Top Banner
HIERARCHICAL STRUCTURES MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG November 5, 2010 Hierarchical Matrices: Concept, Applications and Eigenvalues Thomas Mach Max Planck Institute for Dynamics of Complex Technical Systems Computational Methods in Systems and Control Theory Max Planck Institute Magdeburg Thomas Mach, Hierarchical Matrices 1/28
67

€¦ · Concept Application Eigenvalues H-Matrices [Hackbusch ’98] 22 3 3 7 10 3 7 3 10 19 10 10 31 14 8 11 11 14 11 8 11 19 10 10 31 11 31 11 9 9 16 12 11 16 11 8 9 16 11 11 16

Aug 07, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: €¦ · Concept Application Eigenvalues H-Matrices [Hackbusch ’98] 22 3 3 7 10 3 7 3 10 19 10 10 31 14 8 11 11 14 11 8 11 19 10 10 31 11 31 11 9 9 16 12 11 16 11 8 9 16 11 11 16

HIERARCHICAL STRUCTURES

MAX PLANCK INSTITUTE

FOR DYNAMICS OF COMPLEX

TECHNICAL SYSTEMS

MAGDEBURG

November 5, 2010

Hierarchical Matrices:Concept, Applications and Eigenvalues

Thomas Mach

Max Planck Institute for Dynamics of Complex Technical SystemsComputational Methods in Systems and Control Theory

Max Planck Institute Magdeburg Thomas Mach, Hierarchical Matrices 1/28

Page 2: €¦ · Concept Application Eigenvalues H-Matrices [Hackbusch ’98] 22 3 3 7 10 3 7 3 10 19 10 10 31 14 8 11 11 14 11 8 11 19 10 10 31 11 31 11 9 9 16 12 11 16 11 8 9 16 11 11 16

HIERARCHICAL STRUCTURES

MAX PLANCK INSTITUTE

FOR DYNAMICS OF COMPLEX

TECHNICAL SYSTEMS

MAGDEBURG

November 5, 2010

Hierarchical Matrices:Concept, Applications and Eigenvalues

Thomas Mach

Max Planck Institute for Dynamics of Complex Technical SystemsComputational Methods in Systems and Control Theory

Max Planck Institute Magdeburg Thomas Mach, Hierarchical Matrices 1/28

Page 3: €¦ · Concept Application Eigenvalues H-Matrices [Hackbusch ’98] 22 3 3 7 10 3 7 3 10 19 10 10 31 14 8 11 11 14 11 8 11 19 10 10 31 11 31 11 9 9 16 12 11 16 11 8 9 16 11 11 16

HIERARCHICAL STRUCTURES

MAX PLANCK INSTITUTE

FOR DYNAMICS OF COMPLEX

TECHNICAL SYSTEMS

MAGDEBURG

November 5, 2010

Hierarchical Matrices:Concept, Applications and Eigenvalues

Thomas Mach

Max Planck Institute for Dynamics of Complex Technical SystemsComputational Methods in Systems and Control Theory

Max Planck Institute Magdeburg Thomas Mach, Hierarchical Matrices 1/28

Page 4: €¦ · Concept Application Eigenvalues H-Matrices [Hackbusch ’98] 22 3 3 7 10 3 7 3 10 19 10 10 31 14 8 11 11 14 11 8 11 19 10 10 31 11 31 11 9 9 16 12 11 16 11 8 9 16 11 11 16

HIERARCHICAL STRUCTURES

MAX PLANCK INSTITUTE

FOR DYNAMICS OF COMPLEX

TECHNICAL SYSTEMS

MAGDEBURG

November 5, 2010

Hierarchical Matrices:Concept, Applications and Eigenvalues

Thomas Mach

Max Planck Institute for Dynamics of Complex Technical SystemsComputational Methods in Systems and Control Theory

Max Planck Institute Magdeburg Thomas Mach, Hierarchical Matrices 1/28

Page 5: €¦ · Concept Application Eigenvalues H-Matrices [Hackbusch ’98] 22 3 3 7 10 3 7 3 10 19 10 10 31 14 8 11 11 14 11 8 11 19 10 10 31 11 31 11 9 9 16 12 11 16 11 8 9 16 11 11 16

Concept Application Eigenvalues

Householder Notation

λ ∈ R

Scalar

Max Planck Institute Magdeburg Thomas Mach, Hierarchical Matrices 2/28

Page 6: €¦ · Concept Application Eigenvalues H-Matrices [Hackbusch ’98] 22 3 3 7 10 3 7 3 10 19 10 10 31 14 8 11 11 14 11 8 11 19 10 10 31 11 31 11 9 9 16 12 11 16 11 8 9 16 11 11 16

Concept Application Eigenvalues

Householder Notation

x =

x1

x2

x3...xn

∈ Rn

Vector

Max Planck Institute Magdeburg Thomas Mach, Hierarchical Matrices 3/28

Page 7: €¦ · Concept Application Eigenvalues H-Matrices [Hackbusch ’98] 22 3 3 7 10 3 7 3 10 19 10 10 31 14 8 11 11 14 11 8 11 19 10 10 31 11 31 11 9 9 16 12 11 16 11 8 9 16 11 11 16

Concept Application Eigenvalues

Householder Notation

A =

a11 a12 a13 . . . a1n

a21 a22 a23 . . . a2n

a31 a32 a33 . . . a3n...

......

. . ....

an1 an2 an3 . . . ann

∈ Rn×n

Matrix

Max Planck Institute Magdeburg Thomas Mach, Hierarchical Matrices 4/28

Page 8: €¦ · Concept Application Eigenvalues H-Matrices [Hackbusch ’98] 22 3 3 7 10 3 7 3 10 19 10 10 31 14 8 11 11 14 11 8 11 19 10 10 31 11 31 11 9 9 16 12 11 16 11 8 9 16 11 11 16

Concept Application Eigenvalues

Dense Matrix Format

Store n vectors (Fortran):

a11

a21

a31...

an1

a12

a22

a32...

an2

a13

a23

a33...

an3

· · ·a1n

a2n

a3n...

ann

n2 entries in the storage

Ax costs O(n2) flops

AB costs O(nδ) flops, δ ≥ 2.376 usually δ = 3

A−1 costs O(n3) flops

There is a constant c , so that Ax costs not more than cn2 flops

Landau Symbol

1 flop = (αβ + γ → γ)

Flops

expensive!

Max Planck Institute Magdeburg Thomas Mach, Hierarchical Matrices 5/28

Page 9: €¦ · Concept Application Eigenvalues H-Matrices [Hackbusch ’98] 22 3 3 7 10 3 7 3 10 19 10 10 31 14 8 11 11 14 11 8 11 19 10 10 31 11 31 11 9 9 16 12 11 16 11 8 9 16 11 11 16

Concept Application Eigenvalues

Dense Matrix Format

Store n vectors (Fortran):

a11

a21

a31...

an1

a12

a22

a32...

an2

a13

a23

a33...

an3

· · ·a1n

a2n

a3n...

ann

n2 entries in the storage

Ax costs O(n2) flops

AB costs O(nδ) flops, δ ≥ 2.376 usually δ = 3

A−1 costs O(n3) flops

There is a constant c , so that Ax costs not more than cn2 flops

Landau Symbol

1 flop = (αβ + γ → γ)

Flops

expensive!

Max Planck Institute Magdeburg Thomas Mach, Hierarchical Matrices 5/28

Page 10: €¦ · Concept Application Eigenvalues H-Matrices [Hackbusch ’98] 22 3 3 7 10 3 7 3 10 19 10 10 31 14 8 11 11 14 11 8 11 19 10 10 31 11 31 11 9 9 16 12 11 16 11 8 9 16 11 11 16

Concept Application Eigenvalues

Dense Matrix Format

Store n vectors (Fortran):

a11

a21

a31...

an1

a12

a22

a32...

an2

a13

a23

a33...

an3

· · ·a1n

a2n

a3n...

ann

n2 entries in the storage

Ax costs O(n2) flops

AB costs O(nδ) flops, δ ≥ 2.376 usually δ = 3

A−1 costs O(n3) flops

There is a constant c , so that Ax costs not more than cn2 flops

Landau Symbol

1 flop = (αβ + γ → γ)

Flops

expensive!

Max Planck Institute Magdeburg Thomas Mach, Hierarchical Matrices 5/28

Page 11: €¦ · Concept Application Eigenvalues H-Matrices [Hackbusch ’98] 22 3 3 7 10 3 7 3 10 19 10 10 31 14 8 11 11 14 11 8 11 19 10 10 31 11 31 11 9 9 16 12 11 16 11 8 9 16 11 11 16

Concept Application Eigenvalues

Sparse Matrix Format

4 −1 0 −1 0 0 0 0 0−1 4 −1 0 −1 0 0 0 00 −1 4 0 0 −1 0 0 0−1 0 0 4 −1 0 −1 0 00 −1 0 −1 4 −1 0 −1 00 0 −1 0 −1 4 0 0 −10 0 0 −1 0 0 4 −1 00 0 0 0 −1 0 −1 4 −10 0 0 0 0 −1 0 −1 4

non-zero entries per row/column = c ≤ 5

Max Planck Institute Magdeburg Thomas Mach, Hierarchical Matrices 6/28

Page 12: €¦ · Concept Application Eigenvalues H-Matrices [Hackbusch ’98] 22 3 3 7 10 3 7 3 10 19 10 10 31 14 8 11 11 14 11 8 11 19 10 10 31 11 31 11 9 9 16 12 11 16 11 8 9 16 11 11 16

Concept Application Eigenvalues

Sparse Matrix Format

4 −1 0 −1 0 0 0 0 0−1 4 −1 0 −1 0 0 0 00 −1 4 0 0 −1 0 0 0−1 0 0 4 −1 0 −1 0 00 −1 0 −1 4 −1 0 −1 00 0 −1 0 −1 4 0 0 −10 0 0 −1 0 0 4 −1 00 0 0 0 −1 0 −1 4 −10 0 0 0 0 −1 0 −1 4

non-zero entries per row/column = c ≤ 5

Max Planck Institute Magdeburg Thomas Mach, Hierarchical Matrices 6/28

Page 13: €¦ · Concept Application Eigenvalues H-Matrices [Hackbusch ’98] 22 3 3 7 10 3 7 3 10 19 10 10 31 14 8 11 11 14 11 8 11 19 10 10 31 11 31 11 9 9 16 12 11 16 11 8 9 16 11 11 16

Concept Application Eigenvalues

Sparse Matrix Format

4 −1 −1 −1−1 −1 −1 4−1 4 −1 −1−1 −1 4 −14 −1 −1 −1−1 −1 −1 4−1 −1 4−1 4 −14 −1 −1

non-zero entries per row/column = c ≤ 5

Max Planck Institute Magdeburg Thomas Mach, Hierarchical Matrices 6/28

Page 14: €¦ · Concept Application Eigenvalues H-Matrices [Hackbusch ’98] 22 3 3 7 10 3 7 3 10 19 10 10 31 14 8 11 11 14 11 8 11 19 10 10 31 11 31 11 9 9 16 12 11 16 11 8 9 16 11 11 16

Concept Application Eigenvalues

Sparse Matrix Format (Matlab)

Store vector of tripel: (1, 1, 4)(2, 1,−1)(4, 1,−1)(1, 2,−1)

...

O(n) entries in the storage (if #non-zeros/column < c n)

Ax costs O(n) flops

AB may be much denser ⇒ better use A(Bx)

A−1 not possible, only solve Ax = b

Max Planck Institute Magdeburg Thomas Mach, Hierarchical Matrices 7/28

Page 15: €¦ · Concept Application Eigenvalues H-Matrices [Hackbusch ’98] 22 3 3 7 10 3 7 3 10 19 10 10 31 14 8 11 11 14 11 8 11 19 10 10 31 11 31 11 9 9 16 12 11 16 11 8 9 16 11 11 16

Concept Application Eigenvalues

Is there something in between?

Yes, e.g.

Low rank matrices and Tucker tensor format

Toeplitz/Hankel matrices

Semiseparable matrices [Gantmacher, Krein 1937]

Cauchy matrices

Fast Multipole Method (FMM) [Greengard, Rokhlin ’87]

Mosaic-skeleton matrices [Tyrtyshnikov ’96]

...

Max Planck Institute Magdeburg Thomas Mach, Hierarchical Matrices 8/28

Page 16: €¦ · Concept Application Eigenvalues H-Matrices [Hackbusch ’98] 22 3 3 7 10 3 7 3 10 19 10 10 31 14 8 11 11 14 11 8 11 19 10 10 31 11 31 11 9 9 16 12 11 16 11 8 9 16 11 11 16

Concept Application Eigenvalues

Is there something in between?

Yes, e.g.

Low rank matrices and Tucker tensor format

Toeplitz/Hankel matrices

Semiseparable matrices [Gantmacher, Krein 1937]

Cauchy matrices

Fast Multipole Method (FMM) [Greengard, Rokhlin ’87]

Mosaic-skeleton matrices [Tyrtyshnikov ’96]

...

