Top Banner

of 51

Cms Tutorial

Apr 10, 2018

Download

Documents

Meltz Njoroge
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/8/2019 Cms Tutorial

    1/51

    Industrial Strength Laser Marking:

    Turning Photons into Dollars

    Control Micro Systems, Inc.4420MetricDriveWinterPark,FL32819407-679-9716

    www.cmslasermarking.com

    1

  • 8/8/2019 Cms Tutorial

    2/51

  • 8/8/2019 Cms Tutorial

    3/51

    PrefaceTheoriginalinspirationforthisdocumentwasthegrowingconcernwithinthelasercommunityaboutitsroleineducatingindustryonthebenefitsoflaserprocessing.Afterseveralafter-hoursdebates,weconcludedthatthereisnosinglesourceforalloftheinformationaprospectiveuseroflasermarkingmightrequire.Thisdocumentisourattempttohelpremedythatsituation.

    Theobjectiveofthispublicationistoeducatethereaderonthevariousaspects,featuresandcapabilitiesofbeam-steeredlasermarkingsystems.Itattemptstoprovideageneralunderstandingofthelasermarkingtechnology-withouttheprerequisiteofamathematicsorengineeringbackground.

    Althoughtheprimaryintentistoeducate,thereis

    admittedlyadegreeofsalesmanshipinourmotives.ControlMicroSystemsis,afterall,amarkingsystemmanufacturer.Wehopethatthisdocumentwillservetostimulatethereadertofurtherconsiderthepotentialbenefitsoflasermarkinginhisorhermanufacturingfacilities.Ifwealsoservetoenlightenthosewithamoregeneralinterestinlasersandindustriallasermarking-somuchthebetter.Todaysstudentcouldbetomorrowspioneer.

    Thecontentsaredividedintoeightchaptersandfourappendices.Chaptersone,two,andthreedelveintothebasicsoflaseroperationandthedesignofbothNd:YAGlasersandbeam-steeredlasermarkingsystems.Chaptersfourandfivereviewtheprinciplesofthelasersinteractionwithmaterialsandthemethodsthatareemployedtocontroltheinteractionandcreatealasermark.Chapters

    sixandsevencoverthesubjectsofintegratinglasermarkingsystemswithhostcomputers,automatedworkcells,etc.,andthetypicalcostofoperation.Thefinalchapter,perhapsthemostimportanttothoseconsideringutilizinglasermarkingtechnology,analyzesthelasermarkingcostjustificationprocessthroughareviewofpresentcostjustificationtechniquesandseveralcasestudiesofpresentusers.

    Theappendicesprovideadditionalinformationonlasermarkingascomparedtoothermarkingtechnologies,amatrixofawidevarietyofmaterialsandtheircompatibilitywithlasermarking,asectiononlasersafetyonthemanufacturingfloor,andinformationontheuseoflasermarkerswithintheautomotiveindustry,thesinglelargestusertodate.

    3

  • 8/8/2019 Cms Tutorial

    4/51

    ForewordThelaserhastouchedalmostallaspectsofourlives.Itisarguablythelastgreatinventionofthetwentiethcentury.Sinceitsdevelopmentin1960,thelaserhasfoundahomeinscientificresearch,medicaldiagnosisandtreatment,andindustrialmanufacturing.SmalllaserdiodesareutilizedforCDplayers,laserjetprintersandtelephonecommunications.Hundredsofthousandsoflasersareused

    forUPCbarcodescanninginstoresandsupermarkets.

    Lasersarethebasisforadvancedmilitaryrangefindersandmissileguidancesystems.Large,multikilowattcarbondioxide(CO2)lasersareusedtocutandweldautomotiveframesandbodypanels.Thelistgoesonandonandcontinuestogrow.

    Almosteverytypeofcommerciallyavailablelaserhas

    foundanapplicationinmanufacturing.Diodelasers,helium-neonlasers,ionlasers,excimerlasers,helium-cadmiumlasers,carbon-dioxidelasers,andthevarioussolid-statelasershaveallbeenincorporatedinthemanufacturingprocess.Ofthediverserangeoflasersandlaserapplications,thelargestutilizationofsolid-state

    Nd:YAG(Neodymium:YttriumAluminumGarnet)lasersisforlasermarking.Forthisreason,thispublicationfocusesprimarilyontheNd:YAGlasermarkingsystem.However,manyofthebasicprinciplesareapplicabletobeam-steeredlasermarkingsystemsutilizingothertypesoflasers.

    Thepopularityoflasermarkingisprimarilytheresultofitsthreemostnotableprocessfeatures-thepermanenceofthemark,thehighspeedofthemarkingprocess,andthespeedatwhichthemarkingimagecanbechanged.Thesethreeattributesmostdifferentiatebeam-steeredlasermarkingfromallothermarkingtechnologies(seeAppendixA).Althoughtheacquisitioncostsoflasermarkingarehighascomparedtoothermethods,thesavingsthatresultcanbesubstantial.

    Inthisdocument,wewillreviewtheattributesandfeaturesoflasermarkinginthecontextofdesign,function,andmanufacturingvalue.Wehopeyoufinditeducationalandentertaining.

    Enjoy!

    4

  • 8/8/2019 Cms Tutorial

    5/51

  • 8/8/2019 Cms Tutorial

    6/51

    Photon AbsorptionOnemethodinwhichanatommaygainenergyistoabsorbaphotonoflight.Tobeabsorbed,thephotonmustcontainenergyequaltothedifferencebetweentwooftheallowedenergylevelsoftheatom.Becauseaphotonsenergydeterminesitswavelength,theatomwillonlyabsorblightofspecificwavelengthsthatareequaltotheallowedenergylevels.

    Spontaneous Em issionTherearetwowaysinwhichanatomcan subsequentlyloseenergy:bytransfertoanotheratomorbyemittingaphotonoflight.Whenemittedaslight,theemittedphotons

    wavelengthwillcorrespondtotheenergylostbytheatomasitmovesfromahighenergylevelbacktoalowerlevel.Thelightemittedbyanatommustcorrelatewiththeallowableenergylevelsfortheatom.

    Normallyanatomwillabsorbenergy,raisingittoahigherenergylevel,andwillremaininthatenergystateforsomeperiodoftime(nanosecondsormilliseconds).Thisperiodisthespontaneousorupper-levellifetimeoftheatom.

    Eventuallytheatomwillspontaneouslyemitaphotonoflightinarandomdirectionandreturntothegroundstate.Thisisspontaneousemission(fig.3).

    6

  • 8/8/2019 Cms Tutorial

    7/51

    Stimulated Em issionAnothermechanismbywhichanatomcanemitlightisbystimulatedemission(fig.4).Duringthespontaneouslifetimewhiletheatomisinanupperlevelstateandbeforespontaneousemissioncanoccur,theatomcanbestimulatedtoreleaseitsphotonoflightbyinteractingwithanotherpassingphoton.Thepassingphotonswavelengthmustbeequaltothedifferenceoftheelectronsupperandlowerenergylevelstostimulatetheatomtoemitaphoton.Becausetheemittedphotonswavelengthisdeterminedbythedifferencebetweenthesameenergylevels,thepassingandemittedphotonswillbethesamewavelength.Inaddition,bothphotonswilltravelintheoriginaldirectionof

    thepassingphotonandwillbeinphase.Withequalpropertiesofwavelength,direction,andphase,thephotonsconstitutecoherentlight.

    Thisstimulatedemissionofcoherentlightiscrucialtotheoperationofalaser.Infact,thisisthestimulatedemissionreferredtointheacronymLASER.

