruggle

duringtheclassroomactivitiesandconductedbriefinterviewsimmediatelyafter

class.Thecriteriaforchoosingthetargetstudentsincludedvisiblestruggle,

durationofengagementinthestruggleoveratask,interestinginteractionwiththe

teacheroranotherstudent,andsomeindicationthattheirstrugglewasproductive.

Theinterviewswereintendedtofindouthowthestudentsweredealingwiththeir

struggle,howtheirclassroominteractionsfacilitatedtheirthinkingabouttheir

struggle,andwhattheyfelttheywerelearningandunderstanding(SeeAppendix

D).Thiswasagainintendedtocheckmyobservationsandinterpretationswith

whatthestudentsreportedabouttheirexperienceswiththeirstruggle.I

documentedanystudentworkontheboardoronpaperthatillustratedstudents’

struggleasadditionaldataforpurposesoftriangulation(Cohen,Manion,&

Morrison,2000).

DataAnalysisAsanexploratorycasestudy,thegoalofmydataanalysiswastoidentify,

examine,anddescribethenatureandkindsofstudents’strugglethatoccurred

Page 75: Copyright by Hiroko Kawaguchi Warshauer 2011

61

whenstudentswereengagedinmathematicalactivityandthenatureandkindsof

teacherresponsesthatdirectedstudents’struggleproductively(orunproductively).

Iviewedallthevideofootageandcreatedanexcerptfileofvideoclipsof

instructionalepisodesguidedbyErickson’s(1992)methodsforanalyzingvideo

data.Aninstructionalepisodeforthepurposesofmystudyconsistedofa

classroominteractionaboutamathematicaltaskthatwasinitiatedbyastudent

strugglethatwasinsomewayvisibletoateacheroranotherstudentwhether

voiced,gestured,orwritten.Ifollowedthesequenceofmovesinresponsetothe

studentstruggle,whichinmostcaseswereteacherresponses.Insomecases,a

discussionamongorbetweenstudentsensuedintheinteraction.Anepisode

conclusionwasmarkedinseveraldifferentways:(1)thestudentacknowledgesby

wordoractionunderstandingorisabletocompletehis/hertask;(2)thestudent

overcomesahurdleorimpasseandcontinuestomoveoninattemptinghis/her

task;(3)thestudentcontinuestostrugglebuttheteacherhasmovedon;or(4)

thereisashiftbytheteachertoadifferenttaskwithnoresolutiongivenbythe

studentnordemandedbytheteacher.

Teacherandstudentinterviewsaftereachclassweretranscribedandusedto

provideadditionalcorroborationandexplanationoftheobservedphenomenonof

productivestruggleintheclassroomsandtotriangulatetheobservationdata(Yin,

2009).

Page 76: Copyright by Hiroko Kawaguchi Warshauer 2011

62

Thetranscriptsoftheclassobservationsandinterviewswerecodedusing

theopen‐codingprocess(Strauss&Corbin,1990)toidentifyandanalyze(1)the

kindsofstrugglethatoccurred,(2)thelevelofcognitivedemandwithinwhicheach

struggleoccurredand(3)thenatureandkindofresponseseachteachermadetothe

students’struggle.Idescribeeachcodingingreaterdetailbelow.

CodingStruggle Onestudentinitiatedanepisodewithanexternalizationofstrugglemade

visibletotheteacherorpossiblytoanotherstudent.Iinitiallytriedtocapture

elementsofeachofthe186episodesastowhatwasthenatureofthestrugglethat

wasbeingvoiced.Ifoundthemesemergingwhereinstudentstriedtodetermine

whattodowiththetaskortheproblem.Otherswonderedhowtoproceedwith

somesteptheycouldnotcarryoutandothersstruggledwithwhatappearedtobe

ananswerbutcouldnotexplainwhytheiranswerwasorwasn’tcorrect.Afterthis

firstiteration,itappearedtherewereoverlapsinthecodesandlackofclarityabout

theclassificationsthatfailedtoalignwithhowstudentsvoicedtheirstruggle.For

example,studentswouldsay,“Idon’tknowwhattodo.”Otherswouldsay,“Idon’t

knowhowtodotheproblem.”ThoughtheyusethekeyclassifyingwordsthatIhad

considereddistinct,namelythe“what”andthe“how”,itseemedinlookingattheir

workandthestageatwhichtheyvoicedtheirstrugglethatthenatureofthe

struggleappearedessentiallythesame.Ithusconsideredexaminingthestruggles

asproceduralversusconceptualinnature,buttheseclassificationsweretoobroad

Page 77: Copyright by Hiroko Kawaguchi Warshauer 2011

63

foranalysis.Ididanotheriterationoftheepisodesusingcodesinformedby

literatureonproblemsolving(Schoenfeld,1987;Kulm&Bussmann,1980;Polya,

1957;de‐Hoyos,Gray,&Simpson,2004).Iexaminedstrugglesoccurringatvarious

stagesoftheprocessofsolvingproblems:formulation,implementation,andsense‐

makingandverification.Thisclassificationhadpromise,butthesense‐making

strugglecouldhaveoccurredduringformulationoratimplementation,andIfelt

compelledtoexaminemydataonceagain.

Whilealltheabovecategorizationscouldbejustifiablyused,Iwentbackto

myfindingsyetagainandconsideredwhatteachersmightseeasthestruggle.I

arrivedatthefourcategoriesreportedasfindingsinchapter4.

Teachersgenerallyhaveaveryshortspanoftimetorespondtostudent

actions(Kennedy,2005).Thiscouldincluderespondingtoastudentwhoindicates

struggleoveratask.Intheirownanalysisofastudent’sstruggle,teachersmost

likelyassessedandidentifiedwhatappearedmostprominentlyasatypeofstruggle.

CodingTasks:TaskDescriptions Thesixteacherswereaskedtoimplementlessonsfromasetofactivitiesthat

Isubmittedfortheirconsiderationpriortomyobservationdates.Idesignedthe

activitieswiththelevelofcognitivedemandinmindusingseveralsourcesthatIfelt

werealignedwiththecurriculumgoalsandvisionoftheMathExplorationPart2

(ME2)textbooktheteachersusedduringthegivenacademicyear(August2009

untilMay2010).Inordertoobservestudents’struggleacrossthespectrumof

Page 78: Copyright by Hiroko Kawaguchi Warshauer 2011

64

learners,Ifeltthetasksneededtobechallengingbutaccessibleusingwhatwould

buildonstudents’priorknowledge,andappropriatelyalignwiththecontentand

pedagogythestudentswereaccustomedtoduringtheschoolyear.Thetasksalso

neededtobedesignedsothatstudents’workwouldbevisibletotheteachersin

orderforteacherstoformativelyassesstheirstudents’thinkingandseeevidenceof

possiblestudents’struggleevenwhenstudentswerenotinclinedtoindicatetheir

strugglesopenly.

KnowingthatIwouldbeobservingthegivensetofstudentsanywherefrom

oncetofourtimes,theactivitybookletcontainedfourdifferentactivitiesthatwere

brokendownintotaskssuitableforclassesthatrangedfrom60minutesto90

minutesinlength.Whilethetaskswithinanactivitybuiltoneachother,teachers

hadflexibilityinendingthelessonbeforeallthetaskswerecompleted(Iusethe

termactivityhereasasetoftasksfocusedaroundaparticularcontextandtaskasa

problemthatinvestigatedamathematicalaspectwithinthatcontext.)Threeofthe

fouractivitiesfocusedondevelopingadeeperconceptualunderstandingof

proportionalrelationships.Proportionalreasoningisaprimaryfocalpointacross

themiddleschoolband(TEA,2005,NCTM,2000,2005;Schielack,Charles,

Clements,etal,2006).Itisconsidered"thecapstoneofchildren'selementaryschool

arithmetic;...itisthecornerstoneforthemathematicsthatistofollow."(Lesh,Post,

&Behr,1988,p.94).Proportionalrelationshipsbuildonstudents’understandingof

fractionsasstudentsdeveloptheconceptsofratiosandratesinthecontextsof

Page 79: Copyright by Hiroko Kawaguchi Warshauer 2011

65

numbers,algebraicreasoning,measurement,geometry,andprobability.Piaget

consideredproportionalreasoningtobeasignificantconceptualshiftfroma

concreteoperationallevelofthoughttoaformaloperationallevel.(Piaget&Beth,

1966).

ThefullsetofactivitiesisincludedinAppendixF.Abriefdescriptionand

intendedobjectiveoftheactivitiesfollow:

1. TheBarrelsofFunactivityfocusedondistinguishingbetweenadditive

andpercentdifferencesofliquidquantitiescontainedintwodifferent

sizedcontainers.Theobjectivewastoencouragestudentstoreadthe

taskproblemscarefullytodeterminewhatquantitieswerebeingasked,

useproportionalreasoningtosolvetheproblemsandtohaveagraphical

representationthatconnectedthenumericalvaluetoavisualmodel.All

6taskscontainedinthisactivitywereimplementedbyfiveofthesix

teachers.

2. TheBagsofMarblesactivityagainfocusedondevelopingstudents’

understandingofproportionalreasoning,thistimeinadiscrete

probabilitycontext.Allofthefivetasksinthisactivitywereimplemented

bythreeofthesixteachers.

3. TheTipsandSalesactivityincludedsixtasksthatusedpercents,algebraic

expressionsandequationstoexploreproportionalrelationshipsinretail

contextsoftaxes,tips,anddiscounts.Twoofthetasksrequired

Page 80: Copyright by Hiroko Kawaguchi Warshauer 2011

66

determiningpopulationsizegivenapercent.Theobjectiveoftheactivity

wastohavestudentsexplorealgebraicwaysofexpressingquantities

withvariablesscaledbypercents.Fourofthesixteachersimplemented

fromtwotosixofthetasksinthisactivity.

4. Thefourthandfinalactivity,DetectingChange,wasimplementedbyonly

oneofthesixteachers.Thetwotasksinthisactivitywereintendedfor

studentstoobservechangeinageometricpatternthatcouldthenbe

articulated,generalized,andwrittenalgebraicallyandrepresented

graphically.Thereweremanypossiblepatternsthatcouldbeobserved

includingsomethatwerelinearandothersthatwerenon‐linear.

Inaddition,Ms.TorresusedexercisesfromtheME2probabilitysectionforher

classes.ThosetasksareincludedinAppendixG.

CodingTasks:ByLevelsofCognitiveDemand IusedtheMathematicsTasksFramework(Stein,Grover,&Henningsen,

1996)tocodetheenactedtasksthatservedasthecontextfortheinstructional

episodes.Theintendedandenactedtaskswereidentifiedasoneofthefourlevelsof

cognitivedemand:Level1‐Memorization;Level2‐Procedureswithoutconnections

toconceptsormeaning;Level3‐Procedureswithconnectionstoconceptsand

meaning;andLevel4‐Doingmathematics.Iusedtheteacher’sintendeddailylesson

tasksandidentifiedthelevelofcognitivedemandinthosetasksbelow.

Page 81: Copyright by Hiroko Kawaguchi Warshauer 2011

67

Table3.4: Activity1:BarrelofFun

Supposewehavea48­gallonrainbarrelcontaining24gallonsofwateranda5­gallonwaterjugcontaining3gallonsofwater.Task IntendedLevelofCognitive

Demand1.1Whichcontainerhasmorewater?

3

1.2Whichcontainerissaidtobefuller?Explainyouranswer.

3

1.3Usethecoordinategridbelowtodrawapictureofthetwocontainersandtheirwaterlevel.Youmayleteachsquarerepresent1gallonandshadeinthepartrepresentingthewater.Doesitmatterwhatshapeyoumakethesecontainers?

3

1.4Howmanygallonsofwaterwouldneedtobeinthe5‐gallonjugsothatithasthesamefullnessasthe24gallonsinthe48‐gallonbarrel?

4

1.5Ifwedrainagallonofwaterfromeachcontainer,doesthischangeyouransweraboutwhichcontainerisfuller?Explain.

4

1.6Howmanymoregallonsofwaterdoweneedtocatchinthebarrelinordertohavethesamefullnessinthebarrelaswehaveinthejug?Explain.

4

Table3.5: Activity2:BagsofMarbles

Therearethreebagscontainingredandbluemarblesasindicatedbelow: Bag1hasatotalof100marblesofwhich75areredand25areblue. Bag2hasatotalof60marblesofwhich40areredand20areblue. Bag3hasatotalof125marblesofwhich100areredand25areblue.Task IntendedLevelofCognitive

Demand2.1Eachbagisshaken.Ifyouweretocloseyoureyes,reachintoabag,and

3

Page 82: Copyright by Hiroko Kawaguchi Warshauer 2011

68

removeonemarble,whichbagwouldgiveyouthebestchanceofpickingabluemarble?Explainyouranswer.2.2Whichbaggivesyouthebestchanceofpickingaredmarble?Explainyouranswer

3

2.3HowcanyouchangeBag2tohavethesamechanceofgettingabluemarbleasBag1?Explainhowyoureachedthisconclusion.

4

2.4HowcanyouchangeBag2tohavethesamechanceofgettingabluemarbleasBag1ifBag2mustcontain60totalmarbles?

4

2.5ConsideronlyBags1and2.MakeanewbagofmarblessothatthisbaghasagreaterchanceofgettingabluemarblethanBag1butlessofachanceofgettingabluemarblethanBag2.Explainhowyouarrivedatthenumberofblueandredmarblesforyournewbag.

4

Table3.6: Activity3:TipsandSales*

Task IntendedLevelofCognitiveDemand

3.1Supposearestaurantbillis$X.Writeanexpressionforthetipon$Xusinga15%tiprate.Whatisthetotalamountyouwouldpaytherestaurant?

3

3.2Supposeagenerouscustomerusesa20%tiprateonabillof$X.Writeanexpressionforthetipon$Xusinga20%tiprate.Whatisthetotalamountthiscustomerpaystherestaurant?

3

3.3If40%ofagroupof35studentsparticipateinathletics,howmanyofthese35participateinathletics?

3

3.4AnothergrouphasNstudentsand40%ofthemparticipateinathletics.

3

Page 83: Copyright by Hiroko Kawaguchi Warshauer 2011

69

WriteanexpressionusingNforthenumberofstudentswhoparticipateinathleticsfromthisgroup.3.5Writeanexpressionforthenumberofstudentswhodonotparticipateinathletics.

3

3.6Apairofpantsregularlycosts$40butisonsaleat25%offtheregularprice.Howmuchwillyoupayforthesesalespants,withoutcomputingtax?Explainhowyougotyouranswer.

3

3.7Ashirtregularlycosts$Sandisonsaleat25%offtheregularprice.Writeanexpression,usingS,fortheamountofdollarsdiscounted.Writeanexpressionthatrepresentshowmuchyouwillpay,disregardingtax.

3

3.8AnMP3playerisonsalefor$60aftera20%discount.Whatwastheoriginalprice?Whatwastheamountofthediscount?

4

*Iincludeonlythosetasksinthisactivitythatteachersimplemented.

Table3.7: Activity4:DetectingChange

Inthefigure,asthestepschange,whatalsochanges?Task IntendedLevelofCognitive

Demand4.1Describewhatyouobservechangesasthestepsincrease.Recordtheseobservations.

4

4.2Selectonechangethatyouobservedanddescribethechange.WhathappensinStep4?WhathappensinStep5?WhathappensinStep10?WhathappensinStepn,fornapositiveinteger?Useatable,graph,andanequationtodescribethechangesthatyounotice.

4

Page 84: Copyright by Hiroko Kawaguchi Warshauer 2011

70

Ingeneral,thecognitivedemandforthefouractivitiesandallthetasks

exceptforfourofthe27implementedtaskswereatthehigher‐order,levels3and4.

Othertasksusedbyteachersconsistedofwarm‐upproblems,someofwhich

werepreparatorytypeproblemsfortheTexasAssessmentforKnowledgeandSkills

(TAKS)andnotnecessarilyconnectedtothelesson(e.g.findthesurfaceareaofa

circularcylinder,convertagivenamountofpesostodollarswithagivenconversion

rates,ormultiplytwomixedfractionalnumbers).OthersproblemswerenotTAKS

formatted,suchasaproblemtofindthesurfaceareaofarectangularprismwitha

circularcylindercutout(SeeAppendixH).Icodedtheseadditionaltasksas

implementedbytheteacherataleveltwocognitivedemandexceptfortheproblem

onthesurfacearea,whichwasatalevelthree.

CodingTeacherResponseInmythirditerativeexaminationoftheinstructionalepisodesfollowinga

roundofexcerptingepisodesandroundsofidentifyingstudents’struggles,I

characterizedtheinitialturnintheteacherresponsebythepreliminarycategoriesI

previouslyproposedinmyStruggle‐Responseframework:supplyinformation;

connecttostudents’priorknowledge;addressthestruggle;askguidingquestions;

askprobingquestions;provideencouragementandagency,andothersthatIhad

notaccountedfor,suchasconnecttostudentthinkingorevaluatework.The

teacherresponsesgenerallyelicitedsomeactiononthepartofthestudent,anda

sequenceofmovesofvaryinglengthsgenerallyfollowedbetweenstudentand

Page 85: Copyright by Hiroko Kawaguchi Warshauer 2011

71

teacheroramongstudents.Theepisodethereforeconsistedofasequenceofthe

teacherresponsesfittingintothepreliminarycategoriesIhadcoded.

Inthenextiterationofexaminingtheepisodeinteractions,Ilookedforthe

overalldirectionandthrustoftheteacherresponses.Thiswasanattemptto

characterizetheintentoftheresponsesasawholeintheepisodeandnotjustbythe

teacher’sinitialresponsetothestudentstruggle.Ihadoriginallycodedeach

teacherresponsemovethatcomprisedthesequencesinanepisode.Forexample,

theinitialresponsebyateachermayhavebeentoconnecttothestudent’sthinking.

Suchamovecouldbefollowedbyrebroadcastingtotheclasstheproblemthatwas

causingthestudent’sstruggleandthenaskingguidingquestionstothestudentor

theclasswhilealsoprovidinginformationusefulforthetask.

Althoughaninitialteacherresponsetothestudentstrugglehascertain

characteristics,suchaselicitingstudentthinking,Iconcludedthatitisthesetof

responsesequencesintheinteractionthatprovidesdirectionandsupportforthe

students’struggle,whetherproductivelyornot.Therefore,itisintheseresponse

sequencesduringtheepisodesthatIbegantoobservethemesinthepatternsof

teacherintentandpurposeinhis/herresponses.Usingelementsofgrounded

theory(Strauss&Corbin,1990),Iidentifiedfeaturesofteacher’sresponsesthat

occurredinthe186episodes.Ifoundamethodofclassifyingthesepatternsalonga

continuum.Thisallowedmetoseearangeofcharacteristicsthatthenleadmeto

Page 86: Copyright by Hiroko Kawaguchi Warshauer 2011

72

identifyfourgeneralcategories(Glesne&Peshkin,1992;Strauss&Corbin,1990),

whichIdescribeindetailinthenextchapter.

Thefinalcodinginvolvedexaminingwherethestudentappearedtobe

headingintermsofhis/herresolutionofstruggleattheconclusionoftheepisode.I

calledthistheresolutiontothestudents’struggle.

CodingResolutionoftheStudents’StruggleTheepisodeisconsideredendedwhen:(1)thestudentacknowledges

understandingbywordoractionorisabletocompleteshis/hertask;(2)the

studentovercomesahurdleorimpasseandcontinuesattemptinghis/hertask;(3)

thestudentcontinuestostrugglebuttheteacherhasmovedon;or(4)thereisa

shiftbytheteachertoadifferenttaskwithnoresolutiongivenbythestudentnor

demandedbytheteacher.

Icoderesolutionsinthreecategories:productive,productiveatalowerlevel,

orunproductive.Inaproductiveresolution,characteristicsincludedsomeifnotall

ofthefollowing:thestudentsolvedtheproblemattheintendedlevelofcognitive

demand,explainedasolutiontoothers,connectedtoanalogousproblems,gave

justificationorreasontoasolution,expressedconfidenceinhis/herwork,

continuedtoworkatthesamelevelofcognitivedemand,orcorrectederrorsor

misconceptionusinghis/herthinkingashe/sheengagedincontinuingtoworkon

theproblemortask.

Page 87: Copyright by Hiroko Kawaguchi Warshauer 2011

73

Itis,however,possiblethatthestudentcontinuedwiththetaskbutthatthe

teacherorotherstudentsdidasignificantamountofthinkingforthestruggling

studentorthatthetaskwasalteredwithdecreasedcognitivedemand.Thistypeof

resolutiontostudent’sstruggleIclassifyasproductivebutatalowerlevelbecause

theintellectualeffortexpectedofthestudentindoingtheproblemortaskwas

removedorsimplifiedbytheteacherorbyanotherstudent.Thevalueofthe

students’struggleisdiminishedwiththestudentsnotbeinggiventheopportunity

torelyuponhis/herresourcestomakeconnectionsamongmathematicalconcepts.

However,thestudentmaynothavemadeanystridesinworkingthetaskwithout

thistypeofintervention.

Finally,anepisodecanendwiththestudentgivingup,continuingtobe

confused,and/orunabletofigurehowtodothetask,orunderstandwhysomething

works.Iclassifythisresolutionasanunproductivestruggle.Intime,thestudent

maycometoseeorovercomewhatmaynothavemadesenseattheendofthe

episode.However,forthepurposesofmystudy,thestruggleappeared

unproductive.

Inthenextchapter,Ireportthefindingsfrommyinvestigationusingthis

ProductiveStruggleFrameworktostructuremyanalysis.

TRUSTWORTHINESS Asanexploratorystudy,myinvestigationofstudentstruggleslackeda

predeterminedsetofcategoriesbywhichIcouldanalyzemydata.Literatureon

Page 88: Copyright by Hiroko Kawaguchi Warshauer 2011

74

qualitativeresearch,casestudy,andgroundedtheoryprovidedguidanceasIbegan

mycodingandanalyzingofcollecteddata(Miles&Huberman,1994;Yin,2009;

Strauss&Corbin,1990)throughnumerousiterations,searchingforthemes,

patternsandexplanations.Whilethedataanalysisisaninterpretiveprocess,Itried

toguardagainsttheintroductionofsubjectivebiasandtomakeinterpretationsand

judgmentsbasedonsubstantiveevidenceandtotriangulatethedataforagreement

andconsensus(Creswell,2003;Lincoln&Guba,1985;Patton,1990).More

specifically,ItranscribedallthevideoobservationsIhadmadeandhadachanceto

gainasenseoftheoverallcorpusofcollecteddataagainfromwhichIwouldbegin

myanalysis.Inaddition,Iexaminedthepreandpostinterviews,student

interviews,anddebriefinginterviewsthatIhadtranscribedforme.Ialsostudied

myfieldnotesandexaminedthestudentsurveysoftaskdifficulty.Thesewereall

usedtoclassifystruggles,responses,andresolutionsthatIproposedfrommy

findings,aprocessthatwasbothgradualandrepetitive,numberingatleastthree

timeswiththestruggles,twicewiththeteacherresponses,andanotherthreetimes

fortheresolutions.

Theteachershadallusedatextbookco‐authoredbymycolleaguesandme

andhadworkedwithmeinprofessionaldevelopmentduringtheyear.Itherefore

knewtheteachersandrespectedthekindofteachingthatappearedtonaturally

includeopportunitiesforstudentstomakesenseofthemathematics.Itriednotto

influencetheirclassroomsetting,practices,orstudentsasmuchasastrangerwith

Page 89: Copyright by Hiroko Kawaguchi Warshauer 2011

75

twocamerascouldpossiblyavoid.Alltheteachersintroducedmetotheirstudents

atthestartofmyobservationperiodandthestudentsforthemostpartseemedto

carryonwiththeirclassactivitiesdespitetheintrusivenessofhavingavideo

cameranearbytocapturetheirconversations.

TheactivitiesimplementedwereallfrommaterialIprovidedteachers,and

theirappropriatenessfor6thand7thgradeclasseswereconfirmedbyinputfrom

colleaguesinthemathematics/mathematicseducationdepartmentatmyuniversity

aswellasfromtheparticipatingteachers.

Irequestedtwoindependentreaders,oneamathematicianandonea

mathematicseducationgraduatestudenttotakeasampleof20episodesto

determinehowconsistentmycodeswerewiththeircodingofstruggles,responses,

andresolutions.Thiswastoremovebias,toconfirmthevalidityofmypropositions,

andtoreachalevelofconfirmabilityandconsistency(Mathison,1988;Lincoln&

Guba,1985).Wereached90%consistencyafterseveraldiscussionsand

refinementsofcodingandclassifications

Inordertodevelopgreatercredibilitytomyinterpretationoftheobserved

studentteacherinteractions,Irequestedateacherparticipanttoexamineepisodes

andtoprovidefeedbackonmyfindingsofstruggle,responses,andresolutions.

Afterreading12episodes,includingsomewithherstudents,herobservations

appeared83%consistentwithmycodingandanalysis.Theconversationwehad

Page 90: Copyright by Hiroko Kawaguchi Warshauer 2011

76

providedinsightintoherinterpretationsandgavemeadditionalconfirmationtomy

preliminaryanalysis.

Iaskedanothermathematicseducatorandmathematiciantoreadthefinal

documentforcommentsandfeedback.Theperspectiveofmystudyremainsan

interpretationofmyobservationsbutIattemptedtopresentthemwith

methodologicalrigorbasedontheliterature,asIunderstoodthem.

Page 91: Copyright by Hiroko Kawaguchi Warshauer 2011

77

Chapter4:Results

OVERVIEW

Inthischapter,Iwilldescribethenatureofthestrugglesthatstudentshadin

theclassroom,thewaysthatteachersresponded,andthenclassifythewaysthat

thesestruggleswereresolved.Whenstudentsworkedonmathematicaltasksinthe

contextofclassroomsettings,manyoftheminvariablyhadquestions,expressed

uncertainty,anddisplayedstrugglethattheyrevealedtotheirteacher,totheir

fellowclassmates,orsilentlythroughgesturesthatsuggesteddiscomfortordoubt.

Inmycollecteddata,consistingoftranscriptionsbothofvideofootageand

interviewswithteachersandstudents,Iidentified186casesofstruggle.

Thesestudentstrugglescametotheteachers’attentionthroughteachers’

actionsastheywalkedaroundtheclassroom,lookedoverstudentpapersandboard

work,listenedtostudentdiscussions,andrespondedtorequestsforindividualhelp.

Teacherresponsestothesestudentstruggleswerealsovariedastotheirextent,

apparentintent,andpurpose.Justasamini‐dramahasacontext,namelyaplotin

whichconflictortensionarises,adevelopment,andthenaresolutionandsome

conclusion,mystudyexaminedepisodesinwhichstudents’strugglesarosein

responsetoaselectedsetofmathematicaltasksandwasresolvedinsomeway.The

searchforaresolutionbecameajointeffortofstudentsandteachersasobservedin

theirclassroominteractions.Asuccessfulconclusiontoamini‐dramaisgenerallya

Page 92: Copyright by Hiroko Kawaguchi Warshauer 2011

78

resolutionofthetension.Asuccessfulresolutiontostudents’struggle,Icontend,is

notjusttorelievethetensionbyremovingitssource,buttorespondtothestudents’

struggleinawaythathelpsstudentsbetterunderstandthemathematicsinvolvedin

theirtask.Theproductiveaspectoftheinteractioniscontainedinthestruggle

itself,ifsupportedskillfullybytheteacher,todeepenstudents’mathematical

understandingandtoachievethelearninggoalsofthetask.

Iexaminedthedifferentwaysthatthesemini‐dramasintheclassroomswere

enactedandresolvedinordertobetterunderstandwhatelementsofteachingwere

atplaythatindicatedsupportofstudents’learning.

Myresultsareorganizedbythethreemaingoalsofmyresearch:

1. Todeterminethekindsofstudents’strugglesthatoccurredwhilestudentswere

engagedinmathematicaltasks,andtheirnature;

2. Todeterminethekindsandnatureofteachers’responsesmadeinthecontextof

theinteractionbetweenstudentsandteachersduringstudentengagementin

mathematicaltasks;and

3. Toclassifythewaysthattheseinteractionsresolved.

Inmyanalysis,fourmaintypesofstruggleemergedasstudentsengagedin

mathematicaltasks.Thestrugglescenteredaboutstudents’attemptsto:

1. Getstarted

2. Carryoutaprocess

3. Giveamathematicalexplanation

Page 93: Copyright by Hiroko Kawaguchi Warshauer 2011

79

4. Expressamisconceptionorerrors

Myfindingsshowedfourmainwaysthatteachersrespondedtostudent

strugglessituatedalongacontinuumthatincludestelling,directedguidance,probing

guidance,andaffordance.Finally,studentstruggleswereresolvedinthreetypesof

outcomes:productive,productiveatalowerlevel,andunproductive.