Max Planck Institute Magdeburg Thomas Mach, Hierarchical Matrices 8/28

Page 17: €¦ · Concept Application Eigenvalues H-Matrices [Hackbusch ’98] 22 3 3 7 10 3 7 3 10 19 10 10 31 14 8 11 11 14 11 8 11 19 10 10 31 11 31 11 9 9 16 12 11 16 11 8 9 16 11 11 16

Concept Application Eigenvalues

Is there something in between?

Yes, e.g.

Low rank matrices and Tucker tensor format

Toeplitz/Hankel matrices

Semiseparable matrices [Gantmacher, Krein 1937]

Cauchy matrices

Fast Multipole Method (FMM) [Greengard, Rokhlin ’87]

Mosaic-skeleton matrices [Tyrtyshnikov ’96]

Hierarchical (H-) Matrices [Hackbusch ’98]

Max Planck Institute Magdeburg Thomas Mach, Hierarchical Matrices 8/28

Page 18: €¦ · Concept Application Eigenvalues H-Matrices [Hackbusch ’98] 22 3 3 7 10 3 7 3 10 19 10 10 31 14 8 11 11 14 11 8 11 19 10 10 31 11 31 11 9 9 16 12 11 16 11 8 9 16 11 11 16

Concept Application Eigenvalues

Integral Equation

Fredholm equation of first kind:∫Ω g(x , y)u(y)dy = f (x)

electrostatic problem:

g(x , y) = 14πε‖x−y‖

u(y) charge densityf (x) electrostatic potential

inverse of elliptic differential operators

population dynamics [Koch, Hackbusch, Sundmacher]

unknown

Max Planck Institute Magdeburg Thomas Mach, Hierarchical Matrices 9/28

Page 19: €¦ · Concept Application Eigenvalues H-Matrices [Hackbusch ’98] 22 3 3 7 10 3 7 3 10 19 10 10 31 14 8 11 11 14 11 8 11 19 10 10 31 11 31 11 9 9 16 12 11 16 11 8 9 16 11 11 16

Concept Application Eigenvalues

Integral Equation

Fredholm equation of first kind:∫Ω g(x , y)u(y)dy = f (x)

electrostatic problem:

g(x , y) = 14πε‖x−y‖

u(y) charge densityf (x) electrostatic potential

inverse of elliptic differential operators

population dynamics [Koch, Hackbusch, Sundmacher]

unknown

Max Planck Institute Magdeburg Thomas Mach, Hierarchical Matrices 9/28

Page 20: €¦ · Concept Application Eigenvalues H-Matrices [Hackbusch ’98] 22 3 3 7 10 3 7 3 10 19 10 10 31 14 8 11 11 14 11 8 11 19 10 10 31 11 31 11 9 9 16 12 11 16 11 8 9 16 11 11 16

Concept Application Eigenvalues

Integral Equation

Fredholm equation of first kind:∫Ω g(x , y)u(y)dy = f (x)

electrostatic problem:

g(x , y) = 14πε‖x−y‖

u(y) charge densityf (x) electrostatic potential

inverse of elliptic differential operators

population dynamics [Koch, Hackbusch, Sundmacher]

unknown

Max Planck Institute Magdeburg Thomas Mach, Hierarchical Matrices 9/28

Page 21: €¦ · Concept Application Eigenvalues H-Matrices [Hackbusch ’98] 22 3 3 7 10 3 7 3 10 19 10 10 31 14 8 11 11 14 11 8 11 19 10 10 31 11 31 11 9 9 16 12 11 16 11 8 9 16 11 11 16

Concept Application Eigenvalues

H-Matrices [Hackbusch ’98]

∫Ω g(x , y)u(y)dy = f (x)

Ritz-Galerkin method:

u(y) =∑

i uiψi (y)

⇒∑i

∫Ω

∫Ωg(x , y)ψi (y)dyψj(x)dx︸ ︷︷ ︸

:=Mji

ui=

∫Ωf (x)ψj(x)dx︸ ︷︷ ︸

=fj

x ∈ Ωs , y ∈ Ωt : g(x , y) ≈∑kp=1 g

x ,sp (x)g y ,t

p (y)

Mji =

∫Ω

∫Ωg(x , y)ψj(x)ψi (y)dydx

≈k∑

p=1

∫Ωg xp (x)ψj(x)dx

∫Ωg yp (y)ψi (y)dy = Aj ·B

Ti ·

discretization error ε ∼ 1nκ , 0 < κ < 1

Mu = f

Max Planck Institute Magdeburg Thomas Mach, Hierarchical Matrices 10/28

Page 22: €¦ · Concept Application Eigenvalues H-Matrices [Hackbusch ’98] 22 3 3 7 10 3 7 3 10 19 10 10 31 14 8 11 11 14 11 8 11 19 10 10 31 11 31 11 9 9 16 12 11 16 11 8 9 16 11 11 16

Concept Application Eigenvalues

H-Matrices [Hackbusch ’98]

∫Ω g(x , y)u(y)dy = f (x)

Ritz-Galerkin method:

u(y) =∑

i uiψi (y)

⇒∑i

∫Ω

∫Ωg(x , y)ψi (y)dyψj(x)dx︸ ︷︷ ︸

:=Mji

ui=

∫Ωf (x)ψj(x)dx︸ ︷︷ ︸

=fj

x ∈ Ωs , y ∈ Ωt : g(x , y) ≈∑kp=1 g

x ,sp (x)g y ,t

p (y)

Mji =

∫Ω

∫Ωg(x , y)ψj(x)ψi (y)dydx

≈k∑

p=1

∫Ωg xp (x)ψj(x)dx

∫Ωg yp (y)ψi (y)dy = Aj ·B

Ti ·

discretization error ε ∼ 1nκ , 0 < κ < 1

Mu = f

Max Planck Institute Magdeburg Thomas Mach, Hierarchical Matrices 10/28

Page 23: €¦ · Concept Application Eigenvalues H-Matrices [Hackbusch ’98] 22 3 3 7 10 3 7 3 10 19 10 10 31 14 8 11 11 14 11 8 11 19 10 10 31 11 31 11 9 9 16 12 11 16 11 8 9 16 11 11 16

Concept Application Eigenvalues

H-Matrices [Hackbusch ’98]

∫Ω g(x , y)u(y)dy = f (x)

Ritz-Galerkin method:

u(y) =∑

i uiψi (y)

⇒∑i

∫Ω

∫Ωg(x , y)ψi (y)dyψj(x)dx︸ ︷︷ ︸

:=Mji

ui=

∫Ωf (x)ψj(x)dx︸ ︷︷ ︸

=fj

x ∈ Ωs , y ∈ Ωt : g(x , y) ≈∑kp=1 g

x ,sp (x)g y ,t

p (y)

Mji =

∫Ω

∫Ωg(x , y)ψj(x)ψi (y)dydx

≈k∑

p=1

∫Ωg xp (x)ψj(x)dx

∫Ωg yp (y)ψi (y)dy = Aj ·B

Ti ·

discretization error ε ∼ 1nκ , 0 < κ < 1

Mu = f

Max Planck Institute Magdeburg Thomas Mach, Hierarchical Matrices 10/28

Page 24: €¦ · Concept Application Eigenvalues H-Matrices [Hackbusch ’98] 22 3 3 7 10 3 7 3 10 19 10 10 31 14 8 11 11 14 11 8 11 19 10 10 31 11 31 11 9 9 16 12 11 16 11 8 9 16 11 11 16

Concept Application Eigenvalues

H-Matrices [Hackbusch ’98]

∫Ω g(x , y)u(y)dy = f (x)

Ritz-Galerkin method:

u(y) =∑

i uiψi (y)

⇒∑i

∫Ω

∫Ωg(x , y)ψi (y)dyψj(x)dx︸ ︷︷ ︸

:=Mji

ui=

∫Ωf (x)ψj(x)dx︸ ︷︷ ︸

=fj

x ∈ Ωs , y ∈ Ωt : g(x , y) ≈∑kp=1 g

x ,sp (x)g y ,t

p (y)

Mji =

∫Ω

∫Ωg(x , y)ψj(x)ψi (y)dydx

≈k∑

p=1

∫Ωg xp (x)ψj(x)dx

∫Ωg yp (y)ψi (y)dy = Aj ·B

Ti ·

discretization error ε ∼ 1nκ , 0 < κ < 1

Mu = f

Max Planck Institute Magdeburg Thomas Mach, Hierarchical Matrices 10/28

Page 25: €¦ · Concept Application Eigenvalues H-Matrices [Hackbusch ’98] 22 3 3 7 10 3 7 3 10 19 10 10 31 14 8 11 11 14 11 8 11 19 10 10 31 11 31 11 9 9 16 12 11 16 11 8 9 16 11 11 16

Concept Application Eigenvalues

H-Matrices [Hackbusch ’98]

∫Ω g(x , y)u(y)dy = f (x)

Ritz-Galerkin method:

u(y) =∑

i uiψi (y)

⇒∑i

∫Ω

∫Ωg(x , y)ψi (y)dyψj(x)dx︸ ︷︷ ︸

:=Mji

ui=

∫Ωf (x)ψj(x)dx︸ ︷︷ ︸

=fj

x ∈ Ωs , y ∈ Ωt : g(x , y) ≈∑kp=1 g

x ,sp (x)g y ,t

p (y)

Mji =

∫Ω

∫Ωg(x , y)ψj(x)ψi (y)dydx

≈k∑

p=1

∫Ωg xp (x)ψj(x)dx

∫Ωg yp (y)ψi (y)dy = Aj ·B

Ti ·

discretization error ε ∼ 1nκ , 0 < κ < 1

Mu = f

Max Planck Institute Magdeburg Thomas Mach, Hierarchical Matrices 10/28

Page 26: €¦ · Concept Application Eigenvalues H-Matrices [Hackbusch ’98] 22 3 3 7 10 3 7 3 10 19 10 10 31 14 8 11 11 14 11 8 11 19 10 10 31 11 31 11 9 9 16 12 11 16 11 8 9 16 11 11 16

Concept Application Eigenvalues

H-Matrices [Hackbusch ’98]

22

3 3

7 10

3 7

3 10

19 10

10 31

14 8

11 11

14 11

8 11

19 10

10 31 11

11 31

11 9

9 16 12

11 1611 8

9 16 11

11 16

61

9 73 3

8

11 11

9 3

7 3

11

8 11

25 10

10 19 11

11 31

8 5

11 8

8 15 8 12

116 5

15 613

13

7 5

13 8

8 11 8 11

11

6 5

15 6

8

11 8

8 15

5 8 11

12

6 15

5 613

13

7

13 8

8 11

5 811

11

6 15

5 6

6110 103

6 14

10 3 6

10 14

25 10 6

10

6

19 10

10 31

15 9

9 1110

10 16

15 9

8 1110

10 16

5110 10

7 9 73 3

10 7

10

9 3

7 3

25 11

11

25 10

10 19

11 811 8

8 15 9

8 1512 13

13

10 7

13 8

8 11 9

9 15 1119

20

10 7

13 8

9

11 8

8 15 11 12

13

9 7

13 8

9

13 8

8 1111

10

11 8

8 15 8

9 15

7 12 13

13

10

13 8

8 11 8

9 15

7 1120

19

9

13 9

8

11 8

8 15

7 11 12

129

13 9

8

13 8

8 11

7 11

39 10

10 25

3 7

3 10 10

7 10 63 3

7 10 7

10

10

6

22

3 3

7 10

3 7

3 10

19 10

10 31

15 10

11

11 9

9 16

15 11

10

11 8

9 16

34 10

10 25

13 10

7 11

13 7

10 11 61

6 5

13 6 11

12

8 5

11 8

8 15 812

13

6 5

13 6 11

11 23

6 13

5 6 12

118

11 8

8 15

5 813

12

6 13

5 6 10

11 23

20 9

9 39

9 7

10

3 7

3 10

9 10

7

3 3

7 1061

15 10

1015 9

9 11

15 10

1015 9

8 11

20 9

9 34

9 7

10 13

9 10

7 1351

x ∈ Ωs , y ∈ Ωt : g(x, y) ≈k∑

p=1

gx,sp (x)gy,tp (y)

Mji =

∫Ω

∫Ωg(x, y)ψj (x)ψi (y)dydx

≈k∑

p=1

∫Ωgxp (x)ψj (x)dx

∫Ωgyp (y)ψi (y)dy = Aj·B

Ti·

rank (Ms×t) = 19store:

A ∈ R|s|×19,

B ∈ R|t|×19

with Ms×t = ABT

⇒ only 19(|s|+ |t|) instead of |s| |t| storage⇒ reduces the required storage to 15%

s

t

=

if x ≈ y then 1‖x−y‖ is large

small matrices on the diag-onal have no low rank ap-proximation⇒ use dense matrix format

non-admissible block

admissible block

Max Planck Institute Magdeburg Thomas Mach, Hierarchical Matrices 11/28

Page 27: €¦ · Concept Application Eigenvalues H-Matrices [Hackbusch ’98] 22 3 3 7 10 3 7 3 10 19 10 10 31 14 8 11 11 14 11 8 11 19 10 10 31 11 31 11 9 9 16 12 11 16 11 8 9 16 11 11 16

