Top Banner
©2007 Waters Corporation Chromatographic Advances for Chromatographic Advances for Pharmaceutical Analysis Pharmaceutical Analysis Robert Plumb Robert Plumb Waters Corporation Waters Corporation [email protected] [email protected]
46

Chromatographic Advances for Pharmaceutical Analysisquimica.udea.edu.co/~carlopez/cromatohplc/hplc_devcelop_methods... · Chromatographic Advances for Pharmaceutical Analysis Robert

Jun 16, 2018

Download

Documents

vuxuyen
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Chromatographic Advances for Pharmaceutical Analysisquimica.udea.edu.co/~carlopez/cromatohplc/hplc_devcelop_methods... · Chromatographic Advances for Pharmaceutical Analysis Robert

©2007 Waters Corporation

Chromatographic Advances for Chromatographic Advances for Pharmaceutical AnalysisPharmaceutical Analysis

Robert PlumbRobert PlumbWaters CorporationWaters Corporation

[email protected][email protected]

Page 2: Chromatographic Advances for Pharmaceutical Analysisquimica.udea.edu.co/~carlopez/cromatohplc/hplc_devcelop_methods... · Chromatographic Advances for Pharmaceutical Analysis Robert

©2007 Waters Corporation

Evaluation Form

We Appreciate your Opinion

Please complete Evaluation FormQualify for drawing to win a $25 AMEX gift card (drawn at end of this session – must be present to win)

AND

Qualify to win a “Gold Package” registration to Inform 2007 ($1,595 value; one winner per day; winner to be notified post-Pittcon)

Thank You!

Page 3: Chromatographic Advances for Pharmaceutical Analysisquimica.udea.edu.co/~carlopez/cromatohplc/hplc_devcelop_methods... · Chromatographic Advances for Pharmaceutical Analysis Robert

©2007 Waters Corporation 3

Outline of PresentationOutline of Presentation

Why use higher temperatures

Theoretical considerations

Performance gains

Effect of temperature on analyte selectivity

Enabling viscous organic modifiers

Examples, natural products, metabolite ID

Column bleed at high temperatures

Effect on MS data capture rates

Conclusion

Page 4: Chromatographic Advances for Pharmaceutical Analysisquimica.udea.edu.co/~carlopez/cromatohplc/hplc_devcelop_methods... · Chromatographic Advances for Pharmaceutical Analysis Robert

©2007 Waters Corporation 4

Ultra Performance LCUltra Performance LC™™exploiting small particle LCexploiting small particle LC

Page 5: Chromatographic Advances for Pharmaceutical Analysisquimica.udea.edu.co/~carlopez/cromatohplc/hplc_devcelop_methods... · Chromatographic Advances for Pharmaceutical Analysis Robert

©2007 Waters Corporation 5

Sub 2Sub 2µµm Particle Chromatographym Particle ChromatographyUltraPerformance LCUltraPerformance LC®®

Efficiency inversely proportional to particle size

Flow rate increases with the inverse of particle size

Back pressure increases with the inverse square of particle size.

Thus sub 2µm columns bring :-

— Faster analysis faster flow ratefaster flow rate

— Higher operating pressures particle sizeparticle size

Page 6: Chromatographic Advances for Pharmaceutical Analysisquimica.udea.edu.co/~carlopez/cromatohplc/hplc_devcelop_methods... · Chromatographic Advances for Pharmaceutical Analysis Robert

©2007 Waters Corporation 6

Why Use Higher TemperaturesWhy Use Higher Temperatures??