Thischapterwillfollowtheoutlinedevelopedabove.ThestructurethatI

developedwastheresultofmyclassroomobservations.AsIgothroughthis

framework,Iwillexplainthedifferentcategoriestogetherwithspecificexamples

thatillustrateeachcategoryfollowedbyadiscussionontheabovegoalsofmy

research.Ibeginwithabriefreportonhowthetaskswereimplementedduringmy

datacollectiontogivecontexttothestrugglesthatoccurred.

TASKSIMPLEMENTEDINTHECLASSROOMS Inmyobservations,teacherssetupthetaskswithreasonablefidelitytothe

suggestedteacherguideprovidedwiththestudentactivityset.Theteacherguide

includedasuggestedlessonsequencethatallowedstudentstimeforindividual

work,groupwork,andthenwholeclassdiscussion.Studentsforthemostpart

enactedthetasksinasimilarmanner,thoughthestructureoftheobservedclasses

wasnotidenticalintermsofseatingarrangements,lessonintroductionbyteacher,

andclasstimeallottedforthetasks.Thestudentsgenerallybeganbyworking

individuallyforaboutfiveminutespertask.Studentsthendiscussedtheirwork

withapartnerorwithasmallgroupofthreetofourstudentsforanotherfive

Page 94: Copyright by Hiroko Kawaguchi Warshauer 2011

80

minutesorsowhiletheteacherwalkedaroundtheseatedstudentsandlistened.

Somediscussionsweremoreanimatedthanothers,andatsometablesstudentshad

littletosharewitheachother.Teacherslistenedorengagedinaskingstudents

questions.Forexample,oneteacherwentaroundthetablesduringstudent

discussionsandstampedasheetofpaperoneachsmallgroup’stabletoindicate

thatthestudentsatthetablewereengagedindiscussingtheirproblemsandtheir

solutions.Somestudentsraisedtheirhandstogaintheteacher’sattentionandto

indicateaquestionorproblem.

Teachersalsoimplementedlowercognitivedemandtasksinwarm‐up

activitiesatthebeginningofsomeoftheirlessons.Thesetaskswereincludedinmy

analysis.Teachers’taskintroductionsrangedfromframingthetaskswithascenario

linkingtheideaofproportionalthinkingtonon‐mathematicalcontextssuchasthe

“BiggestLoser”show,tothosethatsimplyhadastudentreadeachtasktodetermine

ifthewordingwasclearforallthestudents.Thestudentsthenwentabouttheir

taskforthemostpartontheirown,thoughthevideoclipsfromthestationary

cameracaughtsomestudentstalkingamongstthemselvespresumablyaboutthe

task,thoughthisisnotconfirmed.

Afterattemptingtheproblemsontheirown,thestudentsdiscussedtheir

workasasmallgrouporasawholeclassatwhichtimedifferentquestionsand

strugglessurfacedthathadnotoccurredduringtheindividualworktime.

Page 95: Copyright by Hiroko Kawaguchi Warshauer 2011

81

STUDENTS’STRUGGLE

Descriptionandexamples Iusedthe186episodetranscriptionstoidentifyandanalyzepatternsof

studentstruggles.Ikeptinmindtheperspectiveoftheteachersastheyobserved

andinteractedwiththeirstudentsengagedinmathematicaltasks,namelywhatthey

wouldseeandhearfromtheirstudents.Iexaminedtheepisodesthroughatleast

threeiterations,consideringpossiblecodes,refiningthembyusinganopen‐coding

process(Strauss&Corbin,1990),andconferringwithtwoindependentreadersfor

inter‐raterreliabilityofmycodes,untilIreachedover90%agreement.Myfinal

codinggroupedthekindsofstudentstrugglesintothefollowing4types.Struggle

typesincludedstudentattemptsto:

1. Getstarted

2. Carryoutaprocess

3. Giveamathematicalexplanation

4. Expressmisconceptionsanderrors

InTable4.1below,Isummarizethecharacterizationsofthe4typesof

studentstrugglesobservedandthefrequencyoftheiroccurrences.

Page 96: Copyright by Hiroko Kawaguchi Warshauer 2011

82

Table4.1: KindsofStudentStrugglesandtheirPercentFrequencies

Kindofstruggles Descriptions Frequency%

(186total)1.Getstarted • Confusionaboutwhatthetaskis

asking• Claimforgettingtypeofproblem• Gestureuncertaintyandresignation• Noworkonpaper

24%

2.Carryoutaprocess

• Encounteranimpasse• Unabletoimplementaprocessfrom

aformulatedrepresentation• Unabletoimplementaprocessdue

toitsalgebraicnature• Unabletocarryoutanalgorithm• Forgetfactsorformula

33%

3.Giveamathematicalexplanation

• Justifytheirwork• Explainprocessbywhichananswer

isobtained• Givereasonsfortheirchoiceof

strategy• Expressuncertaintyandinabilityto

findwordstoexplain• Makesenseoftheirwork

30%

4.Expressmisconceptionanderrors

• Misconceptionrelatedtoprobability• Misconceptionrelatedtofractions• Misconceptionsrelatedto

proportions.

13%

Inthesectionthatfollows,Iwilldescribeeachstruggleingreaterdetail.

Page 97: Copyright by Hiroko Kawaguchi Warshauer 2011

83

1.GetStarted

44ofthe186or24%oftheobservedepisodesinvolvedstudentstrugglesat

thestartoftheirtasks.Thesestrugglesalloccurredasstudentswereattempting

tasksofhigher‐levelcognitivedemand.Intheiruncertaintyabouthowtoget

startedwithatask,studentsvoicedconfusionaboutwhatthetaskwasaskingthem

todo(“Ikindofunderstandit…butI’malittleconfused”);claimedtheydidn’t

rememberdoingproblemsofthistypethoughitappearedvaguelyfamiliartothem

(“Ihaveabsolutelynoidea….Idon’trememberthatfar”);calledforhelp(“Mr.Baker,

Ineedhelp.”);gestureduncertaintyandresignation(looks,thinks,sitsbackand

thensays,“Idon’tknow.”);orhadnoworkontheirpaper.

Students’strugglestogetstartedwiththeirtasksalignedtoissuesof

recognizing,analyzing,andunderstandingthegoalofthetaskandcomingupwitha

plantoachievethegoal.Forexample,astudentinMs.George’sclasswasuncertain

howtowriteanexpressionforthediscountedpriceforanitemcosting$Snowon

saleat25%off.Thestudent’scomments(S)expressuncertaintyinsortingthrough

andanalyzingtheexpressionsthatarerelevantfortheproblem.Sheisalsounable

toconnectthealgebraicproblemtoanumericalexampleshejustcompletedtosee

howthegoalsarerelated.Theteacherresponse(T)attemptstogetthestudent

startedwithwhatthestudentalreadyknowsandattemptstoconnectthatprocess

tothecurrenttask.

Page 98: Copyright by Hiroko Kawaguchi Warshauer 2011

84

1. S: Iknowtheamount.Ican’tfigureoutwhattodo.Iknowthatequals

that.Andthe$10(anearliernumericalexample)butIdon’tknow

like….(trailsoffinthought).

2. T: Okay,Tellmewhatyoudidwiththe$10(makingareferencetothe

earliertask).

3. S: Isubtracteditfromtheregularprice.

2.CarryOutaProcess

56ofthe186documentedstrugglesor30%representedstrugglesby

studentsattemptingtocarryoutaprocessinordertoachievethegoalofthetask.

Studentswhoencountereddifficultyincarryingoutaproceduredemonstratedor

voicedsomeplanforachievingthegoalofthetaskbutencounteredanimpasse.

Theseimpassestendedtorevolvearoundaninabilitytoimplementaprocess,some

moreroutinethanotherssuchassolvingforanunknowninaproportionor

convertingafractiontoapercent.Otherissuesincludedmistakesmadesuchthat

theprocessnolongermadesense;failuretocarryoutaprocedurethatseemed

moreconfoundingtostudentswhenthetaskwasalgebraicinnature;ordifficulty

recallingaformulaoritsuserelevanttothetasksuchasthesurfaceareaofa

cylinder.

Inoneexample,astudentappearedtohaveaplanbutreachedanimpasse

whenthenumberstotheproblembecamemoredifficult.Thetaskcomesfromthe

Page 99: Copyright by Hiroko Kawaguchi Warshauer 2011

85

BarrelofFunactivity,whereintask1.5thestudentswereaskedtocomparethe

fullnessoftwocontainers,namelythewaterjugandarainbarrel,whenagallonof

waterwasremovedfromeach.AstudentinMs.Fine’sclasshaddeterminedthatthe

fullwaterjugwasnow or40%full.Shewas,however,unabletodetermine

whattodowiththerainbarrelthathadbeen fullbutwasnow full.Shesaidto

theteacher,“Ineedhelp…Idon’tknow,firstIthoughtIwouldtrytogetit(the48in

thedenominator)ascloseto100aspossiblesoImultiplieditbytwo.”butthis

studentultimatelyreachedanimpasseincarryingoutherplan.

Thissecondexampleillustratesthedifficultystudentshaveincarryingouta

processwhenalgebraicexpressionswereinvolved.Intask3.7,studentsinMs.

Fine’sclasswereaskedtowriteanexpressionfortheamountdiscountedandthe

amountonewouldpayifashirtcosting$Swasonsaleat25%off.Moststudents

wereabletowritethediscountamountusingtheexpression0.25S,butstruggles

occurredwhenstudentsattemptedtowriteanexpressionforthenewsalespriceof

theshirt.Astudentwaspuzzled,“Umm(pause)Sminus(pause)no(pause)25

timesS(pause)25timesSminusS?”Afterafewminutes,thestudenttriedagain,

“Aaahh(pause)IthinkIknowhowtodoit.Isit0.25dividedbyS?”Otherstruggles

relatedtothistaskaredescribedlaterinthesectionthatcoversstruggleover

misconceptionanderrors.

Strugglestocarryoutaprocesswereindicativeofthedifficultystudents

haveconnectingproceduretoconcepts.Mistakeswerejustoneofthecausesofthis

3

5

2

5

24

48

23

48

Page 100: Copyright by Hiroko Kawaguchi Warshauer 2011

86

typeofstruggle,particularlyifstudentscouldnotlocatethemistakesordidnot

evenrecognizethatamistakehadoccurred.Manyoftheseprocessmistakeswere

broughttotheforefrontfordiscussioninlargepartduetotheopportunities

teachersprovidedforstudentstosharetheirworkordiscusswhattheyweredoing

(Fawcett&Gourton,2005).

3.GiveaMathematicalExplanation

Students’strugglestoexplaintheirworkaccountedfor30%or57ofthe186

observedstruggles.Theytendedtooccurinthelatterpartoftheenactedtaskwhen

studentshadachancetoengageingettingstartedwiththetaskandcarryingouta

planofexecutionpartiallyorevencompletely.Inorderforstudentstocomplete

eachtask,theywereexpectedtoexplaintheirworkandtheirsolutionsinwriting

andinmanyinstancestoeachotherortotheclass.Studentsstruggledtoverbalize

theirthinkingandtogivereasonsfortheirstrategiesforthesekindsoftasks.

Forexample,someofthestudentsvoicedtheirstrugglestoexplaintheir

workintask1.4.Theproblemaskedstudentstodeterminetheamountofwaterthe

five‐gallonwaterjugneededtobeasfullasthe48‐gallonrainbarrelwith24gallons

ofwater.Havingfoundananswer,onestudentresponded,“Idon’tknowhowto

explainit,it’sjustkindalike(pause)Idon’tknowhowtojustifyit.”Anotherstated,

“IknowwhatI’mthinking,Ijustcan’tshowtheexactway.”Manyoftheseinstances

ofstrugglewouldnothavesurfacediftheteacherhadnotgonearoundtoquestion

Page 101: Copyright by Hiroko Kawaguchi Warshauer 2011

87

thestudentsabouttheiranswersorifthestudentsdidnothavetheopportunityto

sharetheirworkwiththeirsmallgroups.Listeningtoothersexplaintheirwork

promptedstudentstoquestioneachother’sworkandalsojustifytheirthinking.

4.ExpressMisconceptionandErrors

24ofthe186or13%ofthestudentstrugglesoccurredamongstudents

dealingwithamisconceptionorerrors.Amisconceptionwasnotaninstancewhere

acarelessmisconnectioninthinkingledtostudent’sconfusionandpossibleerror,

butratheramoredeep‐seatedsituationwheremisconceptionswereusedasabasis

forsolvingproblems.Strugglesarosewhenthestudent’sthinkingwaschallenged

ordidnotmakesensetoothers.Amisconceptioninoneprobabilitysettingcaused

astudenttoapplyajustificationthatworkedinasimplercase,sayofonecoin,but

didn’tinamorecomplexcase,sayfortwoormorecoins.Forexample,Ms.Torres

implementedaCoinTossactivitywhereoneofthetaskswastoexplainwhythere

wasa50%chanceofgettingaheadandatail(HT)oratailandahead(TH).The

studentusedtheone‐cointossjustificationtoexplainhisanswer:“becausethecoin

hastwosidesandoneofthemisheadsandtheotherpartistails.”

Inanotherclass,astudentspokeupaboutaprobabilitytaskthathad

seeminglybeenresolvedbythewholeclass.Thetaskwastodeterminethe

probabilityoflandingintheunshadedregioninfigure4.1below.Theisosceles

triangleiscontainedinarectanglewithlength4unitsandwidth6units.

Page 102: Copyright by Hiroko Kawaguchi Warshauer 2011

88

3units3units

4units

Figure4.1:Findtheprobabilityoflandingintheunshadedregion.

Thestudentasked,“whenit’scombinedtogether,woulditequal orwoulditstill

be ?”Themisconceptionofinterpretingtwopartsoutofthree,eventhoughthe

partswerenotallequal,causedthestudenttostrugglewiththeanswerthathad

beentakenassharedinclass.

Othermisconceptionsoccurredregardingdistinctionsofgallonamountand

percentamount.Onesuchexampleoccurredintask1.6whereastudent

interpreted1%oftheliquidcontentsofacontainerasequaltoonegallonina48‐

galloncontainer.Task1.6hadaskedstudentstodeterminehowmuchwatermust

beaddedtothe48‐gallonrainbarrelwith24gallonstobeofthesamefullnessas

thefive‐gallonwaterjugwiththreegallonsofwater.Theparticularstudent

correctlyconvertedtherainbarrelwith fullofwateras50%fullandthewater

jugwith fullofwateras60%.She,however,incorrectlyconcludedthatthe10%

differenceinthepercentageswasequivalenttoa10‐gallondifference.Shesaid,

2

3

1

2

24

48

3

5

Page 103: Copyright by Hiroko Kawaguchi Warshauer 2011

89

“Shadein10moresquares(eachsquarewastorepresent1gallon)…it’slike80%.”

Thestudentthengesturedconfusionandfellsilent.

DiscussionofStudentStruggle Priorempiricalresearchonstudentstruggleshasbeenlimitedandhasfocused

onexaminingtheiroccurrencesinthesettingofawholeclassdiscussionwithout

examiningindetailthenatureofeachindividualstudents’struggles(e.g.,Inagaki,

Hatano,&Morita,1998;Santagata,2005).WhileBorasi(1996)andZaslavsky

(2005)havelookedatstrugglesstudentshavewitherrors,misconceptions,and

uncertainties,moststudieshavebeengeneralinreferencetostruggle(e.g.Carter,

2008,Hiebert&Wearne,2003).

Mystudyusedproportionalrelationshipsascontextintheimplementedtasks

becausetheseconceptsareanimportantpartofmiddleschoolmathematicsand

becausestudentsmustbegivenopportunitiestomakesenseofimportantideasin

mathematicsandtoseeconnectionsamongtheseideas(Boaler&Humphreys,

2005).Proportionsareoftentreatedasproceduralcomputationalproblemsthat

involvefindingmissingvaluesusingatechniquesuchas"cross‐multiplication"

(Heinz&Sterba‐Boatwright,2008).However,asamilestoneinstudents'cognitive

development(Cramer&Post,1993),theconceptofproportionalreasoning

demandsamuchdeeperconceptualunderstandingofdynamictransformations,

structuralsimilarities,andequivalencesinmathematics(Lesh,Post,&Behr,1988).

Learningthisdifficultwatershedconceptwillnecessarilyinvolvestruggle.

Page 104: Copyright by Hiroko Kawaguchi Warshauer 2011

90

Thesetasksonproportionalreasoningindeedgaverisetostudentstruggles

duringvariousstagesofthetaskimplementation.Asexpectedfrompriorstudies,

strugglesasexpressedbythestudentswereoftenverygeneralwithstatements

suchas,“Idon’tgetit”,“Itdoesn’tmakesense”,and“Idon’tknowwhattodo”

(Carter,2008).

TheProductiveStruggleFrameworkIusedidentifiedthefourkindsofstruggle

(getstarted,carryoutaprocess,giveamathematicalexplanation,andexpress

misconceptionanderrors)inordertobetterinformteachersabouttheirstudents’

thinkingandastheyconsiderappropriateinstructionalsupportsthatcanhelp

studentsdirecttheirstrugglesproductively.Thesetypesofstudents’struggles

initiatethestudentsinthecultureofdoingmathematicsanddramatizetheparallels

towhatmathematiciansencounterin“doingmathematics”.Forexample,amongthe

11activitiesmathematicianandmathematicseducatorBass(2011)identifiesas

integraltodoingmathematicsareexploringandexperimentingwiththecontextand

processes,modelingandrepresentingthecontext,connectingproblemsandideas

withanalogiesandreflections,opportunisminfollowingyournosewithideasand

pursuingwherethemathematicsseemstobeleading,andconsultingwithexperts

andfriendsaboutthemathematics.

Myfindingsshowstudentsstrugglingintheactofdoingmathematicsasthey

seektofindstrategiesandrepresentationswithproportionalrelationshipsand

attempttofollowthroughwithaplan,knowingthatwhenoneplandidnotwork

Page 105: Copyright by Hiroko Kawaguchi Warshauer 2011

91

theyhadtoreconsiderotherapproaches(Schoenfeld,1992;Hiebertetal,1996).

Studentsstruggledtoexamineandexplainthesolutiontheyhadproducedand

connecttohowitpertainedtotheoriginalproblem.Intheirengagementofvarious

tasks,studentsvoicedconfusionoverwhattodoastheytriedtounderstandthe

problem,howtodoacomputation,oruseanalgorithmsuchasaproportional

computationsorrationalnumberrepresentationconversionssuchasfromfractions

topercents.Othersstruggledtomanipulatealgebraicexpressionswithuncertainty

whileotherstudentsstruggledtoexplainandmakesenseofanswers,processes,

andotherpeople’sexplanations.Thesefindingsalsoaligncloselytothefour

componentsofproblemsolvingPolyahadproposedinhisbook,HowtoSolve

(1957),namelytounderstandtheproblem,deviseaplan,carryouttheplan,and

lookback.Myfindingsconfirmthatmanyofthestudents’strugglesoccurredat

thesesitesasstudentsattemptedtostarttheproblem,formulateaplanandcarryit

out,andthentrytoexplaintheirsolutions.

Beingabletoexecuteaproceduredidnotguaranteethatstudentscould

solveataskthatinvolvedprocedureswithconnectionordoingmathematics

(Boaler,1998).Fortasksthatincludedalgebraicrelationships,itwascommonthat

studentswouldindicatetheirstrugglemostoftenatexplainingwhatthe

expressionsmeant(Carraher,Carraher,&Schliemann,1987).Thestruggleandthe

subsequentdeclineinthecognitivelevelofthetask,insomeoftheepisodes,may

havebeenduetoaninappropriatenessoftaskforaparticulargroupofstudents

Page 106: Copyright by Hiroko Kawaguchi Warshauer 2011

92

(Henningsen&Stein,1997).Inapost‐classinterview,Mr.Bakermentionedthatthe

algebraicnatureoftasks3.1through3.5created,“…themoststrugglesandthemost

frustrationasfarastheydidn’tknowwheretobegin.”

Therelativelyhighincidenceofstruggleswithuncertaintiesorconfusionto

getstartedwithataskinsomeclassesascomparedtootherclassessuggeststhat

theclassasawholehadvaryinglevelsoftoleranceforgrapplingwithaproblem.

Someofthestudentswentofftaskbysocializingwitheachotherorbecame

disruptive.Othersceasedworkingontheirtask.Otherclasseshadsignificantly

moreproceduralstrugglesandfarfewerexplanationstrugglesorvisaversa.In

theselatterclasses,aclassroomnormandcultureseemedtobeinplacewhere

studentshadopportunitiestodiscusstheirsolutions,andinthecourseof

explanationtriedtoreasonandcommunicatetheirthinkingmathematically(Cobb,

Wood,&Yackel,1993).Thenatureofstudentstrugglessometimesseemedtobe

relatedtothesociomathematicalnormsthatwereinplaceineachclass.Inother

words,struggleswerenotonlycognitiveinnature.

Ialsofoundthatstruggleswouldnothavesurfacedifnotforthe

opportunitiesteachersgavestudentstosharetheirworkandtoreachconsensus

abouttheirsolutionsandtheirworkwithinsmallgroups.Intheirinterviews,

teachersmentionedthebenefitsofhavingstudentsshareandexplaintheirworkso

thatnotonlycanstruggleariseinclass,itcanhelpotherstudentswhowere

strugglingseeapproachesandstrategiesthatcouldsupporttheirownthinking.

Page 107: Copyright by Hiroko Kawaguchi Warshauer 2011

93

Furthermore,teacherspointedoutthatstudentstryingtoexplaintheirmathematics

couldalsorevealstudents’struggletomakesenseoftheirworkeveniftheyappear

tobeabletodotheproblemontheirpaper.

Myfindingsconfirmthatoccurrencesofstruggledependedonstudents’

engagementintheprescribedtasksthatchallengedthemandhadsomeelementof

difficulty.Whethertheytriedtoformulateaplan,explorepossiblestrategies,

reconsiderinitialattempts,orexplainnotonlytheirownthinking,butmakesense

ofthethinkingofothersastheydiscussedtheirworkinclass,theinitiationofthe

students’actofexternalizingtheirstrugglepromptedteachersorotherstudentsto

respond.

Assessingtheexplicitkindsofstrugglethatconfrontstudentscaninform

teachingthatresponds,supports,andguidesthestudentswithgreaterspecificityto

theparticularstudentstruggles.Inaddition,thestudentscanself‐regulatetheir

ownlearningbynotingtheaspectsoftheproblemtheyareunabletoaddressorthe

progresstheyaremakinginaccomplishingtheirtask(Pape,Bell,&Yetkin,2003;

Butler,2002).Myframeworkisintendedtoinformteachingthatcanbettersupport

studentlearningandtoalsoraiseawarenessinthestudentsthattheirstrugglemay

notnecessarilybeovertheentiretaskbutperhapsoveraparticularaspect.Inthis

way,thegeneralstruggleismademorespecificandappearsmoremanageableto

thestudentswhenfocusisplacedonanalyzingthemathematicalproblemandnot

onlyonthestudents’inabilitytogettotheanswer.

Page 108: Copyright by Hiroko Kawaguchi Warshauer 2011

94

TEACHERRESPONSE Myfindingsshowthatduringthe39videotapedandobservedclasses,

teachersrespondedtoanaverageoffivetosixstudentstrugglesineachclassperiod

thatresultedininteractionsbetweenstudentsandteachers.Theseinteractions

rangedfromafewminuteslongtoover15minutes.Duringthe60or90‐minute

classperiods,theteachersbeganeitherwithawarm‐uptaskormoveddirectlyinto

thelessontaskswhilealsotakingattendanceandmakinggeneralannouncements

aboutupcomingactivitiesfortheendofthesemester,suchasfieldtripsandfinal

projectduedates.Themajorityoftheclasstime,however,wasspentonthe

mathematicaltasks.

Overviewofteacherresponsecategories Usingprinciplesofgroundedtheory(Strauss&Corbin,1990),Ifoundthat

teachersrespondedtostudentsstrugglein4mainways.Iclassifytheteacher

responsesas:

1. Telling

2. DirectedGuidance

3. ProbingGuidance

4. Affordance

Inthissection,IwillexplainhowIdevelopedthesecategoriesthenprovide

morein‐depthdescriptionsofeachtypewithexampleepisodesthatcapturethe

natureandperceivedteacher’sintentintheseresponses.Again,thiswillbethrough

Page 109: Copyright by Hiroko Kawaguchi Warshauer 2011

95

thelensoftheclassroomobservationsofstudent‐teacherinteractions.Iwillclose

thesectiononteacherresponseswithadiscussion.

Inmycodingofteacherresponses,Iusethenotionofteacherresponsenotas

asingleutterancebutasasequenceofmovesmadebyteachersduringtheir

interactionswithstudentsthataddressedstudentstrugglesinsomeway.The

sequenceofteachermovesconsistedofquestions,follow‐upstatements,and

suggestionsdirectedtowardmanagingandresolvingstudents’struggle.

DefiningTeacherResponseTypesTelling

Thepatternsofteacherresponsessuggestedacontinuumalongwhichthe

responsescouldbeclassified.Atoneendofthecontinuumwerethoseteacher

responsesthatsuppliedstudentsneededinformationtohelpaddresstheir

struggles.Icalledthistypeofresponsetelling.Functionally,thisclosed‐ended

approachmovedthestudentsforwardincompletingtheirtasksbyprovidingwhat

theteachersperceivedtobeneededinformation(Kennedy,2005).Theseteacher

responsesdiminishedtheintensityofthestudent’sstrugglewithinterventionsthat

reducedthecognitivedemandforthestudentsandtherebyloweredthecognitive

demandoftheintendedtask.

Affordance

Ontheotherendofthecontinuumweremoreopen‐endedtypesofteacher

responsesthataddressedthestudents’thinkingandsuggestedkeyideasfor

Page 110: Copyright by Hiroko Kawaguchi Warshauer 2011

96

studentstobuilduponwhilealsoprovidingadditionaltimeforstudentstoworkand

discusstheirideaswithoutrushingthemtowardsaresolution.Ilabeledthis

teacherresponsetypeaffordancesasteachersprovidedstudentsopportunityand

timeforfurtheractionandinteraction(Gaver,1996)withoutloweringtheintended

cognitivedemand.

Figure4.2: TeacherResponseRange

DirectedGuidance

Withinthesetwoextremes,Iidentifiedteacherresponsesthatappeared

eitherteacher‐drivenorstudent‐driven.Thedirectedguidanceresponsesfellcloser

totheclosed‐endedsideofthecontinuum,andservedtoguidestudentsina

directionthattheteacherperceivedhelpful.Thistechniqueattimesredirectedthe

studentawayfromthestudent’soriginalideas.Themovesservedtoexpeditethe

student’sprogresstowardcompletingthetaskbysuggestingmethodsorconcepts

theteachersthoughtwereappropriate.Ininstanceswherethestudentswereata

lossastohowtocarryouttheirtask,teacherssoughtwaystoprovidesomeideaor

meanstoconnecttostudents’priorknowledgewithoutlosingmomentumin

keepingstudentsengagedwiththetask.

!"#$%&'%(&%&)*+,--".*/(0#12345#( 6-%('%(&%&)*700#1&*6--#14,(54.

Page 111: Copyright by Hiroko Kawaguchi Warshauer 2011

97

ProbingGuidance

ThefourthtypeofteacherresponseIlabelprobingguidance.Thisiscloserto

theopen‐endedapproachinbeingresponsivetothestudents’thinking,probingfor

theirideas,suggestingmathematicalconceptsorproceduresthatrelatedtoand

builtonthestudents’thinking.Theintellectualeffortneededtotackletheproblems

restedwiththestudents,buttheresponsesservedtoclarify,connect,orconfirm

ideasthestudentspresented,andwerethereforemadevisiblethroughtheteacher

responses.

InFigure4.3below,Ireportmyfindingsusingtheteacherresponse

classificationsalongthiscontinuum.

