Top Banner
BUKIT ASAM Company Profile - History The coal mining in Tanjung Enim was initiated by the Dutch Colonial Government in 1919 by operating the first coal mine using open pit mining method in Air Laya. Using underground mining method, initial operation commenced in 1923 and lasted until 1940, while commercial production began in 1938. When the Dutch Colonial period ended in Indonesia, the mining workers fought for the nationalization of the mines. In 1950, the Indonesian Government approved the establishment of State-Owned Bukit Asam Coal Mine or Perusahaan Negara Tambang Arang Bukit Asam (PN TABA). In1981, PN TABA converted its status to a limited liability company under the name of PT Tambang Batubara Bukit Asam (Persero) Tbk, further called the Company. To develop coal industry in Indonesia, in 1990 the Government merged Perum Tambang Batubara with the Company. In line with the national energy security development program, in 1993 the Company was assigned by the Government to develop coal briquette business. On December 23, 2002 the Company became a publicly listed company on the Indonesian Stock Exchange under the code of “PTBA”. Vision and Mission Vision To become an environmentally friendly coal-based energy company Mission Focus on core competency and sustainable growth Optimize shareholders return Promote a performance- based corporate culture Contribute to national economic development Contribute to the improvement of community welfare and the preservation and environment Strategy Indonesia's leading environmentally friendly coal- based energy company that adopts Six Strategic Steps : Focus on the growth of coal production/ sales Focus on projects with readliness scale 1 Corporate restructuring Boost human resource competence and regeneration as well as promote a performance- based on performance- based reward
18

Company Profile SE

Nov 24, 2014

Download

Documents

rockzout

company profile, proses produksi, keterangan produk pabrik rencana Study Excursie 2011 Teknik Kimia
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript

BUKIT ASAM Company Profile - HistoryThe coal mining in Tanjung Enim was initiated by the Dutch Colonial Government in 1919 by operating the first coal mine using open pit mining method in Air Laya. Using underground mining method, initial operation commenced in 1923 and lasted until 1940, while commercial production began in 1938. When the Dutch Colonial period ended in Indonesia, the mining workers fought for the nationalization of the mines. In 1950, the Indonesian Government approved the establishment of State-Owned Bukit Asam Coal Mine or Perusahaan Negara Tambang Arang Bukit Asam (PN TABA). In1981, PN TABA converted its status to a limited liability company under the name of PT Tambang Batubara Bukit Asam (Persero) Tbk, further called the Company. To develop coal industry in Indonesia, in 1990 the Government merged Perum Tambang Batubara with the Company. In line with the national energy security development program, in 1993 the Company was assigned by the Government to develop coal briquette business. On December 23, 2002 the Company became a publicly listed company on the Indonesian Stock Exchange under the code of PTBA.

Contribute to national economic development Contribute to the improvement of community welfare and the preservation and environment Strategy Indonesia's leading environmentally friendly coal-based energy company that adopts Six Strategic Steps : Focus on the growth of coal production/ sales Focus on projects with readliness scale 1 Corporate restructuring Boost human resource competence and regeneration as well as promote a performancebased on performance-based reward Improve remuneration system based on performance-based reward Promote performance rating in environmental management

Vision and MissionVision To become an environmentally friendly coal-based energy company Mission Focus on core competency and sustainable growth Optimize shareholders return Promote a performance-based corporate culture

Our Business ProductionAn increase in coal production target was set by the company commensurate with the successfull improvement of railway loading capacity. To reach the target, the company consistently apllied an integrated production strategy that was focused on improved operational efficiency in production, product quality and guaranteed coal availability while continuing to maintain health and work safety and to protect the environment. Improving production efficiency was done by optimizing BWE (Bucket Wheel Excavator) mining operation system overhaul of BWE

track 3 in early 2009. In addition the company also optimized the back filling work of prebench area in Air Laya Mine to shorten coal transportation distance from the mining site to the stockpile location. The company handles coal in accordance with the standards of ISO 9001 : 2000 Quality Management System to control coal product quality and supply to the customers, which cover : Stockpile management Coal quality analysis and test Transportation The integrated operational strategy helped the company increase its coal production to 11.6 million tons, up 7.4% from 2008 which totalled 10.8 million tons.

