Top Banner
Concurrent Commutation Failures in the Danish System Dan Kell, Siavash Zoroofi Hans Abildgaard, Torsten Lund TransGrid Solutions Energinet.DK 1 ©TransGrid Solutions Inc., 2011
23

Concurrent Commutation Failures in the Danish …mydocs.epri.com/docs/...Concurrent_Comm_Failures_in... · Concurrent Commutation Failures in the Danish System ... Barsebäck caused

Sep 07, 2018

Download

Documents

truongcong
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Concurrent Commutation Failures in the Danish …mydocs.epri.com/docs/...Concurrent_Comm_Failures_in... · Concurrent Commutation Failures in the Danish System ... Barsebäck caused

Concurrent Commutation Failures in the Danish System

Dan Kell, Siavash Zoroofi Hans Abildgaard, Torsten Lund

TransGrid Solutions Energinet.DK

1©TransGrid Solutions Inc., 2011

Page 2: Concurrent Commutation Failures in the Danish …mydocs.epri.com/docs/...Concurrent_Comm_Failures_in... · Concurrent Commutation Failures in the Danish System ... Barsebäck caused

The Projectj

Completion of the regional HVdc modelLCC lid ti t dLCC validation study

validation of individual HVdc models Soerbaelt (Siemens)Konti-Skan 1 (Areva (Alstom))Konti-Skan 2 (ABB)Kontek (ABB)Skageraak 1, 2, 3 (ABB) and 4 (ABB..)

e.g. step response measurements from KS1, SK3, SB1 (Areva, ABB and Siemens)validation of system model2009-08-23 03:16 transfer of commutation failures via the rectifier2009-08-30 00:06 transfer of commutation failures via the rectifier

Simulation studyyoperation of mixed LCC / VSC systemstransfer of commutation failures via the rectifieroperational rules with transmission outages

2©TransGrid Solutions Inc., 2011

Page 3: Concurrent Commutation Failures in the Danish …mydocs.epri.com/docs/...Concurrent_Comm_Failures_in... · Concurrent Commutation Failures in the Danish System ... Barsebäck caused

The Systemy

Link Year Power Voltage

Kontek 1996 600MW 400kVKontek 1996 600MW 400kV

Konti-skan1

1964/2006

250MW 250kV

Konti-skan 1988 300MW 285kV2

SK1/2 1977 500MW 250kV

SK3 1993 500MW 350kV

Storebaelt 2010 600MW 400kV

SK4 700MW 500kV

3©TransGrid Solutions Inc., 2011

Page 4: Concurrent Commutation Failures in the Danish …mydocs.epri.com/docs/...Concurrent_Comm_Failures_in... · Concurrent Commutation Failures in the Danish System ... Barsebäck caused

The Systemy

Cigre B4.41 Defines the Multi-Infeed Factor as:

• If any individual product is less than 15% of the inverters power then the chance for interaction is small. Product values between 15% and 40% indicate links with a moderate potential and product values above 40% indicate a high potential for inverter interaction.

The Equivalent Short Circuit Ratio of an HVdc system can be defined as:• The Equivalent Short-Circuit Ratio of an HVdc system can be defined as:

4©TransGrid Solutions Inc., 2011

Page 5: Concurrent Commutation Failures in the Danish …mydocs.epri.com/docs/...Concurrent_Comm_Failures_in... · Concurrent Commutation Failures in the Danish System ... Barsebäck caused

The Systemy

• The Multi-Infeed Equivalent Short-Circuit Ratio of an HVdc system can be defined as:

NicapacitorsiMVA

i

MIIFPP

QSCCMIIESCR

×+

−=

∑ ji

ijj

DCDC MIIFPPji ,

1

×+∑≠=

5©TransGrid Solutions Inc., 2011

Page 6: Concurrent Commutation Failures in the Danish …mydocs.epri.com/docs/...Concurrent_Comm_Failures_in... · Concurrent Commutation Failures in the Danish System ... Barsebäck caused