    7

  • 8/8/2019 Cms Tutorial

    8/51

    Itispossibletoforceanenergydistributionoutofequilibrium(fig.6).Ifsomeoftheatomsinthegroundstate(E0)areforcedtoanupperlevel(E1)beforeanyoftheexistingupperlevelatomscanspontaneouslydecaybackdown,apopulationinversioniscreatedinwhichthereare

    moreatomsintheupperlevelstatethanthelower.Thepopulationinversionisanonequilibriumdistributionandwillnotlastverylong.Groundstateatomsmustbecontinuouslyforcedintotheupperleveltomaintaintheinversion.Asustainedpopulationinversioniscrucialtomaintainingstimulatedemission.

    Population InversionUptonow,wehavelookedattheenergytransitionsofasingleatom.Whatoftheenergydistributionofalargepopulationofatoms?

    Inanysubstantialpopulationofatoms,themajorityoftheatomswillbeinthegroundstate.Theremainingatomswillbedistributedamongthehigherenergylevelsindecreasingquantities.Boltzmannslaw,oneofthefundamentallawsofthermaldynamics,dictatesthepopulationateachlevel.Infigure5,eachenergylevelforaspecifiedatomisrepresentedontheverticalaxisofthediagramwhilethelengthofthecorrespondinghorizontallinesrepresentsthepopulationforeachlevel.Asdescribed

    byBoltzmannslaw,eachascendinglevelwillhavefeweratomsthantheprecedinglevel.Thepopulationofatomsisinathermalequilibriumdistribution.Applyingheattothepopulationtoincreasetheenergywillsubsequentlyincreasethenumberofatomsabovethegroundstatebutwillnotchangetheoveralldistribution(i.e.ahigherlevelwillnotcontainmoreatomsthanalowerlevel).

    Light AmplificationSohowdoesthelaseramplifylight?Attheheartofall

    lasersisthelasingmedium,whichcontainsatomsthatcanbestimulatedtospontaneouslyemitlight.Themediummaybeagasmixture(CO2,helium-neon,etc.),asemiconductorsubstrate(laserdiodes),aliquid(dyelasers),orasolidcrystal(Nd:YAG,Nd:YLF,Ruby,etc.).Thelaserwillalsohaveanenergysourcetoexcite(pump)theatomsofthemedia.Thepumpsourcewillusuallybeeitheranelectricdischarge,lightfromahi-intensitylightsource,oranother

    laser.

    8

  • 8/8/2019 Cms Tutorial

    9/51

    Allofthephotonswillbethesamewavelength,willbeinphaseandwilltravelthesamedirectionalongthepathofreflection.Thepopulationinversionassuresthatthereisalwaysasufficientquantityofatomsintheupperlevelstatetosustainthelasingprocess.Oneofthemirrorsofthe

    opticalfeedbackiscoatedtoleakasmallpercentage(typically10%orless)oftheamplifiedlightreflectingbetweenthemirrors.Thisleakageisthelaseroutputbeam.

    Asthepumpsourceexcitesthelasingmedia,sufficientenergyisappliedtocreateapopulationinversionandinitiatespontaneousemission.Thespontaneouslightemittedbythemediatravelsinrandomdirections(fig.7).

    Opticalfeedbackiscreatedbyplacingamirrorateachend

    ofthemediatoreflectthosephotonstravelingalongthelongitudinalaxisbackintothemedia.Thereflectedphotonscauseotherupperlevelatomstoemittheirphotonsbystimulatedemission.Asthisprocesscontinues,onephotonbecomestwo,twobecomefour,fourbecomesixteen,etc.-LIGHTAMPLIFICATION!!

    9

  • 8/8/2019 Cms Tutorial

    10/51

    Chapter 2 -Nd: YAG Lasers

    ThepumpsourceisusuallyakryptonarclamppositionedparalleltotheNd:YAGcrystal(fig.8).BoththeNd:YAGcrystalandthekryptonarclamparelocatedinsideagold,ellipticalshapedcavity.Thecavitycontoursarecarefully

    calculatedtofocusallofthepumplightemittedbythekryptonlamptoafocalregionalongthecenteraxisofthe

    ThebasicprocessoflaseramplificationdescribedinChapter1,thoughignoringmanyofthesubtletiesoflaserphysics,appliestoalllasers.Nowwewilllookspecificallyatthesolid-stateNd:YAG(Neodymium:YttriumAluminum

    Garnet)laserthatismostfrequentlyemployedforbeam-steeredlasermarking.

    Thelasingatomsinsolid-statelasersareembeddedinasolidpieceoftransparentmaterialcalledthehost.ForNd:YAGlasers,neodymium(Nd)atoms(thelasingmedia)areembeddedinayttriumaluminumgarnet(YAG)crystalhost.TheYAGcrystalisusuallyintheshapeofarodroughlythesizeofapencil.Theoptimumneodymium

    concentrationinthecrystalisabout1%byweight.Itsgrowthisbestdescribedasablackart.

    Thoughdifficultandexpensivetoproduce,theNd:YAGrodexhibitsdesirableoptical,mechanical,andthermalpropertieswhichmakeitanexcellentmediaforhighpowerlasingoperation.

    10

  • 8/8/2019 Cms Tutorial

    11/51

    Nd:YAGcrystal.Goldisusedforitshighreflectivitytothewavelengthofthepumplight.A100%reflectiverearmirrorandapartiallytransmittingfrontmirrorprovidetheopticalfeedback.

    AfourstepprocessofenergytransferoccursinanNd:YAG

    crystal(fig.9).First,theneodymiumatomsareelevatedtooneoftwoupperenergylevelswiththeabsorptionoflightemittedbythekryptonarclamp.Lamplightinpumpbandsnear0.73mmand0.8mmismostefficientatexcitingneodymiumionstotheupperlevels.Theatomsthengothrougharapid,nonradiativedecaytoametastableupperlaserleveltherebycreatingapopulationinversionbetweentheupperandlowerlaserlevel.Whentheatomsfurtherdecaytothelowerlaserlevel,energyisemittedasaphotonoflightwithawavelengthof1.06mm.Thislasertransitionisthesourceofboththespontaneousandthestimulatedemissionthatconstitutethelaserbeam.Lastly,theatomsexperienceanonradiativedecaybacktothegroundstatetorepeattheprocess.

    11

  • 8/8/2019 Cms Tutorial

    12/51

    Multimode vs. TEMoo OperationAtthispoint,thelaserisoperatinginwhatisreferredtoasamultimodecondition.Withoutdelvingdeeplyintolaseropticalmodes,sufficeittosaythatacrosssectionofamultimodebeamwouldshowmultiplehotspotsorrings(fig.10)andthediameterofthebeamwouldberoughlydeterminedbythediameteroftheNd:YAGcrystal.

    Becausethereflectedlightinthecavityispartiallyblocked,TEMoooperationisachievedattheexpenseofloweroveralloutputpoweralthoughthequantumoflightinthecenterofthebeammaybehigher.

    Forspecialapplicationsthatrequireonlynarrowlinewidths(

  • 8/8/2019 Cms Tutorial

    13/51

    The Acousto-Optic Q-SwitchForlasermarkingapplications,anadditionalopticalcomponentisusuallyaddedtotheopticalcavity-theacousto-opticQ-switch.TheQ-switchisadevicethatproducesapulsedlaseroutputbyalternatelyblockingandunblockingthepathofreflectionbetweentheopticalfeedbackmirrors.TheQstandsforthequalityoftheopticalfeedbackofthelasercavity.

    Theacousto-opticQ-switchconsistsofatransparentmaterial(usuallyquartz)withapiezoelectricacoustictransducerbondedtooneside(fig.12).Inthestaticstate,thelightemittedfromtheNd:YAGcrystalpassesthroughtheQ-switchatanangledictatedbythematerialsnormal

    indexofrefraction(fig.13).Thelightthenreflectsofftherearmirror,passesbackthroughtheQ-switch,andreturnstothecrystal.