Concept Application Eigenvalues

H-Matrices [Hackbusch ’98]

22

3 3

7 10

3 7

3 10

19 10

10 31

14 8

11 11

14 11

8 11

19 10

10 31 11

11 31

11 9

9 16 12

11 1611 8

9 16 11

11 16

61

9 73 3

8

11 11

9 3

7 3

11

8 11

25 10

10 19 11

11 31

8 5

11 8

8 15 8 12

116 5

15 613

13

7 5

13 8

8 11 8 11

11

6 5

15 6

8

11 8

8 15

5 8 11

12

6 15

5 613

13

7

13 8

8 11

5 811

11

6 15

5 6

6110 103

6 14

10 3 6

10 14

25 10 6

10

6

19 10

10 31

15 9

9 1110

10 16

15 9

8 1110

10 16

5110 10

7 9 73 3

10 7

10

9 3

7 3

25 11

11

25 10

10 19

11 811 8

8 15 9

8 1512 13

13

10 7

13 8

8 11 9

9 15 1119

20

10 7

13 8

9

11 8

8 15 11 12

13

9 7

13 8

9

13 8

8 1111

10

11 8

8 15 8

9 15

7 12 13

13

10

13 8

8 11 8

9 15

7 1120

19

9

13 9

8

11 8

8 15

7 11 12

129

13 9

8

13 8

8 11

7 11

39 10

10 25

3 7

3 10 10

7 10 63 3

7 10 7

10

10

6

22

3 3

7 10

3 7

3 10

19 10

10 31

15 10

11

11 9

9 16

15 11

10

11 8

9 16

34 10

10 25

13 10

7 11

13 7

10 11 61

6 5

13 6 11

12

8 5

11 8

8 15 812

13

6 5

13 6 11

11 23

6 13

5 6 12

118

11 8

8 15

5 813

12

6 13

5 6 10

11 23

20 9

9 39

9 7

10

3 7

3 10

9 10

7

3 3

7 1061

15 10

1015 9

9 11

15 10

1015 9

8 11

20 9

9 34

9 7

10 13

9 10

7 1351

x ∈ Ωs , y ∈ Ωt : g(x, y) ≈k∑

p=1

gx,sp (x)gy,tp (y)

Mji =

∫Ω

∫Ωg(x, y)ψj (x)ψi (y)dydx

≈k∑

p=1

∫Ωgxp (x)ψj (x)dx

∫Ωgyp (y)ψi (y)dy = Aj·B

Ti·

rank (Ms×t) = 19store:

A ∈ R|s|×19,

B ∈ R|t|×19

with Ms×t = ABT

⇒ only 19(|s|+ |t|) instead of |s| |t| storage⇒ reduces the required storage to 15%

s

t

=if x ≈ y then 1

‖x−y‖ is largesmall matrices on the diag-onal have no low rank ap-proximation⇒ use dense matrix format

non-admissible block

admissible block

Max Planck Institute Magdeburg Thomas Mach, Hierarchical Matrices 11/28

Page 28: €¦ · Concept Application Eigenvalues H-Matrices [Hackbusch ’98] 22 3 3 7 10 3 7 3 10 19 10 10 31 14 8 11 11 14 11 8 11 19 10 10 31 11 31 11 9 9 16 12 11 16 11 8 9 16 11 11 16

Concept Application Eigenvalues

H-Matrices [Hackbusch ’98]

22

3 3

7 10

3 7

3 10

19 10

10 31

14 8

11 11

14 11

8 11

19 10

10 31 11

11 31

11 9

9 16 12

11 1611 8

9 16 11

11 16

61

9 73 3

8

11 11

9 3

7 3

11

8 11

25 10

10 19 11

11 31

8 5

11 8

8 15 8 12

116 5

15 613

13

7 5

13 8

8 11 8 11

11

6 5

15 6

8

11 8

8 15

5 8 11

12

6 15

5 613

13

7

13 8

8 11

5 811

11

6 15

5 6

6110 103

6 14

10 3 6

10 14

25 10 6

10

6

19 10

10 31

15 9

9 1110

10 16

15 9

8 1110

10 16

5110 10

7 9 73 3

10 7

10

9 3

7 3

25 11

11

25 10

10 19

11 811 8

8 15 9

8 1512 13

13

10 7

13 8

8 11 9

9 15 1119

20

10 7

13 8

9

11 8

8 15 11 12

13

9 7

13 8

9

13 8

8 1111

10

11 8

8 15 8

9 15

7 12 13

13

10

13 8

8 11 8

9 15

7 1120

19

9

13 9

8

11 8

8 15

7 11 12

129

13 9

8

13 8

8 11

7 11

39 10

10 25

3 7

3 10 10

7 10 63 3

7 10 7

10

10

6

22

3 3

7 10

3 7

3 10

19 10

10 31

15 10

11

11 9

9 16

15 11

10

11 8

9 16

34 10

10 25

13 10

7 11

13 7

10 11 61

6 5

13 6 11

12

8 5

11 8

8 15 812

13

6 5

13 6 11

11 23

6 13

5 6 12

118

11 8

8 15

5 813

12

6 13

5 6 10

11 23

20 9

9 39

9 7

10

3 7

3 10

9 10

7

3 3

7 1061

15 10

1015 9

9 11

15 10

1015 9

8 11

20 9

9 34

9 7

10 13

9 10

7 1351

x ∈ Ωs , y ∈ Ωt : g(x, y) ≈k∑

p=1

gx,sp (x)gy,tp (y)

Mji =

∫Ω

∫Ωg(x, y)ψj (x)ψi (y)dydx

≈k∑

p=1

∫Ωgxp (x)ψj (x)dx

∫Ωgyp (y)ψi (y)dy = Aj·B

Ti·

rank (Ms×t) = 19store:

A ∈ R|s|×19,

B ∈ R|t|×19

with Ms×t = ABT

⇒ only 19(|s|+ |t|) instead of |s| |t| storage⇒ reduces the required storage to 15%

s

t

=

if x ≈ y then 1‖x−y‖ is large

small matrices on the diag-onal have no low rank ap-proximation⇒ use dense matrix format

non-admissible block

admissible block

Max Planck Institute Magdeburg Thomas Mach, Hierarchical Matrices 11/28

Page 29: €¦ · Concept Application Eigenvalues H-Matrices [Hackbusch ’98] 22 3 3 7 10 3 7 3 10 19 10 10 31 14 8 11 11 14 11 8 11 19 10 10 31 11 31 11 9 9 16 12 11 16 11 8 9 16 11 11 16

Concept Application Eigenvalues

H-Matrices [Hackbusch ’98]

22

3 3

7 10

3 7

3 10

19 10

10 31

14 8

11 11

14 11

8 11

19 10

10 31 11

11 31

11 9

9 16 12

11 1611 8

9 16 11

11 16

61

9 73 3

8

11 11

9 3

7 3

11

8 11

25 10

10 19 11

11 31

8 5

11 8

8 15 8 12

116 5

15 613

13

7 5

13 8

8 11 8 11

11

6 5

15 6

8

11 8

8 15

5 8 11

12

6 15

5 613

13

7

13 8

8 11

5 811

11

6 15

5 6

6110 103

6 14

10 3 6

10 14

25 10 6

10

6

19 10

10 31

15 9

9 1110

10 16

15 9

8 1110

10 16

5110 10

7 9 73 3

10 7

10

9 3

7 3

25 11

11

25 10

10 19

11 811 8

8 15 9

8 1512 13

13

10 7

13 8

8 11 9

9 15 1119

20

10 7

13 8

9

11 8

8 15 11 12

13

9 7

13 8

9

13 8

8 1111

10

11 8

8 15 8

9 15

7 12 13

13

10

13 8

8 11 8

9 15

7 1120

19

9

13 9

8

11 8

8 15

7 11 12

129

13 9

8

13 8

8 11

7 11

39 10

10 25

3 7

3 10 10

7 10 63 3

7 10 7

10

10

6

22

3 3

7 10

3 7

3 10

19 10

10 31

15 10

11

11 9

9 16

15 11

10

11 8

9 16

34 10

10 25

13 10

7 11

13 7

10 11 61

6 5

13 6 11

12

8 5

11 8

8 15 812

13

6 5

13 6 11

11 23

6 13

5 6 12

118

11 8

8 15

5 813

12

6 13

5 6 10

11 23

20 9

9 39

9 7

10

3 7

3 10

9 10

7

3 3

7 1061

15 10

1015 9

9 11

15 10

1015 9

8 11

20 9

9 34

9 7

10 13

9 10

7 1351

x ∈ Ωs , y ∈ Ωt : g(x, y) ≈k∑

p=1

gx,sp (x)gy,tp (y)

Mji =

∫Ω

∫Ωg(x, y)ψj (x)ψi (y)dydx

≈k∑

p=1

∫Ωgxp (x)ψj (x)dx

∫Ωgyp (y)ψi (y)dy = Aj·B

Ti·

rank (Ms×t) = 19store:

A ∈ R|s|×19,

B ∈ R|t|×19

with Ms×t = ABT

⇒ only 19(|s|+ |t|) instead of |s| |t| storage⇒ reduces the required storage to 15%

s

t

=

if x ≈ y then 1‖x−y‖ is large

small matrices on the diag-onal have no low rank ap-proximation⇒ use dense matrix format

non-admissible block

admissible block

Max Planck Institute Magdeburg Thomas Mach, Hierarchical Matrices 11/28

Page 30: €¦ · Concept Application Eigenvalues H-Matrices [Hackbusch ’98] 22 3 3 7 10 3 7 3 10 19 10 10 31 14 8 11 11 14 11 8 11 19 10 10 31 11 31 11 9 9 16 12 11 16 11 8 9 16 11 11 16

Concept Application Eigenvalues

H-Matrices [Hackbusch ’98]

22

3 3

7 10

3 7

3 10

19 10

10 31

14 8

11 11

14 11

8 11

19 10

10 31 11

11 31

11 9

9 16 12

11 1611 8

9 16 11

11 16

61

9 73 3

8

11 11

9 3

7 3

11

8 11

25 10

10 19 11

11 31

8 5

11 8

8 15 8 12

116 5

15 613

13

7 5

13 8

8 11 8 11

11

6 5

15 6

8

11 8

8 15

5 8 11

12

6 15

5 613

13

7

13 8

8 11

5 811

11

6 15

5 6

6110 103

6 14

10 3 6

10 14

25 10 6

10

6

19 10

10 31

15 9

9 1110

10 16

15 9

8 1110

10 16

5110 10

7 9 73 3

10 7

10

9 3

7 3

25 11

11

25 10

10 19

11 811 8

8 15 9

8 1512 13

13

10 7

13 8

8 11 9

9 15 1119

20

10 7

13 8

9

11 8

8 15 11 12

13

9 7

13 8

9

13 8

8 1111

10

11 8

8 15 8

9 15

7 12 13

13

10

13 8

8 11 8

9 15

7 1120

19

9

13 9

8

11 8

8 15

7 11 12

129

13 9

8

13 8

8 11

7 11

39 10

10 25

3 7

3 10 10

7 10 63 3

7 10 7

10

10

6

22

3 3

7 10

3 7

3 10

19 10

10 31

15 10

11

11 9

9 16

15 11

10

11 8

9 16

34 10

10 25

13 10

7 11

13 7

10 11 61

6 5

13 6 11

12

8 5

11 8

8 15 812

13

6 5

13 6 11

11 23

6 13

5 6 12

118

11 8

8 15

5 813

12

6 13

5 6 10

11 23

20 9

9 39

9 7

10

3 7

3 10

9 10

7

3 3

7 1061

15 10

1015 9

9 11

15 10

1015 9

8 11

20 9

9 34

9 7

10 13

9 10

7 1351

x ∈ Ωs , y ∈ Ωt : g(x, y) ≈k∑

p=1

gx,sp (x)gy,tp (y)

Mji =

∫Ω

∫Ωg(x, y)ψj (x)ψi (y)dydx

≈k∑

p=1

∫Ωgxp (x)ψj (x)dx

∫Ωgyp (y)ψi (y)dy = Aj·B

Ti·

rank (Ms×t) = 19store:

A ∈ R|s|×19,

B ∈ R|t|×19

with Ms×t = ABT

⇒ only 19(|s|+ |t|) instead of |s| |t| storage⇒ reduces the required storage to 15%

s

t

=

if x ≈ y then 1‖x−y‖ is large

small matrices on the diag-onal have no low rank ap-proximation⇒ use dense matrix format

non-admissible block

admissible block

Max Planck Institute Magdeburg Thomas Mach, Hierarchical Matrices 11/28

Page 31: €¦ · Concept Application Eigenvalues H-Matrices [Hackbusch ’98] 22 3 3 7 10 3 7 3 10 19 10 10 31 14 8 11 11 14 11 8 11 19 10 10 31 11 31 11 9 9 16 12 11 16 11 8 9 16 11 11 16

