Top Banner
Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District 2006, Prentice Hall Organic Chemistry, 6 th Edition L. G. Wade, Jr.
45

Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District 2006, Prentice Hall Organic Chemistry, 6.

Apr 02, 2015

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6.

Compuestos Aromáticos

Jo BlackburnRichland College, Dallas, TX

Dallas County Community College District2006,Prentice Hall

Organic Chemistry, 6th EditionL. G. Wade, Jr.

Page 2: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6.

Chapter 16 2

DESCUBRIMIENTO DE BENCENO

• Michael Faraday lo aisló en el 1825 y determinó su fórmula empírica (CH).

• Eilhard Mitscherlich lo sintetizó en el 1834 y determinó su F.M. C6H6.

• Otros compuestos con baja razón de C/H olían bien, por lo tanto se les llamó aromáticos.

=>

Page 3: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6.

Chapter 16 3

Estructura Kekulé• La propuso Friedrich Kekulé en 1866. Los 3 dobles enlaces se alternan

con los 3 enlaces simples.

• No explica la existencia de un sólo isómero para el 1,2-dichlorobenceno.

CC

CC

C

C

H

H

HH

H

H

=>

Page 4: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6.

Chapter 16 4

ESTRUCTURA KEKULÉ(PROBLEMAS, EXPLICACIONES Y ANTECEDENTES)

Cl

Cl

Cl

Cl

C C 1.397 A1.34A

1.48A

Page 5: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6.

Chapter 16 5

ESTRUCTURA KEKULÉ(COMPORTAMIENTO QUÍMICO

ANORMAL)

+ Br2

Br

Br

+ Br2 NR

+

OH

OH

+ NR

KMnO4

KMnO4

Br2

CCl4

Br

Page 6: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6.

Chapter 16 6

Estructura de ResonanciaLos 6 C tienen hibridación sp2 y tienen un

orbital p no hibridado perpendicular al anillo.

=>

Page 7: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6.

Chapter 16 7

Estabilidad de Benceno

=>

Page 8: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6.

Chapter 16 8

Anulenos

• Se pensó que todos los HC cíclicos conjugados eran aromáticos.

• Ciclobutadieno es tan reactivo que no se puede aislar porque dimeriza rápidamente.

• Cicloctatetraeno reacciona con Br2.

Page 9: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6.

Chapter 16 9

Orbitales Moleculares de Benceno

• Interacción (solapamiento) de 6 orbitales p deben generar 6 orbitales moleculares.

• 3 enlazantes y 3 antienlazantes.

Page 10: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6.

Chapter 16 10

Orbitales Moleculares de Benceno

=>

Page 11: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6.

Chapter 16 11

Diagrana de Energía para Benceno

• Los seis electrones ocupan tres orbitales π enlazantes.

• Todos los orbitales enlazantes están completos formando una estructura extremadamente estable.

=>

Page 12: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6.

Chapter 16 12

OM para Ciclobutadieno

=>

Page 13: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6.

Chapter 16 13

Diagrama de Energía para Ciclobutadieno

• De acuerdo a la Regla de Hund.

• Este diradicalThis diradical would be very reactive.

=>

Page 14: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6.

Chapter 16 14

Regla del Polígono El diagrama de energía de un anuleno tiene la misma

forma que el compuesto cíclico con uno de los vértices al fondo.

=>

Page 15: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6.

Chapter 16 15

Requisitos de Aromaticidad

• Estructura cíclica con enlaces pi conjugados.• Cada átomo en el anillo debe tener un orbital p

no hibridado.• Los orbitales p deben interaccionar alrededor de

todo el anillo (estructura planar).• El compuesto es mucho más estable que su

análogo de cadena abierta. =>

Page 16: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6.

Chapter 16 16

Anti- y No-aromático

• Compuestos Antiaromáticos son sistemas conjugados, cíclicos con solapamiento continuo de orbitales p alrededor del anillo, pero su energía es mayor que su análogo de cadena abierta.

• Compuestos No-aromáticos no tienen solapamiento continuo de orbitales p y pueden ser no planares.

=>

Page 17: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6.

Chapter 16 17

Regla de Hückel

• Si el compuesto tiene solapamiento continuo de orbitales p alrededor del anillo y tiene (4N + 2) electrones, es aromático.

• Si el compuesto tiene solapamiento continuo de orbitales p alrededor del anillo y tiene (4N ) electrones, es antiaromático.

=>

Page 18: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6.

Chapter 16 18

[N]Anulenos

• [4]Anuleno es antiaromático (4N e-’s)• [8]Anuleno debiera ser antiaromático, pero no es

planar, por lo tanto es no-aromático.• [10]Anuleno es aromático excepto para los isómeros

que son no planares.• Los anulenos más grandes 4N no son

antiaromáticos porque tienen la flexibilidad suficiente para ser no planares. =>

Page 19: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6.

Chapter 16 19

MO Derivation of Hückel’s Rule

• Lowest energy MO has 2 electrons.• Each filled shell has 4 electrons.

=>

Page 20: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6.

Chapter 16 20

Cyclopentadienyl Ions• The cation has an empty p orbital, 4 electrons, so antiaromatic.• The anion has a nonbonding pair of electrons in a p orbital, 6

e-’s, aromatic.