Figure4.3: TeacherResponseContinuum

Ratherthandiscretejumpsfromonecategorytotheother,Iobserveda

continuousrangeofresponseswithdegreesofinformation,directing,probing,or

affordanceprovidedbytheteacher.Responseshadvaryingdegreesofprobingor

directingresponseswithcharacteristicsthatattimeswerehybridsofsomeprobing

andsomedirecting,asIwillreportinthissection.Insomeinstancesthecognitive

demandofthetaskasoriginallyconceivedchangedintheimplementationsothat

!"##$%& '(()*+,%-".$*"-/"+012$+,%-" 3*)4$%&012$+,%-"

Page 112: Copyright by Hiroko Kawaguchi Warshauer 2011

98

whilesomeresponsespreservedthecognitivedemandlevelasinanaffordance

response,othersloweredthetask’scognitivedemand.

Inmyanalysis,Ifocusedonhowthefollowingthreedimensionsofthe

student‐teacherinteractionswereaffectedbytheteacherresponsetypesthatI

observed:

• Thelevelofcognitivedemandofthemathematicaltask;

• Theattentiontothestudent’sstruggle;and

• Thebuildingonstudent’sthinking.

Thesethreedimensionswerechosenbasedonmyconceptualframework.

Teacherresponsesandinteractionshavetheabilitytoaffectthelevelofcognitive

demandinresponsetostudentstrugglesovertheimplementedtasks(e.g.Stein,

Smith,&Henningsen,1996).Second,theinteractionandteacherresponsesmay

takevaryingstancestowardattendingtothestudent’sstruggleaspartoflearning

withunderstanding(e.g.Borasi,1994).Thirdly,thefocusandbuildingonstudent’s

thinkingduringtheinteractioncanaffectstudent’sunderstandingofmathematics

(e.g.Doerr,2006).

Thefollowingtablesummarizesmyfindingsofthefourteacherresponses.

Page 113: Copyright by Hiroko Kawaguchi Warshauer 2011

99

Table4.2:TeacherResponseSummary

TeacherResponse

Characterizations Frequency Dimensions

1.Telling • Supplyinformation

• Suggeststrategy• Correcterror• Evaluatestudent

work• Relatetosimpler

problem• Decreaseprocess

time

27% 1a)CognitiveDemand:

• Lowered1b)AttendtoStudentStruggle:

• Removestruggleefficiently.

1c)BuildonStudentThinking:

• Suggestanexplicitideaforstudentconsideration

2.DirectedGuidance

• Redirectstudentthinking

• Narrowdownpossibilitiesforaction

• Directanaction• Breakdown

problemintosmallerparts

• Alterproblemtoananalogy

35% 2a)CognitiveDemand:

• Loweredormaintainedfromintended

2b)AttendtoStudentStruggle:

• Assesscauseanddirectstudent

2c)BuildonStudentThinking:

• Usetobuildonwithteacherideas

3.ProbingGuidance

• Askforreasonsandjustification

• Offerideasbasedonstudents’thinking

• Seekexplanationthatcouldgetatanerrorormisconception

• Askforwritten

28% 3a)CognitiveDemand:

• Maintained3b)AttendtoStudentStruggle:

• Question,encouragestudent’sself‐reflection

3c)BuildonStudent

Page 114: Copyright by Hiroko Kawaguchi Warshauer 2011

100

workofstudents’thinking

Thinking:• Useasbasisfor

guidingstudent4.Affordance • Askfordetailed

explanation• Buildonstudent

thinking• Pressfor

justificationandsense‐makingwithgrouporindividually

• Affordtimeforstudentstowork.

11% 4a)CognitiveDemand:

• Maintainedorraised

4b)AttendtoStudentStruggle:

• Acknowledge,question,andallowstudenttime

4c)BuildonStudentThinking:

• Clarifyandhighlightstudentideas

InthefollowingsectionIdescribeinmoredetailtheteacherresponsesand

theirimpactonthethreedimensions,namelythelevelofcognitivedemand,the

attentiontostudentstruggle,andtheuptakeonstudentthinking.

DescriptionsandImpactonThreeDimensions

1.Telling Inatellingresponse,theteachersevaluatedthestudentstatusinrelationto

thetaskandthenprescribedsufficientinformationneededforthestudentsto

overcomethestruggle.Thedirectionoftheinteractionwasdominatedbyteachers’

thinkingandthestudents’rolewastotakeuptheteachers’suggestions.Thegoalof

theinteractionappearedfocusedonstudentsarrivingatthecorrectanswerforthe

taskwithanefficientmethod.Theapparentefficiencyofteachingdecreasedthe

Page 115: Copyright by Hiroko Kawaguchi Warshauer 2011

101

timethestudentsmayhaveneededinordertoconnecttheirthinkingtothe

suggestedideasinordertogettotheunderlyingissuesthatcausedthestudents’

struggle.Forexample,inanalgebraicsetting,astudentstrugglingwithavariable

asked,“It’sanynumberyoumakeup?”andMr.BakerandMs.Georgevoiced

similarresponsesascapturedinMr.Baker’sresponse,“We’renotgoingtomakeup

anothernumber,we’regoingtousex.”Theresponsewasanexplicitdirective

regardingthetaskbutdidnotaddressapossibleissuesrelatedtothesourceofthe

student’sstruggle,whichseemedtobeovertheuseofavariable.

1a)CognitiveDemand

Akeyfeatureofthetellingresponsesincludedchangingtheproblemfeatures

oftenintheformsofsimplificationandsupportinconnectingthesimplifiedversion

ofthetasktotheoriginaltask,essentiallydoingsomeoftheintellectualworkforthe

student.Forexample,Ms.Fine’sresponsetoastudentstrugglingwithwritingan

expressioninvolvingpercentsandvariableswas,“Let’sjustnotthinkaboutthe

0.25;let’ssayIhaveanumberandIwant50%ofthat.Itwouldbe0.5right?Isn’t

50%0.5?Wouldyouturnaroundandputa1infrontofit[referringtowriting

0.25xandnotthe1.25xasthestudenthadwritten]?”Thecognitivedemandofthe

problemwasdecreasedduetotheinformationsuppliedandstrategiessuggested

withstudent’seffortsminimized.

Page 116: Copyright by Hiroko Kawaguchi Warshauer 2011

102

1b)AttendtotheStruggle

Theinteractionsinthetellingresponsefocusedonefficientlygetting

studentsbackontrackafteraderailment.Forexample,whenstudentswere

strugglingwithaproblemthatcouldhavebeenresolvedwithanexampleandan

equationthatwaswrittenontheboard,Mr.Bakermadereferencetoitbystating,

“Wecanuseaformulawehadabovethatmaybehelpfulforustosolvethisone.So

whatdidwepayandhowdidtheygetit?Theyprobablydidthesamething

here…okay?Solet’scombinethis.”Theteacherrespondedinawaythat

acknowledgedthedifficultythestudentseemedtobehavingbutpointedouta

strategythroughanexamplethatdirectlyhelpedthestudentinresolvingthe

difficulty.

1c)BuildonStudent’sThinking

Informationwasoftensuppliedorstrategiessuggestedwithoutbuildingon

students’thinking.Forexample,Ms.Georgesuggestedthefollowingquestions:“Do

yourememberhowtosetupaproportion?Whichratioareyougoingtouse?Can

yousetitupasafraction.”Thesequestionsprovidesignificantlymoreguidance

withteachersdoingmuchoftheworkforthestudentsindevisingastrategyforhow

tocarryoutthetask.Thetellingresponseseemedtobedrivenbyaneedtomove

studentsfurtheralongincompletingataskandinsodoingdisregardorfailtobuild

onstudents’thinking.Theteachertookovertheroleofperformingthetaskor

suggestedastrategythatputthestudentinasecondaryrole.AninterviewwithMr.

Page 117: Copyright by Hiroko Kawaguchi Warshauer 2011

103

Bakercorroboratesthisperspectivewhenherelatedthat,“Withteachingand

helpingsomanykids,it’skindoflikeamatteroftime.Whatwillgetmetogetthem

tounderstandtomoveonthefastest.”Studentswerenotgivenasmuchtimetoair

theirthinkingbecausetheteachers’directionandpacingincarryingoutthetask

dominatedtheinteraction.

Thefollowingepisodeisanexampleofthekindofinteractionthat

incorporatedatellingresponsethatmadeexplicitthedirectionintendedbythe

teacherbutinsodoinglessenedthecognitivedemandofthetask,theconnection

withthesense‐makingeffortsexpendedbythestudentinhisstruggleandthe

effortstobuildonstudent’sthinking.

EpisodeT1:

Thesettingforthisepisodewasaboutdeterminingthetipforabillusing

algebraicexpressions.Thestatementfortask3.1isasfollows:Supposethebillis$x.

Writeanexpressionforthetipon$xusinga15%tiprate.Whatisthetotalamount

youwouldpaytherestaurant?

StudentsinMr.Baker’sclasswerehavingdifficultygettingstarted

withtheuseofalgebraicrelationshipstoformulateanexpressioninvolvinga

variable.

4 S: It’sanynumberyoumakeup.

5 T: We’renotgoingtomakeupanothernumber.

We’regoingtousex.

Page 118: Copyright by Hiroko Kawaguchi Warshauer 2011

104

Mr.Bakermakesitclearwhatistobeused,thoughthestudentseems

uncertainabouttheroleofthevariable.

6 S: Oh,yeah.Butxisthenumberwewant,right?

7 S1: No.xislikeingeneral…

8 S: Iknow.Youcanputinwhateverforx.Right?

9 S1: No,no

10 T: You’rejustgetting…butitcouldbewhatever.

ThestatementbySsuggestsanemergingunderstandingoftheuseofa

variableinthissetting,butsuggestsastruggleformeaningaboutwhatheis

supposedtodowiththevariable.

11 S2: Soit’sxplusxtimes0.15equalsx?

12 T: Well,insteadof$5[asusedinanearlierexample],

we’regoingtousex.

Again,Mr.Bakergaveexplicitinstructionbytellingthestudenthowthex

wastobeusedinplaceofthenumericalvaluethatwasstillontheboard.

13 S3: How?

14 T: We’renotsolving,we’rejustsayingwhat’stheprocess,

what’stheprocess.

15 Class:Oh.

Thestudentsweretoldwhatneededtobeusedinplaceofthe$5from

anearlierproblem.Thestudentsdidnotseemgenuinelycertainhowto

Page 119: Copyright by Hiroko Kawaguchi Warshauer 2011

105

makethatconnectionorworkwithanexpression,thoughthistypeof

strugglewouldnotbeunusualfor7thgradestudentswithlimitedexposureto

algebraictermsandconcepts.

Insummary,thetellingteacherresponsesattemptedtosupply

information,suggeststrategies,correcterrors,evaluatestudentwork,relate

aproblemtoasimplerone,ordecreaseprocesstimeforstudentsinorderto

completethegiventask.

2.DirectedGuidance Teacherresponsesthatprovideddirectedguidancetostudentsoccurred

mostfrequentlyandwithgreatsimilarityacrossalltheteachers.Onenotable

characteristicofdirectedguidanceresponseswashowtheygenerallybeganwith

teacherassessmentofwhatstudentsknewandwhattheystillneededtodo.

Teachersthenincorporatedthisinformationintheirresponsestostudentsby

suggestingstrategiesthatappearedtobeknowntothestudents,directingor

narrowingdowntheiractions,orredirectingthestudentstowardsareasoning

basedontheteachers’formulation.Forexample,whenastudentstruggledwhile

tryingtocarryoutaprocess,Ms.Georgeinquiredofthestudent,“Let’stalkthisout.

Whatdoesthatgiveus?”,toassesswherethestudentwasintheproblem.Another

characteristicincludedguidingstudentsinbreakingtheproblemintosmallerparts.

Ms.Finesuggested,“Justseparateitinyourheadokay.Whatistheamountthatis

thediscount?Justtellmethediscountamount.”Thistypeofguidancehelped

Page 120: Copyright by Hiroko Kawaguchi Warshauer 2011

106

studentsunpacktheirthinkingandfocusonelementsoftheproblemthatthe

studentsmaynothaverecognizedaskeytothesolution.Otherteachersresponded

byprovidingabridgeacrossanapparentgapthestudentencounteredinsolvinga

problembyprovidingamorefamiliartypeofproblemsuchasanumericalonethat

wasmoreaccessibleforthestudenttobetterunderstandtheunderlyingprocesses

involvedinanumericalproblem.

2a)CognitiveDemand

Teachersusedtheirthinkingintheirdirectedguidanceresponseasthe

primaryguidingfocustosupporttheexploratoryandself‐monitoringaspectsof

problemsolving.Bydirectingthestudent’sthinking,thecognitivedemandofthe

taskintheenactmentasexperiencedbythestudentdecreasedbyvaryingdegrees

fromtheintendedlevel.Teachersoftencutshorttheopportunitiesforstudentsto

grapplewiththeformulationandimplementationofastudents’planbymakinga

suggestion.Forexample,astudentinMr.Baker’sclasswasuncertainhowtobegin

task2.4,fromtheBagofMarblesactivity,todeterminehowmanyredandblue

marblesshouldbeplacedinabaginordertohavethechanceofpickingoneblue

marblethatisbetweenbag1with chanceandbag2with chance.Mr.Baker

firstreiteratedtheproblemandengagedthestudentinastrategy:

16 T:Trytofindacombinationofmarblesredandblue,liketheydid,ifyouhad

awholebunch.Youhavetomakeacombinationthatwillfitwithachance

25

100

20

60

Page 121: Copyright by Hiroko Kawaguchi Warshauer 2011

107

rightinhere[pointingbetweenthegraphicsofBag1andBag2onthe

worksheet].Okay,youknowBag1haswhatpercentchance?

17 S: Wait,

18 T: Whichis25%,right?Bag2hasawhatpercentchance?

19 S: percentchance

20 T: or…

21 S: 33.3%

22 T: Okay,well,youknowthat[writingallofthisonthestudent’spaper].

Givemeabag,givemeanumberofredandblueyouseehowtheyhave

differentnumbers[pointingtotherepresentationontheworksheet]?Give

mearedandbluethatwouldfitinbetweenhere,thatwouldbe

somewherebetween0.25and0.33.

23 S: 29

24 T: Sohow,giveme…[studentnearbysays30]30.Howwouldyou

make…

25 S: Isaid29.

26 T: Okay,howwouldImakeabag?WhatwouldIneed?

27 S: Whatdoyoumean?

28 T: HowwouldImakeit29%chanceofablue?

29 S: Inwhichbag?

1

4

1

3

1

3

Page 122: Copyright by Hiroko Kawaguchi Warshauer 2011

108

30 T: Thisonerighthere.Yousaidyouwant0.29right?That’sthenumber

you’regoingfor?

31 S: [nodsyes]

32 T: Whatcombinationofmarblesdoweneedtodotogetthat?You

wanted30likeyousaid[speakingtotheotherstudent].Whatcombinationof

marblesdoweneed?

33 S: Actually,30soundseasier.I’mgoingwith30.

Intheaboveinteraction,theboldedteacherresponsesdirectedthestudent

withastrategyforhowtoapproachtheproblemsothattheoriginallevelfour

cognitivedemanddeclinedtoamoreprocedurallevelofdeterminingacombination

ofmarbleswith30%chanceofblue.Thereisstillworktobedone,butasthe

interactioncontinued,theteachersuggested:“Iwouldsayit’seasiertoworkwith

10’sor100’s…”andguidedthestudenttowardsthinkingof30%as30outofa100

implying30bluemarblesoutof100total,whichfurtherreducedthecognitive

demand.

2b)AttendtotheStruggle

Interactionsthatinvolvedadirectedguidanceresponsetriedtoestablishthe

natureofthestudents’struggle.StatementssuchasMs.Torres’statement:“Soyou

thinkit’s oryouknowit’s ?”triedtodeterminewhethertoaskforevidence

thattheanswerwas ortoaskwhythestudentthoughtitwasaparticularvalue.

Ms.Norrisaskedastudent,“Whydoyousaythe5gallon?”heretryingtodetermine

3

4

3

4

3

4

Page 123: Copyright by Hiroko Kawaguchi Warshauer 2011

109

thereasonbehindastudent’sanswertobringthestudents’thinkingoutintheopen.

Inanothersetting,sheaskedastudent,“Well,whatisthat?”toinquireabouta

representationthatastudenthaddrawnandtohaveherexplaininwordsthe

natureofthegraphicaboutwhichthestudentwasstruggling.Todeterminewhat

studentswerethinkingastheystruggledwiththeanswerstotheirproblem,Ms.

Harrisaskedonestudent,“What’snotcorrect?”ashecouldnotreconcilehisanswer

withothermembersofhisgroup.Inanotherinstancewhenastudentstruggledto

implementaprocedure,Ms.Harrisasked,“Andsohowdidyougettheotherpart?”.

Thestudentresponded,“FirstIhadthisasmyanswerbutthenIrememberedthis

soIaddedinthat.”

2c)BuildonStudent’sThinking

Teachersaskedquestionsinadirectedguidanceresponsethattriedto

establishwhatthestudentswerethinkingandthenaskedthestudentstoclarifyand

confirmwhattheyknewandwhatwasnotclear.Thisseemedtoinformthe

teachersofthekindsofsupportthatcouldguidetheirstudentsandhelpresolve

theirstruggles.

Anothercharacteristicofdirectedguidancewasatendencyfortheteachers

toredirectthestudents’thinkingtowardsanactionthatwouldfunctioninamore

helpful,efficient,orcorrectwayasperceivedbytheteacher.Theguidancefocused

onteachers’strategies,procedures,orunderstandingofthetasksthatstudents

couldthentakeupasopposedtobuildingonstudents’ideas.Forexample,teachers

Page 124: Copyright by Hiroko Kawaguchi Warshauer 2011

110

wouldbedirectinsuggestingaproblemsetupsuchasMs.Torres’questiontoa

student,“Canyoutellmewhatthatproportionwouldlooklike?“,orstatementsthat

directedanactionsuchas,“Theybothcancel.Okay,socancelthem.“madebyMs.

Harrisindirectingastudentwhoappeareduncertainofaprocesstoexecute.Other

teacherswouldattempttoclarifythemeaningofaproblemandasksomequestions

thatcouldhelpstudentsformulateaplan.Thequestionsdidnotalwaysoccurin

suchquicksuccessionasMs.Harrisexpressedhere,“Howcouldyouwritethis?

What’sreallythere?Doweknow?(pause)That’swhatwewanttofigureout.”The

teacher’sintentappearedtobeanattempttoenablethestudentstogetstartedby

focusingonunpackingthewordingandinformationintheproblemandclarifying

theimportantquestionintheproblem.Duringotherimplementationstruggles,

teacherssuchasMr.Bakerinthefollowingepisodepressedforstepsinaprocedure,

questioningstudents,“Whatdidwedo?Youmultipliedwhat?Whatdoyoureally

needtodohere?”Thereappearstobeanimpliedrightstepthatthestudentshould

considerdoinghereandMr.Bakerattemptedtoguidethestudentsinthatdirection.

Ms.Norris’sresponseinline36belowillustrateshowateachercandirecta

studentwhoisstrugglingwithaformulationtogetstarted.Shewantedthestudent

tothinkofcomparativefullnessasopposedtomerelyatthequantity.Whenthe

studentlookeduncertainandstated,“Idon’tknow,”Ms.Norrisresponded,

34 T: Okay.Well,howfullisthiscontainer[pointingtotherainbarrel].

35 S: 24

Page 125: Copyright by Hiroko Kawaguchi Warshauer 2011

111

36 T: Outof

37 S: 48[lookingatTwithaquestioninglookforapproval].

Directingstudentstowardaparticulartechniquesuchasproportions,useof

fractions,orpercentsoccurredfrequently.Forexample,Ms.Georgewouldask

students,“Areyoustillsettingupaproportion?”orinanotherinstance,“Canyoutell

mewhatthatproportionwouldlooklike?”Thesequestionssuggestaprocedurethe

teachersthoughtwouldhelpstudentscreateaconceptualrepresentationinorderto

formulateandimplementaproblemwithwhichtheywerestruggling,suchasin

tasks1.5and1.6.

Directedguidancewasoftenusedasaformofresponsetostudents’

strugglingwithalgebraictasksinthetipsandsalesactivity.Thestudentsstruggled

withtheirunderstandingofvariablesandexpressionsthatpromptedteachersto

providemoresupport,knowingthestudentshadlimitedexposureand

understandingofalgebraicrepresentation.Ms.Georgeaskedastudent,“Whatis

0.4Nsaying?Whatisthatsaying?“asshetriedtoredirectastudentaddressingtask

3.5fromusingaproportiontousingascalingofthetotalbythegiven40%.With

anotherstudent,shetriedtorespondtoastudenttryingtoformulateanalgebraic

expressionfortask3.7bydeterminingwhatthestudentunderstoodofan

expression,“Let’stalkthisout.If25%ofS,0.25S,whatdoesthatrepresent?”This

wasacommontheme,oftryingtohavestudentsarticulatethemeaningofan

Page 126: Copyright by Hiroko Kawaguchi Warshauer 2011

112

expression.Ataconceptuallevel,itwasnotapparentthatthestudenthadaclear

ideawhattheirvariablesrepresented.

Thefollowingepisodeexemplifiesaspectsofteacherdirectedstrategiesand

methodsthatguidedastudentinresolvingherstruggletocarryoutataskasthe

student(S)reachedanimpasseinsolvingtask1.5.Ms.Fine(T)beganby

questioningthestudent(S)inline39inordertodeterminewhatthestudent

understoodoftheproblem.Thiswasthegeneralpatternfornotonlythedirected

guidance,butfortheprobingteacherresponsesaswell.Thedistinctive

characteristicsofadirectedguidanceresponseasillustratedinthefollowing

responsesequenceiswhatappearstobetheteacher’sintenttoredirectthe

student’sthinkingtowardstheteachers’thinkingaboutthetaskduringthecourse

oftheinteraction.Infact,theteacher’sformulationandimplementationiswhat

guidedthestudent’sactionsasseeninline49.IincludethetranscriptofepisodeD1

asanexampleofhowtheteacher’shints,centeredaroundtheteacher’s

implementationplan,directedthestudenttocarryoutthework.

EpisodeD1:

38 S: Igotthisfar.

39 T: Sowhat’stheactualquestion?Howdidthatgoforso….

40 S: Youdrainagallonofwater.Itwas 35soitbecame 2

5becauseyou

drainedagallonofwater,right?

41 T: Sowhatpercentis 25?

Page 127: Copyright by Hiroko Kawaguchi Warshauer 2011

113

42 S: It’s40%

43 T: Yeah,butwhatabouttheotherone?Howdiditspercentagechange?

44 S: What?Thisone?That’stheoneI’mstumpedon.Ineedhelp.

45 T: Okay,howdowegofromthistoapercentage?

46 S: Idon’tknow.FirstIthoughtIwouldtrytogetitascloseto100as

possiblesoImultiplieditby2.

47 T: Okay

48 S: Whichis4offof…

49 T: Okay,what’stheotherwaywedidthis…

50 S: [Shakesherheadno.]

51 T: Youdon’tremember?It’sbeenawhile.

52 S: It’sbeenawhile.

53 T: Butifyouhadyourcalculatorwouldyoubeabletosolvethat?

54 S: [Showshercalculator.]

55 T: Okay.Youcangoaheadandusethat.What’sthenormalwaywedo

that?[PointingtoS’spaper.]

56 S: Proportions?

57 T: Fromafractiontoapercent.

58 S: Ohyeah,toadecimal

59 T: Yeah.

60 S: Yougofromadecimalto[inaudible].

Page 128: Copyright by Hiroko Kawaguchi Warshauer 2011

114

61 T: No

62 S: Ohno,wait,yougolongdivideit.Oh…

63 T: But,I’mnotgoingtomakeyoudothat.Youcanuseyourcalculator.

64 S: HowdoI?It’s23by48right?

65 T: Exactly

Theboldedresponsessuggesttheteacher’sthinkingasthedrivingforcein

theimplementationofthetaskwhilethestudentprovidesnominalconfirmation

abouttheproblemsolvingprocess.

Insummary,directedguidanceresponsesredirectedstudentthinking

towardstheteacher’sthinking,narroweddownpossibilitiesforaction,directedan

action,brokedownproblemsintosmallerparts,oralteredproblemstoan

analogousonesuchasfromanalgebraictoanumericalone.Whilethe

characteristicsoftheseresponseshavesomesimilaritieswiththetellingresponses,

theinteractionsdemandedstudentstocommunicatetheirthinkingandtoremain

engagedindoingtheproblem,evenifthedevisedplanwasmoreattributabletothe

teacher’sthinkingthanthestudents’.

Inowdescribetheprobingguidancetypeofresponsethatfocusedthe

studentsbacktotheirthinkingandideasevenmorethanwithdirectedguidancein

orderforstudentstounderstandandbuildonthem.

Page 129: Copyright by Hiroko Kawaguchi Warshauer 2011

115

3.ProbingGuidance Teachers’useofprobingguidancemadestudents’thinkingvisibleandwas

usedasthebasisforaddressingthetaskasopposedtodirectedguidance,wherethe

teachersfocusedontheirthinkinginordertoaddressthetask.Theteacherhadto

expendefforttohavestudentsarticulate,insomeway,theirthinkingwhetherina

verballyorwrittenform.Forexample,teacherswouldaskforreasonsand

justification,couchingthequestionwithoutintimidatingthestudent,suchasMs.

Torresquestion,“Ican’tquiteunderstandhowyougotfromthe3coinsandthe

chanceofgettinganycombination….canyouexplainthattome?Sometimesgood

feelingsareverydifficulttoexplain.”

Probingguidanceresponsesdidnotoccurasfrequentlyasthedirected

responseswith28%oftheteacherresponsesascomparedwith35%directed

guidanceresponsesand27%tellingresponses.Someindicationofstudentthinking

andworkhadtobecommunicatedormadevisibleinorderfortheteachertobuild

uponit.Iftheteacherdidnotperceivetherewassomethingtobuildon,ratherthan

trytofindoutwherethestudentswereintheirthinking,theteacherwould

generallyprovidesomeformofscaffolding,eitherasatellingordirectedguidance

responsethatwouldprovidemoreexplicitdirectionforthestudent.

3a)CognitiveDemand

Theintendedcognitivedemandofthetasksweremaintainedbytheuseof

probingguidanceresponsesbecausetheinteractionsbuiltonstudent’sthinking,

supportingitwhileattimespressingformoreexplanation,elaboration,or

Page 130: Copyright by Hiroko Kawaguchi Warshauer 2011

116

justification,whichhelpedreinforceratherthandiminishthosemathematical

processesimportantinproblemsolving.Forexample,Ms.Harrisaddresseda

studentuncertainaboutthemeaningofaprobleminordertogetstarted.Whenthe

studentasked,“Isn’t(problem)BjustlikeA?”Ms.Harrisresponded,“What’s

differentaboutit.Readthequestion.What’sdifferentaboutit?”andplacedthe

intellectualeffortbackonthestudenttoexamineandconsider.

Anotherexamplecomesfromtask3.7,thetipsandsalesactivitywhichreads

asfollows:“Ashirtregularlycosts$Sandisonsaleat25%offtheregularprice.

UsingS,writeanexpressionfortheamountofdollarsdiscounted.Alsowritean

expressionthatrepresentshowmuchyouwillpay,disregardingtax.”Ms.George

noticedincorrectsolutionsonvariousstudentspapersandoneofthestudents,

“Okay,tellmewhatthatmeans[whensheseesastudentwith0.25S–Sratherthan

thecorrectformS–0.25S].Shefurtherprobedthestudent,“Subtractit[repeating

thestudent’sresponse].Whatdoyoumeansubtractit?”.Thenshesuggestedtothe

studentanumericalversionforthestudenttoconsider,“Whatkindofnumber

wouldyougetifItoldyouthatSwas$12?Plugin$12forSandtellmewhatyou

get.”Thecognitivedemanddidnotdiminish,thoughtheteacherprovidedguidance

forthestudentstoconsideranexampleinordertohavethemreevaluatetheir

understandingoftheirproblemandpossiblyidentifyforthemselvesthesourceof

theirstruggle.

Page 131: Copyright by Hiroko Kawaguchi Warshauer 2011

117

3b)AttendtotheStruggle

Attimes,students’ideaswerenotyetwellformulatedandteachers

requestedthatstudentswritedownwhattheywerethinking,asMs.Fineinsisted,

“Showme.Writedownwhatyouhave”inwhatappearedtobeanattemptto

identifythestudents’struggle.Andevenwhenstudentshadwrittenwork,teachers

wouldaskforthemeaningoftheirworkasdidMs.George,“Youtellme,whatdoes

thatmean?”orMr.Baker,“Soyoufound$10.Allright.Whatisthat$10telling

you?”,againtogettotheunderlyingreasonfortheirexternalizedstruggle.The

teacherssoughtanexplanationforwhatwassaid,whatwaswritten,orsometimes

whatwasnotsaidwhenastudentwasreluctanttovoicehisorherthinking.