Concept Application Eigenvalues

H-Matrices [Hackbusch ’98]

rank-k-matrix: Ms×t = ABT , A ∈ Rn×k ,B ∈ Rm×k (k n,m)

hierarchical tree TI block H-tree TI× I

I = 1, 2, 3, 4, 5, 6, 7, 8

1, 2, 3, 4 5, 6, 7, 8

1, 2 3, 4 5, 6 7, 8

12345678

1 1 1 12 2 2 23 3 3 34 4 4 45 5 5 56 6 6 67 7 7 78 8 8 8

1 1 1 12 2 2 23 3 3 34 4 4 45 5 5 56 6 6 67 7 7 78 8 8 8

dense matrices, rank-k-matrices

Max Planck Institute Magdeburg Thomas Mach, Hierarchical Matrices 12/28

Page 32: €¦ · Concept Application Eigenvalues H-Matrices [Hackbusch ’98] 22 3 3 7 10 3 7 3 10 19 10 10 31 14 8 11 11 14 11 8 11 19 10 10 31 11 31 11 9 9 16 12 11 16 11 8 9 16 11 11 16

Concept Application Eigenvalues

H-Matrices [Hackbusch ’98]

Hierarchical matrices

H(TI× I, k) =M ∈ RI× I

∣∣ rank (Ms×t) ≤ k ∀s × t admissible

22

3 3

7 10

3 7

3 10

19 10

10 31

14 8

11 11

14 11

8 11

19 10

10 31 11

11 31

11 9

9 16 12

11 1611 8

9 16 11

11 16

61

9 73 3

8

11 11

9 3

7 3

11

8 11

25 10

10 19 11

11 31

8 5

11 8

8 15 8 12

116 5

15 613

13

7 5

13 8

8 11 8 11

11

6 5

15 6

8

11 8

8 15

5 8 11

12

6 15

5 613

13

7

13 8

8 11

5 811

11

6 15

5 6

6110 103

6 14

10 3 6

10 14

25 10 6

10

6

19 10

10 31

15 9

9 1110

10 16

15 9

8 1110

10 16

5110 10

7 9 73 3

10 7

10

9 3

7 3

25 11

11

25 10

10 19

11 811 8

8 15 9

8 1512 13

13

10 7

13 8

8 11 9

9 15 1119

20

10 7

13 8

9

11 8

8 15 11 12

13

9 7

13 8

9

13 8

8 1111

10

11 8

8 15 8

9 15

7 12 13

13

10

13 8

8 11 8

9 15

7 1120

19

9

13 9

8

11 8

8 15

7 11 12

129

13 9

8

13 8

8 11

7 11

39 10

10 25

3 7

3 10 10

7 10 63 3

7 10 7

10

10

6

22

3 3

7 10

3 7

3 10

19 10

10 31

15 10

11

11 9

9 16

15 11

10

11 8

9 16

34 10

10 25

13 10

7 11

13 7

10 11 61

6 5

13 6 11

12

8 5

11 8

8 15 812

13

6 5

13 6 11

11 23

6 13

5 6 12

118

11 8

8 15

5 813

12

6 13

5 6 10

11 23

20 9

9 39

9 7

10

3 7

3 10

9 10

7

3 3

7 1061

15 10

1015 9

9 11

15 10

1015 9

8 11

20 9

9 34

9 7

10 13

9 10

7 1351

adaptive rank k(ε)

storage NSt,H(T , k) = O(n log n k(ε))

complexity of approximate arithmetic

MHv O(n log n k(ε))+H,−H O(n log n k(ε)2)

∗H,HLU(·), (·)−1H O(n (log n)2 k(ε)2)

Max Planck Institute Magdeburg Thomas Mach, Hierarchical Matrices 13/28

Page 33: €¦ · Concept Application Eigenvalues H-Matrices [Hackbusch ’98] 22 3 3 7 10 3 7 3 10 19 10 10 31 14 8 11 11 14 11 8 11 19 10 10 31 11 31 11 9 9 16 12 11 16 11 8 9 16 11 11 16

Concept Application Eigenvalues

H-Matrices [Hackbusch ’98]

Hierarchical matrices

H(TI× I, k) =M ∈ RI× I

∣∣ rank (Ms×t) ≤ k ∀s × t admissible

22

3 3

7 10

3 7

3 10

19 10

10 31

14 8

11 11

14 11

8 11

19 10

10 31 11

11 31

11 9

9 16 12

11 1611 8

9 16 11

11 16

61

9 73 3

8

11 11

9 3

7 3

11

8 11

25 10

10 19 11

11 31

8 5

11 8

8 15 8 12

116 5

15 613

13

7 5

13 8

8 11 8 11

11

6 5

15 6

8

11 8

8 15

5 8 11

12

6 15

5 613

13

7

13 8

8 11

5 811

11

6 15

5 6

6110 103

6 14

10 3 6

10 14

25 10 6

10

6

19 10

10 31

15 9

9 1110

10 16

15 9

8 1110

10 16

5110 10

7 9 73 3

10 7

10

9 3

7 3

25 11

11

25 10

10 19

11 811 8

8 15 9

8 1512 13

13

10 7

13 8

8 11 9

9 15 1119

20

10 7

13 8

9

11 8

8 15 11 12

13

9 7

13 8

9

13 8

8 1111

10

11 8

8 15 8

9 15

7 12 13

13

10

13 8

8 11 8

9 15

7 1120

19

9

13 9

8

11 8

8 15

7 11 12

129

13 9

8

13 8

8 11

7 11

39 10

10 25

3 7

3 10 10

7 10 63 3

7 10 7

10

10

6

22

3 3

7 10

3 7

3 10

19 10

10 31

15 10

11

11 9

9 16

15 11

10

11 8

9 16

34 10

10 25

13 10

7 11

13 7

10 11 61

6 5

13 6 11

12

8 5

11 8

8 15 812

13

6 5

13 6 11

11 23

6 13

5 6 12

118

11 8

8 15

5 813

12

6 13

5 6 10

11 23

20 9

9 39

9 7

10

3 7

3 10

9 10

7

3 3

7 1061

15 10

1015 9

9 11

15 10

1015 9

8 11

20 9

9 34

9 7

10 13

9 10

7 1351

adaptive rank k(ε)

storage NSt,H(T , k) = O(n log n k(ε))

complexity of approximate arithmetic

MHv O(n log n k(ε))+H,−H O(n log n k(ε)2)

∗H,HLU(·), (·)−1H O(n (log n)2 k(ε)2)

A1

BT1

+ A2

BT2

= A1 A2

BT1

BT2

Max Planck Institute Magdeburg Thomas Mach, Hierarchical Matrices 13/28

Page 34: €¦ · Concept Application Eigenvalues H-Matrices [Hackbusch ’98] 22 3 3 7 10 3 7 3 10 19 10 10 31 14 8 11 11 14 11 8 11 19 10 10 31 11 31 11 9 9 16 12 11 16 11 8 9 16 11 11 16

Concept Application Eigenvalues

Special Case: H`-Matrices

A8BT8

B8AT8

A4BT4

B4AT4

A12BT12

B12AT12

A2BT2

A6BT6

A10BT10

A14BT14

B2AT2

B6AT6

B10AT10

B14AT14

F1

F3

F5

F7

F9

F11

F13

F15

Figure: Structure of an H3(k)-matrix

Max Planck Institute Magdeburg Thomas Mach, Hierarchical Matrices 14/28

Page 35: €¦ · Concept Application Eigenvalues H-Matrices [Hackbusch ’98] 22 3 3 7 10 3 7 3 10 19 10 10 31 14 8 11 11 14 11 8 11 19 10 10 31 11 31 11 9 9 16 12 11 16 11 8 9 16 11 11 16

Concept Application Eigenvalues

Applications

Max Planck Institute Magdeburg Thomas Mach, Hierarchical Matrices 15/28

Page 36: €¦ · Concept Application Eigenvalues H-Matrices [Hackbusch ’98] 22 3 3 7 10 3 7 3 10 19 10 10 31 14 8 11 11 14 11 8 11 19 10 10 31 11 31 11 9 9 16 12 11 16 11 8 9 16 11 11 16

Concept Application Eigenvalues

Applications

Finite-Element-Method (FEM)

Inverse of FEM matrices

Integral equations

Solving matrix equations for model order reduction

AX + XAT + BBT = 0, A ∈ H,B ∈ Rn×k

Sign function iteration[Baur ’07, Grasedyck ’03, et al.]

Boundary-Element-Method (BEM)

Max Planck Institute Magdeburg Thomas Mach, Hierarchical Matrices 16/28

Page 37: €¦ · Concept Application Eigenvalues H-Matrices [Hackbusch ’98] 22 3 3 7 10 3 7 3 10 19 10 10 31 14 8 11 11 14 11 8 11 19 10 10 31 11 31 11 9 9 16 12 11 16 11 8 9 16 11 11 16

Concept Application Eigenvalues

BEM for Electrostatic Computations

−4 −20

24

·103

−20

2·103

−4

−2

0

2

4

·103

Max Planck Institute Magdeburg Thomas Mach, Hierarchical Matrices 17/28

Page 38: €¦ · Concept Application Eigenvalues H-Matrices [Hackbusch ’98] 22 3 3 7 10 3 7 3 10 19 10 10 31 14 8 11 11 14 11 8 11 19 10 10 31 11 31 11 9 9 16 12 11 16 11 8 9 16 11 11 16

Concept Application Eigenvalues

BEM for Electrostatic Computations

−4 −20

24

·103

−20

2·103

−4

−2

0

2

4

·103Electrostatic problem:∫

Ω g(x , y)u(y)dy = f (x)

g(x , y) = 14πε‖x−y‖

unknown: u(y) charge density

given: f (x) electrostatic potential

Max Planck Institute Magdeburg Thomas Mach, Hierarchical Matrices 17/28

Page 39: €¦ · Concept Application Eigenvalues H-Matrices [Hackbusch ’98] 22 3 3 7 10 3 7 3 10 19 10 10 31 14 8 11 11 14 11 8 11 19 10 10 31 11 31 11 9 9 16 12 11 16 11 8 9 16 11 11 16

Concept Application Eigenvalues

BEM for Electrostatic Computations

−4 −20

24

·103

−20

2·103

−4

−2

0

2

4

·103

Max Planck Institute Magdeburg Thomas Mach, Hierarchical Matrices 17/28

Page 40: €¦ · Concept Application Eigenvalues H-Matrices [Hackbusch ’98] 22 3 3 7 10 3 7 3 10 19 10 10 31 14 8 11 11 14 11 8 11 19 10 10 31 11 31 11 9 9 16 12 11 16 11 8 9 16 11 11 16

Concept Application Eigenvalues

BEM for Electrostatic Computations

Max Planck Institute Magdeburg Thomas Mach, Hierarchical Matrices 17/28

Page 41: €¦ · Concept Application Eigenvalues H-Matrices [Hackbusch ’98] 22 3 3 7 10 3 7 3 10 19 10 10 31 14 8 11 11 14 11 8 11 19 10 10 31 11 31 11 9 9 16 12 11 16 11 8 9 16 11 11 16

Concept Application Eigenvalues

BEM for Electrostatic Computations

Max Planck Institute Magdeburg Thomas Mach, Hierarchical Matrices 18/28

Page 42: €¦ · Concept Application Eigenvalues H-Matrices [Hackbusch ’98] 22 3 3 7 10 3 7 3 10 19 10 10 31 14 8 11 11 14 11 8 11 19 10 10 31 11 31 11 9 9 16 12 11 16 11 8 9 16 11 11 16

Concept Application Eigenvalues

BEM for Electrostatic Computations

−4 −20

24

·103

−20

2·103

−4

−2

0

2

4

·103

Max Planck Institute Magdeburg Thomas Mach, Hierarchical Matrices 18/28

Page 43: €¦ · Concept Application Eigenvalues H-Matrices [Hackbusch ’98] 22 3 3 7 10 3 7 3 10 19 10 10 31 14 8 11 11 14 11 8 11 19 10 10 31 11 31 11 9 9 16 12 11 16 11 8 9 16 11 11 16