=>

Page 21: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6.

Chapter 16 21

Acidity of Cyclopentadiene

pKa of cyclopentadiene is 16, much more acidic than other hydrocarbons.

=>

Page 22: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6.

Chapter 16 22

Tropylium Ion

• The cycloheptatrienyl cation has 6 p electrons and an empty p orbital.

• Aromatic: more stable than open chain ion.

=>

H OH

H+ , H2O

H

+

Page 23: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6.

Chapter 16 23

Dianion of [8]Annulene

• Cyclooctatetraene easily forms a -2 ion.• Ten electrons, continuous overlapping p

orbitals, so it is aromatic.

=>

Page 24: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6.

Chapter 16 24

Pyridine• Heterocyclic aromatic compound.

• Nonbonding pair of electrons in sp2 orbital, so weak base, pKb = 8.8.

=>

Page 25: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6.

Chapter 16 25

PyrroleAlso aromatic, but lone pair of electrons is

delocalized, so much weaker base.

=>

Page 26: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6.

Chapter 16 26

Basic or Nonbasic?

NNPyrimidine has two basicnitrogens.

N N H Imidazole has one basicnitrogen and one nonbasic.

N

N

N

N

H

Purine?=>

Page 27: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6.

Chapter 16 27

Other Heterocyclics

=>

Page 28: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6.

Chapter 16 28

Fused Ring Hydrocarbons• Naphthalene

• Anthracene

• Phenanthrene

=>

Page 29: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6.

Chapter 16 29

Reactivity of Polynuclear Hydrocarbons

As the number of aromatic rings increases, the resonance energy per ring decreases, so larger PAH’s will add Br2.

H Br

H BrH Br

Br

H

(mixture of cis and trans isomers) =>

Page 30: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6.

Chapter 16 30

Larger Polynuclear Aromatic Hydrocarbons

• Formed in combustion (tobacco smoke).• Many are carcinogenic.• Epoxides form, combine with DNA base.

pyrene =>

Page 31: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6.

Chapter 16 31

Allotropes of Carbon• Amorphous: small particles of graphite;

charcoal, soot, coal, carbon black.

• Diamond: a lattice of tetrahedral C’s.

• Graphite: layers of fused aromatic rings.

=>

Page 32: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6.

Chapter 16 32

Diamond

• One giant molecule.• Tetrahedral carbons.• Sigma bonds, 1.54 Å.• Electrical insulator.

=>

Page 33: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6.

Chapter 16 33

Graphite

• Planar layered structure.• Layer of fused benzene

rings, bonds: 1.415 Å.• Only van der Waals

forces between layers.• Conducts electrical

current parallel to layers.

=>

Page 34: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6.

Chapter 16 34

Some New Allotropes

• Fullerenes: 5- and 6-membered rings arranged to form a “soccer ball” structure.

• Nanotubes: half of a C60 sphere fused to a cylinder of fused aromatic rings.

=>

Page 35: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6.

Chapter 16 35

Fused Heterocyclic Compounds

Common in nature, synthesized for drugs.

=>

Page 36: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6.

Chapter 16 36

Common Names of Benzene Derivatives

OH OCH3NH2CH3

phenol toluene aniline anisole

CH

CH2 C

O

CH3C

O

HC

O

OH

styrene acetophenone benzaldehyde benzoic acid=>

Page 37: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6.

Chapter 16 37

Disubstituted BenzenesThe prefixes ortho-, meta-, and para- arecommonly used for the 1,2-, 1,3-, and 1,4-positions, respectively.

=>

Page 38: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6.

Chapter 16 38

3 or More Substituents Use the smallest possible numbers, butthe carbon with a functional group is #1.

NO2

NO2

O2N

1,3,5-trinitrobenzene

NO2

NO2

O2N

OH

2,4,6-trinitrophenol

=>

Page 39: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6.

Chapter 16 39

Common Names forDisubstituted Benzenes

CH3

CH3

CH3

CH3H3C

CH3

CO OH

OH

H3Cm-xylene mesitylene o-toluic acid p-cresol

=>

Page 40: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6.

Chapter 16 40

Phenyl and Benzyl

Br

phenyl bromide

CH2Br

benzyl bromide

Phenyl indicates the benzene ringattachment. The benzyl group hasan additional carbon.

=>

Page 41: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6.

Chapter 16 41

Physical Properties

• Melting points: More symmetrical than corresponding alkane, pack better into crystals, so higher melting points.

• Boiling points: Dependent on dipole moment, so ortho > meta > para, for disubstituted benzenes.

• Density: More dense than nonaromatics, less dense than water.

• Solubility: Generally insoluble in water. =>

Page 42: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6.

Chapter 16 42

IR and NMR Spectroscopy

• C=C stretch absorption at 1600 cm-1.• sp2 C-H stretch just above 3000 cm-1.• 1H NMR at 7-8 for H’s on aromatic

ring.• 13C NMR at 120-150, similar to alkene

carbons.

=>

Page 43: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6.

Chapter 16 43

Mass Spectrometry

=>

Page 44: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6.

Chapter 16 44

UV Spectroscopy

=>

Page 45: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6.

Chapter 16 45

End of Chapter 16