Inamovethatsuggestedtheteacherswerepromotingstudentstoself‐

monitortheirthinking,action,orwork,teachersaskedstudentstorepeatwhatthey

saidorrepeatedwhatthestudentssaidwithaquestioningtone.Thistechniquewas

oftenusedtoclarifyastudents’misconceptionthroughreasoningaboutwhatthe

studentssaidandwhethertheirideasoundedreasonable.Forexample,when

studentswereconfusedabouttheaxesfortheindependentanddependentvariable

inagraphingproblem,Ms.Harrisconnectedthediscussiontowhatstudentsmay

havebeenexposedtoinotherdisciplinesandasked,“Inscience,whatvariabledo

youusuallyputonthex‐axis?”Inanotherinstance,Ms.Georgeaskedastudentwho

thoughthemadeamistake,“Youmessedup?Why?Whatdidyoudothattellsyou

Page 132: Copyright by Hiroko Kawaguchi Warshauer 2011

118

[that]youmessedup?”andattendedtothestudent’sstruggleaswellasraisedthe

student’smetacognitivelevelofawarenessinsolvingproblems.

3c)BuildonStudent’sThinking

Inordertoelicitstudent’sthinkingwhenastudentwasuncertainwhetheran

answerwasrightorwrong,Ms.Fine,forexample,probedthestudentbyasking,

“Whydon’tyouthinkit’sright?Whatwereyouthinkingherewhenyoudidthat?”

Theresponsedidnotattempttoevaluatethestudent’sanswerbutpressedthe

studentforfindingreasonsforhisorherconclusion.

Thefollowingepisode,P1,illustratesateacherresponsethatconsistedof

movesthatsupportedstudents’thinkingbydisplayingitintheforefrontand

directingthestudentsthroughtheirstrugglebybuildingontheirwork.Thefocusin

probingguidanceistotakeupstudents’thinkingandguidethemtowardbetter

understanding.Thedifferencebetweenthisformofguidanceanddirectedguidance

istokeepthestudents’reasoningondisplay(Pierson,2008)andtheteacher’s

thinkinginthebackdrop,thoughtheteachertriestoprovidesupportappropriate

fortheparticularstudents.

Aprominentcharacteristicintheprobingguidanceresponsewastohold

students’accountablefortheirreasoningandsense‐making.Thefollowingexample

ofateacherresponsecontinuestheexampleoftheresponseMs.Georgeusedfor

task3.7thatbuiltonstudent’sthinkingandprobedfordemonstrationsof

understanding.

Page 133: Copyright by Hiroko Kawaguchi Warshauer 2011

119

EpisodeP1:

Ms.Georgenoticedonmanyofherstudents’papersthatthesalespricewas

writtenas0.25S–S.Inthisinteraction,Ms.GeorgeprobedAmy(A)toexplainthe

workonherpaperbutrefrainedfromsayingtherewasamistake.Theprobing

questionstoAmyaskedforanexplanationandjustificationfortheworkas

constitutedonherpaper,madearestatementoftheexplanationforconfirmation,

andthenaskedthatherprocessbetestedforverification.

66 T: Okay.Tellmewhatthatmeans.[Shesees0.25S–Swrittenon

Amy’spaperwhileNathan’sreadsS‐0.25S].

67 A: Itmeansthatyoutimesitbythepercent,whichis0.25,andthenyou

havetosubtractitandthat’swhatyouhavetopay.

68 T: Subtractit.Whatdoyoumeansubtractit?

69 A: Subtractthetotalfromit.

Ms.GeorgeconfirmedthatindeedtherewasanerrorinbothAmy’s

statementandherwrittenworkandfocusedontheexpressionthatAmyhad

written.

70 T: Soyou’regoingtofindthediscount,0.25timesSisthediscount.

Onceyougetyourdiscount,you’regoingtosubtractthediscountandthe

total.

71 A: [Nodsherheadinagreement.]

Page 134: Copyright by Hiroko Kawaguchi Warshauer 2011

120

Ms.GeorgeofferedanumericalexampleandaskedAmytotestherlineof

reasoning.ShethenworkedwithAmyandhergroupconsistingofNathan(N)and

Lisa(L).

72 T: WhatkindofnumberwouldyougetifItoldyouthatSwas$12.

Plugin$12forSandtellmewhatyouget.[WhileAmydoeshercomputation,

anotherstudent,Nathan,inthegrouphandedhispapertoTandTlookedit

over.]Now,whatI’dlikeyoutodo,isIwouldlikeyoutoshowmeWinterms

ofonecondensedS,withSwithsomething.Whatwouldthat[inaudible]…

LisaalsopartofAmy’sgrouprespondedtoMs.George’squestionabove.

73 L: …$9

74 T: Whatwouldbe$9?[AskingL].

75 L: [inaudible.]

76 T: IfSwere$12.

77 A: Howdidyouget9?

Amywasattentivetotheconversationtakingplace,andaskedaboutwhere

$9camefrom.Ms.GeorgeinvitedLisa,inthegroup,toexplaintoAmy.

78 T: Iwouldlikeyoutoexplaintoherhowyougot9.[AskingLisato

explaintoAmy.]

79 A: [Lookingpuzzled]Howdidyouget9?

80 T: Holdon.Whatdidyoudo?[AskingAmy.]

81 A: [Checkshermultiplication.]

Page 135: Copyright by Hiroko Kawaguchi Warshauer 2011

121

82 T: Okay.Youjustdid12times0.25.Youdidthisstep[pointingout

Amy’s0.12Sportionofher0.12S–Sexpression].Okay.Youhaven’tfinished.

Nowminusthisstep[pointingtothe–Sportionoftheexpression].SoSis12

[andasAmydoeshersubtraction,TtakesAmy’spaper]letmeshowyou

something.That’showshegot9,butletmeshowyousomething.Yougot3

forthis.9–12.[Writingthembelowthe0.12S–S]Whatdidyoudoinyour

expression?Youtookwhat?

Ms.Georgetriedtousethenumericalexampletoillustratetheerrorinthe

problemsetup.Amywaslookingintentlyatthewrittenwork.

83 A: [LookingatT’swork] Amyrealizedhererror.Shethenrewroteherexpressiononherpaper.84 T: Thediscountand….whatdoyoumean,youflippedit.

85 A: [Inaudible.]

86 T: Yes.That’swhyIgaveyouanumbertotrytoseeit.Youcan’ttake

adiscountandthensubtractthetotal.Yousubtractthediscountfromthe

total.

87 A: Oh.

88 T: Alwaysmakesureyouputyourtotalfirst,ifyou’regoinginthat

direction.Good.

Ms.Georgefocusedthestudent’sthinkingonthemechanicsofwhatwas

happeningthroughanumericalexample.Withtheexample,thestudentwasableto

Page 136: Copyright by Hiroko Kawaguchi Warshauer 2011

122

makesenseoftherelationshipofthetermsandtoreconsiderhowtocorrecther

expressionMs.Georgebuiltonthestudent’sthinkingandmaintainedthecognitive

levelofthetaskbychangingthefeaturesoftheproblemandseeingifaneasierand

non‐algebraicformulationoftheproblemwouldhelpthestudenttoseethe

connection.

Insummary,probingguidanceresponsesconsistentlyreverttostudents’

thinkingbybuildingontheirthinkingandaskingforexplanations,reasons,and

justifications.Questionsaskedbyteacherswereopen‐endedforstudentsto

consider,discuss,andrespondsometimesamongsmallgroupsorinwholeclass

discussions.Inmostinstancestimewasgivenstudentstoconsiderthequestion

aloneorasagroup.Thistimeintervalsrangedfromasshortas20secondstoclose

to15minutes.

Finally,incontrasttothepreviousthreetypesofteacherresponses,the

affordanceresponsesgavestudentsopportunitiestofurtherexploretheirthinking

andtodiscusstheirideaswithotherstudents.Thestruggleresolutionwas

thereforenotasapparentorevenachievedinoneclasssetting.Thepersistenceand

intellectualefforttoaddressthetask,however,stillremainedsquarelywiththe

student.Whilesimilartoprobingguidance,theaffordanceresponsesencouraged

studentstocontinueinvestigatingwithevenlessguidancefromtheteacher.

Page 137: Copyright by Hiroko Kawaguchi Warshauer 2011

123

4.Affordance Affordancetypeofteacherresponsesprovidedopportunitiesforstudentsto

continuetoengageinthinkingabouttheproblemandbuildingontheirideasbut

withlimitedinterventionbytheteacher.Theseresponsesoccurredin11%ofthe

episodes,farlessfrequentlythantheotherthreetypesofteacherresponses.Putting

themathematicalworkbackonthestudentswithoutdisengagingthemfromtheir

taskbecauseoftheirstrugglesproducedvaryingresults.Someinteractionswere

richandsometimesresultedinheateddiscussionsamongstudentsinsmallgroups

overdifferencesinanswers,strategies,procedures,ormisconceptions.These

discussionsweremoreproductivewhenstudentsverbalizedtheirideas,listenedto

eachotherandhadsomemeansofillustratingordemonstratingtheirworkin

relationtotheirclaimsasmembersintheirgroupsoftendemandedevidence.At

othertimes,however,whenstudentswereaffordedmoretimeandguidedlessby

theirteachers,theyfailedtomakeprogressanddisengagedfromworkingontheir

taskandsimplygaveup.

4a)CognitiveDemand

Anaffordanceresponseoftenhintedatpossibleformulationsor

implementationsforstudentstousebutleftthetasksintactwiththeexpectation

thatthestudentswouldcontinueworkingthroughtheirstruggle.Forexample,Ms.

Norrisasked,“Doesthissoundfamiliartothewaterquestionwedidyesterday?

Workitoutwithyourgroup.”

Page 138: Copyright by Hiroko Kawaguchi Warshauer 2011

124

Teacherswereexplicitinencouragingstudentstocontinuetheireffortsand

engagementintheirtasks.Forinstance,anaffordanceresponsebyMs.Torres

suggestedtoastudentstrugglingwithuncertaintyaboutanexplanation,“Isthatthe

samereason?...I’llletyouponderonthatokay?”Inanotherepisode,Ms.Harris

approachedasmallgroupwithdifferentanswerstotask1.5,“Justifyyouranswer.

Afteryou’vedoneyourwork,thenwriteasentenceyesornoandwhy.Andmake

sureyoujustifyitsomewayeitherwithsomemathorapictureorsomeway….NowI

wantyoutogoaheadandcompareyouranswersatyourtable.”Ms.Harristhen

listenedtothediscussionamongthefourstudentsatatablebutdidnotintervene

withwhatbecameaheatedargumentasstudentsstruggledtoconvinceeachother

oftheiranswers.Thecognitivedemandremainedatalevelfourasintendedinthe

task.

4b)AttendtotheStruggle

Acharacteristicaffordanceresponsewasforteacherstoconfrontwhat

appearedtobestudentstrugglesandthroughtheinteractionseektoclarifythe

studentideasanddemandrigorintheirexplanation.Forexample,Ms.Torresasked

herstudenttoconsiderhisthinkingthatsheperceivedwasonamisconceptionby

stating,“Buthowdoyouknow?HowdoyouknowthatplayerChada50%chance

ofwinning?I’llletyouponderonthat,okay?”andaffordedthestudentmoretimeto

considerthebasisofhisthinking.Thisapproachproducedbothstrugglesthat

reachedaresolutionduringtheclassperiodandothersthatwereleftunresolvedat

Page 139: Copyright by Hiroko Kawaguchi Warshauer 2011

125

leastinoneclassperiod.Whatseemedimportantwastoacknowledgethestruggle

thestudentswerehavingandprovidesomeinsightintoinvestigatingthekindsof

questionsthatcouldleadthemtobetterunderstandtheproblem.

4c)BuildonStudent’sThinking

Theteachersfocusedonthestudents’effortstoseeiftheirideasworked

ratherthanevaluateiftheywererightorwrong.Studentsoftenappearedto

restrainthemselvesfromofferingtoomuchandwithheldinformationthatmight

haveresolvedthestudentstruggleswithgreatereasebutwouldhavedeprivedthe

studentstheopportunitytousetheirowneffortstoovercometheirstruggles.

Thefollowingepisodecapturedcharacteristicsoftheaffordanceresponse

wherestudentsweregivenopportunitytoconsidertheproblemfurtherwithtime

fordiscussionandindependentthinking,knowingtheircontinuedeffortandwork

wouldbeseenasworthwhile.

EpisodeA1:

AgroupoffourstudentsinMs.George’sclasswereworkingontask3.3:

Giventhreebagscontainingredandbluemarbles,Bag1with75redand25blue;Bag

2with40redand20blue;Bag3with100redand25blue.HowcanyouchangeBag2

tohavethesamechanceofgettingabluemarbleasBag1?Explainhowyoureached

thisconclusion.

Astudent,Jeremy(J),istentativeinhowtodothislevelthreetask.89 J: Add5tobag2?

Page 140: Copyright by Hiroko Kawaguchi Warshauer 2011

126

90 T: Well,Idon’tknow.Canyou?Youwanttochangebag2tohavethe

samechanceofgettingabluemarbleasinbag1….okay,wellwhydon’t

youtestit.

Here,Ms.Georgetakesupthestudent’sthinkingandencouragesJeremyto

testhishypothesis,whichistohavethestudent“do”mathematics.

91 J: Thatwouldgiveme…thatwouldn’twork.Ihavetotake10awayfrom

that.Sothat’dbe 3060oronehalf.

92 T: Whatwouldthatdoforyou?I’mjustalittleconfusedastowhat

you…Sothisiswhichbag?...markitforme…andyoumayhavetolookatthe

marblesinthereandseewhatyouhavetochange.Okay?Justthinkabout

thatforamoment.Okay.(LeavesJtowork,asheseemsengagedwiththe

problem.).

Ms.Georgetookupwhatthestudentwasthinkingasaninitialresponsebut

didnotevaluatewhethertheanswerwasrightorwrong.Instead,theteacherasked

forwhetherthestudent’ssolutionwaspossibleandreiteratedthegoalofthetask.

Thestudentthenhadtoevaluatehisownanswer.Theteachersupportedthe

studentbyaskingclarifyingquestionsandhighlightingwhatappearedtobethe

resultofhisorherlineofthinking.Thissuggestedthattheprocessesof

conjecturing,testing,andfollowinguponone’sideasareimportant.

Theseactionsbyteachers“pressed”(Kazemi&Stipek,1997)studentsat

variousleveltoreason,justify,andconnecttotheirthinking.Thestudentand

Page 141: Copyright by Hiroko Kawaguchi Warshauer 2011

127

teacherinteractionsthatensuedlastedfromafewminutesofdiscourseinsome

casestoanentireclassperiod.Intheselattercases,thediscussionsevolvedinto

teachingopportunitiesdirectedtothewholeclass.Forexample,Ms.Torres

addressedthewholeclasswhenasignificantnumberofstudentswerestruggling

withaconceptinprobabilitytodeterminethechanceofgettingatailandahead

whentwocoinsweretossed.Sheconnectedthestudents’struggletotheirprior

knowledgebycreatingasamplespaceforthisexperiment.Herexpectationswere

notonlyaboutthestudents’computationoftheprobabilitybutthestudents’ability

toexplainwhereandhowtheygotthenumbers.Otherteachersusedthistechnique

ofaddressingthewholeclassoveraspectsofstrugglethatsurfacedwhile

interactingwithindividualsorasmallgroupofstudents.Throughobserving

studentsduringthesephasesofproblemsolving,theteacherswereabletolisten

andrespondtostudentsworkingontheirtasks.Whenstrugglesoccurredat

multiplesites,someoftheteachersresortedtoawholeclasspresentationor

discussion.Forexample,inobservingseveralofherstudentsstruggling,Ms.Fine

wenttothefrontoftheclassandstated,“I’mgoingtogoovernumberonebecause

we’rehavingalotoftrouble;confusionhere.Okay?“

Insummary,affordanceresponsesaskedstudentsforexplanationswith

detailsofstrategies,procedures,ortheirthinkingandpressedforstudentsto

considerfurthertheirjustificationandsense‐makingoftheseproblemswhetheron

theirownorwithgroups.Acriticalcomponentofthistypeofinteractionresponse

Page 142: Copyright by Hiroko Kawaguchi Warshauer 2011

128

wastoprovidestudentstimetoattendtotheirthinkingandsomemotivatingreason

tocontinuetoworkontheirtask.Theteachershadtomonitortheprogressofthe

students,however,asmomentumindoingthemathematicscouldgetlostifthe

studentscouldnotnavigatebeyondtheirstruggle.

DiscussionofTeacherResponses Studieshaveshownthatteachersimplementavarietyofmovesintheir

interactionwithstudentsthatisdictatedbythesituation,needsofthestudents,and

theirownbeliefsandcontentknowledge(Anghileri,2006;Haneda,2004;Stein,

Grover,andHenningsen,1996;Dweck,1986;Kennedy,2005).Theseactions

includeconnectingtostudents’priorknowledgeandbuildingonstudentthinking,

questioningstudentsinordertoprobeandclarify,andpressingstudentswith

intellectualworkinordertomaintainthecognitivedemandofthetask.Theprior

researchaddressedmanyissuesaboutteachingthatinformedinstructional

practices.Theseactions,however,havenotallbeensynthesizedtoexaminehow

theycouldbeusedspecificallytosupportstudentstruggles,particularlyina

productivemanner.TheframeworkthatIdevelopedwasbasedonthenotionthat

teachersusearangeofactionsastheyinteractwithandrespondtowhatstudents

aresaying,writing,anddoinginanattempttoaddresstheirstruggles.Acontinuum

modelcapturesthebroadsetofpracticestheteachersimplementthatisresponsive

tothestudentactionswithanunderlyingintent,purpose,andfunction.

Page 143: Copyright by Hiroko Kawaguchi Warshauer 2011

129

Whilesomeresponsescastawidenetalongthecontinuum,teachersoften

demonstratecertaingoalsanddirectionsintheirinteractionwiththestudent.I

noticedresponsesthatprovidedclarityforstudentsthroughnarrowingafieldof

examinationwhileothersrestrictedthefieldtotheextentthatitputthestudents’

ideasoutoftherangeofconsideration.Thesecancreateverydifferentlearning

opportunitiesforthestudents.Forexample,inaninteractionwithastudentand

Ms.Norrisovertask1.5,astudentrespondedthatthefullnesswasnow“23outof

48”intherainbarrel.Ms.Norriswentontoaffirmthestudent’sresponse,“sothat’s

right,buthowdoyougetthatit’smorethan40%?Howdoyougettothepercent?”,

wherebyMs.Norrisnarrowedthefieldofexaminationwithoutputtingthestudent’s

ideaoutofconsideration.Incontrast,Ms.Fine’sresponseoverthesametask

includedthestatement,“Okay,what’stheotherwaywedidthis…”whichrefersnot

tothestudent’slineofthinkingbuttowhattheteacherhadinmind.

ThethreedimensionsthatIusedtoanalyzetheteacherresponses,namely

maintainingthecognitivelevelofthetask,addressingthestudents’struggle,and

buildingonstudents’thinking,providethelensesthroughwhichonecanexamine

theproductivedirectionthestudent‐teacherinteractionsaretakingaboutthe

studentstruggles.Theyalsoprovideameanstogaugethepossibleoutcomesthat

result.

Myfindingsshowthatteachersmustconstantlystrikeabalancebetween

tryingtosustainstudentengagementandmaintainingthecognitivedemandofthe

Page 144: Copyright by Hiroko Kawaguchi Warshauer 2011

130

task(Kennedy,2005).Weseethatinvaryingdegrees,theteacherresponses

provideddirection,hints,corrections,andsuggestionswhenstudentswereataloss.

Theinteractionsrevealtheteacher’sroleintryingnottooverwhelmthestudents

whopossessvaryinglevelsoftoleranceforpersistenceandfrustration.Attimes,

intenseinteractionsamongteachersandstudentssignaledaneedtomoveonwith

thetaskwithoutgivingthestudents’possibleneededtime.Similartothefindingsin

theQUASARstudy(Stein,Grover,andHenningsen,1986),Ifoundthatwhen

teachersfocusedonthestrugglingstudents,theyalsoriskedlosingthefocusand

engagementoftherestoftheclass.Theteachers,therefore,appearedtofocuson

twolevels:firstontheimmediacyofhowtobestaddressthestrugglingstudentwith

thetask’sgoalsandcognitivedemand;andatthesecondlevel,themanagementof

therestoftheclasswhowerenotengagedorfinishedwiththeirtask.Myanalysis

findsthatdespitethesechallenges,someteacherschosetoaffordstudentstime;to

question,probe,clarify,interpret,orconfirmstudents’thinking;andtoprovide

opportunitiesfordiscussionamongclassmates.Thesefactorscontributedto

keepingtheintellectualworkofthetaskssquarelywiththestudents.

Inspiteofeffortsbyteacherstokeepstudents’thinkingvisibleandthefocal

pointoftheintendedtask,ifthestudentsbecamestymiedorshowedsignsof

frustrationorlackofresources,theteacherresponsesthenattemptedtobalancethe

probingquestionswithencouragement,andthekindsofguidancethatwouldkeep

thosestrugglingstudentsengagedwhilefocusedonattendingtotheirstruggle.

Page 145: Copyright by Hiroko Kawaguchi Warshauer 2011

131

Knowledgeoftheirstudentsinfluencedhowteachersrespondedtotheirstudentsas

notedinaninterviewwithMs.Georgewhereshementionedinherpostinterview

thecasesoftwoofherstudents;thefirsttypewasanexampleofasilentstruggler

andthesecondsheviewedasfairlystronginmathematicalability.

Interview1:

I’malwaysafraidI’mgoingtomissthatonewhodoesn’ttalkawholelot…Imisswhenhestrugglessometimesbecausehe’ssoquiet….andsometimesIforgetthosequietones…Ihavetowalkuptoandsayhowareyoudoingorjustreallychecktheirworkbecausetheywillneveraskmeforhelp.

Interview2:

[Noticestudent]overhere,howfrustratedhegotwhenhedidn’tunderstandwhatthedifferencewasbetweenthequestions?Well…hewantedmetotellhim.Andhewantedmerealquicktosaywellit’dbethesameright,right?AndIwenttolookatthequestionsandthatjustmakeshimsomad.

Manyoftheteacherresponsescorrespondedtopriorresearchthathas

showntheimportantrolequestioninghasingivingdirectiontostudents’thinking

andorganizingtheirideas(Sorto,McCabe,Warshauer&Warshauer,2009;

Anghileri,2006;WilliamsandBaxter,1996).Teacherresponsesgenerallyconsisted

oftryingtodeterminethenatureofthestrugglesothatsuchquestioninghelped

teachersassesstheirstudents’thinking(Cazden,2001).Myfindingsshowthatmost

teachersresponsestostudentstrugglesbeganwithanassessmentofwherethe

studentswereintheirtask,whetherbyaskingtohearaboutorseethestudents’

Page 146: Copyright by Hiroko Kawaguchi Warshauer 2011

132

writtenwork.AcommonresponsewassimilartoMs.Torres,whoaskedastudent

strugglingtoexplainhissolution,“Ican’tquiteunderstandhowyougot[there]…can

youexplainthattome?”Thisformativeassessmentwouldinformboththestudent

whoappearedunsureandtheteacherwhowasuncertainhowtoproceedwiththe

interventionandsupportthestudent.

Studieshaveshowntherolepriorknowledgeplaysinconnectingnew

knowledgetostudents’workingknowledgeasstudentsengageinmathematical

tasks(Bransford,Brown,&Cocking,1999;Rittle‐Johnson,2005;Richland,Holyoak,

&Stigler,2004).Inmyfindings,teacherresponsesalsomadereferencestomethods

andconceptsstudentshadbeenexposedtoandmadeanalogiesthatrelatedtheir

currentproblemstoproblemsthathad“easiernumbers”orwerenumericalrather

thanalgebraicaswiththetasksinactivity3thoughttoberoutine.Responsesto

studenterrorsandmisconceptionsservedtohighlighttheimportantvaluethe

teachersplacedonreasoningandsense‐makingasteachersconfrontedthestudents

withthinkingthatmayhaveleadtomistakesoruncertainty(Eggleton&Moldavan,

2001;Borasi,1994).Theseinteractionsabouterrorsgavestudentsopportunitiesto

revisetheirthinkingandnotdismisstheefforttheyexpendedbyacknowledging

aspectsthatcontributedtotheprocessofproblemsolving(Gresalfi,Martin,Hand,&

Greeno,2009).

Whatisimportanttonoteisthatwhenteacherresponsesmaintainedthe

coherenceofthetaskgoalandthestudentstrugglesrequiredtoachieveit,the

Page 147: Copyright by Hiroko Kawaguchi Warshauer 2011

133

responsesshowevidenceofsupportforthestudentsintheirintellectualeffortsand

apursuitofthetask’sobjectiveswithoutsimplificationorremovingthechallenge

fromthestudents.Threeprimaryfactorsappeartoinfluencetheteacherresponses:

theaccountabilityoftheexpendedefforttheteachersexpectsstudentsto

demonstrateasshowninhowteachersprobestudents’thinkingandaffordtime;the

valuethatteachersplaceonaccomplishingthetaskinrelationtothevalueof

studentsformulating,implementing,andmakingsenseofthetaskasshowninhow

theyusedirectedguidance;andtheefficiencybywhichtheteachersperceivethe

taskneedstobeenactedbythestudentsasseeninhowtheyutilizetelling

responses.

INTERACTIONRESOLUTIONS Inthissection,IwillfirstdescribethreetypesofinteractionresolutionsthatI

documented:productive,productiveatalowerlevel,andunproductive.Second,I

reportonsomepatternsofstudent‐teacherinteractionsandthestruggleresolution

framework.Third,Iuseasanexampleonetaskduringwhichsimilarstruggles

occurredandpresentsampleepisodesthatcapturethedifferentinteraction

resolutionsthatoccurredasaresultofthevaryingelementsinthestudent‐teacher

interactions.Finally,Iclosewithadiscussiononinteractionresolutions.

TypesofInteractionResolutions Iidentifiedthoseresolutionsasproductiveifthey(1)maintainedthe

intendedgoalsandcognitivedemandofthetask;(2)supportedstudents’thinking

Page 148: Copyright by Hiroko Kawaguchi Warshauer 2011

134

byacknowledgingeffortandmathematicalunderstanding;and(3)enabledstudents

forwardinthetaskexecution.Myfindingsshowthat42%ofthestrugglesfulfilled

allthreeofthesecriteria.

Iclassifiedasproductiveatalowerlevelthoseresolutionsthatwere

productiveinpoints(2)and(3)abovebutthatloweredthecognitivedemandofthe

intendedtask.40%ofthestudentstrugglesresolvedatalowerlevel.Anoticeable

wayinwhichthecognitivedemanddecreasedinvolvedtheredirectionofthe

studentstowardparticularmethodsorstrategiessuggestedbytheteacherandnot

bypursuingstudents’thinking.Anotherwaywasbysimplifyingtheproblemsor

supplyinginformationthatthestudentscouldhaveworkedandobtainedontheir

own.Iclassifythisasstillbeingproductivebecausethestudentsremainedengaged

inthemathematicalactivity,thoughatalowerlevel.

Icategorizedstrugglesasunproductiveifstudentscontinuedtostruggle

withoutshowingsignsofmakingprogresstowardsthegoalsofthetask,reacheda

solutionbuttoataskthathadbeentransformedduringtheinteractiontoa

proceduralonethatsignificantlyreducedthetask’sintendedcognitivedemand,orif

thestudentssimplystoppedtrying.18%ofthestudentstrugglesresolved

unproductively.Becausemyobservationssuggestthatstudentstrugglesdonot

necessarilyresolvethemselvesinhour‐longlessonsorwithintheactivity,whatmay

appearasanunproductiveresolutionmayhavebecomeproductivehadmoretime

beenavailabletosupportthestudent’sstruggles.Mydataalsosupportthefindings

Page 149: Copyright by Hiroko Kawaguchi Warshauer 2011

135

ofotherstudies(e.g.Sullivan,Tobias,McDonough,2006)thatfoundsomestudents

seemedtodeliberatelynotengageinthetaskorgetfrustratedandshutdown.

Teachers,therefore,havemuchtoaddressintheclassroomtobalancetheissuesof

engagementofallstudentswithcognitivelydemandingtaskswhileatthesametime

respondtostrugglesamongstudentswithdifferentlevelsoftolerance,motivation,

andpersistencetowardthetasks.