Concept Application Eigenvalues

BEM for Electrostatic Computations26 14

14 20 19

1925 14

14 20

23 16

17 23

23 17

16 23

22 20

20 22 22

22 36

13

15

17

18

13 15 17 18

19 15

15 21

20 16

19 25 8

11 18 8

20 19

16 25

11

188 8

25 14

14 20 16

16 26

22 15

13 15

22 13

15 15

36 19

19 288

8 8

17 12

27 19

19 26 20 2513 23 10 11 23 9

25 14

16 10 13

3016 10

26 16

16 18 17 16

8 8

1727 19

19 26

12 20

13

23

10

11

2523

9

30

25

16

10

14 13

1626 16

16 18

10 17 8

16 8

22 20

20 22 22

22 36

28 20

20 28

28 20

20 28

21 11

11 12 20

20 22 29

2928 18

18 18

18

36 22

32

21

28 22

17 18

18 36 32

22 21

28 17

22 18

19 13

13 15 23

2323 13

13 1525

25

20 12

12 15 23

2320 12

12 15

50

19 12

15 20

24 20

17 25

20 14

13 20

50

24 17

20 2519 15

12 20

20 13

14 20

36 19

19 28 40

40

26 18

18 18 23

2321 13

13 14

20 14

17 20

20 17

14 20

20 12

12 20

22

22 11

6 18 10 8

20

13 22

13

17

18 12 21

17 2224

8 6

22

19 8

23 9

17 10 9 7

20 43

19

23 10

6 16 10

6 11 9

15

10

27 19

16 19

6 19 15

17 8

15

34 17

13

25

16

20 19

16 17

20 18

17 24 19

20

20 17

18 20

48 12

27 13 18 12

18 12 27 13 10

23 14

19 24

20 13

14 20

36 26

20 24 33

4644 29

23 3024

20 16

17 20 11

22 20

22

6

18

10

11 8

13 13

22

17 18

12

17

21 228

24 6

19 15

23

6 6

16

10 11

10 9

10 6

27 16

19 1919 17

15 8

2219

8 20

23

17

10

9

9 7

43

15 34 13 25

17 1620 16

19 17

20 17

18 24 20

1920 18

17 20

23 19

14 24

20 14

13 20

48

27

13

18

12

18

12

27

13

12 10

36 20

26 2446

33

44 23

29 30

20 17

16 20

24 11

22 18

18

19 13

13 18 9 17

9

17

31 19

19 27 12

12 12

27

27

18 18

18

24 18

18

21 17

17

24 19

19 19

19 12

13 17 14

9

16

11

12

18 13

16 15

19 13

12 17 9 16

14 11 12

18 16

13 15

28 14

14 17 14

1418 12

12 15

15 15

18

8

10 6 6

35 25

24

13 16

17

10 10

12 13

12 27 17 19 19

8 9 6 6

11 19 9 14

15 18 8

15

10

35 24

25

13 17

16

10

12 12

13 27

10 17

6

619

8

9

11

19

6

69

19 14

20 17

17 24 19

1920 17

17 20

29 12 17 10

16 10 26 11 11

29

12

16

10

17

10

26

11

11

20 15

15 15 27

2723 15

15 15

15 17

15 18

15 15

17 18

15 14

14 18

49

49

31 31

31

15 15

15

27 20

20 2037

37

18 17

17

15 15

15 24

14 14

14 21

14 14

14 21

14 13

13 21

39 27

25 49

39 25

27 49

20 15

15 15 28

2820 15

15 1530

30 3045

45

17 16

16 18 35

35

15 15

15

28 16

16 16

13 13

12 2913 12

13 29

15 15

15

27 18

18 18

26 17

18 26

26 18

17 26

26 13

13 26

35

12 138 6 7

7

27 8

10 117 6 7 7

9

19 11

22

12

11 10

116 7

8 9 6

12 12 10

32 13

49

8 6

17 11

11 17 15

8

15

11

40

18 12

12 17 15 9

8

15

12 713

20 15

15 25 12

18 12

12 16 15

1318 14

12 15

24 13

13 17 15 9

1318 14

12 15 10

10 339 5

9

13

24

6

6

9

10

8

926

6

614

17 18

8

8

8

11 7

15

45

12

19

12

22

12

36

15 11

46 16 23

25

12 11

38 1726 15

14 26

26 16

16 26

14

35 4912 8

13

6

727

7 8

22

10

7

6

11

7

7

19

9 11

12 12

11 11

10

6 8

7

9

6

12 32

10 13

8

17 11

11 17 8 15

15 11 40

18 12

12 16 13

15

18 12

14 15

18 12

12 17 8 15

15

9

12 13

20 15

15 25

7 12

24 13

13 17 13

15

9

18 12

14 15

10

6 10

9

9 6 6

13 24 9 10 17

8 9 6 6

26 14 18

5 8 8 8

33

11

15 45 12 22

12 19 12 36

26 14

15 26

15 46

11 16 25

23

12 38

11 17

26 16

16 26

7 14

26 16

16

20 14

14 25

15 12

15 23

15 15

12 23

28 19

19 3640

40

20 14

14 25 18

18

20 14

14 26

22 11 11

16 24

22 16

11

11 24

36 22

22

22 20

20 22

16 1118 16

16 26 17 24

25

18 1126 19

19 27 20

16

18 16

16 26

11 17 25

24

18

26 19

19 27

11 20

28 19

19 36 40

40

21 12

12 14 23

23

28 18

18 18

50

50

36 22

22

22 20

20 22

28 20

20 29

28 20

20 29

26 18

18 18 29

29

12 12

12 21 21

21 22

34

13 20

13

20 16

18 27

11

17

2413

26

23 36 21

13 23 26

41 18

23

23

14

34 20

26 38

23 19

24 36 31

41

27 22

24 4245

19 47

36 23

30 40

34

13 13

20

20 18

16 27

24

11 17 13 26

41 23

18 23 14

23

36

13

23

21 26

34 26

20 38

23 24

19 3641

31

27 24

22 42

19

47

45

36 30

23 40

19 12

12 17 16

16

21 16

16

31 13

13 13

19 13

13 17 17 9

16

21 16

16

27 15

13 1318

19 13

13 17 16

17

9

21 16

16

27 13

15 13

18

28 15

15 18 16 9

16

9

21 16

16

27 16

16 2624

24

32 17

17 21 25

25 25

9

6

11

27

9 6 11 27

10 10

10

29 17

17 23

9 5

30 10

9 5 6

30 18 10 10

8 5

29

17 12

10 5 6

32 19

21 41 18 2610 12 23 11 34 11

9 30

5 10

8 29 17

5 12

9

30

18

5

6

10

10

10

32 21

19 41

5

618

10

12

23

11

2634

11

32 13

13 13 29

29

16 16

16

12 12

12 21 14

14 14

31

31

30 13

13 15 29

2930 14

14 15

27 15

13 13 29

27

16

12 12

14 20 16

14 14

32 29 19

32 18

30 13

14 15 27

2830 13

14 15

3127 13

15 13 27

2916

12 14

12 20 14

16 14

32

32

18

29

19

30 14

13 15 28

2730 14

13 15

31

27 15

15 17 29

29

17 17

17 23 16

16 1937

37

20 13

13 15

17 12

12 13

17 12

12 13

21 13

13 15

25 23

20 30

25 20

23 30

25 20

20 30

31 22

19 45

31 19

22 45

30 14

14 15 30

3030 14

14 15

31

31

20 13

13 15 28

2820 13

13 15

25 21

22 25

25 22

21 25

25 20

20 25

18

15

48 25

11

27

12

45

18

15 48 11 27

25 12 45

20 20

20

20 17

17 24 29

29

23 19

19 2937

37

20 20

20

20 17

17 25 29

29

20 17

17 25

19 1018 11

30 21

22 29 19 29

2910 8

25 1032

33

15 11

42 16 18

18 14

19

15 9

25

22

25 10

10 9 8 7

18 12 10 9 8

21 46 14

14 924 22 21

26

10

9

8

7

18

12

10

9

9 8

19 11

41 1519

14 8

15

14 921 19

19

20 1339 26

26

17 21

21

17 1413 13

13 29 1720 19

19 14

15

21

13 9

11 14

96 7 7

9 7 710

21 11 13

13 98 8

19

7 7

6

9 78

11 10

8

13

13 99 8

11 9

11

19 1227

16 19

7

8 7

11 10

9

13

21 23

13 9

11 9

14

9 7

9

6

7

20

10 1113

12 9

9

12 9

11 20 11 16

27 19

8

7 8 7

11 7 8 9

13

18 1016 11

42 15 26

27

19 11

29 20

22 30 1818

14 10

57 15

15 10

25

38 24

22 2814

13 107 6 9 7 8 6

1011 8

32 11

13 9

30 18 12

12 9

30

18 13

20 1332 18

18 46 20

13

14 11

10

25

8

12

13

8 12 11

10 25 14

12 10

38 12

13

7

7

6

8

106

8

19

18

30 22

21 29

11 19 29

2910 25

8 1033

32

15 42

11 16 18

18 14

10 19

14

24

22

26 9

10 9 18 12

8 7 10 9 8

21

19 41

11 15 14

19 8

9 15

15

25 22 21

25

10

9

18

12

8

7

10

9

10 8

46

9 14

14

21 19

19

20

39 26

26

17 21

21

17

13 13

13 29

14 17

13 20 19

19 14

9 15

21

13

11 14

99 9

7 6 710

20 11

9 13

2312

9 8

12

11

20

9 1127

16 19

7

8 11

7

7

8

9

9 13

2113

8 19

8

7 6 9

7 7 11

8 10 8

9 13

13

11 9

14

6

7 9

7

7

7

21

10 11

9 13

13

9

11 11 19

9 12 16

27 19

8

7 8 11

7 10 9

9 13

18

16 42

11 15 27

26

19

29 22

20 30

11 18

10 18

15

25 38 22

24 28

10 14

14 57

10 15

13

7

6

9

7

10

8

6

11 32

8 11

12 30 18

9 13

13

30

18

9 12

20

32 18

18 46

13 20

13

8

12

10

25

11 14

13

14 10 25

11 8 12

12 38

10 12

10 13 107 7 6 8 6 8

22 21

21

21 12

12 1229

29

18 18

18 26

29 20

20 28

29 20

20 28

22 20

20 22 22

22 36

2118 17

21 2630

23

19

18 18

17 18

21

18 21

17 26 23

30 19

18 17

18 18

20 12

12 15 23

2320 12

12 1525

25

23 13

13 15 23

2319 13

13 15

50

20 15

13 19

27 16

21 24

20 13

14 20

5027 21

16 2420 13

15 19

20 14

13 20

18 18

18 28 23

23

14 13

13 2140

4036 19

19 28

20 17

14 20

20 14

17 20

20 12

12 20

20 11

27 19

19 26 18

10

11

13

23

269

23

29

2511

16

15 13

17 11

26 16

16 18 16 8

15 8

2027 19

19 26

11 18 2610 11 13 23 9 23

25 15

11 16 13

29

1726 16

16 18

11 16 15

8 8

22 20

20 22 22

22 36

2411

11

16 22

24 16

11 11 22

26 14

14 20 18

1825 14

14 20

15

18

16

13

15 18 16 13

19 15

15 21

40 8

17 11 8

40

17

118 8

36 19

19 28

23 12

15 15

23 15

12 15

25 14

14 20 16

16 268

8 8

16

17 16

18 20

13

24

18

15

34

20 18

17 20 20

19

24 17

18 20

47 12

27 13 18 12

18 12 27 13 10

24 20

15 22

20 14

13 20

46 30

24 30 48

3436 26

20 2424

20 17

16 20 11

19

22 10

11 6

16 10 69

16

19 6

27 19

16 19 1015

17 8

22

8 19

24 10

9 17 10 7

20 43

22

23 11

18 10 6 8

20

30 21

17 22 13

21 13 238 6

1617 18

16 20 18

13 24 15 34

20 17

18 20 19

2024 18

17 20

24 15

20 22

20 13

14 20

47

27

13

18

12

18

12

27

13

12 10

46 24

30 3034

48

36 20

26 24

20 16

17 20

24 11

22

8

19 20

24

9

17

10

10 7

43

19 16

2211

16

10

6 6

10 9

19

27 16

19 19

6 10

17

15 8

22 20

23

18

10

6

11 8

30 17

21 2221

13 13

8

23 6

20 17

17 20 19

1924 17

17 20

26 11 16 10

17 10 29 12 11

26

11

17

10

16

10

29

12

11

20 15

15 15 28

2820 15

15 1530

30 3045

45

18 16

16 17 35

35

15 15

15

27 18

18 18

13 12

13 2913 13

12 29

15 15

15

28 16

16 16

39 25

27 49

39 27

25 49

23 15

15 15 27

2720 15

15 15

18 15

17 15

18 17

15 15

18 14

14 15

49

49

31 31

31

18 17

17

24 15

15 15

21 14

14 14

21 14

14 14

21 13

13 14

37

37

15 15

15

27 20

20 20

26 18

17 26

26 17

18 26

26 13

13 26

15 17 8

15

19

6

6

35 23

25

13 17

16

17 10

12 12

13 27 10

10

9

6

6

11

19

8

9

19 14

15 15

17

8

19

35 25

23

13 16

17

17

12 13

12 27

10 10

6 6 10

19

9 11 19

6 6 8 9 14

22 18

18

31 19

19 27 12

12 12

27

27

18 18

18

21 17

17

24 19

19 1918

18 24

9

17

9 17

18 13

13 19

11

12

15 16

12 18

9

16

14

17 14

12 19

11 12

15 12

16 18 14

9 16

17 12

14 19

15 12

12 18 14

14

17 14

14 28

35

34 21

10 126 7 7 7

9

19 11

11 138 7 6

7

26 8

49

11 7

12

36

12

22

12

19

15

45

12 11

38 17 25

23

15 11

46 1626 14

15 26

26 16

16 26

14

9 5

9

10

6

6

13

24 9

14

6

6

26

8

9

17 18

8

8

8

33

8 6

11

40

8

15

15

17 11

11 17

12 713

25 15

15 2012

8

15

15 9

17 12

12 18

15 12

14 18 13

15

16 12

12 18

15 12

14 18 10 13

15 9

17 13

13 24

10

35 49

34

10

6

7

12

7

7

19

9 11

21

11 8

137

6

26

7 8

11

12 36 12 19

12 22 15 45

26 15

14 26

12 38

11 17 23

25

15 46

11 16

26 16

16 26

7 1433

9

9 10 13 24

6 6 9 17

14 266 6 8 9

18

5 8 8 8

8

11 40 15

8 15

17 11

11 17

15 14

12 1815

13

16 12

12 18

12 13

25 15

15 20

7 12

15

9

8 15

17 12

12 18

15 14

12 18

10

15

9

13

17 13

13 24

6 10

14 13

13 21 23

23

18 18

18 2640

40

28 19

19 36

31 22

21 25

31 21

22 25

18 18

18 28 29

29

22 21

21

12 11

11 21

28 20

20 28

28 20

20 28

36 22

22

22 20

20 22

17 10

18 16

16 26 16 25

25

20 12

26 19

19 27 17

17

18 16

16 26

10 16 25

25

20

26 19

19 27

12 17

28 19

19 36

15 15

13 22

15 13

15 22

26 16

16

20 14

14 2540

40

36 22

22

22 20

20 22

23 16

17 23

23 17

16 23

20 14

14 25 19

19

20 14

14 26

38 26

19 34

27 23

24 40 42

31

23 19

24 3644

19 4740 31

23 37

41 18

2314

24

23 36 21

23 26

34

21 16

18 27 13

20 13

18

11

24

25

14

38 19

26 34

27 24

23 4031

42

23 24

19 36

19

47

44

40 23

31 37

23

36 23

21 26

41 23

18 14 24

34

21 18

16 2720

13 13

24

18 11 25 14

30 14

14 15 29

2930 13

13 15

31

31

16 16

16

21 12

12 1214

14 1429

2932 13

13 13

30 13

14 15 28

2730 13

14 15

31 32 18

29 19

16

20 14

12 1216

14 1428

2927 15

13 13

3230 14

13 15 27

2830 14

13 15

31

29

19

32

18

16

20 12

14 12 14

16 1429

2827 13

15 13

32

30 14

14 15 30

3030 14

14 15

31

31

20 13

13 15 28

2820 13

13 15

25 22

21 25

25 21

22 25

25 20

20 25

31 19

22 45

31 22

19 45

23 17

17 17 16

16 1929

2927 15

15 17

37

37

21 13

13 15

17 12

12 13

17 12

12 13

20 13

13 15

30 20

23 25

30 23

20 25

30 20

20 25

18

12

45

11

27

25

15

48

18

12 45 25

11 27 15 48

20 20

20

20 17

17 25 29

29

20 17

17 2537

37

20 20

20

23 19

19 29 29

29

20 17

17 24

10 5

30 9

12 5

29 17 8

10

10

5

6

30

18 9

18

5

6

32 21

20 41 10

10

11

12

23

26

11

34

10 30

5 9

10 10 30 18

5 6 9

12

29

17

5 8

18

32 20

21 41

5 6 10

2610 11 12 23 11 34

31 13

13 13 17

17 2116

16

17 12

12 19

27 15

13 13 16

16 2118 16

17 9

17 13

13 19

27 13

15 13 16

16 21

18

17

9

16

17 13

13 19

27 16

16 26 16

16 2124

24

32 17

17 21 25

25 25

16

9

16 9

18 15

15 28

9

11

27

6

9 11 27 6

10 10

10

29 18

18 23

∈ R7416×7416

Max Planck Institute Magdeburg Thomas Mach, Hierarchical Matrices 19/28

Page 44: €¦ · Concept Application Eigenvalues H-Matrices [Hackbusch ’98] 22 3 3 7 10 3 7 3 10 19 10 10 31 14 8 11 11 14 11 8 11 19 10 10 31 11 31 11 9 9 16 12 11 16 11 8 9 16 11 11 16