The Systemy

Pdc Sk'' ESCR MIIF MIESCRMVA -

Konti-Skan 1+2 750 3604 4.38 1.000 1.81Skagerrak 1+2 550 3644 6.32 0.777Skagerrak 3 500 4114 7.72 0.751Storebælt 600 4137 6.32 0.444

Konti-Skan 1+2 750 3604 4.38 0.758Skagerrak 1+2 550 3644 6.32 1.000 2.03Skagerrak 3 500 4114 7.72 0.691Storebælt 600 4137 6.32 0.420

Konti-Skan 1+2 750 3604 4.38 0.927Skagerrak 1+2 550 3644 6.32 0.887Skagerrak 3 500 4114 7.72 1.000 1.94Storebælt 600 4137 6.32 0.506

Konti-Skan 1+2 750 3604 4.38 0.717Skagerrak 1+2 550 3644 6.32 0.650Skagerrak 3 500 4114 7.72 0.628Storebælt 600 4137 6.32 1.000 2.10

6©TransGrid Solutions Inc., 2011

Page 7: Concurrent Commutation Failures in the Danish …mydocs.epri.com/docs/...Concurrent_Comm_Failures_in... · Concurrent Commutation Failures in the Danish System ... Barsebäck caused

Validation of PSCAD models

Stoerbaelt

7©TransGrid Solutions Inc., 2011

Page 8: Concurrent Commutation Failures in the Danish …mydocs.epri.com/docs/...Concurrent_Comm_Failures_in... · Concurrent Commutation Failures in the Danish System ... Barsebäck caused

Validation of PSCAD models

SK3

8©TransGrid Solutions Inc., 2011

Page 9: Concurrent Commutation Failures in the Danish …mydocs.epri.com/docs/...Concurrent_Comm_Failures_in... · Concurrent Commutation Failures in the Danish System ... Barsebäck caused

Validation of PSCAD models

Kontek – This is an approximated model

9©TransGrid Solutions Inc., 2011

Page 10: Concurrent Commutation Failures in the Danish …mydocs.epri.com/docs/...Concurrent_Comm_Failures_in... · Concurrent Commutation Failures in the Danish System ... Barsebäck caused

Transfer of Commutation Failures via the RectifierRectifier

Completion of the regional HVdc modelLCC lid ti t dLCC validation study

validation of individual HVdc models Soerbaelt (Siemens)Konti-Skan 1 (Areva (Alstom))Konti-Skan 2 (ABB)Kontek (ABB)Skageraak 1, 2, 3 (ABB) and 4 (ABB..)

e.g. step response measurements from KS1, SK3, SB1 (Areva, ABB and Siemens)validation of system model2009-08-23 03:16 transfer of commutation failures via the rectifier2009-08-30 00:06 transfer of commutation failures via the rectifier

Simulation studyyoperation of mixed LCC / VSC systemstransfer of commutation failures via the rectifieroperational rules with transmission outages

10©TransGrid Solutions Inc., 2011

Page 11: Concurrent Commutation Failures in the Danish …mydocs.epri.com/docs/...Concurrent_Comm_Failures_in... · Concurrent Commutation Failures in the Danish System ... Barsebäck caused

Transfer of Commutation Failures via the RectifierRectifier

SK12 220MW from NorwaySK3 300MW f NSK3 300MW from NorwayInverters in Denmark

KS1 340MW towards SwedenKS2 340MW towards SwedenRectifiers in Denmark

Kontek 550MW Towards GermanyRectifiers in DenmarkRectifiers in Denmark

11©TransGrid Solutions Inc., 2011

Page 12: Concurrent Commutation Failures in the Danish …mydocs.epri.com/docs/...Concurrent_Comm_Failures_in... · Concurrent Commutation Failures in the Danish System ... Barsebäck caused

Transfer of Commutation Failures via the RectifierRectifier

A successful reclosing on 132 kV Mörap -Barsebäck caused commutation failureBarsebäck caused commutation failureOn;KontekKS1 KS2

KS1 and KS2 in, Denmark delivers a current with a total peak value ofcurrent with a total peak value ofapprox. 7 kA to the ComFails in Lindoma.