Reduce solvent viscosity = lower back-pressure—Facilitates the use of longer

columns—Allows smaller particles to be

used on conventional equipmentIncreased throughput—Lower back-pressure and

increased optimum flow rate means the flow can be increased

—analysis completed in a shorter time

Page 7: Chromatographic Advances for Pharmaceutical Analysisquimica.udea.edu.co/~carlopez/cromatohplc/hplc_devcelop_methods... · Chromatographic Advances for Pharmaceutical Analysis Robert

©2007 Waters Corporation 7

Effect of Temperature on Effect of Temperature on Chromatographic PerformanceChromatographic Performance

Optimal Flow XBridge 2.1X100mm 3.5 um

0.0

2000.0

4000.0

6000.0

8000.0

10000.0

12000.0

14000.0

0 200 400 600 800 1000 1200

Flow Rate uL/min

USP

Pla

te C

ount

30 C

60 C

90 C

ACQUITY UPLC®

Page 8: Chromatographic Advances for Pharmaceutical Analysisquimica.udea.edu.co/~carlopez/cromatohplc/hplc_devcelop_methods... · Chromatographic Advances for Pharmaceutical Analysis Robert

©2007 Waters Corporation 8

Performance GainsPerformance Gains

The efficiency of an isocratic chromatographic system is dependent upon:—Column length L

—Particle size 1/dp

—Mobile Phase flow rate

The peak capacity of a gradient chromatographic system is dependent upon—Column length

—Particle size

—Number of column volumes defining the gradient

Increasing column temperature does notdoes notincrease chromatographic efficiency

Page 9: Chromatographic Advances for Pharmaceutical Analysisquimica.udea.edu.co/~carlopez/cromatohplc/hplc_devcelop_methods... · Chromatographic Advances for Pharmaceutical Analysis Robert

©2007 Waters Corporation 9

Minutes0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50

Minutes0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50

Minutes0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40

Isocratic Separations with UltraPerformance LCIsocratic Separations with UltraPerformance LC®®

effect of temperature effect of temperature

ACQUITY UPLCTM BEH C18 2.1 x 150 mm, 1.7 µmF = 0.4 mL/min T = 60 oC P = 7,300 PSI

N = 36,799

ACQUITY UPLCTM BEH C18 2.1 x 150 mm, 1.7 µmF = 0.5 mL/min T = 75 oC P = 7,850 PSI

N = 35,643

ACQUITY UPLCTM BEH C18 2.1 x 150 mm, 1.7 µmF = 0.6 mL/min T = 90 oC P = 6,895 PSI

N = 35,140

Page 10: Chromatographic Advances for Pharmaceutical Analysisquimica.udea.edu.co/~carlopez/cromatohplc/hplc_devcelop_methods... · Chromatographic Advances for Pharmaceutical Analysis Robert

©2007 Waters Corporation 10

Effect of Temperature on PerformanceEffect of Temperature on Performancerapid gradients using 150mm columnrapid gradients using 150mm column

Average peak capacities(Peaks n=8) (Injections n=3)

350C: 283.4

650C: 284.8

950C: 275.8

Average peak capacities(Peaks n=8) (Injections n=3)

350C: 283.4

650C: 284.8

950C: 275.8

0.45mL/min

0.65mL/min

1.0mL/min

Elution of alkyl-phenones on a 2.1 x 150mm 1.7um column and an aqueous-organic gradient, maximum pressure 13,025psi

Page 11: Chromatographic Advances for Pharmaceutical Analysisquimica.udea.edu.co/~carlopez/cromatohplc/hplc_devcelop_methods... · Chromatographic Advances for Pharmaceutical Analysis Robert

©2007 Waters Corporation 11

Minutes0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00

Increasing Efficiency HT UPLCIncreasing Efficiency HT UPLC®®

2.1 x 150 mm 1.7 2.1 x 150 mm 1.7 µµmm

Name Retention Time Area Height K Prime USP Resolution USP Tailing USP Plate Countthiourea 0.58 44198 62644 0.00 1.18 15865toluene 1.02 32307 36459 0.74 20.55 1.08 29565heptanophenone 1.46 49774 42285 1.15 16.32 1.05 34985octanophenone 1.77 48670 34903 2.04 9.00 1.03 36514amylbenzene 2.01 61932 38195 2.44 5.86 1.02 35165