Concept Application Eigenvalues

BEM for Electrostatic Computations26 14

14 20 19

1925 14

14 20

23 16

17 23

23 17

16 23

22 20

20 22 22

22 36

13

15

17

18

13 15 17 18

19 15

15 21

20 16

19 25 8

11 18 8

20 19

16 25

11

188 8

25 14

14 20 16

16 26

22 15

13 15

22 13

15 15

36 19

19 288

8 8

17 12

27 19

19 26 20 2513 23 10 11 23 9

25 14

16 10 13

3016 10

26 16

16 18 17 16

8 8

1727 19

19 26

12 20

13

23

10

11

2523

9

30

25

16

10

14 13

1626 16

16 18

10 17 8

16 8

22 20

20 22 22

22 36

28 20

20 28

28 20

20 28

21 11

11 12 20

20 22 29

2928 18

18 18

18

36 22

32

21

28 22

17 18

18 36 32

22 21

28 17

22 18

19 13

13 15 23

2323 13

13 1525

25

20 12

12 15 23

2320 12

12 15

50

19 12

15 20

24 20

17 25

20 14

13 20

50

24 17

20 2519 15

12 20

20 13

14 20

36 19

19 28 40

40

26 18

18 18 23

2321 13

13 14

20 14

17 20

20 17

14 20

20 12

12 20

22

22 11

6 18 10 8

20

13 22

13

17

18 12 21

17 2224

8 6

22

19 8

23 9

17 10 9 7

20 43

19

23 10

6 16 10

6 11 9

15

10

27 19

16 19

6 19 15

17 8

15

34 17

13

25

16

20 19

16 17

20 18

17 24 19

20

20 17

18 20

48 12

27 13 18 12

18 12 27 13 10

23 14

19 24

20 13

14 20

36 26

20 24 33

4644 29

23 3024

20 16

17 20 11

22 20

22

6

18

10

11 8

13 13

22

17 18

12

17

21 228

24 6

19 15

23

6 6

16

10 11

10 9

10 6

27 16

19 1919 17

15 8

2219

8 20

23

17

10

9

9 7

43

15 34 13 25

17 1620 16

19 17

20 17

18 24 20

1920 18

17 20

23 19

14 24

20 14

13 20

48

27

13

18

12

18

12

27

13

12 10

36 20

26 2446

33

44 23

29 30

20 17

16 20

24 11

22 18

18

19 13

13 18 9 17

9

17

31 19

19 27 12

12 12

27

27

18 18

18

24 18

18

21 17

17

24 19

19 19

19 12

13 17 14

9

16

11

12

18 13

16 15

19 13

12 17 9 16

14 11 12

18 16

13 15

28 14

14 17 14

1418 12

12 15

15 15

18

8

10 6 6

35 25

24

13 16

17

10 10

12 13

12 27 17 19 19

8 9 6 6

11 19 9 14

15 18 8

15

10

35 24

25

13 17

16

10

12 12

13 27

10 17

6

619

8

9

11

19

6

69

19 14

20 17

17 24 19

1920 17

17 20

29 12 17 10

16 10 26 11 11

29

12

16

10

17

10

26

11

11

20 15

15 15 27

2723 15

15 15

15 17

15 18

15 15

17 18

15 14

14 18

49

49

31 31

31

15 15

15

27 20

20 2037

37

18 17

17

15 15

15 24

14 14

14 21

14 14

14 21

14 13

13 21

39 27

25 49

39 25

27 49

20 15

15 15 28

2820 15

15 1530

30 3045

45

17 16

16 18 35

35

15 15

15

28 16

16 16

13 13

12 2913 12

13 29

15 15

15

27 18

18 18

26 17

18 26

26 18

17 26

26 13

13 26

35

12 138 6 7

7

27 8

10 117 6 7 7

9

19 11

22

12

11 10

116 7

8 9 6

12 12 10

32 13

49

8 6

17 11

11 17 15

8

15

11

40

18 12

12 17 15 9

8

15

12 713

20 15

15 25 12

18 12

12 16 15

1318 14

12 15

24 13

13 17 15 9

1318 14

12 15 10

10 339 5

9

13

24

6

6

9

10

8

926

6

614

17 18

8

8

8

11 7

15

45

12

19

12

22

12

36

15 11

46 16 23

25

12 11

38 1726 15

14 26

26 16

16 26

14

35 4912 8

13

6

727

7 8

22

10

7

6

11

7

7

19

9 11

12 12

11 11

10

6 8

7

9

6

12 32

10 13

8

17 11

11 17 8 15

15 11 40

18 12

12 16 13

15

18 12

14 15

18 12

12 17 8 15

15

9

12 13

20 15

15 25

7 12

24 13

13 17 13

15

9

18 12

14 15

10

6 10

9

9 6 6

13 24 9 10 17

8 9 6 6

26 14 18

5 8 8 8

33

11

15 45 12 22

12 19 12 36

26 14

15 26

15 46

11 16 25

23

12 38

11 17

26 16

16 26

7 14

26 16

16

20 14

14 25

15 12

15 23

15 15

12 23

28 19

19 3640

40

20 14

14 25 18

18

20 14

14 26

22 11 11

16 24

22 16

11

11 24

36 22

22

22 20

20 22

16 1118 16

16 26 17 24

25

18 1126 19

19 27 20

16

18 16

16 26

11 17 25

24

18

26 19

19 27

11 20

28 19

19 36 40

40

21 12

12 14 23

23

28 18

18 18

50

50

36 22

22

22 20

20 22

28 20

20 29

28 20

20 29

26 18

18 18 29

29

12 12

12 21 21

21 22

34

13 20

13

20 16

18 27

11

17

2413

26

23 36 21

13 23 26

41 18

23

23

14

34 20

26 38

23 19

24 36 31

41

27 22

24 4245

19 47

36 23

30 40

34

13 13

20

20 18

16 27

24

11 17 13 26

41 23

18 23 14

23

36

13

23

21 26

34 26

20 38

23 24

19 3641

31

27 24

22 42

19

47

45

36 30

23 40

19 12

12 17 16

16

21 16

16

31 13

13 13

19 13

13 17 17 9

16

21 16

16

27 15

13 1318

19 13

13 17 16

17

9

21 16

16

27 13

15 13

18

28 15

15 18 16 9

16

9

21 16

16

27 16

16 2624

24

32 17

17 21 25

25 25

9

6

11

27

9 6 11 27

10 10

10

29 17

17 23

9 5

30 10

9 5 6

30 18 10 10

8 5

29

17 12

10 5 6

32 19

21 41 18 2610 12 23 11 34 11

9 30

5 10

8 29 17

5 12

9

30

18

5

6

10

10

10

32 21

19 41

5

618

10

12

23

11

2634

11

32 13

13 13 29

29

16 16

16

12 12

12 21 14

14 14

31

31

30 13

13 15 29

2930 14

14 15

27 15

13 13 29

27

16

12 12

14 20 16

14 14

32 29 19

32 18

30 13

14 15 27

2830 13

14 15

3127 13

15 13 27

2916

12 14

12 20 14

16 14

32

32

18

29

19

30 14

13 15 28

2730 14

13 15

31

27 15

15 17 29

29

17 17

17 23 16

16 1937

37

20 13

13 15

17 12

12 13

17 12

12 13

21 13

13 15

25 23

20 30

25 20

23 30

25 20

20 30

31 22

19 45

31 19

22 45

30 14

14 15 30

3030 14

14 15

31

31

20 13

13 15 28

2820 13

13 15

25 21

22 25

25 22

21 25

25 20

20 25

18

15

48 25

11

27

12

45

18

15 48 11 27

25 12 45

20 20

20

20 17

17 24 29

29

23 19

19 2937

37

20 20

20

20 17

17 25 29

29

20 17

17 25

19 1018 11

30 21

22 29 19 29

2910 8

25 1032

33

15 11

42 16 18

18 14

19

15 9

25

22

25 10

10 9 8 7

18 12 10 9 8

21 46 14

14 924 22 21

26

10

9

8

7

18

12

10

9

9 8

19 11

41 1519

14 8

15

14 921 19

19

20 1339 26

26

17 21

21

17 1413 13

13 29 1720 19

19 14

15

21

13 9

11 14

96 7 7

9 7 710

21 11 13

13 98 8

19

7 7

6

9 78

11 10

8

13

13 99 8

11 9

11

19 1227

16 19

7

8 7

11 10

9

13

21 23

13 9

11 9

14

9 7

9

6

7

20

10 1113

12 9

9

12 9

11 20 11 16

27 19

8

7 8 7

11 7 8 9

13

18 1016 11

42 15 26

27

19 11

29 20

22 30 1818

14 10

57 15

15 10

25

38 24

22 2814

13 107 6 9 7 8 6

1011 8

32 11

13 9

30 18 12

12 9

30

18 13

20 1332 18

18 46 20

13

14 11

10

25

8

12

13

8 12 11

10 25 14

12 10

38 12

13

7

7

6

8

106

8

19

18

30 22

21 29

11 19 29

2910 25

8 1033

32

15 42

11 16 18

18 14

10 19

14

24

22

26 9

10 9 18 12

8 7 10 9 8

21

19 41

11 15 14

19 8

9 15

15

25 22 21

25

10

9

18

12

8

7

10

9

10 8

46

9 14

14

21 19

19

20

39 26

26

17 21

21

17

13 13

13 29

14 17

13 20 19

19 14

9 15

21

13

11 14

99 9

7 6 710

20 11

9 13

2312

9 8

12

11

20

9 1127

16 19

7

8 11

7

7

8

9

9 13

2113

8 19

8

7 6 9

7 7 11

8 10 8

9 13

13

11 9

14

6

7 9

7

7

7

21

10 11

9 13

13

9

11 11 19

9 12 16

27 19

8

7 8 11

7 10 9

9 13

18

16 42

11 15 27

26

19

29 22

20 30

11 18

10 18

15

25 38 22

24 28

10 14

14 57

10 15

13

7

6

9

7

10

8

6

11 32

8 11

12 30 18

9 13

13

30

18

9 12

20

32 18

18 46

13 20

13

8

12

10

25

11 14

13

14 10 25

11 8 12

12 38

10 12

10 13 107 7 6 8 6 8

22 21

21

21 12

12 1229

29

18 18

18 26

29 20

20 28

29 20

20 28

22 20

20 22 22

22 36

2118 17

21 2630

23

19

18 18

17 18

21

18 21

17 26 23

30 19

18 17

18 18

20 12

12 15 23

2320 12

12 1525

25

23 13

13 15 23

2319 13

13 15

50

20 15

13 19

27 16

21 24

20 13

14 20

5027 21

16 2420 13

15 19

20 14

13 20

18 18

18 28 23

23

14 13

13 2140

4036 19

19 28

20 17

14 20

20 14

17 20

20 12

12 20

20 11

27 19

19 26 18

10

11

13

23

269

23

29

2511

16

15 13

17 11

26 16

16 18 16 8

15 8

2027 19

19 26

11 18 2610 11 13 23 9 23

25 15

11 16 13

29

1726 16

16 18

11 16 15

8 8

22 20

20 22 22

22 36

2411