PUPUK SRIWIDJAJAPT PUPUK SRIWIDJAJA (Persero) PT Pupuk Sriwidjaja (Persero) ditunjuk oleh pemerintah menjadi perusahaan induk (holding company), berdasarkan PP No.28/1997. Usaha yang dijalankan oleh PT Pupuk Sriwidjaja (Persero) adalah pupuk, industri petrokimia, rekayasa, pengadaan, konstruksi, dan perdagangan umum. Pada tahun 2008, total kapasitas desain mencapai 5.267.000 ton amonia, dan 8.030.000 ton urea. PT Pupuk Sriwidjaja yang didirikan pada tanggal 24 Desember 1959, (PUSRI,Perseroan, Perusahaan, Kami) merupakan perusahaan yang bertujuan untuk turut melaksanakan dan menunjang kebijaksanaan dan program pemerintah di bidang ekonomi, dan pembangunan nasional pada umumnya, khususnya di bidang industri pupuk dan industri kimia lainnya, melalui usaha produksi, perdagangan, pemberian jasa, dan usaha lainnya. Sejak Pemerintah Indonesia mengalihkan seluruh sahamnya yang ditempatkan di Industri Pupuk Dalam Negeri dan di PT Mega Eltra kepada PUSRI, melalui Peraturan Pemerintah (PP) nomor 28 tahun 1997 dan PP nomor 34 tahun 1998, maka PUSRI, yang berkedudukan di Palembang, Sumatera Selatan, menjadi Induk Perusahaan (Operating Holding) dengan membawahi 6 (enam) anak perusahaan termasuk anak perusahaan penyertaan langsung yaitu PT Rekayasa Industri, masing-masing perusahaan bergerak dalam bidang usaha : PT Petrokimia Gresik yang berkedudukan di Gresik, Jawa Timur. Memproduksi dan memasarkan pupuk urea, ZA, SP36/SP-18, Phonska, DAP, NPK, ZK, dan industri kimia lainnya serta Pupuk Organik. PT Pupuk Kujang, yang berkedudukan di Cikampek, Jawa Barat. Memproduksi dan memasarkan pupuk urea dan industri kimia lainnya. PT Pupuk Kalimantan Timur, yang berkedudukan di Bontang, Kalimantan Timur. Memproduksi dan memasarkan pupuk urea dan industri kimia lainnya. PT Pupuk Iskandar Muda, yang berkedudukan di Lhokseumawe, Nangroe Aceh Darussalam. Memproduksi dan memasarkan pupuk Urea dan industri kimia lainnya.

PT Rekayasa Industri, yang berkedudukan di Jakarta, Bergerak dalam penyediaan Jasa Engineering, Procurement & Construction (EPC) guna membangun industri gas & minyak bumi, pupuk, kimia dan petrokimia, pertambangan, pembangkit listrik (panas bumi, batu bara, microhydro, diesel). PT Mega Eltra, yang berkedudukan di Jakarta dengan bidang usaha utamanya adalah Perdagangan Umum. Sejarah Perusahaan PT Pupuk Sriwidjaja (Persero), adalah Badan Usaha Milik Negara (BUMN) yang menjalankan usaha di bidang produksi dan pemasaran pupuk. Perusahaan yang juga dikenal dengan sebutan PT Pusri ini, saat didirikan pada tanggal 24 Desember 1959, merupakan produsen pupuk urea pertama di Indonesia. Sriwidjaja diambil sebagai nama Perseroan untuk mengabadikan sejarah kejayaan Kerajaan Sriwijaya di Palembang, Sumatera Selatan yang sangat disegani di Asia Tenggara hingga daratan Cina, pada abad ke tujuh Masehi. Tanggal 14 Agustus 1961 merupakan tonggak penting sejarah berdirinya Pusri, karena pada saat itu dimulai pembangunan pabrik pupuk pertama kali yang dikenal dengan Pabrik Pusri I. Pada tahun 1963, Pabrik Pusri I mulai berproduksi dengan kapasitas terpasang sebesar 100.000 ton urea dan 59.400 ton amonia per tahun. Seiring dengan kebutuhan pupuk yang terus meningkat, maka selama periode 1972-1977, perusahaan telah membangun sejumlah pabrik Pusri II, Pusri III, dan Pusri IV. Pabrik Pusri II memiliki kapasitas terpasang 380.000 ton per tahun. Pada tahun 1992 Pabrik Pusri II dilakukan proyek optimalisasi urea menjadi 552.000 ton per tahun. Pusri III yang dibangun pada 1976