This causes SK3 to fail commutation in Tj lTjele.

The Comm fail has been transferred through the rectifier..

12©TransGrid Solutions Inc., 2011

g

Page 13: Concurrent Commutation Failures in the Danish …mydocs.epri.com/docs/...Concurrent_Comm_Failures_in... · Concurrent Commutation Failures in the Danish System ... Barsebäck caused

Transfer of Commutation Failures via the RectifierRectifier

Bent

Vester Hasing Lindome

21

Kontek

2E1

Bent

Konti-Skan

2E1

E

KristiansandTjele 150 kVIsland 1KO_BEN

KS1KS2

TJ150TJ400SBFGB

Island 2 KOKS400KS132

KSD400SB

KristiansandTjele 150 kV

SK12

2 E1

SK3

2 E1

SBFGB SBTjele 400 kV SK3

Stoerbelt

2 E1FGB

13©TransGrid Solutions Inc., 2011

Page 14: Concurrent Commutation Failures in the Danish …mydocs.epri.com/docs/...Concurrent_Comm_Failures_in... · Concurrent Commutation Failures in the Danish System ... Barsebäck caused

Transfer of Commutation Failures via the RectifierRectifier

ELoad ControlI 1Get L_HLD

MIDS400_N30231

VN30231

300.0400.0

E

:1

KSD_300_N54022 400.0300.0

E

:1

STNS400_N30391

E_30391_30393_1T

STRS400_N30393

VN30393E_30376_30393_1

THORS400B

N30376E_30376_30415_1

TBEDS400_

N30415 T-LineE_30415_30394_99

E

THTS400_N30394 T-Line

E_30394_30386_99E

RI3S400_N30386

E_30380_30386_1T

HORS400_N30380

VN30380E_30380_30399_1

TUDDS400_

N30399 T-LineE_30399_30414_99

E

SÅN_400_N30414 T-Line

E_30414_30404_99E

BBKS400_N30404

E_30404_30408_1T

HSOS400_N30408

E_30401_30408_1T

AVAS400_N30401

E_30377_30401_1T

SIMS400_N30377

VN30377E_30377_30410_1

TNBOS400_

N30410

~E-1682.61

382.561 E_30231_0_1~

E835.098.163 E_30393_0_1

~E870.0

0.0 E_30393_0_2

P,QLoad

332.933E6.714

ShuntR

0.19E-0.0

P,QLoad

38.215E0.0

ShuntRC

1.249E-3.698

P,QLoad

72.148E5.666 ~

E957.00.0 E_30380_0_1

~E920.0

-165.065 E_30380_0_2

P,QLoad

66.666E0.0

ShuntRC

0.524E-9.213

P,QLoad

267.434E0.0

ShuntRC

2.123E-71.878

P,QLoad

237.198E13.681

ShuntRL

6.516E56.486

P,QLoad

428.48E0.0

0.0-100.0

SwitchedShuntE

P,QLoad

218.0E0.0

0.0-0.0

SwitchedShuntE

P,QLoad

379.92E0.0

~E465.0

-89.615 E_30377_0_1

P,QLoad

326.96E0.0

ShuntL

0.0E150.0

<-- 10 -->T-Line

E_30231_30391_1E

N30414N30415N30404N37175N70429N70556N70441N70400

N30414N30415N30404N37175N70429N70556N70441N70400

SubPage 2400 kV and lower

KO_BENHR

VN30391 VN30376 VN30415 VN30394 VN30386 VN30399 VN30414 VN30404 VN30408 VN30401 VN30410