11

16 22

24 16

11 11 22

26 14

14 20 18

1825 14

14 20

15

18

16

13

15 18 16 13

19 15

15 21

40 8

17 11 8

40

17

118 8

36 19

19 28

23 12

15 15

23 15

12 15

25 14

14 20 16

16 268

8 8

16

17 16

18 20

13

24

18

15

34

20 18

17 20 20

19

24 17

18 20

47 12

27 13 18 12

18 12 27 13 10

24 20

15 22

20 14

13 20

46 30

24 30 48

3436 26

20 2424

20 17

16 20 11

19

22 10

11 6

16 10 69

16

19 6

27 19

16 19 1015

17 8

22

8 19

24 10

9 17 10 7

20 43

22

23 11

18 10 6 8

20

30 21

17 22 13

21 13 238 6

1617 18

16 20 18

13 24 15 34

20 17

18 20 19

2024 18

17 20

24 15

20 22

20 13

14 20

47

27

13

18

12

18

12

27

13

12 10

46 24

30 3034

48

36 20

26 24

20 16

17 20

24 11

22

8

19 20

24

9

17

10

10 7

43

19 16

2211

16

10

6 6

10 9

19

27 16

19 19

6 10

17

15 8

22 20

23

18

10

6

11 8

30 17

21 2221

13 13

8

23 6

20 17

17 20 19

1924 17

17 20

26 11 16 10

17 10 29 12 11

26

11

17

10

16

10

29

12

11

20 15

15 15 28

2820 15

15 1530

30 3045

45

18 16

16 17 35

35

15 15

15

27 18

18 18

13 12

13 2913 13

12 29

15 15

15

28 16

16 16

39 25

27 49

39 27

25 49

23 15

15 15 27

2720 15

15 15

18 15

17 15

18 17

15 15

18 14

14 15

49

49

31 31

31

18 17

17

24 15

15 15

21 14

14 14

21 14

14 14

21 13

13 14

37

37

15 15

15

27 20

20 20

26 18

17 26

26 17

18 26

26 13

13 26

15 17 8

15

19

6

6

35 23

25

13 17

16

17 10

12 12

13 27 10

10

9

6

6

11

19

8

9

19 14

15 15

17

8

19

35 25

23

13 16

17

17

12 13

12 27

10 10

6 6 10

19

9 11 19

6 6 8 9 14

22 18

18

31 19

19 27 12

12 12

27

27

18 18

18

21 17

17

24 19

19 1918

18 24

9

17

9 17

18 13

13 19

11

12

15 16

12 18

9

16

14

17 14

12 19

11 12

15 12

16 18 14

9 16

17 12

14 19

15 12

12 18 14

14

17 14

14 28

35

34 21

10 126 7 7 7

9

19 11

11 138 7 6

7

26 8

49

11 7

12

36

12

22

12

19

15

45

12 11

38 17 25

23

15 11

46 1626 14

15 26

26 16

16 26

14

9 5

9

10

6

6

13

24 9

14

6

6

26

8

9

17 18

8

8

8

33

8 6

11

40

8

15

15

17 11

11 17

12 713

25 15

15 2012

8

15

15 9

17 12

12 18

15 12

14 18 13

15

16 12

12 18

15 12

14 18 10 13

15 9

17 13

13 24

10

35 49

34

10

6

7

12

7

7

19

9 11

21

11 8

137

6

26

7 8

11

12 36 12 19

12 22 15 45

26 15

14 26

12 38

11 17 23

25

15 46

11 16

26 16

16 26

7 1433

9

9 10 13 24

6 6 9 17

14 266 6 8 9

18

5 8 8 8

8

11 40 15

8 15

17 11

11 17

15 14

12 1815

13

16 12

12 18

12 13

25 15

15 20

7 12

15

9

8 15

17 12

12 18

15 14

12 18

10

15

9

13

17 13

13 24

6 10

14 13

13 21 23

23

18 18

18 2640

40

28 19

19 36

31 22

21 25

31 21

22 25

18 18

18 28 29

29

22 21

21

12 11

11 21

28 20

20 28

28 20

20 28

36 22

22

22 20

20 22

17 10

18 16

16 26 16 25

25

20 12

26 19

19 27 17

17

18 16

16 26

10 16 25

25

20

26 19

19 27

12 17

28 19

19 36

15 15

13 22

15 13

15 22

26 16

16

20 14

14 2540

40

36 22

22

22 20

20 22

23 16

17 23

23 17

16 23

20 14

14 25 19

19

20 14

14 26

38 26

19 34

27 23

24 40 42

31

23 19

24 3644

19 4740 31

23 37

41 18

2314

24

23 36 21

23 26

34

21 16

18 27 13

20 13

18

11

24

25

14

38 19

26 34

27 24

23 4031

42

23 24

19 36

19

47

44

40 23

31 37

23

36 23

21 26

41 23

18 14 24

34

21 18

16 2720

13 13

24

18 11 25 14

30 14

14 15 29

2930 13

13 15

31

31

16 16

16

21 12

12 1214

14 1429

2932 13

13 13

30 13

14 15 28

2730 13

14 15

31 32 18

29 19

16

20 14

12 1216

14 1428

2927 15

13 13

3230 14

13 15 27

2830 14

13 15

31

29

19

32

18

16

20 12

14 12 14

16 1429

2827 13

15 13

32

30 14

14 15 30

3030 14

14 15

31

31

20 13

13 15 28

2820 13

13 15

25 22

21 25

25 21

22 25

25 20

20 25

31 19

22 45

31 22

19 45

23 17

17 17 16

16 1929

2927 15

15 17

37

37

21 13

13 15

17 12

12 13

17 12

12 13

20 13

13 15

30 20

23 25

30 23

20 25

30 20

20 25

18

12

45

11

27

25

15

48

18

12 45 25

11 27 15 48

20 20

20

20 17

17 25 29

29

20 17

17 2537

37

20 20

20

23 19

19 29 29

29

20 17

17 24

10 5

30 9

12 5

29 17 8

10

10

5

6

30

18 9

18

5

6

32 21

20 41 10

10

11

12

23

26

11

34

10 30

5 9

10 10 30 18

5 6 9

12

29

17

5 8

18

32 20

21 41

5 6 10

2610 11 12 23 11 34

31 13

13 13 17

17 2116

16

17 12

12 19

27 15

13 13 16

16 2118 16

17 9

17 13

13 19

27 13

15 13 16

16 21

18

17

9

16

17 13

13 19

27 16

16 26 16

16 2124

24

32 17

17 21 25

25 25

16

9

16 9

18 15

15 28

9

11

27

6

9 11 27 6

10 10

10

29 18

18 23

==

fuM

Max Planck Institute Magdeburg Thomas Mach, Hierarchical Matrices 19/28

Page 45: €¦ · Concept Application Eigenvalues H-Matrices [Hackbusch ’98] 22 3 3 7 10 3 7 3 10 19 10 10 31 14 8 11 11 14 11 8 11 19 10 10 31 11 31 11 9 9 16 12 11 16 11 8 9 16 11 11 16

Concept Application Eigenvalues

BEM for Electrostatic Computations

−4 −20

24

·103

−20

2·103

−4

−2

0

2

4

·103

−5V

+5V+2V

−1

−0.5

0

0.5

1

Max Planck Institute Magdeburg Thomas Mach, Hierarchical Matrices 20/28

Page 46: €¦ · Concept Application Eigenvalues H-Matrices [Hackbusch ’98] 22 3 3 7 10 3 7 3 10 19 10 10 31 14 8 11 11 14 11 8 11 19 10 10 31 11 31 11 9 9 16 12 11 16 11 8 9 16 11 11 16

Concept Application Eigenvalues

Eigenvalues

Max Planck Institute Magdeburg Thomas Mach, Hierarchical Matrices 21/28

Page 47: €¦ · Concept Application Eigenvalues H-Matrices [Hackbusch ’98] 22 3 3 7 10 3 7 3 10 19 10 10 31 14 8 11 11 14 11 8 11 19 10 10 31 11 31 11 9 9 16 12 11 16 11 8 9 16 11 11 16

Concept Application Eigenvalues

Definition

Mx = λx

M ∈ Rn×n

eigenvectorx ∈ Cn, x 6= 0

eigenvalueλ ∈ C

Max Planck Institute Magdeburg Thomas Mach, Hierarchical Matrices 22/28

Page 48: €¦ · Concept Application Eigenvalues H-Matrices [Hackbusch ’98] 22 3 3 7 10 3 7 3 10 19 10 10 31 14 8 11 11 14 11 8 11 19 10 10 31 11 31 11 9 9 16 12 11 16 11 8 9 16 11 11 16

Concept Application Eigenvalues

Definition

Mx = λx

M ∈ Rn×n

eigenvectorx ∈ Cn, x 6= 0

eigenvalueλ ∈ C

Max Planck Institute Magdeburg Thomas Mach, Hierarchical Matrices 22/28

Page 49: €¦ · Concept Application Eigenvalues H-Matrices [Hackbusch ’98] 22 3 3 7 10 3 7 3 10 19 10 10 31 14 8 11 11 14 11 8 11 19 10 10 31 11 31 11 9 9 16 12 11 16 11 8 9 16 11 11 16

Concept Application Eigenvalues

Definition

Mx = λx

M ∈ Rn×n

eigenvectorx ∈ Cn, x 6= 0

eigenvalueλ ∈ C

Max Planck Institute Magdeburg Thomas Mach, Hierarchical Matrices 22/28

Page 50: €¦ · Concept Application Eigenvalues H-Matrices [Hackbusch ’98] 22 3 3 7 10 3 7 3 10 19 10 10 31 14 8 11 11 14 11 8 11 19 10 10 31 11 31 11 9 9 16 12 11 16 11 8 9 16 11 11 16

Concept Application Eigenvalues

Definition

Mx = λx

M ∈ Rn×n

eigenvectorx ∈ Cn, x 6= 0

eigenvalueλ ∈ C

Max Planck Institute Magdeburg Thomas Mach, Hierarchical Matrices 22/28

Page 51: €¦ · Concept Application Eigenvalues H-Matrices [Hackbusch ’98] 22 3 3 7 10 3 7 3 10 19 10 10 31 14 8 11 11 14 11 8 11 19 10 10 31 11 31 11 9 9 16 12 11 16 11 8 9 16 11 11 16

Concept Application Eigenvalues

Definition

Mx = λx

M = MT ∈ Rn×n

eigenvectorx ∈ Rn, x 6= 0

eigenvalueλ ∈ R

Max Planck Institute Magdeburg Thomas Mach, Hierarchical Matrices 22/28

Page 52: €¦ · Concept Application Eigenvalues H-Matrices [Hackbusch ’98] 22 3 3 7 10 3 7 3 10 19 10 10 31 14 8 11 11 14 11 8 11 19 10 10 31 11 31 11 9 9 16 12 11 16 11 8 9 16 11 11 16

Concept Application Eigenvalues

Application

Eigenvalue problems occur in many different applications:

vibration analysis,

molecular and quantum dynamics(e.g. Schrodinger or Kohn-Sham equations),

finite state of a Markov chain,

numerical mathematics (e.g. MOR, eM , convergence theory),

...