dengan kapasitas terpasang sebesar 570.000 ton per tahun. Sedangkan pabrik urea Pusri IV dibangun pada tahun 1977 dengan kapasitas terpasang sebesar 570.000 ton per tahun. Upaya peremajaan dan peningkatan kapasitas produksi pabrik dilakukan dengan membangun pabrik pupuk urea Pusri IB berkapasitas 570.000 ton per tahun menggantikan pabrik Pusri I yang dihentikan operasinya karena alasan usia dan tingkat efisiensi yang menurun. Mulai tahun 1979, Pusri diberi tugas oleh Pemerintah melaksanakan distribusi dan pemasaran pupuk bersubsidi kepada petani sebagai bentuk pelaksanaan Public Service Obligation (PSO) untuk mendukung program pangan nasional dengan memprioritaskan produksi dan pendistribusian pupuk bagi petani di seluruh wilayah Indonesia. Pada tahun 1997, Pusri ditunjuk sebagai perusahaan induk membawahi empat BUMN yang bergerak di bidang industri pupuk dan petrokimia, yaitu PT Petrokimia Gresik di Gresik, Jawa Timur; PT Pupuk Kujang di Cikampek, Jawa Barat; PT Pupuk Kaltim di Bontang, Kalimantan Timur; dan PT Pupuk Iskandar Muda di Lhokseumawe,Nangroe Aceh Darussalam; serta BUMN yang bergerak di bidang engineering, procurement & construction (EPC), yaitu PT Rekayasa Industri (berkantor pusat di Jakarta). Pada tahun 1998, anak perusahaan Pusri bertambah satu BUMN lagi, yaitu PT Mega Eltra di Jakarta yang bergerak di bidang perdagangan. Kegiatan Usaha Produksi PT Pupuk Sriwidjaja yang semula hanya memiliki satu pabrik dengan kapasitas terpasang 100.000 ton per tahun, dalam periode 1972-2004 telah menjadi 2.280.000 ton urea dengan rincian sebagai berikut :

Pabrik Pusri I (*) II (**) III IV IB 4 Pabrik

Kapasitas Terpasang Amoniak (ton) 180 / hari 445.500 262.000 396.000 396.000 1.499.500

Kapasitas Terpasang Urea (ton) 100.000 552.000 570.000 570.000 570.000 2.262.000

Areal Pabrik (ha) 20 15 10 10

Nilai Pabrik (US$)

Mulai Produksi

34.363.511 + Rp. 3.651.063.140 85.734.452 192.000.000 184.372.772 326.883.626

Okt 1963 Agu 1974 Des 1976 Okt 1977 Mar 1994

55

823.354.361 + Rp. 3.651.063.140

(*) Pusri I diganti dengan Pusri IB karena usia pabrik telah tua dan tidak efisien (**) Telah dilakukan optimalisasi, lihat desain awal di Profil Pusri II

PERTAMINAPertamina processing units operate 6 refineries with total capacity of 1,046.70 thousand barrels. Some refineries as those in Processing Unit III Plaju and Processing Unit IV Cilacap are integrated with Petrochemical plant and producing Purified Terapthalic Acid (PTA) and Paraxylene. Some of the refineries produce LPG product as those in Pangkalan Brandan, Dumai, Plaju, Cilacap, Balikpapan, Balongan, and Mundu. LPG plants in Pangkalan Brandan and Mundu are operationally separated from oil refinery and take gas as the raw material. Oil refinery in processing Unit IV Cilacap producing Lube Base Oil of Group I & II HVI60, HVI-95, HVI-1605, HVI-160 B and HVI650. Lube Base Oil is then delivered to Lube Oil Blending Plant (LOBP) in Pertamina Lubricant production unit in Jakarta, Pertamina Refenery Capacity NO 1 2 3 UP II Dumai UP III Plaju UP IV Cilacap Refining Unit Capacity ( MBSD ) 170.0 133.7 348.0 Surabaya, and Cilacap to produce lubricant. The excess product will be marketed domestically and internationally. Since April 2008, Pertamina, in cooperation with SK Corp from Korea, has produced Lube Oil Base Group III from LBO Plant in Refining Unit II Dumai. Lube base produced is 100-N type. The LBO will be Pertamina's outstanding product in lubricant International market. Pertamina also has 2 (two) operating companies i.e. PT Arun LNG operating LNG plant in Arun and PT Badak LNG operating LNG plant in Bontang. Arun LNG plant has 6 LNG train with total capacity of 12.5 Mton per year, while Badak LNG plant has 8 trains with total capacity reaching 22.5 Mton per year.