~E605.0

-116.596 E_30377_0_2

~E1175.0

0.0 E_30377_0_3

E_30380_30414_1TT-Line

E_30415_30386_99E

T-LineE_30386_30399_99

E

T-LineE_30394_30399_99

E E_30408_30410_1T

T-LineE_30386_30414_99

E

T-LineE_30415_30399_99

E

T-LineE_30415_30414_99

E

<-- 10 -->T-Line

E_30231_30394_1E

T-LineE_30415_30404_99

E

E_30394_30401_1T

<-- 10 -->T-Line

E_30231_30380_1E

<-- 10 -->T-Line

E_30231_30377_1E

E_30401_30412_1T

SEES400_N30412

E_30402_30412_1T

AIES400_N30402

0.0 SwitchedSh tE

P,QLoad

305.76E0.0

E 30404 30412 1T

132.0400.0

E

:1

BOYS132_N37192

N70508N70003N70520N70521N70506N70568

N54022

N32150

N37192N37192

SubPage 5132 kV and lower

N32150

SubPage 4132 kV and lower

N54022

SubPage 3300 kV and lower

N70400N70508N70003N70520N70521N70506N70568

KSD400

KS132

VN30412 VN30402

-100.0 ShuntEE_30404_30412_1

132.0400.0

E

:1

SEES132_N37175 400.0132.0

E

:1

HVE_400_N70520 132.0400.0

E

:1

AMV_132_N70003 400.0132.0

E

:1

ASV_4001N70506 132.0400.0

E

:1

AVV_132_N70400 400.0132.0

E

:1

ISH_400_N70521 132.0400.0

E

:1

HCV_132_N70429 400.0132.0

E

:1

GLN_400_N70568 132.0400.0

E

:1

BJS_132_N70556

P,QLoad

62.209E27.644

ShuntL

0.0E100.0

ShuntRL

2.551E40.668

P,QLoad

49.967E0.0

ShuntRC

1.55E-11.388

P,QLoad

7.456E5.029

ShuntRL

3.141E38.519

P,QLoad

45.344E0.0

ShuntRC

2.609E-28.726

T-LineE_70520_70506_99

E

T-LineE_70506_70521_99

E132.0400.0

E

:1

132.0400.0

E

:1

132.0400.0

E

:1

400.0132.0

E

:1

T-LineE_70520_70521_99

E

132.0400.0

E

:1

400.0132.0

E

:1

132.0400.0

E

:1

T-LineE_70520_70568_99

E

400.0132.0

E

:1

132.0400.0 :1

132.0400.0

E

:1

T-LineE 30404 70520 99

E

VN70520 VN70506 VN70568

EE_30404_70520_99

132.0400.0

E

:1

132.0400.0

E

:1

T-LineE_30404_70568_99

E

132.0400.0

E

:1

T-LineE_30414_70520_99

E

132.0400.0

E

:1

132.0400.0

E

:1

132.0400.0

E

:1

T-LineE_30414_70568_99

E

132.0400.0

E

:1

132.0400.0

E

:1

132.0400.0

E

:1

132.0400.0

E

:1

E

T-LineE_30415_70568_99

E

J

400.0132.0

E

:1

HCV_400_N70518 <-- 8.99 -->

T-LineE_70518_70508_1

E

AVV_400_N70508 Shunt

RC0.003

E-7.55

T-LineE_70521_70508_99

E

132.0400.0

E

:1

RAD_132_N70441

132.0400.0

E

:1

132.0400.0

E

:1

E_30408_30409_1T

KAHS400_N30409 Ideal (R=0)

E_30409_30411_1E

STØS400_N30411

E_30383_30393_1T

LDO_400_N30383 Ideal (R=0)