InteractionFrameworkandPatterns Inordertoanalyzeanepisodewithit’sbeginning,middle,andend,Iusedmy

earliercategoriesoftheexternalizedstrugglestoaccountforthebeginningofthe

episode,theinteractionthatensuedwiththeteacherresponseandthestudent

uptakesinthemiddle,andfinallythepatternsofwhatsignaledanendingtothe

episode.Ianalyzedtheresolutionsusingarevisedframeworkfromchapter2.

Figure4.3: ProductiveStruggleFrameworkinaninstructionalepisode

!"#$#%&'()*#'+*,

-).)-#%+/%0+1*'2'.)%3)("*3

4*'2'2"2) 4*2)5"02%6273)*2%625711-)%&'()*#'+*#,%

%89"2:%9+8:%89;

<720+()%&'()*#'+*,

=&+'*1%("29>

!)"09)5%?)#@+*#)%&'()*#'+*#,

0+1*'2'.)%3)("*3:%"335)##

#25711-):%#273)*2%29'*$'*1

?)#+-.)

!"#$%&'()*+,)'-

."#/('0%12(%#-'#0'-0%3,

4"#/('0%12(%#5),6#0'-0%3,

7"#8'#&+,6

!"#9%,#:,+(,%1

."#;+((<#'2,#+#3('0%::

4"#9)=%#&+,6%&+,)0+>#

######%?3>+-+,)'-

7"#@?3(%::#&):0'-0%3,)'-

#####'(#%(('(

####

!"#A%>>)-B

."#8)(%0,%1#92)1+-0%

4"#/('C)-B#92)1+-0%

7"#DEE'(1+-0%

!"#/('120,)=%

."#/('120,)=%F>'5#>%=%>

4"#G-3('120,)=%

Page 150: Copyright by Hiroko Kawaguchi Warshauer 2011

136

Onenoticeablepatternofanepisodeendingwaswhenastudentstatedthe

correctanswertoataskproblem.Thestudent’sanswerappearedtoresolvethe

student’sstruggleandtoconcludetheepisode.Asteacherandstudentsinteracted

withquestionsandresponses,thestudentswouldgivetheanswerinasuccinct

formsuchas,“The24”intask1.1.Theteacherresponded,“Doyouseewhy?”to

whichthestudentresponded,“Iseewhynow.”Thistypeofstatementendedthe

interactionaboutatask,thoughitwasnotalwaysaccompaniedbyevidenceof

understandingofthemathematicsbythestudent.

Asecondpatternthatbecameevidentamongepisodesacrossthethree

teachingsiteswasthecommonpointsatwhichstudentstrugglesoccurredduring

thesametasks.Studentshadsimilarissuesofstrugglingtogetstartedwith

problemssuchasintask2.3,anopen‐endedquestiontocomeupwithabagof

marbleswithacertainratioofbluetoredmarbles.Strugglestoimplementtasks3.1

and3.7werecommonasstudentsworkedwithalgebraicexpressions.Intasks1.1,

1.2,and1.5,studentsstruggledoversimilarpointsincarryingoutprocessesand

explainingtheiranswers.

Athirdpatternsuggeststhatinlookingatthesimilarstruggles,thekindsof

teacherresponsescreateddifferentoutcomesintheproductivequalitiesofthe

struggleresolutions.Keepinginmindtheexploratorynatureofmystudy,I

examinedmydatawiththefollowingquestion:Givenataskwithinwhichsimilar

Page 151: Copyright by Hiroko Kawaguchi Warshauer 2011

137

strugglesoccurred,domyfindingsshowthatcertainkindsofteacherresponseslead

toparticulartypesofresolutionsofthestudents’struggle?

ExampleTaskWithDifferingResolutions Iusetask1.5oftheBarrelofFunactivitytoillustratehowataskthatelicited

similarkindsofstrugglesresultedindifferentresolutions.Thefirstepisodebegan

withastudentstrugglingoveraninabilitytoexplainherapproachtotask1.5.The

student‐teacherinteractioninvolveddirectedguidanceandresolvedinaproductive

struggleatalowerlevel.Theothertwoepisodeswillincludeoneproductive

struggleresolutionandoneunproductivestruggleresolutions.

Example4.1:ProductiveStruggle–Lowerlevel Theepisodebeganwhenastudent,Nora(N),sittinginagroupoffourwas

approachedbyMs.Norris(T)andwasunabletoexplainheranswer.

93 N: Welllike,soliketomakeabettercomparison[pointingtoboth

graphicalrepresentations]IgavelikeIgavethemthesamenumberof

thingsandlike[gesturingwithhandsinaflutter]likeIdon’tknowhow

toexplainit,it’sjustkindalike…[pause]

Norahaddrawnarepresentationofthetwocontainerswithwateronagrid

sheetprovidedbasedonapercentagefilledratherthanallowingeachsquareto

represent1gallonassuggestedintheinstructionsfortask1.4.Asaresult,both

containersappearedtobethesamesize,namely100%depictedas10vertical

squareswith5shadedforthe =50%filledrainbarreland6shadedforthe =24

48

3

5

Page 152: Copyright by Hiroko Kawaguchi Warshauer 2011

138

60%waterjug.ThefollowinginteractionwaspromptedbyMs.Norris’response

afterobservingNora’sworkandthestrugglethatshehadexternalized.In

supportingNora’sstruggle,Ms.NorrisprobedNora’sthinking,validatedher

attempt,andnotedpossibleshortcomingsoftherepresentationNorahadonher

paper,namely,herinabilitytoaccuratelyandquantifiablyseeandstatethe

differenceinchangeusingtherepresentationsonherpaper.SheaskedNoraabout

drawingthecontainersasoriginallysuggested.

94 T: Doyouthinkyou…andthat’swhatwewant,wewanttoseea

comparisonofthetwosothey’reequal.Myquestionis,I’mwondering,do

youthinkyoucouldhavedrawna48‐gallonoverhere?(Pointingtoanopen

partofthegraphpaper.)

95 N: Yeah,Ihaditoverhere[pointingtoaportionofthegraphpaper]

96 T: Where?

97N: AndIerasedit.

98 T: Why?

99 N: SoIcoulddoitthisway.

100 T: Soyoudidhalflikethis[pointingtohercurrentgraphicof5shaded

outof10].Nowwhathappensifyoutakeonegallonoutofhere,how

wouldyoushowmethat?

101N: [Usesherthumbtocoveruponesquareofthegraphicforthe5outof

10shaded‐representingthe24outof48gallons].

Page 153: Copyright by Hiroko Kawaguchi Warshauer 2011

139

102 T: It’skindofawhat?

103 N: Idon’tknow.

104 T: Isitaccurateorareyoukindofguessingandestimating?

105 N: Kindofguessing[withagiggle].

106 T: Sodoyouthinkmaybeifyouhaddrawnitasa48andshaded24you

wouldhavebeenabletoadjustthatalittlebiteasier?

107 N: Iguess.

Ms.NorrisdoesnotinvalidateNora’sworkbutsuggeststhatverifyingand

justifyinghersolutionisproblematicwiththecurrentrepresentation.Ms.Norris

continuedtopushNora’sthinkingwithquestionsthatcouldleadhertowardsaline

ofreasoningandausefulrepresentationthatwouldthenrevealtheimportant

featuresoftheproblem.

108 T: Igetwhereyou’redoingthis[pointingtothehalfgraphic]butjust

becausethey’rebothshowingahalfandthisisalittlebitmorethanahalf,

youdon’tknowforsureexactlywhatahalfissoyouwanttodrawitto

scale.

109 N: Sodoesitordoesitnot?

110 T: Doesitmatter?Doesitchangewhatcontainerisfuller?

111 N: No.

112 T: Okay,sohowareyougoingtojustifyitforme?

Page 154: Copyright by Hiroko Kawaguchi Warshauer 2011

140

Nora’sfrustrationbecamemoreapparentandMs.Norrisrefocusedonthe

question.Shethenofferedasuggestionaboutapossiblenumericalwaytoviewthe

task,asNora’scurrentrepresentationhadnotbeenhelpful.

113 N: Idon’tknowhowtojustifyit.

114 T: Youdon’tknow…hmmm.Dowehaveanynumbersthatweknow

aboutthatwecanwrite?

115 N: Yeswedo.

116 T: Whatnumbersdowehave?

117 N: 48.

118 T: Gotthat.Whataboutthat48?

119 N: 24outof48andthen3outof5.

120 T: Okaybutwhathavewegothere?

121 N: 2outof5and23outof48.

122 T: Let’swritethosedownsothatwecanbethinking.

Ms.NorrisdirectedNoratoconsidertherelevanceofthegiveninformation

byrecordingthemforfurtherexamination.ThisgaveNoraapossiblepathfor

carryingoutaprocedure.Ms.NorrisleftNora’ssidebutreturnedafteraminuteof

talkingwiththethreeothergirlsinNora’sgroup.ThisprovidedtimeforNorato

continuethinkingabouttheproblem.WhenMs.NorrisreturnedtocheckNora’s

progress,shefoundthatNorahadnotmademuchprogressandwasshowing

furthersignsoffrustration.Shethenaskedaboutawayofconsideringthefullness

Page 155: Copyright by Hiroko Kawaguchi Warshauer 2011

141

withanexpectationofjustification.Here,Noraindicateddecimalsasanalternative

representationthatmightprovehelpful.Ms.Norrismadeanacknowledgementof

thatideaandagainleftNoratoherworkagain,affordingthestudentstimeand

opportunityfordiscussionandsense‐making.

123 T: Youstilldon’tknow.Wellwhatdidyouwritedown?Talkwithin

yourgroupaboutthisproblem.[Announcestothewholeclassasshe

walkovertoNagain.]

124 N: [Motionswithfingerstowardsherwritingonthepaper.]

125 T: [LookingatM’swork]Justoneless.Youthinkthesame…youstill

thinkthis5‐gallonjugisfuller?

126 N: [Looksatherpapersbutdoesnotrespond.]

127 T: You’rejustbasingthisonaguess.

128 N: Maybe.

129 T: Wellhowcanyouproveittome?Doyouhavesomethoughtson

that?

130 N: Idon’t.[Exasperatedandpullsherhair.]

131 T: Youdon’t?What’sanother,what’sanotherwayIcouldexpress

exceptasafraction?What’sanotherwaytowrite?

132 N: Asadecimal.

133 T: [TapsN’sforearminacknowledgement,thenpointstothepaper]…do

youthinkwecouldwrite inoneofthoseotherformatstolookat

2

5

2

5

Page 156: Copyright by Hiroko Kawaguchi Warshauer 2011

142

it?Becausethenthey’dbeonthesamebasis,right?Okay,solet’stry

thatandwe’llcomeback[leavesNandgoestoanothertable].

Afterafewmoreminuteshadelapsed,Ms.NorrisreturnedtoseewhatNora

haddone.DuringMs.Norris’absence,anothermemberofNora’ssmallgroup,S2

seemedtohaveawayofcomparingthefullnessofthetwocontainersinawaythat

madesensetoNora.Shethenpreparedtousetheseideastowriteherjustification

onherpaper.WhenMs.NorrisobservedthesatisfiedNora,shesuggestedthat

Nora’sworkwasattributabletoS2.Nora,soundingindignant,statedthatshedid

indeedunderstandtheproblemnowandimpliedthatshewaspartofthegroup

effort.Ms.NorrisinsistedthatNoramustjustifyhersolution,assheunderstoodit.

Thismoveconcludedtheepisodeasthetaskshifted.

134 T: [ReturnstolookatN’spaper].Shemusthavedoneagoodjobof

convincingyou[pointingtoS2].Iwanttoseethatworkstill.

135 N: Ihavemyowntrainofthought.

136 T: Okay.S3,didyouwritethat?Thatitchanged.Okay.Iwanttosee

justification,notbecauseS2saidso.

137 N: Nooooo,wealreadywentthroughitasagroup.[Ratherindignantlyto

T.]

138 T: Okay[acknowledgingthenmovestoanothergrouptoinquirewhat

theygot.]

Page 157: Copyright by Hiroko Kawaguchi Warshauer 2011

143

TheresolutiontoNora’sstruggleoccurredoveranextendedtime.Ms.

Norrisleftthegroupseveraltimessothatthegroupmemberscoulddiscussand

sharetheirideasandwork.Therewereothergroupsthatwerealsostrugglingover

thistask.Ms.Norris’intentseemedtobetoallowthestudentstoworktogetherand

tolimitherguidance.OnestudentinNora’sgroup,S2,wasabletoexplainher

solutioninawaythatmadesensetohergroupmembers.Inexplainingtoher

group,S2ineffectplayedtheroleofteacher.Whilethecognitivedemandwas

decreasedforNora,sheseemedtotakeownershipofherunderstandingofthe

problembyherpersistenceintryingtomakesenseofbothherworkandthework

ofothersinhergroupandtherebyproductivelyresolvedherstruggle.

Thefollowingexamplecapturesaproductiveresolutionatahighlevel

becauseitmaintainedthehighcognitivedemandofthetaskandthetaskresolution

wasachievedthroughthestudent’sengagementandintellectualeffort.This

examplealsoservestoillustrateafairlycommonoccurrencewherestudentsdidnot

showstruggleuntilaquestionposedbyateacherorotherstudentscreatedan

uncertaintyorconfusionvoicedbythestudents.ThisepisodeinMs.George’sclass

beganwithDrew,whogavehisanswerfortask1.5withnoindicationthatitwas

incorrect,“Iputnobecausetherewouldbethesameasbeforebecauseyouhave

takenagallonfromboth.”

Page 158: Copyright by Hiroko Kawaguchi Warshauer 2011

144

Example4.2:ProductiveStruggle Ms.Georgewasfacedwithastudent(Drew)whohadanincorrectanswer

stemmingfromamisconceptioninproportionalreasoning.Ms.Georgeresponded

toDrew’sanswerwiththefollowingprobingquestionstosolicitstudent’sthinking:

“Okay.Soshowmewhatthatwouldlooklike.Showmewhatyourgallonswould

looklike.Ifyoutakeagallonfromeach,whatareyoulookingat?”WhenDrew(D)

showedhisworkonhispaper,Ms.George(T)usedittoquestionandconfirmhis

work.

139 T: Okay.Sowhatyou’retellingme(pointingtoDrew’sworkonhis

paper),youhave23gallonsoutof48and2gallonsoutof5,thatyou’restill

goingtohave2gallonsoutof5willbe…

140 D: Lower,lessfull.

141 T: Butdidn’tyoutellme wasmorefull.

142 D: Wait,wait.

143 T: Sowoulditchange?

144 D: Oh.Okay.Yes.Yesbecause,see…

145 T: Becausewhy?

Ms.GeorgesoughtconfirmationfromDrewabouthisstatementandprobed

himtogiveanexplanationforhisansweraswellasprovideamathematicalwayto

verifyhisclaim.

146 D: Theywouldbethesameasbeforebecauseyou’retakingagallonfrom

both.

3

5

Page 159: Copyright by Hiroko Kawaguchi Warshauer 2011

145

147 T: Butthey’renotgoingtobethesame.Yousaid,yesbecausethey

wouldnotbethesame.They’reaskingyou,woulditchange?Youjusttold

meitchanged.

148 D: Itwouldnot.[Eraseshisanswer.]Okay.Yes,theywouldnotbethe

same.Yes,theywouldnotbethesameastheywerebefore.[Lookingintently

athispaper.]

149 T: Okay.Whichoneareyoutellingmeisfuller?

150 D: .Butisn’tthatfullernow?[LookingupatTquestioningly.]

151 T: Whywouldthatonebefullernow,doyouthink?

152 D: Becausetheotheroneisn’tahalf.

153 T: Okay,it’snothalf.Thatmeansit’snotfuller?

154 D: It’smorethan0.5now.

155 T: Tellmethatonemoretime.

Thereisalotofconfusiononthepartofthestudent,andMs.Georgeasked

Drewtorepeatwhathehadsaidtoclarifyhisstanceandreasoning.Atthesame

time,Ms.Georgetriedtoslowdownthepaceofthedialogueandnotshow

impatienceforananswer.

156 D: Isaidit’smorethanahalfnow.Becausethisoneisnolongerahalf

because[squintsandthinks]youhavetosubtract,youhavetakenawaya

gallon.

157 T: Okay.

2

5

Page 160: Copyright by Hiroko Kawaguchi Warshauer 2011

146

158 D: Andthisoneisnolongersix‐tenthsbecauseyouhavetakenawaya

gallon.Andthisonewouldnolongerbeahalf[inaudible]itwouldn’tbethe

same …[takesabreath].IknowwhatI’msaying[inaudible]…

159 T: Bepatient.[GivesDtimeandlistensintently.]

Ms.GeorgewatchedasDrewsetupalongdivisionprocess.ShesaidtoDrew,

“Getyourpercentsandcallmebackover.Keepworking,”andthenlefthissideas

Drewcarriedouthiscomputation.Ms.Georgeofferedencouragementinwhat

appearedtobeconstructiveengagementonthepartofDrew.Drewhadtoaskhis

groupmatetolethimkeepworking,thencalledMs.Georgeback.

160 D: Backoff[whenhisneighborlooksathispaper].…Okay.Ihaveit.

[CallsouttoT].Ring,ring,ring,ring[makesabelllikesound].

161 T: [ComesovertoDrew’sside]Whathaveyougot?I’mhere.Gladyou

called.

162 D: NowIhavegotthepercentage,drumrollplease.

163 T: [Tapsonhisdesk]go.

164 D: Thisoneisnow41%.Thisis40%.

165 T: Whichone’sfuller?

166 D: The48‐gallonbarrel.

EvenasDrewfoundawaytoexplainhisconclusion,Ms.Georgeprobedhim

withafollowupquestiontoseeifDrewmightbeabletoprovideindicationsof

deeperunderstandbeyondthecomparisonofpercentages.Shealsoseemedto

Page 161: Copyright by Hiroko Kawaguchi Warshauer 2011

147

addressthemisconceptionofequalquantityremovalnotnecessarilyleadingto

equalpercentageremovalandwhythecontainersizemattered.Thoughthe

studentsdonotrigorouslystatetheanswerforher,Ms.Georgegavethestudentsan

opportunitytothinkaboutandexplaintheconceptualnatureoftheproblem.

167 T: Beforeyousaid…whydoyouthinkitchangedonyou?Whydoesit

change?Justbyonegallon?

168 D: Becausethisonewasnothalf.

169 S1: Becausehereismoregallons,thepercentwoulddroplikeless.

170 D: Likesoyeah,whathesaid,moregallonsthenthepercentwoulddrop.

171 T: Thepercentwouldnotbeasbig.Right.Good.It’sgoodteameffort.

Theaboveresolutionisanexampleofaproductivestruggleinwhichthe

cognitivelevelwasmaintainedasMs.George’spressedthestudentstofurther

reflectandattempttomakesense.Sheprobedthestudentthenletthestudenthave

timetoconsiderthequestionsthatwereposed.Throughthatprocessofreflection

andopportunitiestoexplaintheirthinking,Iconjecture,thestudent’slevelof

understandingmayhavebeendeepened.

Thefollowingepisodeillustratesanunproductiveresolution.Incomparison

totheintellectualworkdemandedofMs.George’sstudentsinaproductivestruggle,

weseetheuseofatellingresponseinwhichthetask’slevelofcognitivedemand

wasloweredsignificantlywithelementsofanalysisandexaminationofsolution

strategiesundertakenbytheteacherratherthanthestudents.Astudent,S1,inMr.

Page 162: Copyright by Hiroko Kawaguchi Warshauer 2011

148

Baker’sclasswasunabletoexplainherwork.Theteacherresponseinvitedanother

studenttohelpmakeanexplanation.

Example4.3:UnproductiveStruggle172 S1: Thebarrel.Ididn’tgetit. Mr.Baker’s(T)responsewastoincludeLily(L)whohadworkedonthetask

withS1whenS1wasunabletojustifyheranswer.Theresponsefailedtoaddress

thenatureofS1’sstruggleandputemphasisonarrivingattheanswer.

173 T: Youdidn’tgetit.Nowwho’syourpartner?Lily?Lily,canyouhelpher

out?Whatdidyousay?

174 L: Isaidthe48‐gallon[inaudible].

175 T: Because…sayitonemoretime…because…

176 L: Becauseifyoutakeoutagallonfromeach…

177 T: Soyou’resayingthebarrelwouldbefullerorthejugwouldbefuller?

178 L: Thebarrel.

Lilywasabletogivethecorrectanswerbutdidnotexplainorelaborateon

whyshedecidedthatthisanswerwascorrect.Instead,Mr.Bakerprovidedthe

explanationtotheclasswhiletheclassremainedquietandunresponsive.The

studentsmayhaveunderstoodhisexplanationbutfromthelackofresponsesand

attentivenessfromtheotherstudents,onecannotconcludethattheywouldbeable

tojustifytheiranswer.Insomecases,teachersmaygivesolutionsthatthey

themselvesunderstandwithoutmakingsurethatthestudentsdo.

Page 163: Copyright by Hiroko Kawaguchi Warshauer 2011

149

179 T: Thebarrel.Okay.Sowhenwe’retalkingaboutit,ifyoutake,ifyou

haveajuganditcanonlyhold5gallons,isthatthatmuchcomparedtothe

barrelthatcanhold48?

180 Class: [Noresponse.]

181 T: Notthatmuch,isit?Butyoutakeagallonoutofthatjug,isthatgoing

tomakequiteabitofadifference?

182 S3: Yeah.

Thisstudent’sresponse,however,wasnotindicativeoftheclass’

understanding,buttheteachercontinuedwiththerecitation,usingtheresponseto

assumesense‐makingbythestudentsatlarge.

183 T: Butifyoutakeagallonoutofthebarrel,doesitmakequiteas

muchofadifference?

184 Class: [Noresponse].

185 T: Notquiteasmuch,doesit?Sowhatyoucandoisyoucantakeand

makefractionsso,letmeseeifIcangetthishere.Imadeafractionthatsaid,

thebarrel,excusemethejugisnow2outof5gallonsfull,right.Andthe

barrelis23outof48gallonsfull.AndthenIcancomparefractionsand

what’seasierformetodowhenIcomparefractionsistochangethem

intodecimals.Sothisoneisgoingtobe0.4,thisoneisgoingtobealittlebit

biggerthanthat,justalittlebitbiggerthanthat.Sowhichoneismorefullor

fuller?[Noreaction.]Thebarrelorthejug?

Page 164: Copyright by Hiroko Kawaguchi Warshauer 2011

150

186 S3: Thebarrel.

187 T: Justalittlebit.Becauseitmadesuchabigdifferencetakingagallon

outofthelittlejug.Okay.MovingontoF(task1.6).

Mr.Bakershiftedtoanothertaskaftergivinghisexplanation,therebyending

theepisode.Theepisodefailedtoengagestudentswiththetaskortoprovidethe

justificationneededtoexplaintheanswer.Thestudent’sstrugglewasnot

supportedbutratherwasdirectedbytheteacherswhousedarecitationformat.

Theresponsedidlittletobuildonthestudent’sthinkingortoinvolveherinthe

problemsolvingprocess.Furthermore,theimpreciseuseofthemathematical

languagebytheteacherfailedtomodeltherigorthatwasexpectedinthetask

design.Thisisanexampleofanunproductiveresolutiontostudents’strugglewith

atellingtypeofteacherresponse.

Insummary,theoutcomesforthestudents’struggleandtheresolutionsto

theinteractionwereamixofthosethatwereproductivebymaintainingthehigh

levelofcognitivedemandofthetask,buildingonthestudent’sthinking,and

attendingtothestruggleasaprocessthatthestudentscouldworkthroughwhile

otherswerelessproductivewhenthedirectedguidanceloweredthelevelof

cognitivedemand.Thelatterresolutionsincludedthoseteacherresponseswith

moreinformationgiventothestudent,strategiesandideassuppliedbytheteacher,

andlessintellectualeffortdemandedofthestudents.Finally,unproductive

interactionresolutionsresultedinthestudentsnotindicatingaclearunderstanding

Page 165: Copyright by Hiroko Kawaguchi Warshauer 2011

151

ofthetasknoranabilitytomakeprogressintacklingtheproblem.Inaddition,

thoseinteractionswhereteacherresponsesfailedtotapintoorsupportstudents’

thinking,tookoverthechallengingaspectsofthetaskfromthestudents,or

simplifiedtaskstoprocedureswithoutconnectionsresultedinanunproductive

resolution.

DiscussionofInteractionResolutions Myanalysisofstudentstruggleresolutionsshowedthatoutcomescould

differdespitethecommontasksthatservedascontextfortheinteractionsprovoked

bythestudentstruggles.Theprocessleadingtowardsaresolutionappearsfar

morecomplexthanjustrelatingstruggletoresponsewhenwetakeintoaccountthe

uniquenessofthestudentsandtheirpriorknowledge,fluencywithskills,

dispositiontowardsdoingmathematics,andtheirlevelofmotivation.Whatworks

foronestudentmaynotalwaysworkforanother(Gresalfi,2004).Whiletheroleof

thetaskistogivecontextforstudentengagementinmathematics,theroleof

studentengagementandtheinstructionalpracticesteachersbringtotheinteraction

isvitaltosupportingstudentlearning.AstheNationalResearchCouncil(Kilpatrick,

Swafford,&Findell,2001,p.315)asserts:

Ourreviewofresearchmakesplainthattheeffectivenessofmathematicsteachingandlearningdoesnotrestinsimplelabels.Rather,thequalityofinstructionisafunctionofteachers’knowledgeanduseofmathematicalcontent,teachers’attentiontoandhandlingofstudents,andstudents’engagementinanduseofmathematicaltasks.

Page 166: Copyright by Hiroko Kawaguchi Warshauer 2011

152

Consistentwithpriorresearch,myfindingsshowthatwithinagiventask,the

natureofteacherresponsesthataddressthecognitivedemandofthetaskandthe

timeaffordedthestudentstoworkareimportantfactorsinhowproductively

interactionscanresolve(Haneda,2004;Steinetal,2000).Secondly,theinteraction

resolutionsdependonwhatthestudentsbringtothetaskintermsoftheirprior

knowledgeandtheirwillingnesstoengageintheproblem(Bransford,Brown,&

Cocking,1999;Dweck,1986).Athirdfactorthataffectedtheresolutionwasthe

structuralconstraintofclasstimeandclassroomdynamic.Timeconstraintsposeda

challengeforteachersastheyattemptedtobringclosuretoataskintheirallotted

classtimebutconflictedwithattemptstoaddressstudentswhocontinuedto

struggleoveraspectsofthetask.Teachersalsohadtobalanceaddressingthe

strugglesofsomeoftheirstudentswiththerestlessnessoftheotherstudentsthat

hadbecomedisengagedorhadalreadycompletedtheirtask.Thisandtheothertwo

factorsareconsistentwithpreviousstudies(Stein,Grover,&Henningsen,1996;

Henningsen&Stein,1997;Lampert,1990;Kennedy,2005)thatpertainto

challengestoinstructionalpractices.

Thosepracticesthatareattentivetothestudents’thinkingandutterances

andthatincludethestudents’fullparticipationwithoutimposingtheteacher’s

thinkingmaintainedthechallengeforthestudentstodomathematics.Thechoices

teachersmakecansupportorminimizestudenteffort.Sometimesthesupplyof

informationmaybeappropriateinordertoachieveamoreimportantgoalofthe

Page 167: Copyright by Hiroko Kawaguchi Warshauer 2011

153

task.Thesearethechoicesteachersmakethatprioritizethegoalofthetaskwith

theefficiencyorproductivenessoftheprocessusedtoreachthegoal.Inknowing

theirstudentsbytheendoftheschoolyear,interviewsfromtheteacherssuggest

thattheyalsotookintoaccountthestudents’capacityforandinclinationtoward

persistencewiththetask.

Animportantaspectoftheinteractionresolutionthatsurfacedinthe

transcriptepisodeswasthesociomathematicalnormsthatappearedtobeinplace

inthevariousclasses.Theclassroomculture,environment,andnormswerewell

establishedbytheendoftheschoolyear,withclearexpectationsofhowstudents

discuss,question,makeassertions,justify,andmakemeaningofmathematics.The

rangeofstudentengagementandbehaviorevenwithinoneteacher’sdifferent

classesbecameapparentasthestudentsvoicedvariouslevelsofdeferenceand

acceptanceofteacherstatements,explanationandjustificationofmathematical

processes,andeffortontheirtasksbeforerequestinghelpfromtheirteacher.