4 5 6

UP V Balikpapan UP VI Balongan UP VII Kasim

260.0 125.0 10.0

PolytamProduced at PERTAMINA UP III , Plaju, which is processed through gas polymerized propylene which modified with additive agent such as anti oxidant, anti block and slip agent. Various types of Polytam: Polytam Film (PF 1000) Polytam Yarn (PY 240) Polytam Injection Packaging: Bag with 25 Kg Special Feature: The plastic pouch which produced from PERTAMINA Polytam has better characteristic in term of: visually more clearer, glossy, low antistatic and good openability . For plastic sack application, each sting has better tensile, non fibrous and easy pleat. Production capacity: 45.000 Tons per year Application Benefit: Polytam Film (PF 1000) o Raw material used for producing general packaging for good stuff, vegetable, fruits and breads. o Tubular Film o Cast Film Yarn (PY 240) o Raw material applied for various plastic sack, plastic woven bag, strapping band, drinking straw and plastic rope Polytam Injection o Raw material applied for producing general plastic household product o Automotive parts o Battery case o Food and drug appliances o Plastic Toys

PT TITAN Petrokimia Nusantara, indirect subsidiary of the CompanyThe company was established in 1990 by BP Chemicals Investment Limited, Mitsui & Co. Ltd and Sumitomo Corporation and PT. Arseto Petrokimia, as PT. Petrokimia Nusantara Interindo (PT. PENI). PT. PENI was the first and largest polyethylene (PE) producer in Indonesia. PE is one of worlds most widely used polymer; used to make a variety of plastic products from packaging film and containers to components for a host of industries. Following an acquisition by Titan Chemicals Corp. Bhd. in 2006, PT.

PENI became PT. TITAN Petrokimia Nusantara. A brief history The plant is located on a 36-hectare site in Merak, Banten province, about 120 km outside Jakarta, started with two trains, two warehouses for PE storage with a combined capacity of nearly 14,000 metric tonnes, a private jetty that can serve incoming ships of up to 10,000 DWT and Hydrogen and Nitrogen production facilities. After two years of construction, in 1993 the company commenced production of PE with two trains; total capacity 200,000 tonnes per annum. A year later in 1994, the companys first expansion programme led to an

increase in production capacity by 50,000 tonnes per annum. The company embarked on a second expansion programme in 1998 by adding a third train with a capacity of 200,000 tonnes per annum. This brought the companys total capacity to 450,000 tonnes per annum, making it the third largest High Density Polyethylene (HDPE) and Linear Low Density Polyethylene (LLDPE) producer

in South East Asia. In 2003, PT. PENIs shareholders sold the company to the Indika Group, an Indonesian group with interests in petrochemicals, energy and mining. Three years later, on 21 March 2006 Indika sold the company to Titan Petchem (M) Sdn. Bhd,, a subsidiary of Titan Chemicals Corp. Bhd. and was subsequently renamed PT. TITAN Petrokimia Nusantara (PT. TITAN).

Polyethylene or polythene (IUPAC name polyethene or poly(methylene)) is the most widely used plastic, with an annual production of approximately 80 million metric tons.[1] Its primary use is within packaging (plastic bag, etc).

DescriptionPolyethylene is a thermoplastic polymer consisting of long chains produced by combing the ingredient monomer ethylene (IUPAC name ethene), the name comes from the ingredient and not the actual chemical resulting. The ethylene actually converts to ethane as it takes its place in a polymer and straight sections of the polymer are the same structure as the simple chain hydrocarbons eg propane,decane and other straight single bonded carbon chains. As with any polymer, the structure of the resulting substance defies molecular description due to cross branching of the chains. The recommended scientific name polyethene is systematically derived from the scientific name of the monomer.[2][3] In certain circumstances it is useful to use a structure-based nomenclature; in such cases IUPAC recommends poly(methylene) [3] (poly(methanediyl) is an non-preferred alternative[4][5]). The difference in names between the two systems is due to the opening up of the monomer's double bond

upon polymerization. The name is abbreviated to PE in a manner similar to that by which other polymers like polypropylene and polystyrene are shortened to PP and PS respectively. In the United Kingdom the polymer is commonly called polythene, although this is not recognized scientifically. The ethene molecule (known almost universally by its common name ethylene) C2H4 is CH2=CH2, Two CH2 groups connected by a double bond Polyethylene contains the chemical elements carbon and hydrogen. Polyethylene is created through polymerization of ethene. It can be produced through radical polymerization, anionic addition polymerization, ion coordination polymerization or cationic addition polymerization. This is because ethene does not have any substituent groups that influence the stability of the propagation head of the polymer. Each of these methods results in a different type of polyethylene.