E_30383_100007_1E

TERM_KS1

VN100007

J

15.0400.0

E

:1

RS2_015_N15 ~

E0.00.0 E_15_0_1

J

132.0400.0

E

:1

LDO_132_N32150

Monitoring ofPower,angles.. Vphase

PQ

VI

E VF03-Phase Meter

33VN30231

I3

VphasePQ

VI

E VF03-Phase Meter

33VN30377

I13

VphasePQ

VI

E VF03-Phase Meter

33VN30377

I14

VphasePQ

VI

E VF03-Phase Meter

33VN30380

I20

VphasePQ

VI

E VF03-Phase Meter

33VN30393

I33

VphaseVE VF03-Phase Meter

3VN100007

KS400 VN70518VN30383 VN30411VN30409

14©TransGrid Solutions Inc., 2011

Island 2 : ControlsVrms3

#NaN

P3

#NaN

Q3

#NaN

Vrms13

#NaN

P13

#NaN

Q13

#NaN

Vrms14

#NaN

P14

#NaN

Q14

#NaN

Vrms20

#NaN

P20

#NaN

Q20

#NaN

Vrms33

#NaN

P33

#NaN

Q33

#NaN

Page 15: Concurrent Commutation Failures in the Danish …mydocs.epri.com/docs/...Concurrent_Comm_Failures_in... · Concurrent Commutation Failures in the Danish System ... Barsebäck caused

Transfer of Commutation Failures via the RectifierRectifier

Sequence of eventst = 0 ms:

KS1 Lindoma ComFail in Y-group, phase TAt the time of commutation the phase T voltage is reduced by approx. 15 per cent in amplitude. The distance to zero crossing phase R-T is reduced by 0.3 ms corresponding to 5.5 degrees in comparison to normal operation.Max dc-current approx. 4.5 kA.

t +8 ms:KS2 LDO ComFail in the D-group, phase TAt this moment in time the commutation voltages are further distorted by the ComFail in KS1.At this moment in time the commutation voltages are further distorted by the ComFail in KS1.Max dc current approx. 3.3 kA.

t +12 ms:SK3 TJE ComFail in the D-group, phase T.At the time of commutation phase T is reduced by approx 60 per cent in amplitudeAt the time of commutation phase T is reduced by approx. 60 per cent in amplitude.The distance to zero crossing phase R-T is reduced by 0.5 ms corresponding to 9 degrees in comparison to normal operation.

During this incident SK1+2 avoid ComFail partly due to a comparatively high gamma at the current load level and partly due to the built-in predictor which in this situation has plenty of time to further increase

15©TransGrid Solutions Inc., 2011

level and partly due to the built in predictor which in this situation has plenty of time to further increase gamma transiently and thereby reduce the risk of ComFails.

Page 16: Concurrent Commutation Failures in the Danish …mydocs.epri.com/docs/...Concurrent_Comm_Failures_in... · Concurrent Commutation Failures in the Danish System ... Barsebäck caused

Transfer of Commutation Failures via the RectifierRectifier

T = 0 ms300400

VLWAX VLWBX VLWCX

-400 -300 -200 -100

0 100 200 300

kV

2 04.0 6.0

IVWDAX IVWDBX IVWDCX

-6.0 -4.0 -2.0 0.0 2.0

kA

0 02.0 4.0 6.0 8.0

IVWSAX IVWSBY IVWSCY

-8.0 -6.0 -4.0 -2.0 0.0

kA1.50 2.00 2.50 3.00 3.50 4.00 4.50

kA

IdcF_Swe

0.00 0.50 1.00

0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30

PU

Vrms_Den Vrms_Swe

16©TransGrid Solutions Inc., 2011

x 0.080 0.100 0.120 0.140 0.160 0.180 0.200 0.220 0.240

0.50

Page 17: Concurrent Commutation Failures in the Danish …mydocs.epri.com/docs/...Concurrent_Comm_Failures_in... · Concurrent Commutation Failures in the Danish System ... Barsebäck caused