    WhenanRFsignalisappliedtothetransducer,anacousticwaveisprojectedthroughthequartzthatmomentarilycompressesthematerial.Thisproducesaperiodicchangeintheindexofrefractionofthequartz.SomeofthelightpassingthroughtheQ-switchisdiffractedtoasmallangle andmissestherearmirror.Withthislossoftheoptical

    feedbackthatisnecessarytostimulateemission,lasingactionceases.

    Neodymiumisafairlyuniquelasingmediainthatitexhibitsacomparativelylongspontaneousorupper-levellifetime.DuringtheperiodthattheRFisappliedtotheQ-switchandstimulatedemissionissuspended,thepopulationoftheupperlaserlevelwillcontinuetogrowasmoreatomsabsorblampenergy.Atomsalreadypopulatingtheupper

    levelwillnotimmediatelydecaytothelowerlevelduetothelongupper-levellifetime.Duringthenon-lasingperiod,theupperlevelstoresconsiderableamountsofenergy.WhentheRFsignalisremovedandtheopticalfeedbackisrestored,theresultantburstoflaserlightcanbeseveralkilowattsofpeakpower.Q-switchingisanexcellentmethodtoproduceveryshortpulsewidthandveryhighpeakpowerpulsesoflightfromacomparativelylowpowerlaser.

    13

  • 8/8/2019 Cms Tutorial

    14/51

    *Tip:Thelongupper-levellifetimewhichresultsinhighpeakpowerpulsesduringQ-switchedoperationwilldetrimentallyeffectthemarkingoperationduringthemuchlongerperiodthatoccurswhilethesteeringmirrorsarerepositioningbetweencharactersorgraphicimages.Allstate-of-the-artmarkingsystemsshouldincludeapulsesuppressioncircuittosuppressthegiantpulsewhichoccursatthebeginningofanynewcharacterorimage.

    Intra-Cavity Sa fety ShutterThefinalcomponentfoundinthelasercavityistheelectricallyactivatedsafetyshutter.Thesafetyshutteralsoblocksthepathofreflectionbetweentheopticalfeedbackmirrors.UnliketheQ-switch,thesafetyshutterisa

    mechanicaldevicedesignedtoblockthelasingactionforlongperiodsoftime.Allsafetyshuttersaredesignedsothatgravitywilldroptheshutterintotheclosedornon-lasingposition,intheeventofanelectronicfailure.

    Thefollowingtablesummarizestypicalperformancespecifications,includingQ-switchpulsecharacteristicsfortheNd:YAGlasersthatarefrequentlyusedforlasermarking.

    14

  • 8/8/2019 Cms Tutorial

    15/51

    Nd:YAG Laser Typical Performance Specifications

    15 watt 50 watt 100 wattTEMoo Multimode Multimode

    CW Performance

    CW Power (min.) (watts) 8 50 100

    Instability (max.) (% RMS) 3 3 3

    Beam Diameter @1/e2 (mm) 1 4 6.5

    Beam Divergence @1/e2 (max.) (mr) 2.5 10 10

    QS Performance @ 1 kHz

    Peak Power (min.) (kW) 15 75 120

    Energy / Pulse (min.) (mJ) 1.9 12 20

    Pulse Width (max.) (nsec) 130 160 170

    Peak Power Instability (max.) (% p-p) 6 8 15

    QS Performance @ 10 kHzPeak Power (min.) (kW) 2.4 18

    Energy / Pulse (min.) (mJ) 0.6 4

    Pulse Width (max.) (nsec) 260 220

    Peak Power Instability (max.) (% p-p) 15 15

    15

  • 8/8/2019 Cms Tutorial

    16/51

    Support E lectronics/Cooling SystemsTheNd:YAGlaserrequiresavarietyofsupportelementstooperatecorrectly(fig.14).

    ThekryptonarclamprequiresastableDCpowersource

    deliveringapproximately110VDCatupto35amps.Thepowersupplymustalsoincludeastartcircuittoapplyahigh-voltageignitionpulseacrossthelamp.

    Thestabilityofthepowersourcewilldirectlyaffectthestabilityofthelaseroutput.Thehigh-intensitykryptonlampgeneratesaconsiderableamountofheatthatmustberemoved.

    ExcessheatcandamagetheexpensiveNd:YAGcrystal,

    damagethegoldplating,orreducethekryptonlampsoperatinglife.Toremovetheexcessheat,Nd:YAGlasersarecooledbyaclosed-loop,deionizedwatersystem.DeionizedwaterisnecessaryforitshighopticaltransparencyandlowelectricalconductivitysinceboththeNd:YAGcrystalandthekryptonarclampareimmersedinthewaterflow.TheheatissubsequentlyremovedfromtheDIwaterbyawater-to-waterheatexchangerconnectedtoanoutsidewatersource.

    Foroptimumperformance,theDItemperatureisregulatedbymeansofasolenoidthatturnstheoutsidewaterflowonandoffasrequired.RegulationoftheDIwatertemperaturetowithinafewdegreesfurthercontributestothestabilityofthelaseroutputandthemarkingprocess.

    Thetransducerintheacousto-opticQ-switchrequiresanRFpowersource.ForoperationoftheQ-switch,theRF

    sourceispulsedatfrequenciesfrom1to50kHzcorrespondingtothedesiredpulserateofthelaser.ThequartzcellinsidetheQ-switchisalsowater-cooled,butitissimplyplumbedinparallelwiththeprimarycoolinglinestothelaserhead.

    Acontrolunitprovidestheoperatorand/orthecomputerwiththemeanstoadjustthelaseroutputpower,adjustthepulserateoftheQ-switch,setthepositionofthesafety

    shutter,andmonitorsthelasersoperationandperformance.

    16

  • 8/8/2019 Cms Tutorial

    17/51

    Chapter 3 Marking System Design

    Thebeam-steeredlasermarkingsystemdeflectsthelaserbeamacrossthesurfacemuchlikeapencilonpaper.Wherethepencildepositslead,thehighintensitylaserlightaltersthematerialtocreateacontrastingimage.Simplystatedbutnotsosimplydone.

    Output Power vs. Energy DensityWhendiscussingbeam-steeringopticsdesigns,itisimportanttounderstandthedifferencebetweenthelasersoutputpowerandthepowerdensityorbrightnessofthelaserbeamattheworksurface.

    Acontinuouswave,50-wattlaserproducesthesameamountoflightasa50-wattlightbulb.Thelightbulb,designedforgeneralillumination,emitsitslightinalldirections.Unlikethelightbulb,thelasercompactsallofitslightintoanarrowbeam.Theenergydensity,usuallyexpressedaswattspersquarecentimeter,isanexpressionnotonlyoftheamountoflightemittedbythedevicebutalsohowmuchlightispresentinaspecificarea.Thelightbulbproducesverylowenergydensityilluminationwithverylittlelightpersquarecentimeterwhilethelaseremitsaveryhighenergydensitybeamoflight.

    Thesameprinciplesapplytoafocusedlaserbeam.Alaserproducing50wattsoflightdistributedovera0.003"diameterspotwillyieldconsiderablyhigherenergydensitythenalaserthatdistributesthe50wattsoveralarger0.005"diameterspot(fig.15).Asyoumayhavesurmised,thetruemarkingpowerofasystemistheenergydensityproducedatthemarkingsurface,notsimplytheoutputpowerofthelaser.

    Infact,itisnotunusualtohavealowerpowerlaserwithasmallerfocusedspotsize,engravedeeperthanahigherpowerlaserwithalargerspotsize,althoughwithanarrowerlinewidthduetothesmallerspotsize.Theloweroutputpowerlaser,bycompactingitslightintoasmallerspot,hasahigherenergydensityattheworksurface.

    17

  • 8/8/2019 Cms Tutorial

    18/51

    Delivery Optics DesignsTheoutputbeamoftheNd:YAGlaserisdirectedandfocusedbyopticalcomponentslocatedinthegalvanometerblock(fig.16).Beam-steeringisaccomplishedbytwomirrorsmountedonhigh-speed,highaccuracy

    galvanometers.ThegalvanometersaremountedtoprovideindependentbeammotiononboththeXandY-axisofthemarkingfieldandarecrucialtoproducingahighqualitymarkingimage.