ACQUITY UPLCTM BEH C18 2.1 x 150 mm, 1.7 µmF = 0.5 mL/min T = 90 oC P = 6,895 PSI

N = 34,985

Page 12: Chromatographic Advances for Pharmaceutical Analysisquimica.udea.edu.co/~carlopez/cromatohplc/hplc_devcelop_methods... · Chromatographic Advances for Pharmaceutical Analysis Robert

©2007 Waters Corporation 12

Minutes0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00

Increasing Efficiency HT UPLCIncreasing Efficiency HT UPLC®®

Linked Columns 2.1 x 300 mm 1.7 Linked Columns 2.1 x 300 mm 1.7 µµmm

Name Retention Time Area Height K Prime USP Resolution USP Tailing USP Plate Countthiourea 1.16 82660 94568 0.00 1.16 39678toluene 2.12 42653 35453 0.83 34.77 1.07 69985heptanophenone 3.26 94489 54248 1.82 29.09 1.03 79052octanophenone 4.05 92448 42380 2.50 15.23 1.01 78116amylbenzene 4.56 97517 38837 2.94 8.14 1.01 74715

ACQUITY UPLCTM BEH C18 2.1 x 300 mm, 1.7 µmF = 0.5 mL/min T = 90 oC P = 14,380 PSI

N = 79,052

Page 13: Chromatographic Advances for Pharmaceutical Analysisquimica.udea.edu.co/~carlopez/cromatohplc/hplc_devcelop_methods... · Chromatographic Advances for Pharmaceutical Analysis Robert

©2007 Waters Corporation 13

Minutes0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00

Increasing Efficiency HT UPLCIncreasing Efficiency HT UPLC®®

Linked Columns 2.1 x 450 mm 1.7 Linked Columns 2.1 x 450 mm 1.7 µµmm

Name Retention Time Area Height K Prime USP Resolution USP Tailing USP Plate Countthiourea 2.65 151654 93228 0.00 1.08 61789toluene 4.89 119158 49674 0.85 42.28 1.06 94203heptanophenone 7.60 203245 58588 1.87 34.71 1.02 108848octanophenone 9.49 198872 45002 2.59 18.04 1.00 104645amylbenzene 10.68 238837 45602 3.04 9.32 1.00 94419

ACQUITY UPLCTM BEH C18 2.1 x 450 mm, 1.7 µmF = 0.32 mL/min T = 90 oC P = 14,100 PSI

N = 108,848

Page 14: Chromatographic Advances for Pharmaceutical Analysisquimica.udea.edu.co/~carlopez/cromatohplc/hplc_devcelop_methods... · Chromatographic Advances for Pharmaceutical Analysis Robert

©2007 Waters Corporation 14

Effect of Temperature on Effect of Temperature on Analyte SelectivityAnalyte Selectivity

Raising the column temperature reduces analyte retention.

Temperature affects retention differently for different analytes.

This makes it difficult to transfer high temperature methods to preparative scale.

Simple method transfer from HPLC to high temperature, small particle LC or UPLC is not straightforward.

Page 15: Chromatographic Advances for Pharmaceutical Analysisquimica.udea.edu.co/~carlopez/cromatohplc/hplc_devcelop_methods... · Chromatographic Advances for Pharmaceutical Analysis Robert

©2007 Waters Corporation 15

Effect of Temperature on Effect of Temperature on Analyte SelectivityAnalyte Selectivity

ACQUITY TUV ChA - ACQUITY TUV ChA 254nm

AU

0.00

0.05

0.10

0.15

0.20

ACQUITY TUV ChA - ACQUITY TUV ChA 254nm

AU

0.00

0.05

0.10

0.15

0.20

ACQUITY TUV ChA - ACQUITY TUV ChA 254nm

AU

0.00

0.05

0.10

0.15

0.20

Minutes0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00

300C

600C

900C

1

5

4

32

3

6

2,31

2

1

5

5

7

74

6

47

6

10, 408 psi10, 408 psi

7,230 psi7,230 psi

5,281 psi5,281 psi

Separation pf 7 analgesics using an aqueous/organic gradient over 2 minutes using a 2.1 x 100mm 1.7μm C18 column on an ACQUITY UPLC® Chromatography System