Inorderforstruggletoberecognizedandresolvedinclassroomdiscussions

insmallgroupsorasawholeclass,studentsmusthaveopportunitiestoactively

engageinarticulatingtheirthinkingandgiveitshape.Thesediscussions,attimes

richandrobustandatothertimesconfrontationalandill‐formed,canalso

supplementteacherresponsesthatmaynotbeabletosupportallthestrugglesthat

occurduringtheclasstime.Acollaborativegroupdynamiccangivestudents

opportunitiestoconnecttoother’sthinking,clarifytheirownthinkingandsupport

Page 168: Copyright by Hiroko Kawaguchi Warshauer 2011

154

others’inresolvingtheirstruggle.Ifstudentsandteachersaretoengagein

interactingaboutstrugglesthatoccurwhenstudentsworkonmathematics,these

expectationsofdoingmathematicsmustbepartofthesociomathematicalnormsof

theclass(Ellis,2011).

Page 169: Copyright by Hiroko Kawaguchi Warshauer 2011

155

Chapter5:Conclusion

RESEARCHQUESTIONSANDCONCLUSIONS Thephenomenonofstudentstruggleisoftenviewednegativelyasa

symptomofalearningproblemthatteachingshouldtrytopreventratherthan

utilizeforthepurposeofstudentlearning(Hiebert&Wearne,2003;Borasi,1996).

Somemathematicseducators,researchers,andtheoreticians,however,havewritten

aboutaspectsofstudentstruggleaspotentiallybeneficialandpromisingtoward

learningmathematicswithunderstanding(Hiebert&Grouws,2007;Hiebert&

Wearne,2003).Idesignedmystudytofocusonexaminingstudentstruggleswith

thegoalofgainingabetterunderstandingofthenatureofthestudentstrugglesand

thekindsofteacheractionsthatguidethestrugglestowardaresolution.Thestudy

examinedstudentstrugglesastheyoccurrednaturallyinmiddleschool

mathematicsclassroomsinthecontextofstudentsworkingontasksofhigher

cognitivedemand.Findingsfrommyexploratorycasestudyprovidedescriptionsof

whatstudentstruggleslooklike,evaluatehowteachersrespondtothesestruggles,

andpresentevidencethatthereareaspectsofstudent‐teacherinteractionsthat

appeartobeproductiveforstudentlearningofmathematics.TheProductive

StruggleFrameworkIdevelopedisusedtoexaminethephenomenonofstudent

strugglefrominitiationtointeractionandtoresolution,andcanbeusedinfuture

Page 170: Copyright by Hiroko Kawaguchi Warshauer 2011

156

studiestomeasureanddeterminetheoutcomeoflearningthatoccurredasaresult

ofthestruggleprocessstudentsexperienced.

Theresearchquestionsthatguidedmyinvestigationandtheempiricaldata

gatheredprovideinsightintothoseaspectsofstudentactions,teacheractions,and

thecontextsoftheinteractionsthatresolvestudentstrugglesmoreproductively

thanothers.

Bywayofreview,myresearchquestionswere:

1. Whatarethekindsandpatternsofstudents’strugglethatoccurwhilestudents

areengagedinmathematicalactivitiesthatarevisibletotheteacherand/or

apparenttothestudentinmiddle­schoolmathematicsclassrooms?

2. Howdoteachersrespondtostudents’strugglewhilestudentsareengagedin

mathematicalactivitiesintheclassroom?Whatkindsofresponsesappeartobe

productiveinstudents’understandingandengagement?

Myconclusionisbasedonmyfindingsfromtheanalysesreportedinchapter

four.Ifirstsummarizemyfindingsinrelationtothetworesearchquestionsand

thenelaborateonmyconclusionregardingaspectsofproductivestruggle.

1. Iidentifiedfourkindsofstudentstrugglesthatoccurredwhilestudentswere

engagedinmathematicaltasks.Thestrugglescenteredonactionsthat

studentsattemptedbutappearedunabletocompletesuccessfullywithout

someformofintervention.Thesefourstrugglesasdescribedinchapterfour

are:

Page 171: Copyright by Hiroko Kawaguchi Warshauer 2011

157

• Getstarted

• Carryoutaprocess

• Giveamathematicalexplanation

• Expressmisconceptionanderrors

2. Teacherresponsestothestudentstruggleswereoffourtypesofvarying

gradationsalongacontinuum:

• Telling

• DirectedGuidance

• ProbingGuidance

• Affordance

Myanalysisoftheteacherresponsecategoriesfocusedontheireffectonthe

cognitivedemandoftheintendedtask,howtheyaddressedthestudentstruggleas

voicedduringtaskimplementation,andhowtheybuiltonstudentthinking.

Findingsshowedthatthecognitivedemandofthetasksgenerallydecreased

inthetellingtypeofresponses,weretoalesserdegreeinthedirectedguidance,and

weremaintainedintheprobingguidanceandaffordancetypes.Thestudent

strugglesweredirectlyaddressedindirectedandprobingguidancebutlesssoin

tellingwiththeteacheraddressingmoresothetopicoverwhichthestruggle

occurredandnotasmuchthespecificwayinwhichthestudentwasstruggling.The

affordanceacknowledgedthestruggle,anddidsowitharesponsethatallowedthe

studentmoretimeforconsideration.Thetellingtypeofresponse,andagaintoa

Page 172: Copyright by Hiroko Kawaguchi Warshauer 2011

158

lesserdegreethedirectedguidanceresponse,focusedontheteacher’sapproachto

solvingtheproblemoverwhichthestudentwasstruggling.Theprobingguidance,

however,soughttoaddressthestudent’sapproachandthenattemptedtobuildand

guideusingthatapproach.Theaffordancetypeprovidedthestudentsmoretimeto

consideranddiscussthestudent’sapproachwithgreaterindependence.

Whilethekindsofstudentstrugglesasindicatedin(1)aboveinitiatedthe

episodesofinteractionwithteachersorotherstudents,thestudent’sactionsthat

contributedtoaproductiveresolutionincludedthestudent’swillingnesstoattempt

todotheproblem.Studentscouldnotachievethemathematicalobjectivesofthe

giventaskswithoutsomeformofengagementinthetasks.Ifstudentsencountered

difficultyaftertheyattemptedtheproblem,theythenhadtoinitiatearequestfor

helporaskaquestionthatwouldmakeitvisibletoothersthattheywere

attemptingtocompletethetask.Communicatingtheirunderstandingorshowing

theirworkinsomewaywaskeytobetteraddressingthestrugglethestudents

experienced.Anothercriticalelementwasastudent’swillingnesstopersistand

remainengageddespitethedifficultieswiththeirtaskastheyattemptedtoaddress

theirownstruggle.

Theproductiveinteractionswereinterplaysofthestudentactionsof

persistence,questioning,andcommunicatinginattemptingtheirtasks.These

interactionsweresupportedbytheteacherorpossiblyotherstudent’sactions

whichbuiltonthestudent’sworkbyaskingclarifyingquestionsregardingtheir

Page 173: Copyright by Hiroko Kawaguchi Warshauer 2011

159

struggle,supportingthestudent’seffortsandthinking,pressingforrigor,and

providingsufficienttime.

Thecontextfortheinteractionsthatsupportedthestudentstruggleswerein

theengagementoftasksofhighercognitivedemandthatrequiredstudentsto

deepentheirthinkingaboutthemathematicswithemphasisonboththeconcepts

andprocessesinvolved;inprovidingindividualworktimeforeachstudentto

examinetheproblemandvaluetheeffortexpendedbyeachstudent;insharing

workwithotherstudentssothattheycouldbroadentheirperspectiveonthinking

aboutthetaskproblems;andindiscussingthetaskquestionsandsolutionswiththe

teacherandwiththeclasstofostercommunication,explanations,andjustifications

ofthemathematics.

Theaspectsoftheinteractionsthathelpeddirectandsupportstudent

strugglesproductivelyandtowardstudentunderstandingofmathematicscouldbe

viewedthroughthejointstudentactions,teacheractions,andthephysicaland

culturalcontextsestablishedbythenormsintheclass.Theencouragementto

communicatewithteacherresponsessuchas,“Tellmewhatyoumean”and“Talk

aboutitsomemore”orinsistenceonsense‐makingwith“Whyisthat?”provided

opportunitiesforstudentstoelaborateonwhattheyunderstoodandperhaps

clarifiedthesourceoftheirstruggles.Responsesthatencouragedcontinuedeffort

suchas,“Trythat”and“Well,whatifyoudo…”gavepositivereinforcementfor

engagementwithoutstudentworryingaboutwhethertheresultwasrightorwrong.

Page 174: Copyright by Hiroko Kawaguchi Warshauer 2011

160

Teacherscoulddemonstratetheirowninquiryabouttheproblemsbythinking

aloudandmodelingaprocessofengagingintheproblems.Anappropriatetempo

fortheinteractionthatdidnotrushtheprocessorresorttoshortcutspromotedthe

sensethatunderstandingboththeproblemandtheprocesswasmoreimportant

thanjustfindingaquickwaytofindingtheanswer.

Posingproblemsofhighcognitivedemandgavethestudentsopportunitiesto

think,reason,andproblem‐solveinwaysthatmeantthestudentshadtothink

deeplyabouttheproblemsandnotjustfindroutinemethodstoapply.The

appropriatelevelofdifficultycontributedtoasettingforstudentstograpplewith

ideasandchallengedstudentstomakeanattemptwiththebeliefthatwitheffort

andpossiblysomeassistance,theycouldsolvetheproblem.Thetasksthatthe

studentsengagedinduringmystudyfocusedonproportionalreasoning.These

taskswereintendedtoencouragestudentstotakethebasicknowledgetheyhad

aboutproportionalconceptsandextendthatunderstandingincontextsofhigher

cognitivedemand.Insodoing,manystudentsstruggledtoperformthetasks.They

builtontheirknowledgeanddevelopednewwaystoextendandusethatknowledge

todeepentheirconceptualunderstandingofthemathematicsthattheywere

learningwithadifferentperspective.

LIMITATION Inordertogaininsightintothekindsofteachingpracticesthatsupport

conceptualunderstanding,mystudywaslimitedtoasampleofsixteachersatthree

Page 175: Copyright by Hiroko Kawaguchi Warshauer 2011

161

sites.Thesample,however,reflectsthestatepopulationanddemonstrates

importantaspectsoftheteachingpracticesthatencouragedstudentstoengagein

tasksdespitethestrugglesthattheyexperiencedandtosupportadispositionthat

fostereddoingmathematics.Itwasbeyondthisstudy’sintenttodirectlymeasure

thestudentlearningoutcomesasaresultofthestudentstruggles,howeverIbelieve

thekeyprinciplesofthestudentteacherinteractionsthatsupportstudentstruggles

productivelymaybeastartingpointtoexaminethekindsoflearningthattakes

place,andifadispositionfordoingmathematicsispositivelyaffectedintheprocess

ofworkingthroughstruggle.

Thisisnottosaythatstruggleshouldbeincorporatedatalllevelsoflearning.

Infact,instructionalpracticesshouldhaveenoughvariationandflexibilityto

incorporatethoseopportunitiesforstudentstostrugglebutalsotoacknowledgethe

satisfactionandfuninherentintheirhardworktolearnmathematics.Teacherscan

findbalancebetweenthosemomentswhenstrugglingisproductiveandothertimes

whenitmaybeunnecessaryandcounterproductive,particularlyifthelearninggoal

is,forexample,skillfluency.Thesejudgmentsarebestmadebyteacherswhocan

sensewhatismosteffectiveandappropriatefortheclassroomenvironmentandthe

intendedlearninggoalsatthetimeofinstruction.

Theroleofproductivestruggleexaminedinmystudywaslimitedtoa6thand

7thgradeband.Furtherresearchthatexaminestheroleofstruggleinothergrade

levels,orwithcertainethnicgroupsmaygiveinsightintootherpossiblekindsof

Page 176: Copyright by Hiroko Kawaguchi Warshauer 2011

162

strugglethatoccurandthemoreeffectivemeansofsupportingthesestruggles

productively.Differenttypesofcurriculaorvariationsininstructionalpractices,

withtheiremphasisandexpectationsinstudentengagement,mayalsoaffecthow

struggleplaysoutininteractionswiththeimplementedtasksandthestudent

learningthatisachieved.

Itmaybearguedthatallowingstudentstostruggleinlearningmathematics

wouldhavenegativeeffects,asitwouldnotcontributetodeepeningstudents

understandingofmathematics.Studentsmayfeelthatstrugglingtodomathematics

wouldshowothersthattheycannotdothemathematicswitheaseandthattheyare

notsmart(Ames&Archer,1988;Dweck,2000).Bynotattemptingtodothe

problem,studentswouldavoidtheissueofstrugglebecausenoeffortisexpended.

Butavoidingstrugglemaybyextensionmeanavoidingdoingmathematicsthatis

difficultandchallenging.Seekingstrategiesforsolvingdifficultproblems,

communicatingthoseissuesofdifficultyinordertoovercomethem,andlookingat

alternateperspectivesofotherstudentsaremissedopportunitiesindoing

mathematics.Disengagementinsolvingproblemsindeedisnotanintended

consequenceofprovidingstudentswithtasksofhighercognitivedemand.Teaching

practicesmustthereforeincludecarefulconsiderationoftheappropriatenessof

tasks(Henningsen&Stein,1997).

Page 177: Copyright by Hiroko Kawaguchi Warshauer 2011

163

IMPLICATION Ioutlinethreepotentialimplicationsofmystudyfortherolestudent

struggleplaysinlearningmathematics.Thefirstimplicationisthecritical

importanceofinstructionalpracticesthatsupportstruggleintheclassroom.Under

thisinstructionalpracticeheading,Iincludethewaystasksareimplementedbythe

teacherintheclassroomandthekindsofsupportthatareprovidedstudents

throughdiscourse,resources,time,andopportunitiesforstudentstowork

independently,withclassmates,andwiththeteacher.Professionaldevelopmentfor

in‐serviceteachersandpre‐serviceeducationthatmakesstudentstrugglesexplicit

asanimportantcomponentoflearningwithunderstandingandaddresseseffective

instructionalpracticesthatfacilitatethestudentstruggles’productiveresolution

couldbeofbenefittobothteachingandstudentlearning.Struggleisoftenviewed

asundesirableforlearningwithanaccompanyingperspectivethatlearning

occurredif“studentsgotitrightaway”butlesssoif“studentsreallyhadahard

time”.Teachertrainingmustmakeclearhowstrugglemayinitiateanopportunity

forlearningtotakeplace,particularlywhenstudentsengageintasksofhigher

cognitivedemand.Effectiveinstructionalstrategiesshouldbedevelopedtoguide

andsupportstudentsinresolvingtheirstruggleswithoutdeprivingthemofthe

intellectualeffortrequiredbythetask.Teachingmustdemonstratebalance,

flexibility,restraint,andsensitivitytothestudents’strugglesandtheircapacityfor

persistence.Forthis,teachersmustbringtobeartheirknowledgeoftheirstudents

andalsoassessthestudents’inthemoment‐by‐momentinteractions.

Page 178: Copyright by Hiroko Kawaguchi Warshauer 2011

164

Asecondimplicationistoraiseawarenessamongschooladministrators,

schoolboards,parents,andstakeholdersofeducationoftheroleproductive

struggleplaysindeepeningunderstandingandthatbysupportingtheadoptionof

curriculathatincorporatetasksofhighercognitivedemandandpromoteproblem

solving,itensuresawayofdevelopingstudentswhoarewillingtograpplewith

difficulttasksandtothinkcreativelyaboutsolvingproblems.Curriculadesignedto

havestudentsfollowdemonstratedexamplesandthatminimizeintellectualeffortin

problemsolvingfosterinstructionalpracticesthatworktoavoidstudentstruggles

(AAAS,1989).Guidanceisthereforeneededforselectionofcurriculathatdevelop

notonlyskillproficiencybutalsoworktodevelopconceptualunderstanding

throughtasksofhighercognitivedemand(Kilpatrick,Swafford,&Findell,2001).

Thethirdimplicationisthatinordertogainamorecompleteunderstanding

ofproductivestruggle,studiesmayuseothermathematicalconcepts,suchasrates

andratiosoralgebraicreasoning,asthetaskconcepts.Myexaminationofstruggle

focusedaboutstudentengagementwithproportionalreasoningtasks.Wouldthe

roleofproductivestruggleappeartobedifferentinteachingandlearningwhenthe

contextisdifferent,orarethereidentifiablecommoncharacteristicsofproductive

struggleforlearningingeneral?Inaddition,Ihavenotaddressedthekindsof

strugglesstudentsmayhavethatarenotmadevisibletotheteachers.Towhat

extentdostudentsstruggleontheirownandwhendotheydecidetoseekhelp?In

whatwaysdostudentsmanagetoresolvetheirstrugglesontheirown?Tothatend,

Page 179: Copyright by Hiroko Kawaguchi Warshauer 2011

165

Ihopethisstudyofproductivestrugglecontributestoidentifyingandhighlightinga

componentofteachingandlearningthatprovidesstudentswithopportunitiesto

buildanddeepentheirconceptualunderstandingofmathematics.

Todomathematicsistodotheworkofthinkingaboutandengagingwith

conceptsthatareattimesconcreteandatothersabstract.Tomakesenseofthese

conceptsrequireseffortandsometimesstruggle.Inthewordsofpsychologist,

Csikszentmihalyi(1990),“Thebestmomentsusuallyoccurwhenaperson’sbodyor

mindisstretchedtoitslimitsinavoluntaryefforttoaccomplishsomethingdifficult

andworthwhile.Optimalexperienceisthussomethingthatwemake

happen….opportunities,challengestoexpandourselves….suchexperiencesarenot

necessarilypleasantatthetimetheyoccur.”Therewardfortheeffortofstruggling

withmathematicsmaybeasteptowardsthegoalofgainingadeeperunderstanding

ofthemathematicsaccompaniedbyasenseofself‐satisfaction.

Page 180: Copyright by Hiroko Kawaguchi Warshauer 2011

166

AppendixA:Pre­ObservationTeacherInterview(PRTI)

1. Thinkofthreeexamplesinyourclassroomwhereyouobservedastudentstrugglingwhilehe/sheworkedonamathematicalactivityortask.Iwillaskyoutorespondtothefollowingquestionspertainingtoeachofyourexamples.a. Ineachcase,describethetaskeachstudentwasengagedindoing.e.g.

whatwasthestudenttryingtodo?Beasspecificaspossibleaboutthemathematicalobjectiveofthetask,thelevel,andtheintendedactivity.

b. Whatdidthestudentdothatcausedyoutonoticethathe/shewasstruggling?Whatwasthestruggleabout?

c. Howdidyourespondtoeachofthesestudents’struggle?d. Whatwereyourreasonsforrespondinginthatway?e. Howdoyouthinkyouractionsaffectedthestudents?(e.g.helpfulinwhat

way;noimpact;worsened;talkaboutthelearningandtheeffectonthestruggle).Whydoyouthinkso?

f. Didthestudents’responsetoyouractionsurpriseyouorwasitwhatyouexpected?Whydoyouthinkso?

g. Wouldyoudoanythingdifferentlyinteachingthelesson?

2. Howdoyouthinkstudentslearnproportionalreasoning?

3. Whatdoyouthinkyourroleisinsupportingtheminlearningaboutproportionalreasoning?

4. Ingeneral,whataresomefactorsthataffecthowyourespondto

studentsinclass?

Page 181: Copyright by Hiroko Kawaguchi Warshauer 2011

167

AppendixB:Post­ObservationTeacherInterview(PSTI)

1. Considertwoepisodesthatyourecallteachingthisweekwherestudents’struggleoccurred.Inastimulatedrecallsessionwewillexaminetwovideoclipsoftheteachers’choosingandonevideoclipthattheresearcherchooses.h. Describethetasksandthekindsofstrugglesyounoticede.g.whatwere

thestudentstryingtodo?Beasspecificaspossibleaboutthemathematicalobjectiveofthetask,thelevel,andtheintendedactivity.

i. Whatdidthestudentsdothatcausedyoutonoticethatthestudentswerestruggling?

j. Howdidyourespondtoeachofthesestudents’struggle?k. Whatwereyourreasonsforrespondinginthatway?l. Howdoyouthinkyouractionsaffectedthestudents?(e.g.helpfulinwhat

way;noimpact;worsened;talkaboutthelearningandtheeffectonthestruggle)

m. Didthestudents’responsetoyouractionsurpriseyouorwasitwhatyouexpected?

n. Wouldyoudoanythingdifferentlyinresponsetothestudents’struggle?o. Howsatisfiedwereyouwiththislesson?p. Whatdoyouthinkthestudentsgotoutofthislesson?

2. Isthereanotherinstanceofastudentstrugglethatyouwanttotalk

about?

3. Otherthanthekindsofstruggleyoumentionedabove,whatotherformsofstruggleinmathematicsdidyouobservethisweek?Orinyourpastteaching?

a. Talkaboutthestudents’struggleinwhichyoufeelyourresponses

andactionswerenotparticularlyhelpfulforstudentslearningandunderstanding.

b. Talkaboutthoseinstanceswhereyouthinkyouractionswereparticularlyhelpfulandproductivetoyourstudents.Whydoyouthinkyouractionswerehelpful?

4. Whatvaluedoyouthinkthereisinallowingstudents’tostrugglein

learningmathematics?

Page 182: Copyright by Hiroko Kawaguchi Warshauer 2011

168

AppendixC:TaskDebrief(TDB)

1. Whatareacoupleofinstancesofstudents’strugglethatoccurredintoday’sclass?

2. Whatareyourthoughtsandobservationsaboutwhathappened?

Page 183: Copyright by Hiroko Kawaguchi Warshauer 2011

169

AppendixD:StudentInterview(SI)

1. Didanypartofthetaskthatyoudidinclasstodayseemhard?Pleaseexplain

2. Describewhatwashardorconfusing.

3. Howdidyoudealwiththehardpart?

4. Isthereanythingoranyoneinclassthathelped?Whoorwhatwashelpfulandinwhatway?

5. Whataresomewaysthatlearningmathematicscanbehard?Howdoyouusuallydealwiththatkindofstruggle?

6. Whataresomewaysthatyoufindteacherstobehelpfulwhenyouareconfused,arestuck,orfindsomethingdifficult?

Page 184: Copyright by Hiroko Kawaguchi Warshauer 2011

170

AppendixE:TaskDifficultySurvey

Theleveloftoday’slesson(ortask)was:______VeryHard_____Hard______Justright______Easy______VeryEasyforme.Name:____________________________________________

Page 185: Copyright by Hiroko Kawaguchi Warshauer 2011

171

AppendixF:ActivityBooklet

Activity1:BarrelsofFunSupplementalActivitiesforMathExplorationsPart2BasedontheIngenuityandInvestigationfromsection8.5page286(Materials:Graphpaperwith1­cmgrids;pencil;calculator(optional))

I. ObjectiveStudentswillbeabletosolveproblemsinvolvingproportionalrelationships.

II. MotivatingProblem

Supposewehavea48­gallonrainbarrelcontaining24gallonsofwateranda5­gallonwaterjugcontaining3gallonsofwater.

A. Whichcontainerhasmorewater?B. Whichcontainerissaidtobefuller?

(Havestudentsworkindividuallyfirstsothateachstudentshasthoughtaboutthequestionsandperhapsgrappledwithmakingsenseofitontheirownorpossiblybyaskingtheteacherquestions­butnotyethaveawholeclassdiscussion,unlessthereisaneedforclarification.)Useasheetofgraphpapertodrawapictureofthetwocontainersandtheirwaterlevel.Youmayleteachsquarerepresent1gallonandshadeinthepartrepresentingthewater.Doesitmatterwhatshapeyoumakethesecontainers?Discussyouranswerandexplanationwithyourgroup.(Havestudentsshareideaswithagroupof3or4students.)Haveeachgroupdecidewhattopresentandhow.)(Students’discussionsmayhaveincludeddiscussionthatthe5­gallonjugwasfullerbecausetheratioofthevolumeofwaterinthejug,whichis3/5,isgreaterthantheratioofvolumeofwaterinthebarreltothevolumeoftherainbarrel,whichis24/48=½.Whilethefractionsareclose,theyarenotequivalent.Whatdoes3/5representforthe5­gallonjug?Whatdoes½=24/48representfortherainbarrel?)

III. ReflectionA. Eachgroupreportstheiranswerandexplanation.

(Lookformultiplewaysthatstudentsuserepresentationstosolvetheproblem.)

B. Whyisthecontainerwithlesswatersaidtobefuller?

Page 186: Copyright by Hiroko Kawaguchi Warshauer 2011

172

C. Whatmathtoolsdidthestudentsusetohelpunderstandtheproblem?(e.g.Table,picture,fractions?)

D. Didthestudentsuseatable?Didthestudentsusefractionstoexplainyouranswer?How?

(Havestudentscomparedifferentwaysthattheproblemwasexplained,howsomewayshaveadvantages,wholikesaparticularpresentationorexplanation,andhowconvincedaretheywiththeexplanation.)E. Howmanygallonsofwaterwouldneedtobeinthe5­gallonjug

sothatithasthesamefullnessasthe24gallonsinthe48­gallonbarrel?(Havestudentsworkindividuallyfirstonthispartthendiscussasaintheirgroupbriefly,thenasawholeclasstogetinput.)

IV. FurtherExploration

A. Ifwedrainagallonofwaterfromeachcontainer,doesthischangeyouransweraboutwhichcontainerisfuller?Explain.

B. Howmanymoregallonsofwaterdoweneedtocatchinthebarrelinordertohavethesamefullnessinthebarrelaswehaveinthejug?Explain.

(Havestudentsworkindividuallythendiscussasagroupbriefly,thenasawholeclass.)(Wesaythecontainershaveproportionallythesameamountofwateriftheratiosoftheamountsofwatertothecapacityofthecontainerareequivalentfractions.Letx=theamountofrainneededtomakethebarrelhavethesamefullness3/5=partofthejugthatiswater(24+x)/48=fractionofthebarrelthatwouldbewaterifweaddedxgallonsofrain.Thesemustbethesameifthetwocontainerswillhaveproportionallythesameamountofwater.Thus,3/5=(24+x)/48.Insolvingforx,wehave(3)(48)=(24+x)(5)or144=120+5x.24=5xorx=24/5=4.8gallons.)

V. ExtensionA48­gallonrainbarrelcontains18gallonsofwater.A5­gallonwaterjugcontains2gallonsofwater.A. WhichcontainerhasmorewaterB. Whichcontainerissaidtobefuller?

(Inthiscase,wehave18/48=3/8fullofwaterinthebarreland2/5fullofwaterinthebarrel.Thisisveryclose,andstudentsmayusecommondenominatorstocomparethetwofractions.3/8=15/40and2/5=16/40.Because2/5greaterthan3/8,thejugismorefullofwaterthanthebarrel.)

Page 187: Copyright by Hiroko Kawaguchi Warshauer 2011

173

C. Ifwedrainagallonofwaterfromeach,doesthischangetheanswertowhichisfuller?Explainyouranswer.(Therainbarrelwillhave17/48waterandthejugwillhave1/5water.Thestudentsmaywishtousedecimalsorcommondenominatorstocompare.17/48=.35416666666….while1/5=.2.Drainingchangesthefullnesstothebarrelbeingmorefull.)

StudentActivitySheets:BarrelsofFunSupposewehavea48‐gallonrainbarrelcontaining24gallonsofwateranda5‐gallonwaterjugcontaining3gallonsofwater.

A. (Task1.1)Whichcontainerhasmorewater?

B. (Task1.2)Whichcontainerissaidtobefuller?Explainyouranswer.

C. (Task1.3)Usethecoordinategridbelowtodrawapictureofthetwocontainersandtheirwaterlevel.Youmayleteachsquarerepresent1gallonandshadeinthepartrepresentingthewater.Doesitmatterwhatshapeyoumakethesecontainers?

Page 188: Copyright by Hiroko Kawaguchi Warshauer 2011

174

D. (Task1.4)Whyisthecontainerwithlesswatersaidtobefuller.Explain.

E. (Task1.5)Howmanygallonsofwaterwouldneedtobeinthe5‐gallonjugsothatithasthesamefullnessasthe24gallonsinthe48‐gallonbarrel?

F. (Task1.6)Ifwedrainagallonofwaterfromeachcontainer,doesthischangeyouransweraboutwhichcontainerisfuller?Whyorwhynot?

G. (Task1.7)Howmanymoregallonsofwaterdoweneedtocatchinthebarrelinordertohavethesamefullnessinthebarrelaswehaveinthejug?Explain.