    Therearepresentlytwodesignsforfocusingthelaserbeamatthemarkingsurface.Bothdesignsutilizeanopticaltelescopecalledanupcollimatortoenlargethebeamandafocusinglensassemblytosubsequentlyfocusthebeamon

    themarkingsurface.Theupcollimatorincreasesthediameterofthelaserbeampriortofocusing.Althoughthismaysoundcounter-productive,thediameterofthefocusedspotisdeterminedbythediameteroftheincomingbeamandthefocallengthofthelens.Asthediameteroftheincomingbeamincreaseswithupcollimation,thefocusedspotwillbecorrespondinglysmallerandtheenergydensityhigher.As

    anaddedbonus,thelargerbeamdiameterreducestheenergydensityatthesurfacesofthesteeringmirrorstoinsurelongterm,reliableoperationwithoutthermaldamage.

    Thepracticallimitationtoincreasingthebeamdiameteristhesizeofthesteeringmirrorsthatarerequiredtodirectthebeamwithoutclippingordistortion.Asthebeamdiameterincreases,theincreasedmassofcorrespondingly

    largermirrorsreducesthemaximumtravelspeedanddetrimentallyeffectspositioningaccuracy.Eachmanufactureroptimizesthecombinationofupcollimationratioandmirrorsizetoachievethebestoverallperformance.

    18

  • 8/8/2019 Cms Tutorial

    19/51

    Pre-focus Delivery O pticsThetwodesignsdifferafterupcollimationofthelaserbeam.Thepre-focusdesignplacesasimplefocusinglensaftertheupcollimatorbutbeforethebeam-steeringmirrors(fig.17).Thisdesignrequiresarelativelyinexpensive

    focusingassemblyandcanprovidelargediametermarkingfields.

    Onedisadvantageofthisdesignisalargefocusedspotsizeandcorrespondingreducedenergydensity.Bothresultfromthelongfocallengthsthatarerequiredtoaccommodatethedistancefromthelenstotheworksurface(seelensperformancespecificationsforrelationshipofspotsizetofocallength).Also,becausethe

    focallengthofthelensisfixed,thefocalpointfollowsanarcasthemarkingbeamsweepsacrossthemarkingfield.Asthebeamtravelsfromthecentertotheedgeofthefield,thefocalpointiselevatedabovetheworksurfaceduetothependulumeffect.Thebeamdiameterandenergydensitywillchangedramaticallyacrossthefield.Somesystemshaveattemptedtocompensatebymechanicallyadjustingthefocallengthtomaintainthefocalpointonaflatplane.

    19

  • 8/8/2019 Cms Tutorial

    20/51

    Post-focus Delivery OpticsThemorepopularpost-focusdesignplacesamulti-element,flat-fieldfocusingassemblyafterthebeam-steeringmirrors(fig.18).Themulti-elementlensismorecostlythanthesimplelensusedinpre-focusdesignsbut

    providesthesignificantadvantageofopticallymaintainingthefocusedspotonaflatplanethroughoutthemarkingfield.Themarkingcharacteristicsandimagequalitywillremainconsistentthroughoutthemarkingfieldwithoutresortingtomechanicalcompensation.

    Post-focussystemsareavailablewithavarietyoflensoptionstotailorthesystemsperformancetothespecificapplicationrequirements.

    Theperformancetableonthefollowingpagecharacterizestypicalflat-fieldlensperformancecharacteristics.Ingeneral,longerfocallengthswillprovidelargermarkingfieldsattheexpenseoflargerfocusedspotsizesandreducedenergydensity.Thedesiredlinewidth,markingdepth,andmarkingspeedmustallbeconsideredinselectingthecorrectlensforaspecificjob.Fortunately,allofthemajormanufacturershaveapplicationslaboratories

    thatwillassistpotentialusersinmakingthecorrectlensselection.

    20

  • 8/8/2019 Cms Tutorial

    21/51

    Operating SoftwareThemostsignificantadvancestooccurinlasermarkingtechnologyhavebeenintheareaoftheoperatingsoftware,primarilyduetotherapidadvancesinpersonalcomputers.Thefirstgenerationlasermarkingsystemsutilizedbulky,

    slowmainframecomputerswithteletypekeyboardsforoperatorinputandpapertapeforprogramstorage(andthesewereconsideredstate-of-the-artatthetime!).LatergenerationsincorporatedthethennewPCwithvideomonitorsandfloppydiskstoragebutcontrolledlittlemorethanthemarkingimageandthebeammarkingvelocity.

    TodaysmarkingsystemsfeatureGraphicalUserInterfaceenvironmentsonavarietyofoperatingsystemplatforms

    andcontrolallaspectsofthemarkingprocessincludingthemarkingimage,allofthelaseroperatingparameters,andinteractivecommunicationswithpartshandlingcontrollersandhostcomputers.Itisnotunusualfortodaysmarkerstoruninfullyautomated,unassistedmanufacturingenvironmentsfor24hoursaday.

    Itisbeyondthescopeofthispublicationtodetailallofthenumerousfeatures,benefits,andcapabilitiesofthe

    differentsoftwaresystemsthatareavailable.Anyattemptwouldbecomeabookinitsownrightwhenconsideringthesoftwarecustomizationthattheuserorvendorcanaccomplishtotailorthesystemsoperationtoaspecificapplicationandmanufacturingenvironment.Someexamplesofcustomconfigurationsareprovidedinthechapteronsystemintegration.

    Howefficientlywillitgetthejobdone?Remember,for

    greaterthan90%ofthetimethemarkingsystemisamachinetool.Programming,drawing,etc.willeffectlessthan10%ofthesystemsproductivityandresultantcostsavings.

    21

  • 8/8/2019 Cms Tutorial

    22/51

    Flat-Field Lens Performance SpecificationsFocal Length 3 5 8

    Field diameter (in) 3 5 8

    Working distance (in) 2.38 7.38 11.5Depth of field (in) 0.059 0.133 0.200

    Line thickness (in) 0.0025 0.004 0.008

    Resolution (in/step) 0.0002 0.0003 0.0005

    Power density (Mwatts/cm2) 524 223 102

    Measurements taken with 50-watt multimode laser output.

    22

  • 8/8/2019 Cms Tutorial

    23/51

    Chapter 4 Process Principles

    Lasermarkingisanon-contact,thermalprocessrelyingontheheatgeneratedbythelaserbeamtoalterthesurfaceoftheworkpiece.Toachievethedesiredresults,themarkingsystemprovidestheoperatorwithseveralmeansof

    controllingthethermalreactioneithermanuallyand/orbycomputercontrol.

    Pulse RateAfterestablishingtheoverallquantumoflightamplificationwiththelampcurrent,theoperatormayadjusttheQ-switch

    pulserate(seeChapter2,TheAcousto-OpticQ-Switch).TheQ-switcheffectivelydividesthelaseroutputintopulsesoflight(fig.19).Tobestunderstandthephenomena,visualizetheQ-switchedlaserasanopticalcapacitor.amp Current

    Increasingordecreasingtheelectriccurrenttothekryptonarclampadjuststheoutputpowerofthelaser.Asthecurrentischanged,thelightoutputfromthelampandtherateoflaseramplificationincreasesordecreases

    accordingly.

    Muchlikeanelectriccapacitor,thelaserstoresenergy(intheupperlaserlevel)duringthenon-lasingperiodsbetweenpulses.

    WhenthelaserispulsedbytheQ-switch,theoutputisaburstoflightcontainingmostofthestoredenergy.Ifthepulserateissettoalowfrequency(1kHz),thecomparativelylongdurationbetweenpulseswillproduceveryhighpeakpowerpulseswithverynarrowpulsewidths(app.100nanoseconds).Ifthepulserateisincreasedto10kHz,thepeakpowerwillbemuchlowerduetotheshorterchargetimebetweenpulses.