Page 16: Chromatographic Advances for Pharmaceutical Analysisquimica.udea.edu.co/~carlopez/cromatohplc/hplc_devcelop_methods... · Chromatographic Advances for Pharmaceutical Analysis Robert

©2007 Waters Corporation 16

Opening the Solvent EnvelopeOpening the Solvent Envelopeviscous organic modifiersviscous organic modifiers

Higher temperatures reduce mobile phase viscosity.

Reducing mobile phase viscosity allows the use of solvents too viscous for room temperature operation.

These solvents, such as ethanol, IPA, DMSO, DMF, have different selectivity from methanol and acetonitrile

Page 17: Chromatographic Advances for Pharmaceutical Analysisquimica.udea.edu.co/~carlopez/cromatohplc/hplc_devcelop_methods... · Chromatographic Advances for Pharmaceutical Analysis Robert

©2007 Waters Corporation 17

Effect of Modifier on BackEffect of Modifier on Back--pressurepressure

15cm at 95C Pressure traces

psi

5000.00

5500.00

6000.00

6500.00

7000.00

7500.00

8000.00

8500.00

9000.00

9500.00

10000.00

10500.00

11000.00

Minutes0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00

ACN ~6000psi

IPA ~11,000psi

MeOH ~7800psi

Pressure traces for a 5-95% aqueous/organic gradients over 10 minute at a flow rate of 0.45mL/min

Page 18: Chromatographic Advances for Pharmaceutical Analysisquimica.udea.edu.co/~carlopez/cromatohplc/hplc_devcelop_methods... · Chromatographic Advances for Pharmaceutical Analysis Robert

©2007 Waters Corporation 18

Reducing Analysis TimeReducing Analysis Timesharper peaks less retentionsharper peaks less retention

ACQUITY TUV ChA - ACQUITY TUV ChA 254nm

AU

0.00

0.20

0.40

0.60

0.80

ACQUITY TUV ChA - ACQUITY TUV ChA 254nm

AU

0.00

0.20

0.40

0.60

ACQUITY TUV ChA - ACQUITY TUV ChA 254nm

AU

0.00

0.20

0.40

0.60

Minutes0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00

Isopropanol

Methanol

Acetonitrile

Gradient elution of alkyl-phenones over 10 minutes

Page 19: Chromatographic Advances for Pharmaceutical Analysisquimica.udea.edu.co/~carlopez/cromatohplc/hplc_devcelop_methods... · Chromatographic Advances for Pharmaceutical Analysis Robert

©2007 Waters Corporation 19

Budesonide ImpuritiesBudesonide ImpuritiesIPA, sharper peaks, increased resolutionIPA, sharper peaks, increased resolution

ACQUITY TUV ChA - ACQUITY TUV ChA 254nm

AU

-0.02

0.00

0.02

0.04

ACQUITY TUV ChA - ACQUITY TUV ChA 254nm

AU

-0.02

0.00

0.02

0.04

ACQUITY TUV ChA - ACQUITY TUV ChA 254nm

AU

-0.02

0.00

0.02

0.04

Minutes2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00

Isopropanol

Methanol

Acetonitrile

Page 20: Chromatographic Advances for Pharmaceutical Analysisquimica.udea.edu.co/~carlopez/cromatohplc/hplc_devcelop_methods... · Chromatographic Advances for Pharmaceutical Analysis Robert