Page 189: Copyright by Hiroko Kawaguchi Warshauer 2011

175

Activity2: BagsofMarblesSupplementalActivitiesforMathExplorationsPart2Section12.3ProbabilityOrchestratingDiscussions:Fivepracticesconstituteamodelforeffectivelyusingstudentresponsesinwhole­classdiscussionthatcanpotentiallymaketeachingwithhigh­leveltasksmoremanageableforteachersbySmith,Hughes,Engle,andSteininMay2009MathematicsTeachingintheMiddleSchool(Materials:Graphpaperwith1­cmgrids;pencil;calculator(optional))

VI. ObjectiveStudentswillbeabletosolveproblemsinvolvingproportionalrelationshipsinprobability

VII. PriorKnowledge

Supposeabaseballteamismadeupof6boysand3girls.Eachpersonwriteshisorhernameonapieceofpaperandputsitinahat.Thecoachdrawsonepieceofpaperfromthehat.Whichnameismorelikelytobedrawnfromthehat,aboy’snameoragirl’sname?Whydoyouthinkthat?Whatisthechancethatthenamewillbeaboy?Whatisthechancethatthenamewillbeagirl?Explain.(Dotheaboveofasimilarbackgroundcheckasalaunchtomakesuretheideasofprobabilityfromsection12.3aresecure.)

VIII. MotivatingProblemTherearethreebagscontainingredandbluemarbles.Thethreebagsarelabeledasshownbelow.Bag1: 75redand25blueforatotalof100marblesBag2: 40redand20blueforatotalof60marblesBag3: 100redand25blueforatotalof125marbles

Page 190: Copyright by Hiroko Kawaguchi Warshauer 2011

176

Eachbagisshaken.Ifyouweretocloseyoureyes,reachintoabag,andremoveonemarble,whichbagwouldgiveyouthebestchanceofpickingabluemarble?Justifyyouranswer.(Havestudentsworkindividuallyontheproblemandobservedifferentapproaches.)(Oncethestudentshaveallhadanopportunitytomakesenseofandcomeupwithtentativeideasforthesolution,havethemworkinsmallgroupstosharetheirideas.)Discussyouranswerandexplanationwithyourgroup.(Students’discussionsmayincludediscussionthatbag1is1/4blue,bag2is1/3blueandbag3is1/5blue.Othersmayusepercents:bag1is25%blue,bag2is331/3%blue,bag3is20%blue.Othersmayargueincorrectlythatbag1andbag3havemorebluemarblesthanbag2soNOTbag2.SomeareasofconfusionmaybeinlookingatratiosofBluetoRedratherthanBluetothetotalBlue+Red,thoughtheydoprovidesomeinformation.)

IX. ReflectionF. Eachgroupreportstheiranswerandexplanation.G. Explainwhythisbaggivesyouthebestchanceofpickingablue

marble?Youmayusethediagramaboveinyourexplanation.H. Whatmathtoolsdidyouusetohelpunderstandtheproblem?

(e.g.Table,picture,fractions?)I. Didyouuseatable?Didyouusefractionstoexplainyour

answer?How?

X. FurtherExplorationC. Whichbaggivesyouthebestchanceofpickingaredmarble?

Explainwhy.D. HowcanyouchangeBag2tohavethesamechanceofgetting

abluemarbleasBag1?Explainhowyougotyouranswer.(Thestudentsmaywishtoaddmarblesofeithercolor,forexampleif20redballsareaddedtoBag2thenthechanceofgettingablueis20/80=¼.

E. HowcanyouchangeBag2tohavethechanceofgettingablueasBag1ifBag2mustcontain60totalmarbles?(15blueand45redmakesachanceofgettingabluetobe15/60=¼)

XI. Extension

Page 191: Copyright by Hiroko Kawaguchi Warshauer 2011

177

ConsideronlyBags1and2.MakeanewbagofmarblessothatthisbaghasagreaterchanceofgettingabluethanBag1butlessofachanceofgettingabluethanBag2.Explainhowyouarrivedatthenumberofblueandredmarblesforyournewbag.

(Studentsmaytryaddingorsubtractingquantitiesineitherorbothbags.Youmaymonitortheireffortsandaskwhateffecttheirchangeshave.Havethemexplainorshowwhatischanging.Somewaysthatthisnewbagcanbeobtainedinclude:Taking25/100=¼inBag1and20/60=1/3inBag2anddetermininganumberbetweenthetwo.Studentsmayfindacommondenominatorsuchas12,24,etc.andfindtheequivalentfractionsfor¼=3/12and1/3=4/12.Whilethesetwofractionsmakeitdifficulttoseewhatliesbetweenthem,theequivalentfractions¼=6/24and1/3=8/24wouldleadto7/24asacandidateforthenewbag.Namely,abagwith24marblesofwhich7areblueand17arered.Anotherwayistolookatthedecimalrepresentationfor¼=.25and1/3=.3333….Adecimalsuchas.3=3/10isbetween.25and.3333…..soabagwith10marbles,ofwhich3areblueand7redwouldalsowork.Thestudentsmaycomeupwithotherinterestingcompositions.Infact,with¼and1/3,thefraction(1+1)/(3+4)=2/7isafractionbetween1/3and¼!)

Page 192: Copyright by Hiroko Kawaguchi Warshauer 2011

178

StudentActivitySheets:BagsofMarblesTherearethreebagscontainingredandbluemarblesasshownbelow

Bag1 Bag2 Bag3 75red 40red 100red 25blue 20blue 25blue Total100marbles Total60marblesTotal125marbles

1. (Task2.1)Eachbagisshaken.Ifyouweretocloseyoureyes,reachintoabag,andremoveonemarble,whichbagwouldgiveyouthebestchanceofpickingabluemarble?Explainyouranswer.

2. (Task2.2)Whichbaggivesyouthebestchanceofpickingaredmarble?Explainyouranswer.

Page 193: Copyright by Hiroko Kawaguchi Warshauer 2011

179

3. (Task2.3)HowcanyouchangeBag2tohavethesamechanceofgettinga

bluemarbleasBag1?Explainhowyoureachedthisconclusion.

4. (Task2.4)HowcanyouchangeBag2tohavethechanceofgettingabluemarbleasBag1ifBag2mustcontaining60totalmarbles?

5. (Task2.5)ConsideronlyBags1and2.MakeanewbagofmarblessothatthisbaghasagreaterchanceofgettingabluemarblethanBag1butlessofachanceofgettingabluemarblethanBag2.Explainhowyouarrivedatthenumberofblueandredmarblesforyournewbag.

Page 194: Copyright by Hiroko Kawaguchi Warshauer 2011

180

Activity3:TheAlgebraofTipsandSalesSupplementalActivitiesforMathExplorationsPart2section8.5

XII. ObjectiveStudentswillbeabletosolveproblemsinvolvingproportionalrelationshipsusingalgebraicexpressionsandequations.

XIII. PriorKnowledge

Inrestaurants,weoftenincludeatipof15%to20%oftheamountofthebill.Forexample,incomputingtips,whataresomewayswecandeterminehowmuchtotiptoincludeusinga15%rateifyourrestaurantbillis$40?Explainhowyougotyourtipamountandthestrategythatyouused.(Somestudentsmayconvert15%toadecimal,.15andmultiplyto40.Othersmaytake40andmultiplyby15/100toget$6.Somemaytake10%of40toget$4andthentakehalfofthattoget$2,whichwouldbe5%of40,addthe4tothe2toget$6.)

XIV. Problemusingalgebraicexpressions.

A. TIPPING(Havestudentsworkindividuallyfirstthenshareasawholeclass.)

a)Supposethebillis$X.Writeanexpressionforthetipon$Xusinga15%tiprate.Whatisthetotalamountyouwouldpaytherestaurant?(.15Xistheamountofthetip.Totalamount=X+.15X=X(1.15))

b)Supposeagenerouscustomerusesa20%tiprateonabillof$X.Writeanexpressionforthetipon$Xusinga20%.Whatisthetotalamountthiscustomerpaystherestaurant?(.2Xistheamountofthetip.Totalamount=X+.2X=X(1.2))

B. ExtensiontoExample1in8.5

a) If40%ofagroupof35studentsparticipateinathletics,howmanyofthese35participateinathletics?(Havestudentsdotheseindividuallyfirstbeforesharingasaclass.)

b) AnothergrouphasNstudentsand40%ofthemparticipateinathletics.WriteanexpressionusingNforthenumberofstudentswhoparticipateinathleticsfromthisgroup.

Page 195: Copyright by Hiroko Kawaguchi Warshauer 2011

181

c) Writeanexpressionforthenumberofstudentswhodonotparticipateinathletics.

(Encouragestudentstosayandwriteinwordswhattheexpressionsshouldsay.Thenhavestudentswritetheexpressionsalgebraically.)

C. SalesProblem

a)Apairofpantsregularlycosts$40butisonsaleat25%offthe

regularprice.Howmuchwillyoupayforthesesalespants,withoutcomputingtax?Explainhowyougotyouranswer.(40­0.25(40)=40(1­0.25)=400(.75)=30Studentsmaywishtodothemultiplicationof0.25by40firstandthensubtract10from40.Butaswewillseeinthenextpart,itisusefultosubtractthedecimalsfirst.)

b)Ashirtregularlycosts$Sandisonsaleat25%offtheregular

price.Writeanexpression,usingS,fortheamountofdollarsdiscounted.Writeanexpressionthatrepresentshowmuchyouwillpay,disregardingtax?

(.25S=discountamount.S­.25S=S(1­.25)=S(.75)=salesprice)

XV. ReflectionJ. Eachgroupreportstheiranswerandexplanation.

K. Didanyoneuseavisualrepresentationtoexplainthealgebraic

expression?

XVI. FurtherExplorationA. Anmp3playerisonsalefor$60aftera20%discount.Whatwas

theoriginalprice?Whatwastheamountofthediscount?(Dothisproblemasawholeclassandmodelthealgebraicsetupwritingclearlywhateachexpressionrepresents.Theorganizationandformatcanhelpstudentsmakesenseoftheequationthatevolves.LetX=originalprice.0.2X=discounttaken.Notestudentsmaysay.2(60)X­0.2X=saleprice60=saleprice

Page 196: Copyright by Hiroko Kawaguchi Warshauer 2011

182

Thelasttwolinesbothrepresentthesalepricesotheymustbeequaltoeachother.X­0.2X=60X(1­0.2)=X(0.8)=0.8X=60X=60/0.8=75=theoriginalprice.

B. Acomputerisonsalefor$420aftera30%discount.Whatwastheoriginalpriceofthecomputer?Whatwastheamountofthediscount?(Havethestudentsworkonthiseitherindividuallyorinsmallgroups.LetX=originalprice.0.3X=discountAgain,studentsmaysaythediscountis.3(420).X­.3X=expressionforthesaleprice420=salepriceSoX­.3=420X(1­.3)=420.7X=420X=420/.7X=600istheoriginalprice

C. Yourmompays$50.15atarestaurantthatincludedthemealand

an18%tip.Whatwasthepriceofthemealalone?(Havestudentstrythisontheirownandthenshareasacall.)(LetX=mealprice..18X=tiponthemealX+.18X=expressionforamountmompays50.15=amountmompaysX+.18X=50.15

X(1+.18)=50.151.18X=50.15X=50.15/1.18X=42.50isthepriceofthemealalone

Page 197: Copyright by Hiroko Kawaguchi Warshauer 2011

183

StudentActivitySheets:TipsandSalesTipping

1. (Task3.1)Supposearestaurantbillis$X.Writeanexpressionforthetipon$Xusinga15%tiprate.Whatisthetotalamountyouwouldpaytherestaurant?

2. (Task3.2)Supposeagenerouscustomerusesa20%tiprateonabillof$X.Writeanexpressionforthetipon$Xusinga20%tiprate.Whatisthetotalamountthiscustomerpaystherestaurant?

PartoftheCrowd

1. (Task3.3)If40%ofagroupof35studentsparticipateinathletics,howmanyofthese35participateinathletics?

2. (Task3.4)AnothergrouphasNstudentsand40%ofthemparticipateinathletics.WriteanexpressionusingNforthenumberofstudentswhoparticipateinathleticsfromthisgroup.

3. (Task3.5)Writeanexpressionforthenumberofstudentswhodonotparticipateinathletics.

Page 198: Copyright by Hiroko Kawaguchi Warshauer 2011

184

OnSale

1. (Task3.6)Apairofpantsregularlycosts$40butisonsaleat25%offtheregularprice.Howmuchwillyoupayforthesesalespants,withoutcomputingtax?Explainhowyougotyouranswer.

2. (Task3.7)Ashirtregularlycosts$Sandisonsaleat25%offtheregularprice.Writeanexpression,usingS,fortheamountofdollarsdiscounted.Writeanexpressionthatrepresentshowmuchyouwillpay,disregardingtax.

Discounts

1. (Task3.8)Anmp3playerisonsalefor$60aftera20%discount.Whatwastheoriginalprice?Whatwastheamountofthediscount?

Page 199: Copyright by Hiroko Kawaguchi Warshauer 2011

185

Activity4:DetectingChangeBasedon“LinearandQuadraticChange:AProblemfromJapan”byBlakeE.PetersoninMathematicsTeacherofOctober2006.

XVII. ObjectiveStudentswillbeabletousetables,graphs,andalgebraicexpressionstodescribegeometricpatterns.

XVIII. MotivatingProblemInthefigure,asthestepschanges,_____________alsochanges.

Whatattributeschangeasthestepincreases?Havestudentsworkindividuallytowritedownwhattheyobservechanging.Thenbringthestudentstogetheranddiscussasawholeclass.Therearemanyobservationsthatcanbemade,includingperimeter,height,width,sizeofenclosingrectangle,numberof“toothpicks”,numberofverticaltoothpicks,numberofhorizontaltoothpicks,numberofsquares,numberofsegments,lengthoflongestline,numberofrectangles,etc.Recordtheseobservations.Asstudentsgeneratealistofanswers,questionsofclarificationneedtobeposed,suchas“Whatdoyoumeanby“toothpicks”,“Whatdoyoumeanbynumberofsquares?”Oncealistofchangingattributesisidentified,askstudentstoworkingroupstoworkondescribingthechangesinoneattribute.Whathappens

Page 200: Copyright by Hiroko Kawaguchi Warshauer 2011

186

inthenthstep.Youmaywishtoassigngroupsofstudentstotheirfavoritechange.Haveeachgrouphaveatleasttwowaystorepresenttheirobservedchange.Ifpossible,encouragetable,graph,andequationtodescribethechangethattheynotice(i.e.numerical,visual,andsymbolicrepresentations)Havegroupsofstudentssharetheirworkbypresentingthepatterntheyobservedandthevariousrepresentationstheyusedtodescribethepattern,tothenthstep,ifpossible.Somepossiblepatternsthestudentswillobserve:Linearchange:1. Lengthofthebase

a. Step1:1b. Step2:3c. Step3:5d. Step4:7e. Stepn:2n–1

2. Heighta. Step1:1b. Step2:2c. Step3:3d. Step4:4e. Stepn:n

3. Perimetera. Step1:4b. Step2:1+2+3+2+2=10c. Step3:1+2+2+5+2+2+2=16d. Step4:1+2+2+2+7+2+2+2+2=22e. Stepn:1+2(n‐1)+(2n‐1)+2n=6n‐2

Quadraticchange1. Thetotal1x1blocksorareainsquareunits:

a. Step1:1b. Step2:1+3=4c. Step3:1+3+5=9d. Step4:1+3+5+7=16

Page 201: Copyright by Hiroko Kawaguchi Warshauer 2011

187

e. Stepn:1+3+5+7+…..+(2n–1)=n22. Thenumberofhorizontaltoothpicks

a. Step1:1+1=2b. Step2:1+3+3=7c. Step3:1+3+5+5=14d. Step4:1+3+5+7+7=23e. Stepn:1+3+5+7+9+…..+(2n–1)+(2n–1)=n2+2n–1

3. Thenumberofverticaltoothpicksa. Step1:2or1+1b. Step2:2+4or1+2+2+1c. Step3:2+4+6or1+2+3+3+2+1=12d. Step4:2+4+6+8or1+2+3+4+4+3+2+1=20e. Stepn:2+4+6+….2n=2(1+2+3+4+….n)=n(n+1)

4. Thetotalnumberoftoothpicksa. Step1:numberofhorizontalplusnumberofverticals1+1+2b. Step2:1+3+3+2+4=1+2+3+4+3=13c. Step3:1+3+5+5+2+4+6=1+2+3+4+5+6+5=26d. Step4:1+2+3+4+5+6+7+8+7=43e. Stepn:1+2+3+….+2n+(2n‐1)=2n(2n+1)/2+2n‐1=

2n2+n+2n–1=2n2+3n–1

Page 202: Copyright by Hiroko Kawaguchi Warshauer 2011

188

StudentActivitySheet:DetectingChange

(Task4.1)Usingthefigurebelow,describewhatyouobservechangesasthestepsincrease.Recordtheseobservations.

(Task4.2)Selectonechangethatyouobservedanddescribethechange.WhathappensinStep4?WhathappensinStep5?WhathappensinStep10?WhathappensinStepn,fornapositiveinteger?

Useatable,graph,andanequationtodescribethechangethatyounotice.

Page 203: Copyright by Hiroko Kawaguchi Warshauer 2011

189

AppendixG:Ms.Torres’Lessons

Page 204: Copyright by Hiroko Kawaguchi Warshauer 2011

190

(2)ProbabilityandGeometryTask

1. Findtheprobabilityoflandinginthenon‐shadedregion.Explainyouranswer.3units 3units

4units

Findtheprobabilityoflandingintheshaded

2. Findtheprobabilityoflandingintheshadedregion.Explainyouranswer.

2 in.

4 in.

Page 205: Copyright by Hiroko Kawaguchi Warshauer 2011

191

AppendixH:Samplewarm­upproblems

Page 206: Copyright by Hiroko Kawaguchi Warshauer 2011

192

Page 207: Copyright by Hiroko Kawaguchi Warshauer 2011

193

Page 208: Copyright by Hiroko Kawaguchi Warshauer 2011

194

References

Adams,D.&Hamm,M.(2008).Helpingstudentswhostrugglewithmathandscience:Acollaborativeapproachforelementaryandmiddleschools.Lanham,MD:Rowman&LittlefieldEducation.

AmericanAssociationforAdvancementofScience(AAAS).(1993).Benchmarksfor

ScienceLiteracy.NewYork:OxfordUniversityPress.AmericanEducationalResearchAssociation.(2006).DotheMath:Cognitivedemand

makesadifference.ResearchPoints,4(2),1‐4.RetrievedSeptember13,2009fromhttp://www.aera.net/uploadedFiles/Journals_and_Publications/Research_Points/RP_Fall06.pdf

Ames,C.(1992).Classrooms:Goals,structures,andstudentmotivation.Journalof

EducationalPsychology,84,261‐271.Ames,C.,&Archer,J.(1988).Achievementgoalsintheclassroom:Students'learning

strategiesandmotivationprocesses.JournalofEducationalPsychology,79,409‐414.

Anderman,E.M.,&Maehr,M.L.(1994).Motivationandschoolinginthemiddle

grades.ReviewofEducationalResearch,64(2),287‐309.Anghileri,J.(2006).Scaffoldingpracticesthatenhancemathematicslearning.

JournalofMathematicsTeacherEducation,9(1),33‐52.Askew,M.,&Wiliam,D.(1995).RecentResearchinMathematicsEducation5­16.

London:TheStationaryOffice.Bakhtin,M.M.(1982).Thedialogicimagination.Austin:TheUniversityofTexas

Press.Ball,D.L.(1993).Halves,pieces,andtwoths:constructingandusing

representationalcontextsinteachingfractions.InT.P.Carpenter,E.Fennema&T.A.Romberg(Eds.),Rationalnumbers:Anintegrationofresearch(pp.157‐195).Hillsdale,NJ:Erlbaum.

Ball,D.L.,&Bass,H.(2003).Makingmathematicsreasonableinschool.InJ.Kilpatrick,W.G.Martin&D.Schifter(Eds.),AResearchCompaniontoPrinciplesandStandardsforSchoolMathematics(pp.27‐44).Reston,VA:NationalCouncilofTeachersofMathematics.

Page 209: Copyright by Hiroko Kawaguchi Warshauer 2011

195

Bandura,A.(1997).Self­efficacy:Theexerciseofcontrol.NewYork:Freeman.Barron,B.J.S.,Schwartz,D.L.,Vye,N.J.,Moore,A.,Petrosino,A.,Zech,L.,etal.

(1998).DoingwithUnderstanding:LessonsfromResearchonProblem‐andProject‐BasedLearning.TheJournaloftheLearningScience,7(3&4),271‐311.

Bass,H.(2005).Mathematics,mathematicians,andmathematicseducation.Bulletin

oftheAmericanMathematicalSociety,42(4),417‐430.Bass,H.(2011).AVignetteofDoingMathematics:Ameta‐cognitivetourofthe

productionofsomeelementarymathematics.TheMontanaMathematicsEnthusiast,8(1&2),3‐34.

Bjork,R.A.(1994).Memoryandmetamemoryconsiderationsinthetrainingof

humanbeings.InJ.Metcalfe&A.Shimamura(Eds.),Metacognition:Knowingaboutknowing(pp.185‐205).Cambridge,MA:MITPress.

Boaler,J.,&Humphreys,C.(2005).Connectingmathematicalideas:Middleschool

videocasestosupportteachingandlearning.Portsmouth,NH:Heinemann.Borasi,R.(1994).CapitalizingonErrorsas"SpringboardsforInquiry":Ateaching

experiment.JournalforResearchinMathematicsEducation,25(2),166‐208.Borasi,R.(1996).Reconceivingmathematicsinstruction:Afocusonerrors.Norwood,

NJ:Ablex.Borchelt,N.(2007).Cognitivecomputertoolsintheteachingandlearningof

undergraduatecalculus.Internationaljournalforthescholarshipofteachingandlearning,1(2),1‐17.

Boston,M.D.andSmith,M.S.(2009).Transformingsecondarymathematics

teaching:Increasingthecognitivedemandsofinstructionaltasksusedinteachers’classrooms.JournalforResearchinMathematicsEducation,40(2),119‐156.

Bransford,J.,Brown,A.,&Cocking,R.(Eds.).(1999).Howpeoplelearn:Brain,mind,

experience,andschool.Washington,D.C.:NationalAcademyPress.Brown,S.I.(1993).Towardsapedagogyofconfusion.InA.M.White(Ed.),Essaysin

humanisticmathematics(pp.107‐121).Washington,D.C.:Mathematical

Page 210: Copyright by Hiroko Kawaguchi Warshauer 2011

196

AssociationofAmerica.Brownwell,W.A.,&Sims,V.M.(1946).Thenatureofunderstanding.InN.B.Henry

(Ed.),Forty­fifthYearbookoftheNationalSocietyfortheStudyofEducation:PartI.themeasurementofunderstanding(pp.27‐43).Chicago:UniversityofChicagoPress.

Burton,L.(1984).Thinkingthingsthrough:Problemsolvinginmathematics.New

York:Simon&SchusterEducation.Butler,D.L.(2002).Individualizedinstructioninself‐regulatedlearning.Theoryinto

Practice,41,81‐92.Capon,N.,&Kuhn,D.(2004).What'ssogoodaboutproblem‐basedlearning?

Cognition&Instruction,22,61‐79.Carpenter,T.P.,Fennema,E.,Peterson,P.L.,Chiang,C.P.,&Loef,M.(1989).Using

knowledgeofchildren'smathematicsthinkinginclassroomteaching:Anexperimentalstudy.AmericanEducationalResearchJournal,26,499‐531.

Carraher,T.N.,Carraher,D.W.,&Schliemann,A.D.(1987).Writtenandoral

mathematics.JournalforResearchinMathematicsEducation,18,83‐97.Carter,S.(2008).Disequilibrium&QuestioninginthePrimaryClassroom:

Establishingroutinesthathelpstudentslearn.TeachingChildrenMathematics,15(3),134‐138.

Cazden,C.B.(2001).Classroomdiscourse:Thelanguageofteachingandlearning

(2nded.).Portsmouth,NH:Heinemann.Chazan,D.,&Ball,D.(1999).Beyondbeingtoldnottotell.FortheLearningof

Mathematics,19(2),2‐10.Christiansen,B.,&Walther,G.(1986).Taskandactivity.InB.Christiansen,A.G.

Howson&M.Otte(Eds.),Perspectivesonmathematicseducation(pp.243‐307).TheNetherlands:Reidel.

Cobb,P.(2000).Fromrepresentationstosymbolizing:Introductorycommentson

semioticsandmathematicallearning.InP.Cobb,E.Yackel&K.McClain(Eds.),SymbolizingandCommunicatinginMathematicsClassrooms.Mahwah,NJ:LawrenceErlbaum.

Page 211: Copyright by Hiroko Kawaguchi Warshauer 2011

197

Cobb,P.,Wood,T.,&Yackel,E.(1993).Discourse,mathematicalthinking,andclassroompractice.InE.A.Forman,N.Minick&C.A.Stone(Eds.),Contexsforlearning:Socioculturaldynamicsinchildren'sdevelopment(pp.91‐119).NewYork:OxfordUniversityPress.

Cobb,P.,Yackel,E.,&McClain,K.(Eds.).(2000).SymbolizingandCommunicatingin

Mathematics.Mahwah,NJ:LawrenceErlbaum.Cohen,L.,Manion,L.,&Morrison,K.R.B.(2000).Researchmethodsineducation.

NewYork:RoutledgeFalmer.Cramer,K.,&Post,T.(1993).Connectingresearchtoteachingproportional

reasoning.MathematicsTeacher,86(5),404‐407.Creswell,J.W.(2003).ResearchDesign:qualitative,quantitativeandmixedmethods

approaches.ThousandOaks,CA:Sage.Csikszentmihalyi,M.(1990).Flow:ThePsychologyofOptimalExperience.NewYork:

Harper&Row.DeBock,D.,Verschaffel,L.,&Janssens,D.(2002).Theeffectsofdifferentproblem

presentationsandformulationsontheillusionoflinearityinsecondaryschoolstudents.MathematicalThinkingandLearning,4(1),65‐89.

de‐Hoyos,M.G.,Gray,E.M.,&Simpson,A.P.(2004).Pseudo‐solutioning.Researchin

MathematicsEducation­PapersoftheBritishSocietyforResearchintoLearningMathematics,6,101‐113.

deVilliers,M.(1999).RethinkingproofwiththeGeometer'sSketchpad.Emeryville,

CA:KeyCurriculumPress.Dewey,J.(1910,1933).Howwethink.Boston:Heath.Dewey,J.(1926).Democracyandeducation.NewYork:Macmillan.Dewey,J.(1929).Thequestforcertainty.NewYork:Minton,Balch&Co.Doerr,H.M.(2006).Examiningthetasksofteachingwhenusingstudents'

mathematicalthinking.EducationalStudiesinMathematics,62,3‐24.Douglass,F.(1857).TwoSpeeches,ByFrederickDouglass:OneonWestINdia

Emancipation,DeliveredatCanadaigua,August4th,andtheOtheronthe

Page 212: Copyright by Hiroko Kawaguchi Warshauer 2011

198

DredScottDecision,DeliveredinNewYork,ontheOccasionoftheAnniversaryoftheAmericanAbolitionSociety,May1857.Rochester,NewYork.

Doyle,W.(1988).WorkinMathematicsClasses:Thecontextofstudents'thinking

duringinstruction.EducationalPsychologist,23(February1988),167‐180.Doyle,W.(1983).Academicwork.ReviewofEducationalResearch,53,159‐199.Dweck,C.(1986).Motivationalprocessesaffectinglearning.AmericanPsychologist,

41,1040‐1048.Dweck,C.S.(2000).Selftheories:Theirroleinmotivation,personality,and

development.Philadelphia:PsychologyPress.Dweck,C.S.(2006).Mindset:TheNewPsychologyofSuccess.NewYork:Random

House.Dweck,C.S.,&Leggett,E.L.(1988).Asocial‐cognitiveapproachtomotivationand personality.PsychologicalReview,256‐273.Eccles,J.S.,Wigfield,A.,Midgley,C.,Reuman,D.,MacIver,D.,&Feldlaufer,H.(1993).

NegativeEffectsofTraditionalMiddleSchoolsonStudents'Motivation.TheElementarySchoolJournal,93(5),553‐574.