    Whatdoesthismeantothetargetmaterial?Thehighpeakpowerpulsesatlowfrequencieswillincreasethesurfacetemperatureveryrapidlyresultinginmaterialvaporizationandminimalheatconductionintothepart.Athigherreprates,thelowerpeakpowerwillproducemuchless,ifany,vaporizationbutwillresultinsignificantlymoreheatconduction.Thegreaternumberofpulsesinagiventimeframewillalsoincreasetheheatconductedintotheworksurface.TheQ-switchpulserateisprobablythemost

    importantvariableforcontrolofthethermalprocess.Aswiththelampcurrent,thepulseratecanbecontrolledeithermanuallyorbythepartprogram.

    23

  • 8/8/2019 Cms Tutorial

    24/51

    Beam V elocity (Marking Speed)Afterthelaseroutputhasbeenconfiguredwiththelampcurrentandpulserate,theoperatormustestablishthebeamvelocityformarking.

    Inaperfectworld,everyapplicationwouldrunatthemaximumspeedforthehighestsystemthroughput.Inlasermarkinghowever,thebeamvelocityisanotherimportantvariableinthethermalprocessandmustbesettoachievethedesiredprocessresults.Fordeepmarking(typically>0.002")eachpointontheengravedlinewillrequireexposuretoseveralpulsestoachievedepth.Thebeamvelocitymustbereduceduntilthedesireddepthisachieved(fig.20).Forshallowmarking,thespeedmaybe

    increasedtothesystemsmaximumvelocityoruntiltheseparationbetweenpulsesisaestheticallyunacceptableattheselectedpulseratesetting.Asageneralrule,pulsesshouldoverlapatleast50%togivetheappearanceofacontinuousengravedline.

    *Tip:Someofthemoreadvancedsystemsrepositionthebeambetweencharactersand/orgraphicimagesindependentlyoftheprogrammedmarkingspeed.As

    example,somesystemswillrepositionthemarkingbeamatover32,000mm/secondregardlessoftheprogrammedmarkingspeedforconsiderablyfastercycletimes .

    Determiningthebestcombinationoflampcurrent,pulserate,beamvelocityandlensselectionisanartdevelopedafteryearsofdevelopinglaser-markingapplications.Theexpertisetomakethisdeterminationresidesinthemanufacturersapplicationslaboratory.Theapplications

    techniciansaretheonlypeoplefullyqualifiedtodeterminethebesthardwareconfigurationandtheoptimumprocessparametersforayourapplicationontheirequipment.Allseriouslasermarkermanufacturershavethiscapability.

    AVAIL YOURSELF OF THIS SERVICE!

    24

  • 8/8/2019 Cms Tutorial

    25/51

  • 8/8/2019 Cms Tutorial

    26/51

    Color-Darkcolorsabsorbmorelightthanlightercolors.Thisisequallytruewiththeabsorptionoflaserlight,althoughthedifferenceisusuallymarginalrequiringaminoradjustmenttothelaseroutputpower,themarkingspeed,orthelaserspulserate.Paintedcolorshavelittleeffectsincethelaserusuallyvaporizesawaythepaintvery

    quicklyandexposesthecolorofthebasematerial.

    Surfacefinish-Thesurfacefinishofatargetpartisnotacrucialfactorinthethermalprocessitselfbutmaybeimportantforreadabilityconsiderations.Ifthelaserdoesnotinduceacolorchange,aroughsurfacewillrequiredeepengravingtoachievealegibleimagewiththesurroundingmaterial.Asmooth,machinedsurfacewillyieldexcellentreadabilitywithveryshallowengraving.

    MaterialHardness-Forallpracticalpurposes,materialhardnessisnotafactorinlasermarking.Thelasercanmarkahardenedsteelpartjustasreadilyastheuntemperedmaterial.

    26

    C

  • 8/8/2019 Cms Tutorial

    27/51

    Chapter 5 Applications

    Dependingonthematerial,acontrastingmarkcanbecreatedusinganyoneofthreedifferenttechniques.Themaximumtemperatureachievedonthematerialsurfacedifferentiateseachmethod.

    Surface Annea lingComparativelylowtemperaturescanbeappliedtometallicstoannealthesurface(fig.22).Themarkingbeamwillproduceasharp,contrastinglinetothesurroundingmaterialwithveryshallowmaterialpenetration.Markingbyannealinghastheadvantageofnotdisruptingthesurfacethatisimportantforsomemedicalapplications,specifically

    implantabledevices.Thedisadvantageisthat,becausetheprocessreliesonheatconductingintothematerial,thebeamvelocitymustbeheldcomparativelyslow.

    Surface M eltingAsanalternative,thematerialcanbebroughttoamoltenstate(fig.23).Thistechniqueisseldomusedwithmetallicsasitoffersnorealadvantages.Itisfrequentlyemployedtoinduceacolorchangeinplastics.Awidevarietyof

    commercialplasticsyieldexcellentcolorcontrastandhighqualitymarkingimages.

    Althoughtheprocessalsoreliesonconductedheat,thespeedscanfrequentlybeveryreasonablesincetheprocessrequireslessdepththanthatrequiredannealingmetallics.Excellentresultsareroutinelyobtainedatpenetrationdepthsoflessthan0.001".

    27

  • 8/8/2019 Cms Tutorial

    28/51

    28

    Material Vaporization (Laser Engraving)Thethirdandmostcommonmethodistheremovalofmaterialbyvaporization(fig.24).Thistechniquehastheconsiderableadvantageofspeed.Becausethematerialisalmostinstantlyvaporizedwitheachpulse,thebeam

    velocitycanbesettothefastestspeedpossiblethatstillachievesthedesireddepthandmaintainsacceptablepulseoverlap.

    Multiple Color EngravingAninterestingvariationofthismethodhasbeendevelopedfortheautomotiveindustrytoproducemulticolorengraving(fig.25).

    Thedashboardsoftodaysautomobilescontainawealthofbutton-activatedcontrols.Pushbuttonsareemployedtocontroldrivinglights,interiorlights,air-conditioningandheatingsystems,stereosystems,windshieldwipers,andevenon-boardcomputers.

    Thebuttoncapsaremoldedfromacolored,translucentplasticandaresubsequentlypaintedwithawhitebasecoatandadarker,contrastingtopcoatcomplementingthecolor

    schemeofthevehiclesinterior.Thelasermarkingsystemselectivelyremovesthedarktopcoattoexposethewhiteundercoatcreatingthedesiredtextand/orgraphiclegend.Thecontrastbetweenthetwocolorsprovidesexcellentdaytimevisibility.Fornightvisibility,thebuttonisbacklittoprojectthecolorofthetranslucentplasticthroughtheengravedlegend.

    Chapter 6 System Integration

  • 8/8/2019 Cms Tutorial

    29/51

    Chapter 6 -System Integration

    AsthemanufacturingsectorcontinuestoautomateproductionprocessesandincorporateJust-In-Time(JIT)manufacturingphilosophies,beam-steeredlasermarking

    systemsareincreasinglycalledupontofunctionaseitheranelementoflarger,computercontrolledmanufacturingfloorsorasacontrollerforintegratedmarkingworkstations.Parallelwiththedevelopmentofthemarkingsystemsimagegenerationsoftware,developershaveaddedhighlysophisticatedandflexiblecontrolandcommunicationfunctionstokeeppacewiththedemandsofincreasinglyelaboratemanufacturingarchitectures.