©2007 Waters Corporation 20

Improved ResolutionImproved Resolutionbudesonide impuritiesbudesonide impurities

ACQUITY TUV ChA - ACQUITY TUV ChA 254nm

AU

0.00

1.00

2.00

3.00

4.00

ACQUITY TUV ChA - ACQUITY TUV ChA 254nm

AU

0.00

1.00

2.00

3.00

ACQUITY TUV ChA - ACQUITY TUV ChA 254nm

AU

0.00

1.00

2.00

3.00

4.00

Minutes3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00

Isopropanol

Methanol

Acetonitrile

Page 21: Chromatographic Advances for Pharmaceutical Analysisquimica.udea.edu.co/~carlopez/cromatohplc/hplc_devcelop_methods... · Chromatographic Advances for Pharmaceutical Analysis Robert

©2007 Waters Corporation 21

Natural Product AnalysisNatural Product Analysiswith high temperature UPLCwith high temperature UPLC®®

Natural products are often extremely complex mixtures

They present one of the most challenging tasks for separation science

Higher temperatures allow the use of longer columns and higher flow rates to produce very high resolution chromatograms

This combination allows the identification of new endogenous components

Page 22: Chromatographic Advances for Pharmaceutical Analysisquimica.udea.edu.co/~carlopez/cromatohplc/hplc_devcelop_methods... · Chromatographic Advances for Pharmaceutical Analysis Robert

©2007 Waters Corporation 22

Longer SeparationLonger Separationpeak capacity >840peak capacity >840

16-Feb-2006 16667.00000000

Time5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00

%

0

100021606_PR_ESIPOS_007 1: TOF MS ES+

BPI2.38e3

15.51

11.41

0.43

0.46

5.002.95

1.09

2.08

6.00

6.97

7.87 8.73

11.42

14.74

11.51

11.53

15.52 33.94

28.86

27.58

16.25

27.57

20.54

16.77

18.51

21.42

25.8425.23

32.6631.17

33.97

47.1947.18

33.99

45.7641.66

16667.00000000

11.00 11.20 11.40 11.60 11.80 12.00

11.41

4

11.42

11.51

11.50

11.53

Ginseng extractGinseng extract

Page 23: Chromatographic Advances for Pharmaceutical Analysisquimica.udea.edu.co/~carlopez/cromatohplc/hplc_devcelop_methods... · Chromatographic Advances for Pharmaceutical Analysis Robert

©2007 Waters Corporation 23

High Resolution Rapid Analysis High Resolution Rapid Analysis ginseng extractginseng extract

Time1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

%

0

100021606_PR_ESIPOS_006 1: TOF MS ES+

BPI3.49e3

6.444.08

2.20

2.01

1.80

1.59

1.341.331.10

2.37

3.07

2.54

3.00

3.13

3.92

3.26

3.43

6.42

6.30

4.20

4.81

4.30

4.99 6.23

5.91

5.88

5.09

5.69

5.46

7.806.70

7.61

7.32

6.91

7.88

8.338.38

Peak capacity = 500Peak capacity = 500

Peaks 1.2 seconds wide at base

Peaks 1.2 seconds wide at base

ACQUITY UPLC Q-Tof Premier™ system

Page 24: Chromatographic Advances for Pharmaceutical Analysisquimica.udea.edu.co/~carlopez/cromatohplc/hplc_devcelop_methods... · Chromatographic Advances for Pharmaceutical Analysis Robert

©2007 Waters Corporation 24

Analyte Selectivity ChangesAnalyte Selectivity Changesginger root extractginger root extract

ACQUITY TUV ChA - ACQUITY TUV ChA 254nm

AU

0.00

0.05

0.10

ACQUITY TUV ChA - ACQUITY TUV ChA 254nm

AU

0.00

0.05

0.10

ACQUITY TUV ChA - ACQUITY TUV ChA 254nm

AU

0.00

0.05

0.10

Minutes0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00

Isopropanol

Methanol

Acetonitrile

Page 25: Chromatographic Advances for Pharmaceutical Analysisquimica.udea.edu.co/~carlopez/cromatohplc/hplc_devcelop_methods... · Chromatographic Advances for Pharmaceutical Analysis Robert