Transfer of Commutation Failures via the RectifierRectifier

T +8 ms0

50 100 150

Ea_132_LI Eb_132_LI Ec_132_LI

-150 -100 -50

0

y

3.00

y

Ivda Ivdb Ivdc

-1.50

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0

y

Ivsa Ivsb Ivsc

250300

Ud_Li

-100 -50

0 50

100 150 200 250

y

4.50

y

Id_Li

-0.50 y

0.70 0.80 0.90 1.00 1.10 1.20

y

Erms_400_VH

17©TransGrid Solutions Inc., 2011

x 0.000 0.050 0.100 0.150 0.200 0.250 0.300 0.350 0.400

Page 18: Concurrent Commutation Failures in the Danish …mydocs.epri.com/docs/...Concurrent_Comm_Failures_in... · Concurrent Commutation Failures in the Danish System ... Barsebäck caused

Transfer of Commutation Failures via the RectifierRectifier

T +12 ms0

100 200 300 400

E400a E400b E400c

-400 -300 -200 -100

0

kV

5.0

kA

IVDA_32 IVDB_32 IVDC_32

-5.0

-4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0

kA

IVSA_33 IVSB_32 IVSC_32

4.00 Id_S2P3

-0.50

kA

0 60-0.40 -0.20 0.00 0.20 0.40

V

Ud_S2P3

-1.00 -0.80 -0.60 kV

0.920

1.100

y

Erms400

18©TransGrid Solutions Inc., 2011

x 0.000 0.050 0.100 0.150 0.200 0.250 0.300 0.350 0.400

Page 19: Concurrent Commutation Failures in the Danish …mydocs.epri.com/docs/...Concurrent_Comm_Failures_in... · Concurrent Commutation Failures in the Danish System ... Barsebäck caused

Transfer of Commutation Failures via the RectifierRectifier

Recreated the event almost exactly, with the exception of...

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

PU

Id_S1P2

-0.50

-0 20

0.00

0.20

0.40

0.60

0.80

1.00

PU

Ud_S1P2

0.20

-0.50

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

PU

Id_S1P3

x 0 00 0 10 0 20 0 30 0 40 0 50 0 60 0 70

-1.00

-0.80

-0.60

-0.40

-0.20

0.00

0.20

PU

Ud_S1P3

19©TransGrid Solutions Inc., 2011

x 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70

Page 20: Concurrent Commutation Failures in the Danish …mydocs.epri.com/docs/...Concurrent_Comm_Failures_in... · Concurrent Commutation Failures in the Danish System ... Barsebäck caused

Results

SK1 and SK2 failed commutation as well. This is due to the fact that;G di ti t d ll dGamma predication was not modelledThe powerflow was not 100% the same

Typically studies only consider inverter in close proximityThis is obviously not true, need to consider many scenarios

Need to be able to accurately model many “different” HVdc systems in the same model

20©TransGrid Solutions Inc., 2011

Page 21: Concurrent Commutation Failures in the Danish …mydocs.epri.com/docs/...Concurrent_Comm_Failures_in... · Concurrent Commutation Failures in the Danish System ... Barsebäck caused

Future Work

Evaluation of SK4 performance (LCC vs VSC) - doneD t i ti f “ t ti ”Determination of “must run generation”

21©TransGrid Solutions Inc., 2011

Page 22: Concurrent Commutation Failures in the Danish …mydocs.epri.com/docs/...Concurrent_Comm_Failures_in... · Concurrent Commutation Failures in the Danish System ... Barsebäck caused

Results

Benchmarking of standalone HVdc models is very important as it allows one to recreate abnormal system events years after the system was commissionedsystem events years after the system was commissioned.

yD

iffic

ulty

Time

22©TransGrid Solutions Inc., 2011

Page 23: Concurrent Commutation Failures in the Danish …mydocs.epri.com/docs/...Concurrent_Comm_Failures_in... · Concurrent Commutation Failures in the Danish System ... Barsebäck caused

TransGrid Solutions Inc.

Innovative Solutions for the Electric Power

TransGrid Solutions Inc

Industry

TransGrid Solutions Inc200 – 150 Innovation Dr.

Winnipeg, ManitobaCANADA, R3T 2E1

Phone: (204) 480 4050Fax: (204) 989 4858

[email protected]

23©TransGrid Solutions Inc., 2011

@ g