ClassificationPolyethylene is classified into several different categories based mostly on its density and branching. The mechanical properties of PE depend significantly on variables such as the extent and type of branching, the crystal structure and the

molecular weight. With regard to sold volumes, the most important polyethylene grades are HDPE, LLDPE and LDPE. UHMWPE is polyethylene with a molecular weight numbering in the millions, usually between 3.1 and 5.67 million. The high

molecular weight makes it a very tough material, but results in less efficient packing of the chains into the crystal structure as evidenced by densities of less than high density polyethylene (for example, 0.9300.935 g/cm3). UHMWPE can be made through any catalyst technology, although

Ziegler catalysts are most common. Because of its outstanding toughness and its cut, wear and excellent chemical resistance, UHMWPE is used in a diverse range of applications. These include can and bottle handling machine parts, moving parts on weaving machines, bearings, gears, artificial joints, edge protection on ice rinks and butchers' chopping boards. It competes with Aramid in bulletproof vests, under the tradenames Spectra and Dyneema, and is commonly used for the construction of articular portions of implants used for hip and knee replacements. HDPE is defined by a density of greater or equal to 0.941 g/cm3. HDPE has a low degree of branching and thus stronger intermolecular forces and tensile strength. HDPE can be produced by chromium/silica catalysts, Ziegler-Natta catalysts or metallocene catalysts. The lack of branching is ensured by an appropriate choice of catalyst (for example, chromium catalysts or Ziegler-Natta catalysts) and reaction conditions. HDPE is used in products and packaging such as milk jugs, detergent bottles, margarine tubs, garbage containers and water pipes. One third of all toys are manufactured from HDPE. In 2007 the global HDPE consumption reached a volume of more than 30 million tons.[6]

PEX is a medium- to highdensity polyethylene containing cross-link bonds introduced into the polymer structure, changing the thermoplast into an elastomer. The high-temperature properties of the polymer are improved, its flow is reduced and its chemical resistance is enhanced. PEX is used in some potable-water plumbing systems because tubes made of the material can be expanded to fit over a metal nipple and it will slowly return to its original shape, forming a permanent, water-tight, connection. MDPE is defined by a density range of 0.926 0.940 g/cm3. MDPE can be produced by chromium/silica catalysts, Ziegler-Natta catalysts or metallocene catalysts. MDPE has good shock and drop resistance properties. It also is less notch sensitive than HDPE, stress cracking resistance is better than HDPE. MDPE is typically used in gas pipes and fittings, sacks, shrink film, packaging film, carrier bags and screw closures. LLDPE is defined by a density range of 0.915 0.925 g/cm3. LLDPE is a substantially linear polymer with significant numbers of short branches, commonly made by copolymerization of ethylene with short-chain alpha-olefins (for example, 1-butene, 1-hexene and 1octene). LLDPE has higher tensile strength than

LDPE, it exhibits higher impact and puncture resistance than LDPE. Lower thickness (gauge) films can be blown, compared with LDPE, with better environmental stress cracking resistance but is not as easy to process. LLDPE is used in packaging, particularly film for bags and sheets. Lower thickness may be used compared to LDPE. Cable covering, toys, lids, buckets, containers and pipe. While other applications are available, LLDPE is used predominantly in film applications due to its toughness, flexibility and relative transparency. Product examples range from agricultural films, saran wrap, and bubble wrap, to multilayer and composite films. In 2009 the world LLDPE market reached a volume of almost 24 billion USdollars (17 billion Euro).[7] LDPE is defined by a density range of 0.910 0.940 g/cm3. LDPE has a high degree of short and long chain branching, which means that the chains do not pack into the crystal structure as well. It has, therefore, less strong intermolecular forces as the instantaneous-dipole induced-dipole attraction is less. This results in a lower tensile strength and increased ductility. LDPE is created by free radical polymerization. The high degree of branching with long chains gives molten LDPE unique and desirable flow properties. LDPE is used for both rigid

containers and plastic film applications such as plastic bags and film wrap. In 2009 the global LDPE market had a volume of circa 22.2 billion USdollars (15.9 billion Euro).[8] VLDPE is defined by a density range of 0.880 0.915 g/cm3. VLDPE is a substantially linear polymer with high levels of short-chain branches,

commonly made by copolymerization of ethylene with short-chain alpha-olefins (for example, 1-butene, 1-hexene and 1octene). VLDPE is most commonly produced using metallocene catalysts due to the greater co-monomer incorporation exhibited by these catalysts. VLDPEs are used for hose and tubing, ice and frozen food bags, food packaging and stretch wrap as well as

impact modifiers when blended with other polymers. Recently much research activity has focused on the nature and distribution of long chain branches in polyethylene. In HDPE a relatively small number of these branches, perhaps 1 in 100 or 1,000 branches per backbone carbon, can significantly affect the rheological properties of the polymer.