©2007 Waters Corporation 25

Simavastatin Impurity ProfilingSimavastatin Impurity ProfilingQQ--ToFToF™™ AnalysisAnalysis

Page 26: Chromatographic Advances for Pharmaceutical Analysisquimica.udea.edu.co/~carlopez/cromatohplc/hplc_devcelop_methods... · Chromatographic Advances for Pharmaceutical Analysis Robert

©2007 Waters Corporation 26

MS/MS Spectrum of SimvastatinMS/MS Spectrum of Simvastatin

O

OH+OH

CH3

CH3

OH+

OO

OOH

CH3 CH3 CH3

CH3

CH3 H

OH+

O

CH3

CH3

(1.0ppm)

Page 27: Chromatographic Advances for Pharmaceutical Analysisquimica.udea.edu.co/~carlopez/cromatohplc/hplc_devcelop_methods... · Chromatographic Advances for Pharmaceutical Analysis Robert

©2007 Waters Corporation 27

Extracted ion Chromatogram 303Extracted ion Chromatogram 303

Page 28: Chromatographic Advances for Pharmaceutical Analysisquimica.udea.edu.co/~carlopez/cromatohplc/hplc_devcelop_methods... · Chromatographic Advances for Pharmaceutical Analysis Robert

©2007 Waters Corporation 28

MS SpectrumMS SpectrumPeak at 6.9minPeak at 6.9min

O

OHO

O

OHCH3

CH3

CH3

CH3

CH3

H

OH

Simvastatin acid

Page 29: Chromatographic Advances for Pharmaceutical Analysisquimica.udea.edu.co/~carlopez/cromatohplc/hplc_devcelop_methods... · Chromatographic Advances for Pharmaceutical Analysis Robert

©2007 Waters Corporation 29

MS/MS spectrumMS/MS spectrum

OH

OH+

OH

CH3

CH3

OH

O

OH+OH

CH3

CH3

OH+

O

CH3

CH3

O

OHO

O

OHCH3

CH3

CH3

CH3

CH3

H

OH

Page 30: Chromatographic Advances for Pharmaceutical Analysisquimica.udea.edu.co/~carlopez/cromatohplc/hplc_devcelop_methods... · Chromatographic Advances for Pharmaceutical Analysis Robert

©2007 Waters Corporation 30

Metabolite IdentificationMetabolite Identification

17-Feb-2006 16667.00000000

Time1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00

%

0

100021606_PR_ESIPOS_012 1: TOF MS ES+

BPI3.47e3

3.832.310.800.48

0.37

1.21

1.00

1.26 1.95

1.93

1.43

1.67

1.97

2.25

3.112.55

2.95 3.403.60

4.584.50

4.29

4.23

4.04

4.75

8.76

5.00 5.07

8.605.78

9.95

9.049.61 10.05

Page 31: Chromatographic Advances for Pharmaceutical Analysisquimica.udea.edu.co/~carlopez/cromatohplc/hplc_devcelop_methods... · Chromatographic Advances for Pharmaceutical Analysis Robert

©2007 Waters Corporation 31

Acetominophen GlucuronideAcetominophen Glucuronide

17-Feb-2006 16667.00000000

Time1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00

%

0

100021606_PR_ESIPOS_012 1: TOF MS ES+

328 0.50Da3.47e3

3.83

1.29

0.990.61

1.76

m/z200 400 600 800 1000

%0

100 6.05e3328.1041

295.1631 624.3478389.1334641.3907 804.3589

Page 32: Chromatographic Advances for Pharmaceutical Analysisquimica.udea.edu.co/~carlopez/cromatohplc/hplc_devcelop_methods... · Chromatographic Advances for Pharmaceutical Analysis Robert

©2007 Waters Corporation 32

Effect of Narrow Peaks on MS Data Effect of Narrow Peaks on MS Data QualityQuality

Narrow peaks approximately 1 second wide at base require a fast data capture rate MS

10 – 20 spectra per second

How does this effect MS data quality and mass accuracy?