    Unattended Operation under Host ControlNissanMotorshasplacedahighpriorityonautomatingthe

    manufacturingprocesswhileretainingtheflexibilitytorunspecialsandcomponentrework.Lasermarkershavereplaceddot-impactprinterstoincreasetheproductionrateoftheVehicleIdentificationNumber(VIN)tagsandtoaddbarcodecapability.EachVINtagconsistsofthevehiclesuniqueIDnumberinbothbarcodeandman-readableformatsandagraphicsymbolrepresentinganairbagwhenappropriate.Thetotalcycletimerequiredtoproduceatagisunder10seconds.Toachievefullutilization,themarking

    systemwasdesignedtoaccommodateVINtagsforanyofthetruck,automobileandbusassemblylinesandisnetworkedwithaDECVAXMainframehostcomputer.

    Followingaretwoexamplesoflasermarkingsystemsintegratedwithlargermanufacturingarchitecturesthatdemonstratesomeofthepossibilities.

    Thepartstransfersystemconsistsofoneupstackerloadedwithblankplates,threedownstackerstoreceivecompletedplatesforeachofthethreeassemblylines,andanejectionchuteforspecialsandrejects.Thetagsaretransportedbetweenthestackersbyavacuumpick-and-placetransfer

    mechanism.Eachstackerisadjustabletoaccommodatetagdimensionsuptoamaximumof6"by6"andwillholdasufficientquantityoftagstorununattendedforseveralhours.

    Themarkingsystemcomputerutilizesinfraredfiber-opticsensorstomonitorthepositionandvolumeoftagsineachofthestackers.Approximately45minutespriortotheupstackerrunningoutofblanktags(withapproximately250

    tagsremainingintheupstacker),theoperatorisforewarnedthattheupstackerwillneedtobereloadedandthecompletedtagsremoved.

    29

  • 8/8/2019 Cms Tutorial

    30/51

  • 8/8/2019 Cms Tutorial

    31/51

  • 8/8/2019 Cms Tutorial

    32/51

    Deionized water filtersThefinalconsumableistheDIwaterfilter.Filterscostapproximately$72.00apiece,dependingonquantitiespurchased,andshouldbereplacedabouttwiceayearforanannualcostof$144.00.Thehourlyratewouldbreak

    downto$0.07/hourassuming40hoursperweekoperation.

    Total operating costsAlltotaled,theworst-casecostofoperationwouldbe$1.10perhour.Inreality,userswillnotexperiencethisworst-casescenarioandcanexpectactualoperatingcostswellbelowa$1.00perhour.

    32

  • 8/8/2019 Cms Tutorial

    33/51

    Alloftheseelementscanbecategorizedintooneoftworeturn-on-investmentstatistics,tangiblesavingsor

  • 8/8/2019 Cms Tutorial

    34/51

    intangiblesavings.Tangiblesavingsarethosethatareeasilyquantifiableindollars.Examplesoftangiblesavingsare:

    Reducedwork-in-processcapital

    Reducedlead-time,piececosts

    andbetterschedulingdecisionsreducethecapitalfundstiedupinwork-in-process.

    ReducedLabor

    Reduceddowntimeformaintenanceandrepair

    Reducedoreliminatedtoolcosts

    Thesecanbetheeliminationofcontactwear

    expensessuchastoolresharpeningandreplacement,theeliminationofdowntimetochangetooling,ortheeliminationoftoolinginventory.

    Reducedoreliminatedconsumablesdisposalcosts.

    Tangiblesavingsarerelativelyeasytoidentify.Intangiblesavingsareanothermatter.Herearetwomore

    quotesfromAMT,oneonthepresentstateofintangiblebenefitsanalysisandtheotherontheavailabilityofrelevantinformation...

    Theintangiblebenefitsofautomationinvestment,theleastunderstood,areoftenignoredinmanyevaluations.

    Goodinformationisoftenavailableregardinglaborandmaterials.Detaileddataisnottypicallymaintainedinareassuchascustomerserviceorinmeetingproductionschedules.Neitherdogoodrecordsexistforoverheadactivitieswhichmaybereducedbyanautomationinvestment.

    Whenincorporatinglasermarkinginamanufacturingprocess,significantsavingsarefrequentlyrealizedfromtheintangiblebenefits.Theymustbeincludedaspartofacompleteandaccurateanalysis.

    Intangiblesavingscanbefoundinseveralareasofthemanufacturingprocess.Costreductioncanbefoundin

    (1) qualityandreliabilityimprovementssuchasreductionofreworkandscrapandpartinspectioncosts,

    (2) responsivenesstothemarketplacewithshorterproductioncycletimes,reducedleadtimes,andthecapabilitytorespondmorequicklytoshort-termchangesinmarketdemand(eithervolumeorproductmix),

    (3) productionflexibility/efficiencysuchastheeliminationofsecondaryprocesses,thegreaterpotentialforcustomizedproduction,andpossibleincreasedmarketshareandsalesrevenuesduetohighercapacitiesand/orfasternewproductintroductions,

    (4) increasedcustomerserviceandsatisfaction,

    (5) improvedcompetitivepositioningwithnewtechnologies,

    (6) reducedfloorspacerequirements,

    34

    (7) improvementsinoverheadsuchasreducedsafetycosts(includinginsurance)andreducedi l i i l i l d h d h li i i d i f

  • 8/8/2019 Cms Tutorial

    35/51

    managerial,engineering,clericalandshopsupportcostsduetotheeliminationorreductionofnon-valueaddedactivities,.34

    (8) inventoryimprovementssuchasreducedsafetystock,lowerproperty(inventory)tax,andreducedfloorspacerequirements,

    (9) andtheimpactonhumanresourceswithincreasedemployeemoraleandsafetyandthebenefitsofupgradedemployeetechnicalskills.

    Theexerciseofestimatingtangiblecostsavingsbasedontheseandotherintangiblebenefitswillprovidefor

    thetranslationofimprovedmanufacturingflexibility,productqualityandcustomerservicetoanincreaseinsalesrevenue.

    thetranslationofhigherqualityandreliabilitytoreductionsinwaste,scrapandrework.Qualitycontrolbudgets,warranty,andpotentialrecallexpensescanalsobeimproved.

    theconversionofareductioninnon-valueaddedactivitiessuchasmovingproductandwork-in-processqueueintoreducedproductcostandimprovedcashflow,especiallywiththeeliminationofsecondaryprocesses.

    estimatingincreasedproductivityandqualityduetoanimprovedworkenvironment.

    Thefollowingcasestudiesillustratethepurchasedecisionsofsomepresentusersandboththetangibleandintangiblesavingstheyenjoyedafterinstallation.Theintentisnottolistalloftheareasofsavingsbuttohighlightonlythoseareasthateachuserfeltwassignificanttohiscompanysbottomline.

    35

    Case Study #1

  • 8/8/2019 Cms Tutorial

    36/51

    Situation:Amanufacturerappliedpartinformationtoinvestmentcastingspriortoshipmentutilizingavibropeenengraver,anelectro-etchmarkingsystem,orinkstampmachine.Thetotalmarkingdepartmentcostswere$33.90perhourexcludingtoolingcosts.

    Theannualtoolingcostsassociatedwiththevibropeenmarkingaloneconsistedofstylusresharpeningof6,112pieces@$0.95/each($5,806total)andstylusreplacementof2,400pieces@$9.40/each($22,560total)fortotaltoolingcostsof$28,366peryear.

    Analysis:Costsavingswerecalculatedforthetangiblesavingsofapplyinglasermarkingto70%ofthevibropeenworkload.Afteranalyzingthepotentialsavings,aturnkeymarkingsystemwaspurchasedwhichincludedaworkstationdesignedtoacceptthe

    manufacturerspartscarts,alaserchiller,factoryinstallationandoperatortraining,andabasicsparepartskit.

    Thetotalpackagecostwas$90,869.00.

    Tangible Savings:Themarkingtimeperpiecewasreducedfrom2minutesto30seconds.Theincreasedproductionrateto120piecesperhourrealizedareductioninpiececostfrom$1.13eachto$0.28each(-75%)basedontheoriginal$33.90/hourdepartmentcosts.