Company Profile SEMEN BATURAJA PT Semen Baturaja (Persero) adalah Badan Usaha Milik Negara (BUMN) yang bergerak pada bidang industri semen di wilayah Sumatera bagian selatan. PT Semen Baturaja (Persero) didirikan pada 14 November 1974 oleh PT. Semen Gresik dengan saham 45 % & PT. Semen Padang 55 %. Pada tanggal 9 November 1979 status perusahaan berubah dari Penanaman Modal Dalam Negeri (PMDN) menjadi Persero dengan komposisi saham : Pemerintahan Republik Indonesia 88 %, PT. Semen Padang 7 %, PT. Semen Gresik 5 %. Kemudian sejak tahun 1991 PT. Semen Baturaja diambil alih secara keseluruhan oleh Pemerintah Republik Indonesia. Dengan kapasitas produksi 1.2 juta ton pertahun dan lokasi pabrik yang terdapat di tiga kota, yaitu Baturaja, Palembang dan Panjang, Semen Baturaja selalu berusaha untuk menjaga kontinuitas dan stabilitas pasokan semen dalam negeri khususnya di Sumatera Bagian Selatan, karena Semen Baturaja merupakan produsen semen tunggal untuk wilayah sumatera bagian selatan. Untuk penyempurnaan peralatan yang sudah ada dalam rangka pencapaian kapasitas terpasang yaitu sebesar 500.000 ton semen pertahun, sekaligus persiapan untuk meningkatkan 2 kali kapasitas terpasang, PT. Semen Baturaja (Persero) melaksanakan proyek Optimalisasi I (OPT I)

Proyek ini dimulai tahun 1992 dan selesai tahun 1994 dengan kapasitas meningkat menjadi 550.000 ton semen pertahun, sehingga pada tahun 1996 produksi semen adalah sebesar 593.664 ton. Sebagai tindak lanjut proyek OPT I, pada tahun 1996 PT. Semen Baturaja (Persero) melaksanakan proyek Optimalisasi II (OPT II), untuk meningkatkan kapasitas sebanyak 2 kali, yaitu sebesar 1.250.000 ton semen per tahun. Proyek OPT II selesai tahun 2001, mulai memproduksi semen sebanyak 663.399 ton pada akhir tahun 2002 dan terus meningkat hinga akhir tahun 2008 dapat memproduksi 1.062.516 ton semen

QuickTime and a decompressor are needed to see this picture.

Bahan Baku Produksi yang berupa batu kapur dan tanah liat diperoleh dari pertambangan batu kapur dan tanah liat milik Semen Baturaja sendiri yang berlokasi hanya 1.2 km dari pabrik di Baturaja. Bahan baku lainnya seperti pasir silika diperoleh dari tambang rakyat sekitar Baturaja dan pasir besi dibeli dari tambang milik PT Aneka Tambang Tbk. diwilayah Cilacap. Sedangkan gypsum diimpor dari Thailand. Proses pembuatan semen dimulai dari penambangan bahan mentah yang menjadi bahan baku pembuat semen, yaitu batu kapur dan tanah liat di Baturaja. Setelah itu dilakukan proses pemecahan dan penghancuran (crusher). Bahan baku yang telah halus di angkut ke tempat penyimpanan ( limestone storage dan clay storage ) dan dicampurkan dengan pasir silika dan pasir besi untuk dijadikan raw meal. Raw meal ini yang akan di giling di dalam raw mill setelah mengalami proses pengeringan dan hasilnya disimpan ke dalam raw material storage silo. Proses berikutnya adalah proses pembakaran, dimana sebelumnya sudah dilakukan pemanasan awal di preheater dan dilanjutkan dengan pembakaran di kiln dengan menggunakan bahan bakar batu bara untuk mendapatkan clinker. Setelah itu dilakukan proses pendinginan terlebih dulu sebelum clinker disimpan di storage. Clinker hasil produksi Pabrik Baturaja sebagian digiling di Pabrik Baturaja dan sebagian lagi dibawa ke Pabrik Palembang dan Pabrik Panjang untuk di proses lebih lanjut di kedua pabrik tersebut. Proses selanjutnya adalah penggilingan clinker. Penambahan bahan bahan baku penolong seperti gypsum dilakukan sebelum memasukkan clinker ke cement mill. Hasil dari penggilingan clinker dengan gypsum inilah yang disebut semen jenis Portland Type I yang kemudian di lakukan pengantongan dan siap dijual di pasar.