Page 33: Chromatographic Advances for Pharmaceutical Analysisquimica.udea.edu.co/~carlopez/cromatohplc/hplc_devcelop_methods... · Chromatographic Advances for Pharmaceutical Analysis Robert

©2007 Waters Corporation 33

Issues with Accurate Mass and Fast Issues with Accurate Mass and Fast Separations Separations

To acquire a reliable accurate mass normally requires relatively long data acquisition times

UPLC peak widths are in the order of 1-2 seconds at the base

Accurate, reproducible peak integration requires >15 points across the peak

This means a duty cycle of 130mSec

Typically for Orbitrap acquisition times of 0.5 to 1Sec for high resolution and accurate mass

This would mean only 2-4 points across the peak

Page 34: Chromatographic Advances for Pharmaceutical Analysisquimica.udea.edu.co/~carlopez/cromatohplc/hplc_devcelop_methods... · Chromatographic Advances for Pharmaceutical Analysis Robert

©2007 Waters Corporation 34

Number of Data Points Per Peak Number of Data Points Per Peak as recommended by as recommended by ““IonSource.comIonSource.com””

At least 15 to 20 points across a chromatographic peak for good quantification.

If you have fewer points you will not be able to describe the peak adequately and may lose information (e.g. peak top)

Reproducibility is negatively affected with fewer points and you will observe RSD’s increasing to unacceptable values.

http://www.ionsource.com/tutorial/msquan/tips.htm

Page 35: Chromatographic Advances for Pharmaceutical Analysisquimica.udea.edu.co/~carlopez/cromatohplc/hplc_devcelop_methods... · Chromatographic Advances for Pharmaceutical Analysis Robert

©2007 Waters Corporation 35

Data dependent MS and MS/MS Data dependent MS and MS/MS

But what if you want to do MS/MS?—Well the then you need an even faster MS data

acquisition rate—Inter acquisition delay can become significantly

largeOption is not to acquire MS/MS in exact mass mode—This can lead to miss interpretation of the data—Fast switching can reduce MS/MS resolution

and accuracy—with a duty cycle of 350mSec, and UPLC®

there would be only 3 points across the peak total MS and MS/MS

Page 36: Chromatographic Advances for Pharmaceutical Analysisquimica.udea.edu.co/~carlopez/cromatohplc/hplc_devcelop_methods... · Chromatographic Advances for Pharmaceutical Analysis Robert

©2007 Waters Corporation 36

Benefits of MSBenefits of MSEE for High Resolution for High Resolution LC/MSLC/MS

Data acquisition duty cycle <200mSec

—TOF 1 Scan 0.095mSec Delay 0.02mSec

—TOF 2 Scan 0.095mSec Delay 0.02mSec

—LockSpray every 11 scans

Overall Duty cycle 220mSec

For a 1 Sec peak 6 points across the peak for TOF 1 and 6 points across the peak in TOF 2.

Page 37: Chromatographic Advances for Pharmaceutical Analysisquimica.udea.edu.co/~carlopez/cromatohplc/hplc_devcelop_methods... · Chromatographic Advances for Pharmaceutical Analysis Robert

©2007 Waters Corporation 37

Example DataExample Data

Time2.85 2.90 2.95 3.00

%

0

100

2.85 2.90 2.95 3.00

%

0

100PMD083_PR_101706_233 2: TOF MS ES+

BPI1.12e4

PMD083_PR_101706_233 1: TOF MS ES+ BPI

3.94e3

Page 38: Chromatographic Advances for Pharmaceutical Analysisquimica.udea.edu.co/~carlopez/cromatohplc/hplc_devcelop_methods... · Chromatographic Advances for Pharmaceutical Analysis Robert

©2007 Waters Corporation 38

Dynamic Mass Resolution Dynamic Mass Resolution oaoa--Tof compared with Electrostatic FTTof compared with Electrostatic FT--ICR MSICR MS