Eggleton,P.J.,&Moldavan,C.(2001).Thevalueofmistakes.MathematicsTeaching

intheMiddleSchool,7(1),42‐47.Ellis,A.B.(2011).Generalizing‐PromotingActions:Howclassroomcollaborations

cansupportstudents'mathematicalgeneralizations.JournalforResearchinMathematicsEducation,42(4),308‐345.

Erickson,F.(1992).Ethnographicmicroanalysisofinteraction.InM.S.LeCompte,

W.L.Millroy&J.Preissle(Eds.),TheHandbookforQualitativeResearchinEducation(pp.201‐225).SanDiego:AcademicPress.

Fawcett,H.(1938).Thenatureofproof:Adescriptionandevaluationofcertain

proceduresusedinaseniorhighschooltodevelopanunderstandingofthenatureofproof.NewYork:TeachersCollege,ColumbiaUniversity.

Page 213: Copyright by Hiroko Kawaguchi Warshauer 2011

199

Fawcett,L.M.,&Gourton,A.F.(2005).Theeffectsofpeercollaborationonchildren'sproblem‐solvingability.BritishJournalofEducationalPsychology,77,157‐169.

Fennema,E.,Carpenter,T.P.,Franke,M.L.,Levi,L.,Jacobs,V.R.,&Empson,S.B.

(1996).Alongitudinalstudyoflearningtousechildren'sthinkinginmathematicsinstruction.JournalforResearchinMathematicsEducation,27(4),403‐434.

Festinger,L.(1957).Atheoryofcognitivedissonance.Evanston,IL:Row,Peterson.Fontana,A.,&Frey,J.H.(2005).Theinterview:Fromneutralstancetopolitical

involvement.InN.K.Denzin&Y.S.Lincoln(Eds.),theSageHandbookofqualitativeResearch(3rded.).ThousandOak,CA:SagePublications.

Forman,E.,&Ansell,E.(2002).Themultiplevoicesofamathematicsclassroom

community.TheJournaloftheLearningScience,11(2&3),115‐142.Franke,M.L,Kazemi,E.,&Battey,D.(2007).Understandingteachingandclassroom

practiceinmathematics.InFrankK.Lester,Jr.(Ed.),Secondhandbookofresearchonmathematicsteachingandlearning(pp.225‐256).Charlotte,NC:NCTM.

Freudenthal,H.(1991).RevisitingMathematicsEducation:ChinaLectures.Kluwer,

TheNetherlands:Springer.Gaver,W.(1996).Affordancesforinteraction:Thesocialismaterialfordesign.

EcologicalPsychology,8(2),111‐129.Glaser,R.(1984).EducationandThinking:TheRoleofKnowledge.American

Psychologist,39,93‐104.Glesne,C.,&Peshkin,A.(1992).Becomingqualitativeresearchers:Anintroduction.

WhitePlaines,NY:Longman.Goldman,S.R.(2009).Explorationsofrelationshipsamonglearners,tasks,and

learning.LearningandInstruction,19,451‐454.Gresalfi,M.S.(2004).Takingupopportunitiestolearn:Examiningtheconstruction

ofparticipatorymathematicalidentitiesinmiddleschoolclassrooms.UnpublishedDissertation,Stanford,PaloAlto.

Page 214: Copyright by Hiroko Kawaguchi Warshauer 2011

200

Gresalfi,M.,Martin,T.,Hand,V.,&Greeno,J.(2009).constructingcompetence:ananalysisofstudentparticipationintheactivitysystemsofmathematicsclassrooms.EducationalStudiesinMathematics,70(49‐70),49‐70.

Handa,Y.(2003).Aphenomenologicalexplorationofmathematicalengagement:

Approachinganoldmetaphoranew.FortheLearningofMathematics,23,22‐28.

Haneda,M.(2004).Thejointconstructionofmeaninginwritingconferences.

AppliedLinguistics,25(2),178‐219.Hanna,G.(2000).Proof,ExplanationandExploration:anOverview.Educational

StudiesinMathematics,44(1/2),5‐23.Harter,S.(1981).Anewself‐reportscaleofintrinsicversusextrinsicorientationin

theclassroom:Motivationalandinformationalcomponents.DevelopmentalPsychology,17(3),300‐312.

Hatano,G.(1988).Socialandmotivationalbasesformathematicalunderstanding.

NewDirectionsforChildDevelopment,41,55‐70.Heaton,R.M.(2000).Teachingmathematicstothenewstandards:Relearningthe

dance.NewYork:TeachersCollegePress.Heinz,K.,&Sterba‐Boatwright,B.(2008).Thewhenandwhyofusingproportions.

MathematicsTeacher,101(7),528‐533.Henningsen,M.,&Stein,M.K.(1997).Mathematicaltasksandstudentcognition:

Classroom‐basedfactorsthatsupportandinhibithigh‐levelmathematicalthinkingandreasoning.JournalforResearchinMathematicsEducation,28(5),524‐549.

Herbel‐Eisenmann,B.A.,&Breyfogle,M.L.(2005).Questioningourpatternsof

questioning.MathematicsTeachingintheMiddleSchool,10(9),484‐489.Hersh,R.(1993).Provingisconvincingandexplaining.EducationalStudiesin

Mathematics,24(4),389‐399.Hersh,R.(1997).WhatisMathematics,Really?NewYork:OxfordUniversityPress.Hiebert,J.(Ed.).(1986).ConceptualandProceduralKnowledge:TheCaseof

Mathematics.Hillsdale,NJ:LawrenceErlbaumAssociates.

Page 215: Copyright by Hiroko Kawaguchi Warshauer 2011

201

Hiebert,J.,Carpenter,T.P.,Fennema,E.,Fuson,K.,Human,P.,Murray,H.,etal.

(1996).ProblemSolvingasabasisforreformincurriculumandinstruction:Thecaseofmathematics.EducationalResearcher,25(4),12‐21.

Hiebert,J.,Carpenter,T.P.,Fennema,E.,Fuson,K.,Wearne,D.,&Murray,H.(1997).

MakingSense:Teachingandlearningmathematicswithunderstanding.Portsmouth,NH:Heinemann.

Hiebert,J.,&Grouws,D.A.(2007).Theeffectsofclassroommathematicsteachingon

students'learning.InJ.FrankK.Lester(Ed.),SecondHandbookofResearchonMathematicsTeachingandLearning(pp.371‐404).Charlotte:InformationAgePublishing.

Hiebert,J.,&Wearne,D.(1993).Instructionaltasks,discourse,andstudents'

learninginsecond‐gradearithmetic.AmericanEducationalResearchJournal,30(2),393‐425.

Hiebert,J.,&Wearne,D.(2003).DevelopingUnderstandingthroughProblem

Solving.InH.L.Schoen&R.I.Charles(Eds.),TeachingMathematicsthroughProblemSolving:Grades6­12.Reston,VA:NCTM.

Hoffman,B.,Breyfogle,M.L.,&Dressler,J.A.(2009).ThePowerofIncorrect

Answers.MathematicsTeachingintheMiddleSchool,15(4),232‐238.Holt,J.(1982).Howstudentsfail(Reviseded.).NewYork:Delta/SeymourLawrence.Inagaki,K.,Hatano,G.,&Morita,E.(1998).Constructionofmathematicalknowledge

throughwhole‐classdiscussion.LearningandInstruction,8,503‐526.Kahan,J.A.,&Schoen,H.L.(2009).Visionsofproblemsandproblemsofvision:

Embracingthemessinessofmathematicsintheworld.JournalforResearchinMathematicsEducation,34(2),168‐178.

Kahan,J.A.,&Wyberg,T.R.(2003).MathematicsasSenseMaking.InH.L.Schoen&

R.I.Charles(Eds.),TeachingMathematicsthroughProblemSolving:Grades6­12.Reston,VA:NationalCouncilofTeachersofMathematics.

Kaput,J.J.(2001).Understandingdeepchangesinrepresentationalinfrastructures:

Breakinginstitutionalandmind­forgedmanacles.Paperpresentedatthe2001ProjectKaleidoscopeChangeAgentRoundtable,HowCanInformationTechnologyBeBestUsedtoEnhanceUndergraduateSME&T.

Page 216: Copyright by Hiroko Kawaguchi Warshauer 2011

202

Kawanaka,T.,Stigler,J.W.,&Hiebert,J.(Eds.).(1999).Studyingmathematics

classroomsinGermany,Japan,andtheUnitedStates:LessonsfromtheTIMSSVideotapestudy.Philadelphia,PA:FalmerPress.

Kazemi,E.,&Stipek,D.(2001).PromotingConceptualthinkinginFourUpper‐

ElementaryMathematicsClassrooms.TheElementarySchoolJournal,102(1(Sep.,2001)),59‐80.

Kennedy,M.M.(2005).Insideteaching:Howclassroomlifeunderminesreform.

Cambridge,MA:HarvardUniversityPress.Khisty,L.L.,&Morales,H.J.(2004).Discoursematters:equity,access,andLatinos'

learningmathematics.Kilpatrick,J.,Swafford,J.,&Findell,B.(Eds.).(2001).Addingitup:Helpingchildren

learnmathematics.Washington,D.C.:NationalAcademiesPress.Knuth,E.J.(2002).Secondaryschoolmathematicsteachers'conceptionsofproof.

JournalforResearchinMathematicsEducation,33(5),379‐405.Krainer,K.(1993).Powerfultasks:acontributiontoahighlevelofactingand

reflectinginmathematicsinstruction.EducationalStudiesinMathematics,24(1),65‐93.

Kulm,G.(1999).Makingsurethatyourmathematicscurriculummeetsstandards.

MathematicsTeachingintheMiddleSchool,4(8),536‐41.

Kulm,G.,&Bussmann,H.(1980).Aphase‐abilitymodelofmathematicsproblemsolving.JournalofResearchinMathematicsEducation,11(3).

Kulm,G.,Capraro,R.M.,&Capraro,M.M.(2007).Teachingandlearningmiddle

gradesmathematicswithunderstanding.MiddleGradesResearchJournal,2(1),23‐48.

Lakatos,I.(1976).ProofsandRefutations.Cambridge:CambridgeUniversityPress.Lampert,M.(2001).Teachingproblemsandtheproblemswithteaching.NewHaven,

CT:YaleUniversityPress.

Page 217: Copyright by Hiroko Kawaguchi Warshauer 2011

203

Lampert,M.(1990).Whentheproblemisnotthequestionandthesolutionisnottheanswer:Mathematicalknowingandteaching.AmericanEducationalResearchJournal,27(1),29‐63.

Lave,J.,&Wenger,E.(1991).Situatedlearning:Legitimateperipheralparticipation.

Cambridge:CambridgeUniversityPress.Lesh,R.,Post,T.,&Behr,M.(1988).ProportionalReasoning.InJ.Hiebert&M.Behr

(Eds.),NumberConceptsandOperationsintheMiddleGrades(pp.93‐118).Reston,VA:LawrenceErlbaum..

Lincoln,Y.S.,&Guba,E.G.(1985).Naturalisticinquiry.BeverlyHills,CA:Sage.Maher,C.A.,&Martino,A.M.(1996).Thedevelopmentoftheideaofmathematical

proof:A5‐yearcasestudy.JournalforResearchinMathematicsEducation,27,194‐214.

Maloch,B.(2002).Scaffoldingstudenttalk:Oneteachers'roleinliterature

discussiongroups.ReadingResearchQuarterly,37(1),94‐112.Mariani,L.(1997).Teachersupportandteacherchallengeinpromotinglearner

autonomy.Perspectives,aJournalofTESOL­Italy,23(2).Mathison,S.(1988).Whytriangulate?EducationalResearcher,17(2),13‐17.Maybin,J.,Mercer,N.,&Stierer,B.(Eds.).(1992).Thinkingvoices:Theworkofthe

NationalOracyProject.Sevenoaks,Kent:Hodder&Stoughton.McCabe,T.,Warshauer,M.,&Warshauer,H.(2009).MathematicsExplorationpart2.

Champaign,IL:StipesPublishing.Michell,M.,&Sharpe,T.(2005).CollectiveinstructionalscaffoldinginEnglishasa

SecondLanguageclassrooms.Prospect,20(1),31‐58.Miles,M.B.,&Huberman,A.M.(1994).QualitativeDataAnalysis(2ndEdition).

ThousandOaks,CA:SagePublications.NationalCouncilofTeachersofMathematics(NCTM).(1991).ProfessionalStandards

forTeachingMathematics.Reston,VA:NCTM.NationalCouncilofTeachersofMathematics(NCTM).(2000).Principles&Standards

forSchoolMathematics.Reston:NCTM.

Page 218: Copyright by Hiroko Kawaguchi Warshauer 2011

204

NationalCouncilofTeachersofMathematics(NCTM),&AssociationofState

SupervisorsofMathematics(ASSM).(2005).StandardsandCurriculum:AViewfromtheNation.Reston,VA:NationalCouncilofTeachersofMathematics(NCTM).

.NationalMathematicsAdvisoryPanel.(2008).FoundationsforSuccess:Thefinal

reportofthenationalmathematicsadvisorypanel.Washington,D.C.:U.S.DepartmentofEducation.

NationalResearchCouncil.(1989).Everybodycounts.Washington,DC:National

AcademyofSciences.O'Connor,M.C.,&Michaels,S.(1993).Aligningacademictaskandparticipation

statusthroughrevoicing:Analysisofaclassroomdiscoursestrategy.AnthropologyandEducationQuarterly,24(4),318‐335.

O'Connor,M.C.,&Michaels,S.(1996).Shiftingparticipantframeworks:

Orchestratingthinkingpracticesingroupdiscussion.InD.Hicks(Ed.),Discourse,learning,andschooling(pp.63‐103).Cambridge:UniversityPress.

Pajares,F.(1996).Self‐efficacybeliefsinacademicsettings.ReviewofEducational

Research,66,543‐578.Pajares,F.,&Miller,M.D.(1994).Roleofself‐efficacyandself‐conceptbeliefsin

mathematicalproblemsolving:Apathanalysis.JournalofEducationalPsychology,86,193‐203.

Palincsar,A.S.,&Brown,A.L.(1984).Reciprocalteachingofcomprehension‐

fosteringandcomprehension‐monitoringactivities.Cognition&Instruction,I(2),117‐175.

Pape,S.J.,Bell,C.V.,&Yetkin,I.E.(2003).Developingmathematicalthinkingand

self‐regulatedlearning:Ateachingexperimentinaseventh‐gradeclassroom.EducationalStudiesinMathematics,53,179‐202.

Patton,M.Q.(1990).QualitativeEvaluationandResearchMethods.NewburyPark,

CA:SagePublications.Piaget,J.(1952).Theoriginsorintelligenceinchildren.NewYork:International

UniversitiesPress,Inc.

Page 219: Copyright by Hiroko Kawaguchi Warshauer 2011

205

Piaget,J.(1960).Thepsychologyofintelligence.GardenCity,NY:Littlefield,Adams.Piaget,J.(1962).Play,dreams,andimitationinchildhood.NewYork:W.W.Norton&

Co.,Inc.Piaget,J.,&Beth,E.W.(1966).Mathematicalepistemologyandpsychology.

Dordrecht,Holland:D.Reidel.Pierson,J.L.(2008).Therelationshipbetweenpatternsofclassroomdiscourseand

mathematicslearning.Unpublisheddissertation,TheUniversityofTexasatAustin,Austin.

Pink,D.H.(2006).AWholeNewMind:whyright­brainerswillrulethefuture.New

York:PenguinGroup.Polya,G.(1945,1957).Howtosolveit,2ndedition.GardenCity,NY:Doubleday

AnchorBooks.Resnick,L.(1987).EducationandLearningtoThink.Washington,D.C.:National

AcademyPress.Richland,L.E.,Holyoak,K.J.,&Stigler,J.W.(2004).AnalogyUseinEighth‐Grade

MathematicsClassrooms.Cognitionandinstruction,22(1),37‐60.Rittle‐Johnson,B.,&Koedinger,K.R.(2005).DesigningKnowledgeScaffoldsto

SupportMathematicalProblemSolving.Cognitionandinstruction,23(3),313‐349.

Rittle‐Johnson,B.(2009).Iteratingbetweenlessonsonconceptsandprocedurescan

improvemathematicsknowledge.BritishJournalofEducationalPsychology,79,483‐500.

Rogoff,B.,&Wertsch,J.V.(1984).Children'slearninginthe"zoneofproximal

development".InB.Rogoff&J.V.Wertsch(Eds.),Children'slearninginthe"zoneofproximaldevelopment"(pp.102).SanFrancisco:Jossey‐Bass.

Romagnano,L.R.(1994).Wrestlingwithchange:Thedilemmasofteachingreal

mathematics.Portsmouth,NH:Heinemann.

Page 220: Copyright by Hiroko Kawaguchi Warshauer 2011

206

Romberg,T.A.(1994).Classroominstructionthatfostersmathematicalthinkingandproblemsolving:Connectionsbetweentheoryandpractice.InA.H.Schoenfeld(Ed.),Mathematicalthinkingandsolving.Hillsdale,NJ:LawrenceErlbaumAssociates.

Rowan,B.,Correnti,R.,&Miller,R.J.(2002).Whatlarge­scalesurveyresearchtells

usaboutteachereffectsonstudentachievement.InsightsfromtheProspectsstudyofelementaryschools(CPREResearchReportSeriesPR‐051).Philadelphia:UniversityofPennsylvania,ConsortiumforPolicyResearchinEducation.

Santagata,R.(2005).Practicesandbeliefsinmistake‐handlingactivities:Avideo

studyofItalianandUSmathematicslessons.TeachingandTeacherEducation,21(5),491‐508.

Schielack,J.,Charles,R.I.,Clements,D.,Duckett,P.,Fennell,F.,Lewandowski,S.,etal.

(2006).CurriculumFocalPointsforPrekindergartenthroughGrade8Mathematics:AQuestforCoherence:NationalCouncilofTeachersofMathematics..

Schoenfeld,A.H.(1985).Mathematicalproblemsolving.Orlando,FL:Academic

Press.Schoenfeld,A.H.(1987).What'sallthefussaboutmetacognition.InA.H.Schoenfeld

(Ed.),CognitiveScienceandMathematicsEducation.Hillsdale,NewJersey:LawrenceErlbaumAssociates.

Schoenfeld,A.H.(1988).WhenGoodTeachingleadstoBadResults:TheDisastersof

"Well‐Taught"MathematicsCourses.EducationalPsychologist,23(2),145‐166.

Schoenfeld,A.H.(1992).Learningtothinkmathematically:Problemsolving,

metacognition,andsense‐makinginmathematics.InD.Grouws(Ed.).NewYork:MacMillan.

Schoenfeld,A.H.(1994).Reflectionondoingandteachingmathematics.InA.

Schoenfeld(Ed.),Mathematicalthinkingandproblemsolving(pp.53‐69).Hillsdale,NJ:LawrenceErlbaumAssociates.

Schwartz,D.L.,&Martin,T.(2004).Inventingtoprepareforfuturelearning:The

hiddenefficiencyofencouragingoriginalstudentproductioninstatisticsinstruction.CognitionandInstruction,22(2),129‐184.

Page 221: Copyright by Hiroko Kawaguchi Warshauer 2011

207

Secada,W.(1992).Race,ethnicity,socialclass,language,andachievementin

mathematics.InD.Grouws(Ed.),Handbookforresearchonmathteachingandlearning(pp.623‐660).NewYork:Macmillan.

Sherin,M.,Mendez,E.,&Louis,D.(2000).Talkingaboutmathtalk.InM.B.F.Curcio

(Ed.),Learningmathematicsforanewcentury(pp.188‐196).Reston,VA:NationalCouncilofTeachersofMathematics.

Sherman,H.J.,Richardson,L.I.,&Yard,G.J.(2009).TeachingLearnerswhoStruggle

withMathematics:SystematicInterventionandRemediation(2nded.).NewJersey:Allyn&Bacon.

Silver,E.A.,&Stein,M.K.(1996).TheQUASARProject:The'Revolutionofthe

Possible'inMathematicsInstructionalReforminUrbanMiddleSchools.UrbanEducation,30(January,1996),476‐521.

Simon,M.A.,&Tzur,R.(2004).Explicatingtheroleofmathematicaltasksin

conceptuallearning:Anelaborationofthehypotheticallearningtrajectory.MathematicalThinkingandLearning,6(2),91‐104.

Skinner,B.F.(1958).Reinforcementtoday.AmericanPsychologist,13(3),94‐99.Smith,M.(2000).Acomparisonofthetypesofmathematicstasksandhowtheywere

completedduringeighth­grademathematicsinstructioninGermany,Japan,andtheUnitedStates.UnpublishedDissertation,UniversityofDelaware,Newark.

Smith,M.S.,&Stein,M.K.(1998).SelectingandCreatingMathematicalTasks:from

ResearchtoPractice.MathematicsteachingintheMiddleSchool3(February1998),344‐350.

Sorto,M.A.,McCabe,T.,Warshauer,M.,&Warshauer,H.(2009).Understandingthe

valueofaquestion:Ananalysisofalesson.JournalofMathematicalSciences&MathematicsEducation,4(1),50‐60.

Stein,M.K.,Grover,B.W.,&Henningsen,M.(1996).Buildingstudentcapacityfor

mathematicalthinkingandreasoning:Ananalysisofmathematicaltasksusedinreformclassrooms.AmericanEducationResearchJournal,33(2),455‐488.

Page 222: Copyright by Hiroko Kawaguchi Warshauer 2011

208

Stein,M.K.,&Lane,S.(1996).Instructionaltasksandthedevelopmentofstudentcapacitytothinkandreason:Ananalysisoftherelationshipbetweenteachingandlearninginareformmathematicsproject.EducationalResearchandEvaluation2(October,1996),50‐80.

Stein,M.K.,Lane,S.,&Silver,E.A.(1996).Classroomsinwhichstudentssuccessfully

acquiremathematicalproficiency:Whatarethecriticalfeaturesofteachers'instructionalpractice?PaperpresentedattheAnnualMeetingoftheAmericanEducationalResearchAssociation.

Stein,M.K.,Smith,M.S.,Henningsen,M.,&Silver,E.(2000).Implementing

Standards­BasedMathematicsInstruction:Acasebookforprofessionaldevelopment:TeachersCollegePress.

Stigler,J.W.,Gonzalez,P.,Kawanaka,T.,Knoll,S.,&Serrano,A.(1999).TheTIMSS

videotapeclassroomstudy:Methodsandfindingsfromanexploratoryresearchprojectoneight­grademathematicsinstructioninGermany,Japan,andtheUnitedStates(NCES1999­074).Washington,DC:NationalCenterforEducationStatistics.

Stigler,J.W.,&Hiebert,J.(1999,2004).TheteachingGap:Bestideasfromtheworld's

teachersforimprovingeducationintheclassroom.NewYork:FreePress.Strauss,A.,&Corbin,J.(1990).BasicsofQualitativeResearch:GroundedTheory

ProceduresandTechniques.NewburyPark,CA:SagePublications.Sullivan,P.,Tobias,S.,&McDonough,A.(2006).Perhapsthedecisionofsome studentsnottoengageinlearningmathematicsinschoolisdeliberate. EducationalStudiesinMathematics,62(1),81‐99.Tarr,J.E.,Reys,R.E.,Reys,B.J.,Chavez,O.,Shih,J.&Osterlind,S.J.(2008).The

impactofmiddle‐gradesmathematicscurriculaandtheclassroomlearningenvironmentonstudentachievement.JournalforResearchinMathematicsEducation39(3),247‐280.

TexasEducationAgency(TEA).(2010).2009‐2010SchoolReportCard.fromTexasEducationAgency:http://ritter.tea.state.tx.us/perfreport/src/2010/campus.srch.html.

TexasEducationAgency(TEA).(2005).Chapter111.TexasEssentialKnowledge

andSkillsforMathematicsSubchapterB.MiddleSchool.http://ritter.tea.state.tx.us/rules/tac/chapter111/index.html.

Page 223: Copyright by Hiroko Kawaguchi Warshauer 2011

209

TheRossMathematicsProgramatTheOhioStateUniversity.(2009).Retrieved

November4,2009,fromhttp://www.math.ohio‐state.edu/ross/RossBrochure09.pdf

Thurston,W.P.(1994).Onproofandprogressinmathematics.Bulletinofthe

AmericanMathematicalSociety,30(2),161‐177.Townsend,B.,Lannin,J.K.,&Barker,D.D.(2009).PromotingEfficientStrategyUse.

MathematicsTeachingintheMiddleSchool,14(9),542‐547.vanZee,E.,&Minstrell,J.(1997).Usingquestioningtoguidestudentthinking.The

JournaloftheLearningScience,6(2),227‐269.Vygotsky,L.S.(1978).MindinSociety:Thedevelopmentofhigherpsychological

processesCambridge,MA:HarvardUniversityPress.Vygotsky,L.S.(1986;1962).Thoughtandlanguage(Reviseded.).Cambridge,MA:

MIT.Webb,N.M.(1991).Task‐relatedverbalinteractionandmathematicslearningin

smallgroups.JournalforResearchinMathematicsEducation,22(5),366‐389.Weinert,F.E.,&Kluwe,R.H.(1987).Metacognition,MotivationandUnderstanding. Hillsdale,NJ:Erlbaum.Weiss,I.R.,&Pasley,J.D.(2004).Whatishighqualityinstruction?Educational

Leadership,61(5),24‐28.Weiss.I.R.,Pasley,J.D.,Smith,P.S.,Banilower,E.R.,&Heck,D.J.(2003).Looking

insidetheclassroom:AstudyofK­12mathematicsandscienceeducationintheUnitedStates(Highlightreport).ChapelHill,NC:HorizonResearch,Inc.(RetrievedonApril11,2009fromwww.horizon‐research.com/insidetheclassroom/reports/highlights/highlights.pdf)

Wells,G.(1996).Usingthetool‐kitofdiscourseintheactivityoflearningand

teaching.Mind,Culture,andActivity,3(2),74‐101.Wells,G.(1999).Dialogicinquiry:Towardsasocioculturalpracticeandtheoryof

education.Cambridge:CambridgeUniversityPress.

Page 224: Copyright by Hiroko Kawaguchi Warshauer 2011

210

Wertsch,J.V.(1985).Vygotskyandthesocialformationofmind.Cambridge:HarvardUniversityPress.

Wertsch,J.(1998).MindAsAction.NewYork:OxfordUniversityPress.White,A.M.

(Ed.).(1993).EssaysinHumanisticmathematics.Washington,D.C.:MathematicsAssociationofAmerica.

White,A.M.(Ed.).(1993).EssaysinHumanisticmathematics.Washington,D.C.:

MathematicsAssociationofAmerica.Williams,S.R.,&Baxter,J.A.(1996).DilemmasofDiscourse‐OrientedTeachingin

Onemiddleschoolmathematicsclassroom.TheelementarySchoolJournal,97(1),21‐38.

Wood,D.,Bruner,J.S.,&Ross,G.(1976).Theroleoftutoringinproblemsolving.

JournalofChildPsychologyandPsychiatry,17,89‐100.Yackel,E.,&Cobb,P.(1996).Sociomathematicalnorms,argumentation,&autonomy

inmathematics.JournalofMathematicalBehavior,21,423‐440.Yeung,B.(2009,September10).Kidsmastermathematicswhenthey’rechallenged

butsupported:Mathtestscoressoarifstudentsaregiventhechancetostruggle.RetrievedonDecember29,2009,fromwww.edutopia.org/math‐underachieving‐mathnext‐rutgers‐newark#

Yin,R.K.(2009).CaseStudyResearchDesignandMethods(Vol.5).ThousandOaks,

CA:SagePublications.Zaslavsky,O.(2005).Seizingtheopportunitytocreateuncertaintyinlearning

mathematics.EducationalStudiesinMathematics,60(3),297‐321.

Page 225: Copyright by Hiroko Kawaguchi Warshauer 2011

211

Vita

HirokoKawaguchiWarshauerwasborninKyoto,Japanandcompletedherfirst

gradeinJapanbeforeimmigratingtoChicagoin1960withherfamily.After

graduatingfromLakeViewHighSchoolin1970,sheattendedtheUniversityof

ChicagoandreceivedherBachelorofArtsdegreeinMathematicsin1974.She

continuedhergraduatestudiesatLouisianaStateUniversitywhereshereceivedher

MasterofSciencedegreeinMathematicsin1976.From1976to1979,Hiroko

taughtmathematicsatLSUasaninstructor.Hirokojoinedthemathematics

departmentatTexasStateUniversity‐SanMarcosin1979whereshecontinuesto

teach.Sheandherhusbandhavefourchildren.

Emailaddress:[email protected]

Thisdissertationwastypedbytheauthor.