RIWAYAT BERDIRINYA PLTU SURALAYAPada waktu terjadinya krisis energi yang melanda dunia tahun 1973 dan pada saat itu terjadi embargo minyak oleh negara-negara Arab terhadapa Amerika Serikat dan negara-negara Industri lainnya dan disusul keputusan OPEC (organisasi negara-negara pengekspor minyak) untuk menaikan BBM lima kali lipat. Belajar dari pengalaman maka Pemerintah mencari sumber energi pengganti BBM Pemerintah menyadari akan ketergantungan pada BBM serta gas alam dan uranium yang akan habis 4080 tahun lagi salah satu jalan yang ditempuh adalah pengalihan kepada batubara. Dalam rangka memenuhi peningkatan kebutuhan akan tenaga listrik khususnya di pulau Jawa sesuai dengan kebijaksanaan pemerintah serta untuk meningkatkan pemanfaatan sumber eneri primer dan diversifikasi sumber energi primer untuk pembangkit tenaga listrik, maka PLTU Suralaya dibangun dengan menggunakan batubara sebagai bahan bakar utama yang merupakan sumber energi primer kelima disamping energi air, minyak bumi dan panas bumi. PLTU Suralaya pembangunannya dilakukan dalam 3 (tiga) tahap yang seluruhnya berjumlah 7 unit : - Tahap I = 2x400 MW beroperasi tahun 1984 - Tahap II = 2x400 MW beroperasi tahun 1989 - Tahap III = 3x600 MW beroperasi tahun 1997 Dalam pembangunannya secara keseluruhan dibangun oleh PLN Proyek Induk Pembangkit Therma Jawa Barat dan Jakarta Raya dengan Konsultan asing dari Montreal Engeneering Company (Monenco) Canada untuk unit 1s/d 4 sedangkan untuk unit 5s/d7 dari Black & Veatch International ( BVI ) Amerika Serikat. Dalammelaksanakan pembangunan Proyek PLTU Suralaya dibantu oleh beberapa kontraktor lokal dan kontraktor asing. Sumber Daya yang Dikelola( Kapasitas ) Unit 1- 4, @ 400 MW 1.600MW Unit 5 7, @ 600 MW 1.800MW Total unit 1 - 7 = 3.400MW

kg/cm2 dan 540 derajat Celcius. Dampak Lingkungan akibat beroperasinya PLTU Suralaya TURBIN & GENERATOR, uap > Abu Terbang (Fly Ash) dialirkan ke turbin.Masing-masing > Emisi Gas Hasil Pembakaran (SOx, NOx, CO2) turbin untuk unit 1,2,3 & 4 berkapitas > Limbah Cair (Water Pollution) 400 MW dan 600 MW untuk unit 5,6 & > Limbah Lainnya (Other Pollutants) 7.Masing-masing turbin dihubungkan Semua dampak terhadap lingkungan masih di bawah ambang langsung dengan generator.Tegangan batas BME yang dihasilkan dinaikkan dari 23,000 volt menjadi 500,000 volt dengan menggunakan trafo sebelum disalurkan PROSES PRODUKSI TENAGA ke sistem jaringan. LISTRIK PENDINGIN, uap yang melewati turbin BATUBARA, sebagai bahan bakar akan didinginkan dan dikondensasikan utama Pembangkit Suralaya berasal menjadi air di dalam kondensor dari Tambang batubara Bukit sebelum dikembalikan ke Asam,Sumatera Selatan. boiler.Kondensor sendiri didinginkan BOILER, masing-masing boiler oleh air yang dipompakan dari air laut. membutuhkan 1,500 ton air.Uap yang keluar dari boiler pada tekanan 174 ABU DAN DEBU, beberapa batubara