    Thereductioninpiececostscombinedwiththeeliminationof70%ofthetoolingresharpeningandreplacementcostsyieldedatotalannualsavingsof$72,875.00.

    Intangible Savings:Theimprovedmarkqualityandconsistencyeliminatedreworkandscrapwhilesignificantlyreducingpartinspectionlabor.

    Capitalsavingswererealizedwiththeeliminationofthetoolinginventory.

    Withtheeliminationofcarpaltunnelinjuries,savingswererealizedinsafety,insurance,andworkerefficiency.

    Inthefuture,thelasermarkerwillreplacetheelectro-etchprocessforadditionalsavingswiththeeliminationofasecondarycleaningprocess,areductionindowntimeandmaintenance,andtheeliminationof chemistry disposal.

    36

    Case Study #2

  • 8/8/2019 Cms Tutorial

    37/51

    Situation:AmanufactureracidetchedpartnumbersontheODofcircularhardenedsteelparts.Acidetchingwasathree-stepprocess,wash/dry,etching,andneutralization.

    Uniquetoolingwasrequiredforeachsizepart.

    Thewashingsolventwasexpensiveandreadilyevaporatedmakingthewashingstepamajorcostintheprocess.Washingrequiredfrequentdowntimeforsolventchangesandreplenishment.

    Differentmarkingstencilswererequiredforeachpartnumber.Suddenstencilfailurecausedunacceptablemarkingquality.

    Theacidetchprocessrequiredconstantoperatormonitoring.

    Acidetchinghadtobedonepriortoparthardening.Partsrejectedlaterinmanufacturing

    cyclecouldnotbereworkedandhadtobescraped.Thedisposalofsolvents,acid,andneutralizerwascostlyandhazardoustotheenvironmentwithseveralEPArestrictions.

    Thetotalcostincludinglaborwas$0.069/eachat4,000pcs./shift.

    Analysis:Costjustificationwasbasedonpotentialsavingsassociatedwiththesolvents,processtooling,andlabor.

    AfullyautomatedmarkingsystemwaspurchasedincludingaU-shapedpassthroughconveyorsystemwithautomatedin-feedandout-feedto/fromthebulkloadingstation.Thetotalpackagepricewas$210,000.00.

    Tangible Savings:Thepiececostwasreducedto$0.002/each(-97%)includinglabor.

    Downtimeformaintenanceandrepairwasreduced

    Thetoolingcostswereeliminated.

    Consumablescostswerereducedandthecostsofchemistrydisposalwereeliminated.Intangible Savings:Theimprovementinqualityeliminatedreworkandscrap

    Productionefficiencywasimprovedwiththeeliminationofsecondaryprocesses

    Rejectscouldbereworkedbyperformingthemarkingprocessafterparthardening

    Inventoryreduction

    Moreresponsivetomarket

    37

    Case Study #3

  • 8/8/2019 Cms Tutorial

    38/51

    Situation:Amedicaldevicemanufacturermarkedpart,size,andlotnumbersoncobalt-chrome,titaniumandstainlesssteelorthopedicimplantsandsurgicalinstruments.

    MarkingwasaccomplishedwithaMonodeelectro-chemicalsystemthatutilizedmanuallytypedstencilsforeachmarkingimage.

    Eachpartrequired1.2minutestotypethestencil,etchthepart,thenneutralize,washanddrythepartatatotalcostof$0.46includingallconsumables.

    Analysis:Costjustificationwasbasedonexpectedsavingsfromeliminationofthemultiplestepsinthemarkingprocessandeliminationoftheconsumables.

    Amarkingsystemwitha36"rotarydialandathrow-awaybubblefixturemachinewaspurchasedfor$110,500.

    Tangible Savings:Productivitywasincreasedto104,000partsperyear

    Partmarkingcostswerereducedto$0.25/each(-45%)

    Automationofprocessreducedlaborexpenses

    ReduceddowntimeEliminatedconsumablesanddisposalcost

    Intangible Savings:Useofparttrayshaseliminatedtedioushand-locatinglabor

    Improvedqualityhassignificantlyreducedrework

    Improvedqualityandpermanencehasincreasedmarketshare

    TheuserhasstatedthatMoreimpressiveplanttourshascontributedtoanincreaseinmarketshare

    38

    Case Study #4

  • 8/8/2019 Cms Tutorial

    39/51

    Situation:Amanufacturerofhighprecisionfluidpressuregaugesproducedtwentydifferentmodelswithcasediametersfrom2to5.5inches (fig.26).InventoryreductionandJITeffortswerehinderedbygaugeinaccuraciesastheproductwasreceivedfrommanufacturing.

    Tocompensateforinaccuracies,eachmodelrequiredfivesilk-screenedfaceplatestoaccommodatedeviationsinmeasurementranges,hysteresis,andlinearity.Aninventoryvolumeof100differentfaceplateshadtobemaintained.

    Eachgaugewasindividuallymeasuredandmatchedwiththefaceplatewhichmostaccuratelyapproximateditscharacteristics.Thisstepwasdonebyhandincurringsignificantlaborcosts.

    ThemeasurementdeviationsandJapanesestandardsonthelinewidthofthesilk-

    screenedticmarkseliminatedthemanufacturersproductfromtheJapanesemarket.

    39

    Development P latform:A marking s stem as de eloped based on a t o position

  • 8/8/2019 Cms Tutorial

    40/51

    Amarkingsystemwasdevelopedbasedonatwo-positionrotarytablewithavisionstationandamarkingstation (fig.27).Atthevisionstation,eachgaugeispressurizedanditaccuracy,linearity,andhysteresiswereestablishedwithaCCTVsystem.Thedatacollectedwasusedtogeneratealinearitycurveforeachgaugewhichwasfurtherrefinedbycomparisonwiththehistoricaldataofallpreviousmeasurementsforthatmodel.

    Thelinearitycurvethenbecamethebasisforauniquemarkingprogramcreatedon-the-flyforthemarkingstation.Thecustomfaceplate,engravedatthemarkingstation,exactlymatchedthebeginningandendingpoints,full-scale

    linearity,andhysteresisforeachgauge.

    Results:Totaltimetoprocessagaugerangedfrom42to90secondsdependingonpartdiameter.Laborforassemblyandcalibrationwasreduced50%.

    Silk-screencostsfromtheoutsidevendorwereeliminated.

    Useofoneblankfaceplateforeachmodelreducedinventory95%.95%.

    Reworkduetoout-of-speclinearitywasreduced98%.Reworkduetoout-of-speclinearitywasreduced98%.

    Highaccuracywith0.001"linewidthticmarkshasopeneduptheJapanesemarket.Highaccuracywith0.001"linewidthticmarkshasopeneduptheJapanesemarket.

    Fasterresponsetimeforcustomorderswithenduserslogoand/orpartnumberhasincreaseddomesticmarketshare. Fasterresponsetimeforcustomorderswithenduserslogoand/orpartnumberhasincreaseddomesticmarketshare.

    40

  • 8/8/2019 Cms Tutorial

    41/51

    IllclosethischapterwithtwofinalquotationsfromAMT...

    Whenperformingcostjustificationanalysisofautomationprojects,theconsequencesofnotinvestinginautomationisthefirststrategicissue.

    Thenatureofautomationprojectsisoftensuchthatinitialimplementationphasesinthemselvesmaynotyieldsavings,butarenecessaryinordertorealizesignificantsavingsfromfuturephases.

    41

    Summary

    Thi l d l ki t t i l I h l d th t littl ith t dd i th t I l t t

  • 8/8/2019 Cms Tutorial

    42/51

    Thisconcludesourlasermarkingtutorial.Ihopeweclearedthewateralittlewithoutmuddyingupthestream.IalsowanttoextendmyapologiestothoseengineersandscientistswhorecognizethelibertiesIhavetakenwithmuchofthephysicsoflaseramplificationanditsinteractionwithmaterials.