Max Planck Institute Magdeburg Thomas Mach, Hierarchical Matrices 23/28

Page 53: €¦ · Concept Application Eigenvalues H-Matrices [Hackbusch ’98] 22 3 3 7 10 3 7 3 10 19 10 10 31 14 8 11 11 14 11 8 11 19 10 10 31 11 31 11 9 9 16 12 11 16 11 8 9 16 11 11 16

Concept Application Eigenvalues

Definition

Mx = λx

M = MT ∈ H(T , k)

eigenvectorx ∈ Rn, x 6= 0

eigenvalueλ ∈ R

Max Planck Institute Magdeburg Thomas Mach, Hierarchical Matrices 24/28

Page 54: €¦ · Concept Application Eigenvalues H-Matrices [Hackbusch ’98] 22 3 3 7 10 3 7 3 10 19 10 10 31 14 8 11 11 14 11 8 11 19 10 10 31 11 31 11 9 9 16 12 11 16 11 8 9 16 11 11 16

Concept Application Eigenvalues

Preconditioned Inverse Iteration[Knyazev, Neymeyr, et al.]

Definition

The function

µ(x) = µ(x ,M) =xTMx

xT x

is called the Rayleigh quotient.

Minimize the Rayleigh quotient by a gradient method:

xi+1 := xi − α∇µ(xi ), ∇µ(x) =2

xT x(Mx − xµ(x)),

+ preconditioning ⇒ update equation:

xi+1 := xi − T−1 (Mxi − xiµ(xi )).

Residual r(x) = Mx − xµ(x).

Max Planck Institute Magdeburg Thomas Mach, Hierarchical Matrices 25/28

Page 55: €¦ · Concept Application Eigenvalues H-Matrices [Hackbusch ’98] 22 3 3 7 10 3 7 3 10 19 10 10 31 14 8 11 11 14 11 8 11 19 10 10 31 11 31 11 9 9 16 12 11 16 11 8 9 16 11 11 16

Concept Application Eigenvalues

Preconditioned Inverse Iteration[Knyazev, Neymeyr, et al.]

Definition

The function

µ(x) = µ(x ,M) =xTMx

xT x

is called the Rayleigh quotient.

Minimize the Rayleigh quotient by a gradient method:

xi+1 := xi − α∇µ(xi ), ∇µ(x) =2

xT x(Mx − xµ(x)),

+ preconditioning ⇒ update equation:

xi+1 := xi − T−1 (Mxi − xiµ(xi )).

Residual r(x) = Mx − xµ(x).

Max Planck Institute Magdeburg Thomas Mach, Hierarchical Matrices 25/28

Page 56: €¦ · Concept Application Eigenvalues H-Matrices [Hackbusch ’98] 22 3 3 7 10 3 7 3 10 19 10 10 31 14 8 11 11 14 11 8 11 19 10 10 31 11 31 11 9 9 16 12 11 16 11 8 9 16 11 11 16

Concept Application Eigenvalues

Preconditioned Inverse Iteration[Knyazev, Neymeyr, et al.]

Definition

The function

µ(x) = µ(x ,M) =xTMx

xT x

is called the Rayleigh quotient.

Minimize the Rayleigh quotient by a gradient method:

xi+1 := xi − α∇µ(xi ), ∇µ(x) =2

xT x(Mx − xµ(x)),

+ preconditioning ⇒ update equation:

xi+1 := xi − T−1 (Mxi − xiµ(xi )).

Residual r(x) = Mx − xµ(x).

Max Planck Institute Magdeburg Thomas Mach, Hierarchical Matrices 25/28

Page 57: €¦ · Concept Application Eigenvalues H-Matrices [Hackbusch ’98] 22 3 3 7 10 3 7 3 10 19 10 10 31 14 8 11 11 14 11 8 11 19 10 10 31 11 31 11 9 9 16 12 11 16 11 8 9 16 11 11 16

Concept Application Eigenvalues

Preconditioned Inverse Iteration[Knyazev, Neymeyr, et al.]

Definition

The function

µ(x) = µ(x ,M) =xTMx

xT x

is called the Rayleigh quotient.

Minimize the Rayleigh quotient by a gradient method:

xi+1 := xi − α∇µ(xi ), ∇µ(x) =2

xT x(Mx − xµ(x)),

+ preconditioning ⇒ update equation:

xi+1 := xi − T−1 (Mxi − xiµ(xi )).

Residual r(x) = Mx − xµ(x).

Max Planck Institute Magdeburg Thomas Mach, Hierarchical Matrices 25/28

Page 58: €¦ · Concept Application Eigenvalues H-Matrices [Hackbusch ’98] 22 3 3 7 10 3 7 3 10 19 10 10 31 14 8 11 11 14 11 8 11 19 10 10 31 11 31 11 9 9 16 12 11 16 11 8 9 16 11 11 16

Concept Application Eigenvalues

Preconditioned Inverse Iteration[Knyazev, Neymeyr ’09]

xi+1 := xi − T−1 (Mxi − xiµ(xi ))

If

M symmetric positive definite and

T−1 approximates the inverse of M, so that∥∥I − T−1M∥∥M≤ c < 1,

then Preconditioned INVerse ITeration (PINVIT) converges.

Max Planck Institute Magdeburg Thomas Mach, Hierarchical Matrices 26/28

Page 59: €¦ · Concept Application Eigenvalues H-Matrices [Hackbusch ’98] 22 3 3 7 10 3 7 3 10 19 10 10 31 14 8 11 11 14 11 8 11 19 10 10 31 11 31 11 9 9 16 12 11 16 11 8 9 16 11 11 16

Concept Application Eigenvalues

Preconditioned Inverse Iteration[Knyazev, Neymeyr ’09]

xi+1 := xi − T−1 (Mxi − xiµ(xi ))

If

M symmetric positive definite and

T−1 approximates the inverse of M, so that∥∥I − T−1M∥∥M≤ c < 1,

then Preconditioned INVerse ITeration (PINVIT) converges.

Max Planck Institute Magdeburg Thomas Mach, Hierarchical Matrices 26/28

Page 60: €¦ · Concept Application Eigenvalues H-Matrices [Hackbusch ’98] 22 3 3 7 10 3 7 3 10 19 10 10 31 14 8 11 11 14 11 8 11 19 10 10 31 11 31 11 9 9 16 12 11 16 11 8 9 16 11 11 16

Concept Application Eigenvalues

BEM, smallest eigenvalues

dense matrix, but approximable by an H-matrix

d = 4, c = 0.2, εeig = 10−4

258 1026 4098 16386 6553810−3

10−2

10−1

100

101

102

103

104

CP

Uti

me

ins

PINVIT

O(ni (log2 ni )CH)H-Cholesky factor.

O(ni (log2 ni )2 CH)

Max Planck Institute Magdeburg Thomas Mach, Hierarchical Matrices 27/28

Page 61: €¦ · Concept Application Eigenvalues H-Matrices [Hackbusch ’98] 22 3 3 7 10 3 7 3 10 19 10 10 31 14 8 11 11 14 11 8 11 19 10 10 31 11 31 11 9 9 16 12 11 16 11 8 9 16 11 11 16

Concept Application Eigenvalues

BEM, smallest eigenvalues

dense matrix, but approximable by an H-matrix

ARPACK / eigs

d = 4, c = 0.2, εeig = 10−4

258 1026 4098 16386 6553810−3

10−2

10−1

100

101

102

103

104

CP

Uti

me

ins

PINVIT

O(ni (log2 ni )CH)H-Cholesky factor.

O(ni (log2 ni )2 CH)

Max Planck Institute Magdeburg Thomas Mach, Hierarchical Matrices 27/28

Page 62: €¦ · Concept Application Eigenvalues H-Matrices [Hackbusch ’98] 22 3 3 7 10 3 7 3 10 19 10 10 31 14 8 11 11 14 11 8 11 19 10 10 31 11 31 11 9 9 16 12 11 16 11 8 9 16 11 11 16

Concept Application Eigenvalues

Concluding Remarks

H-arithmetic is cheap and applicable too many problems.

Computing eigenvalues of H-matrices in linear-polylogarithmiccomplexity is possible.

See poster: “Slicing the Spectrum of Symmetric H`-Matrices”.

Thank you for your attention.

Max Planck Institute Magdeburg Thomas Mach, Hierarchical Matrices 28/28

Page 63: €¦ · Concept Application Eigenvalues H-Matrices [Hackbusch ’98] 22 3 3 7 10 3 7 3 10 19 10 10 31 14 8 11 11 14 11 8 11 19 10 10 31 11 31 11 9 9 16 12 11 16 11 8 9 16 11 11 16

Concept Application Eigenvalues

Concluding Remarks

H-arithmetic is cheap and applicable too many problems.

Computing eigenvalues of H-matrices in linear-polylogarithmiccomplexity is possible.

See poster: “Slicing the Spectrum of Symmetric H`-Matrices”.

Thank you for your attention.

Max Planck Institute Magdeburg Thomas Mach, Hierarchical Matrices 28/28

Page 64: €¦ · Concept Application Eigenvalues H-Matrices [Hackbusch ’98] 22 3 3 7 10 3 7 3 10 19 10 10 31 14 8 11 11 14 11 8 11 19 10 10 31 11 31 11 9 9 16 12 11 16 11 8 9 16 11 11 16

Concept Application Eigenvalues

Concluding Remarks

H-arithmetic is cheap and applicable too many problems.

Computing eigenvalues of H-matrices in linear-polylogarithmiccomplexity is possible.

See poster: “Slicing the Spectrum of Symmetric H`-Matrices”.

Thank you for your attention.

Max Planck Institute Magdeburg Thomas Mach, Hierarchical Matrices 28/28

Page 65: €¦ · Concept Application Eigenvalues H-Matrices [Hackbusch ’98] 22 3 3 7 10 3 7 3 10 19 10 10 31 14 8 11 11 14 11 8 11 19 10 10 31 11 31 11 9 9 16 12 11 16 11 8 9 16 11 11 16

Concept Application Eigenvalues

Concluding Remarks

H-arithmetic is cheap and applicable too many problems.

Computing eigenvalues of H-matrices in linear-polylogarithmiccomplexity is possible.

See poster: “Slicing the Spectrum of Symmetric H`-Matrices”.

Thank you for your attention.

Max Planck Institute Magdeburg Thomas Mach, Hierarchical Matrices 28/28

Page 66: €¦ · Concept Application Eigenvalues H-Matrices [Hackbusch ’98] 22 3 3 7 10 3 7 3 10 19 10 10 31 14 8 11 11 14 11 8 11 19 10 10 31 11 31 11 9 9 16 12 11 16 11 8 9 16 11 11 16

Appendix

BEM, smallest eigenvalues

dense matrix, but approximable by an H-matrix

d = 4, c = 0.2, εeig = 10−4

258 1026 4098 16386 6553810−3

10−2

10−1

100

101

102

103

104

CP

Uti

me

ins

PINVIT

O(ni (log2 ni )CH)H-Cholesky factor.

O(ni (log2 ni )2 CH)

Max Planck Institute Magdeburg Thomas Mach, Hierarchical Matrices 28/28

Page 67: €¦ · Concept Application Eigenvalues H-Matrices [Hackbusch ’98] 22 3 3 7 10 3 7 3 10 19 10 10 31 14 8 11 11 14 11 8 11 19 10 10 31 11 31 11 9 9 16 12 11 16 11 8 9 16 11 11 16

Appendix

BEM, smallest eigenvalues

dense matrix, but approximable by an H-matrix

eig ∈ O(n3)

d = 4, c = 0.2, εeig = 10−4

258 1026 4098 16386 6553810−3

10−2

10−1

100

101

102

103

104

CP

Uti

me

ins

PINVIT

O(ni (log2 ni )CH)H-Cholesky factor.

O(ni (log2 ni )2 CH)

Max Planck Institute Magdeburg Thomas Mach, Hierarchical Matrices 28/28