yang terbakar jatuh ke bagian bawah boiler di mana nantinya dikumpulkan dan dijual untuk pembuatan bahan bangunan.Lebih dari 99,5% debu ditangkap oleh electrostatic precipitators (ESP).Pada elektron dilepaskan ke batangan berbentuk saringan sehinnga partikel yang halus yang lewat ditarik ke saringan tersebut dan kemudian dapat dikumpulkan secara proses mekanik.Serbuk abu batubara memiliki beberapa macam penggunaan,dari proyek pembuatan jalan sampai dengan bahan semen untuk pembuatan beton. SUB UNIT: ABU BATUBARA PLTU SURALAYA Abu batubara adalah bagian dari sisa pembakaran batubara pada Boiler pembangkit listrik tenaga uap yang berbentuk partikel halus amorf dan bersifat Pozzolan, berarti abu tersebut dapat bereaksi dengan kapur pada suhu kamar dengan media air membentuk senyawa yang bersifat mengikat. Dengan adanya sifat pozzolan tersebut abu terbang mempunyai prospek untuk digunakan berbagai keperluan bangunan. Kami bergerak dalam penyedian tenaga listrik tenaga uap berbahan bakar batubara yang mensuplai tenaga listrik Jawa Bali sebesar 40% dari seluruh kapasitas pembangkit listrik lainnya. Kami juga bergerak dalam bidang trading batubara atau fly ash sebagai non core business yang sekarang dapat memproduksi 24 ribu ton fly ash per bulan. UNSUR APA YANG ADA P ADA BATUBA RA 1. SILICA 51,82 % 2. ALUMINA 30,98 % 3. HEMATID 4,93 % 4. KAPUR 4,66 % 5. MAGNESIUM 1,52 % 6. SULFAT 1,51 % 7. CARBON 1,52 %

CONTENT TOTAL 8. ALKALI Hasil Produksi Kami BAHAN BANG UNAN

1,42 %

QuickTime and a decompressor are needed to see this picture.

Berat massa lebih ringan (SG=0,9) dengan unsur yang paling dominan adalah silika 52%. Lebih padat, daya resap terhadap pori-pori structur sangat tinggi.

Cabot Indonesia, PT.PT. Cabot Indonesia , which opened a 30,000-ton capacity carbon black plant in Cilegon in May 1992, now plans to double the size of its operation to 60,000 tons. A marketing term for providing dark fiber to a customer. The customer is responsible for generating the transmission signal and interpreting it at the other end. The increase is to meet the anticipated needs of Indonesia's domestic carbon black market, which is said to be expanding rapidly in response to growth in the tire and related industries. The expansion of PT. Cabot Indonesia, approved earlier this year by Indonesia's Investment Coordinating Board, represents a $24.5 million investment. The additional capacity will be directed primarily to local markets, but will also support exports to regional markets. Commercial production commenced in 1995. The process of the production of carbon black The individual primary particles connect each other and create three-dimensional formations called aggregates. The comprehensiveness of their geometric assortment contributes to the character called structure. The chemical reaction is finished by spraying of water into a rear part of reactor. The created particles are carried away in a

stream of hot reaction gas to the next cooling and gas separation in sleeve filters. The so called non-reinforced carbon black is further transported to the pelletizing process in order to improve their transportation properties. The basic link of production of retort carbon black is the reactor with the fire resistant brickwork lining. The carbon black is produced by the the chemical reaction during which imperfect combustion occurs. CS CABOT uses retort process for the production of carbon black. The raw materials used in the process are heavy hydro-carbons, being obtained during distillation of oil, production of ethylene and by the distillation of coal tar. A hot oil is injected into the warmed up reactor. A process of burning is regulated and stopped before completing so that only a small part of the oil will burn for the purpose of maintaining of the reactive temperature, (which moves in range from 1350 to 1800 C) and the rest will spread during the rise of carbon black. Application The individual types of carbon black can be defined by size and specific surface of particles and further by a structure of their aggregates. The furnace carbon black create comprehensive group of products, which offer wide palette of the function characteristics and improve important

products in which they are added (stiffening characteristics, protection against UV radiation, pigmentation and conductance). Roughly 90% of all carbon black is used in rubber industry where above all their stiffening characteristics are used. The most important market from the consumption point of view is tyre sector. Every part of the tyre (tread, side plate, breaker, frame, inner rubber, base) uses various types of rubber mixture with the various types of carbon black. The second most important market of carbon black is the area of production of the mechanical rubber goods. Here carbon black also improve the whole range of the characteristics of final products such as: profiles, hoses, straps, rubber cables, rubber-metal parts, sealing compound and others. The carbon black are also important component in other than rubber aplications. Here their ability of pigmentation, retardation of UV radiation and the increasing of conductance are used (in the plastic industry, in the printing aplications, in the colouring matters industry and so on).

Q u ic k T im e a n d a d e c o m p re s s o r a r e n e e d e d to s e e th is p ic tu re .

physical-mechanical characteristics of