    Theappendicesprovideadditionalinformationthatmaybehelpfulbutdidnotfindaplaceintheorganizationofthismanual.

    AppendixAcomparesbeam-steeredlasermarkingtoothermarkingtechnologiesinthecontextofspeed,permanence,andimageflexibility.AppendixBisalistofmanyofthemorecommonmaterialsandtheircompatibilitywithNd:YAGlasermarking.AppendixConLaserSafetyshouldbereviewednotonlytogetaclearerpictureoftherequirementsbuttoquellsomeoftheeffectsoftoomanyStarWarsfans.AppendixDisareviewofsomeoftheapplicationspresentlybeingusedintheautomotiveindustry,thelargestuserindustryofbeam-steeredlasermarkingsystems.Perhapsnotsurprisingly,weencourageanyreaderswithcontinuinginterestinlasermarkingtocontactControlMicroSystems.

    Happy lasing!

    42

    Appendix A -Laser vs. Other Marking Technologies

  • 8/8/2019 Cms Tutorial

    43/51

    Marking Process Speed Permanence Image Flexibility LaserMarking Good Good Good

    ChemicalEtch Good Good Poor PhotoEtch Good Good Poor

    Ink-Jet Good Poor Good

    MechanicalStamping Good Good Poor

    Nameplates(1) NA Moderate Poor

    Casting/Molding Good Good Poor

    PneumaticPin Moderate Good Moderate

    VibratoryPencil Poor Good Good

    CO2MaskMarker Good Moderate Poor

    (1)Therearenumerouslaser-markingsystemsbeingusedtoengravenameplatesasameansofapplyingtheadvantagesoflasermarkingtoproductsthataretoolargeand/ortooheavytobringtothelasermarkingsystem.

    43

    Appendix B - Material Suitability to Laser Marking.

  • 8/8/2019 Cms Tutorial

    44/51

    Material (in alphabetic order) Image Contrast Material (in alphabetic order) Image ContrastCarbon Resin GoodCeramics Bare Good

    Goldplated Good

    Lacquercoated Good

    Glass Poor CO2LaserGood

    Inconel Graphite GoodKovar (gold-plated) GoodMetallics Aluminum

    Anodized Excellent

    Bare Good

    Blackoxidecoated Excellent

    Brushed Good Cast Good

    Galvanized Good

    Painted Excellent

    Copper

    Brass(bare) Good

    Brass(coatedlacquer) Good

    Bronze Good

    Copper(bare) Poor

    Copper(nickelcoated) Good

    Castiron Good

    Cobalt Good

    Germanium Good

    Gold Poor

    Silver Good

    Titanium Excellent

    Steel

    Cadmiumcoated Good

    Carbonsteel Excellent

    Caststeel Good Chromeplated Good

    Hardened Good

    Nickelplated Excellent

    Oxidecoated Good

    Springsteel Good

    Stainless(polished) Excellent Stainless(unpolished) Excellent

    Steelalloy Good

    Stressproofsteel Good

    Surgicalsteel Excellent

    Untreatedsteel Good

    PC board Bare Good

    Coatedfiber Good

    Fibersubstrate Poor

    44

    Material (in alphabetic order) Image Contrast Material (in alphabetic order) Image ContrastPlastics ABS Excellent Rubber Poor

  • 8/8/2019 Cms Tutorial

    45/51

    Acrylic Good

    Delrin Poor

    DIPplastic Good

    Epoxy Good

    Lexan Excellent

    Lucite(clear) Good

    Lucite(paintedblack) Good

    Melamine Poor

    Mylar(withsilvernitratecoating) Good

    Nylon(withglassfill) Good

    Nylon(Zytall) Good

    PES(polyether-sulfone) Excellent

    Phenolic Good

    Plaskon Good

    Polycarbonate Excellent

    Polyethylene Good

    Polyurethane Good

    PVC Excellent

    Rynite Good

    Ryton Poor

    Styrene Excellent

    Teflon Poor Thermalreinforcedresin Good

    Valox Good

    Vandar Good

    Wood PoorMarkabilityestablishedusingapost-focus,50wattNd:[email protected].

    45

  • 8/8/2019 Cms Tutorial

    46/51

    ForthosefewuserswhoneedaClass4lasersystem,aroomofappropriatedimensions,constructedofdrywall,woodorsimilaropaquematerialthatwillabsorbthepowerofthelaserbeam,isusuallysufficient

  • 8/8/2019 Cms Tutorial

    47/51

    sufficient.

    Withadvanceplanningandpreparation,lasersystems,whetherClass1orClass4,canbeeasilyinstalledtoassuremaximumoperatorsafety,comfortandefficiency.

    This information is provided as a guide only!MoredetailedinformationisprovidedinANSIZ136.1,TheAmericanNationalStandardfortheSafeUseofLasers.CopiesmaybeobtainedbycontactingtheLaserInstituteofAmerica,12424ResearchParkway,Orlando,Florida32826,(407)380-1553.

    47

  • 8/8/2019 Cms Tutorial

    48/51

  • 8/8/2019 Cms Tutorial

    49/51

  • 8/8/2019 Cms Tutorial

    50/51

    Turnkey Engineering

  • 8/8/2019 Cms Tutorial

    51/51

    OurApplicationsLabistheonlytestingfacilitythatemploysasdiversearangeofsolid-stateandgaseouslaserstoestablishthetechnicalandeconomicfeasibilityofyour

    application.Weutilizelaserpowerlevelsfromseveralmilliwattsaveragepowerto50joulesperpulsemaximumpulseenergy.Laserwavelengthsspanfromthenearultravioletthroughthevisibletothefarinfrared.Wearetheonlycompanywiththeresourcesnecessarytodeterminethebestlaserforyouruniquemarkingrequirements.

    Software E ngineeringThecomputerisapowerfulimagingtoolthatprovidesspeed,versatilityandseamlessintegrationwithmanufacturingcontrolsandinformationnetworks.Oursoftwareengineerscanaugmentourstandardsoftwarepackageswithcustomoperator/machineinterfacestofullyintegratethelasermarkerintoyourmanufacturingarchitecture.CustomfunctionalitycanbeaddedincludingODBCdatabaseutilizationandproductionreporting.Wecanassistyourengineeringstaffinimplementingthebest

    imagegeneration,imagemanipulation,andprocesscontrolsolutionsforyouruniquemarkingrequirements.

    Systems E ngineeringTheSystemsEngineeringgroupprovidesstandardandcustomparts-handlingworkstationsformanual,semi-automated,andfullyautomatedproduction.Manufacturingcellsincorporatemulti-axistablesandrotarydrives,

    vibratorybowlfeeders,conveyors,pickandplaceparttransferandrobotics.Secondaryprocessesincludingvisionsystemsandreaderscanbeincorporatedforestablishingthemarkingimageorsubsequentprocessconfirmation.Forthehighestefficiency,ourengineerscanintegratethelasermarkerintoyourexistingparttransfersystem.Whetheryouneedastandalonesystemorafullyintegratedmarkingworkstation,ourunique,unitizeddesignswillassureyouofmaximumproductivityandreliabilitywithminimumfloor

    spacerequirements.

    Continuous Flow Eng ineeringControlMicroSystemsisapioneerincontinuousproduct

    flowmarking.Withadvancedbeamsteeringcomponentsandproprietaryimagingsoftware,ourmarkerscanapplytextwithoutstoppingtheparttosubstantiallyincreasethethroughputofyourlasermarker.Ourengineerscandetermineifyourapplicationcanbenefitfromcontinuousflowmarkingtechnology.

    Control Micro Systems, Inc.4420MetricDriveWinterPark,FL32819407-679-9716www.cmslasermarking.com

    51