Orbitrap: Resolution versus Cycle Time for different m/z values

0

10000

20000

3000040000

50000

60000

70000

80000

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

Cycle Time (sec)

Res

olut

ion

(FW

HM

)

400

800

1600

3200oa-TOF

2 spectra / sec

m/z

Page 39: Chromatographic Advances for Pharmaceutical Analysisquimica.udea.edu.co/~carlopez/cromatohplc/hplc_devcelop_methods... · Chromatographic Advances for Pharmaceutical Analysis Robert

©2007 Waters Corporation 39

How Fast Can We Go Without How Fast Can We Go Without Loosing Mass Spectral Resolution?Loosing Mass Spectral Resolution?

m/z402 403

%

0

100 402.244

403.251

1s/scan

0.05s/scan

0.1s/scan

0.3s/scan

0.5s/scan

Spectra Overlay

Average Spectrum Resolution (m/z 402)= 20637

R = 20418

R = 21510

R = 19718

R = 21626

R = 19913

Page 40: Chromatographic Advances for Pharmaceutical Analysisquimica.udea.edu.co/~carlopez/cromatohplc/hplc_devcelop_methods... · Chromatographic Advances for Pharmaceutical Analysis Robert

©2007 Waters Corporation 40

Rat Urine AnalysisRat Urine Analysishigh temperature high temperature –– high pressurehigh pressure

Pc 720 Pc 720 at baseat base

17-Feb-2006 16667.00000000

1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00

%

0

100021606_PR_ESIPOS_010

0.93

0.55

0.48

0.38

0.37

2.281.971.39

1.19 1.70

2.572.71

8.74

4.82

4.58

3.09

2.87

3.84

3.54

3.11

3.15

4.08

4.43

8.54

6.245.29

5.04 5.92

5.36

6.49 6.65

6.87 8.056.90 7.966.93

8.24

9.61

9.03

9.04

9.94

2.1 x 150mm ACQUITY UPLC2.1 x 150mm ACQUITY UPLC®® BEH BEH C18 column, operated at 90C18 column, operated at 90ººC, and C, and 900uL/min900uL/min

Page 41: Chromatographic Advances for Pharmaceutical Analysisquimica.udea.edu.co/~carlopez/cromatohplc/hplc_devcelop_methods... · Chromatographic Advances for Pharmaceutical Analysis Robert

©2007 Waters Corporation 41

m/z160 180 200 220 240

%

0

100 1.74e4206.0458

170.0754 207.0880

Mass Accuracy with Very Fast UPLCMass Accuracy with Very Fast UPLC®®

m/z160 180 200 220 240

%

0

100 5.30e4190.0509

185.1614191.0893 231.1201

m/z160 180 200 220 240

%

0

100 3.83e4180.0667

221.0904m/z

200 250 300

%

0

100 2.01e4220.1182

246.2111309.2012

Kynurenic AcidKynurenic Acid2.3ppm2.3ppm

Pantothenic AcidPantothenic Acid1.4ppm1.4ppm

Hippuric AcidHippuric Acid3.3ppm3.3ppm

Xanthuric AcidXanthuric Acid2.4ppm2.4ppm

Page 42: Chromatographic Advances for Pharmaceutical Analysisquimica.udea.edu.co/~carlopez/cromatohplc/hplc_devcelop_methods... · Chromatographic Advances for Pharmaceutical Analysis Robert

©2007 Waters Corporation 42

Column BleedColumn Bleedeffect of temperatureeffect of temperature

21-Feb-2006 16667.00000000

Time0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00

%

0

100

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00

%

0

100

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00

%

0

100

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00

%

0

100

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00

%

0

100022106_ESIPOS_PR_006 1: TOF MS ES+

550.627 0.50Da1.85e3

2.682.542.48

2.452.36

2.26

2.05

2.72

022106_ESIPOS_PR_006 1: TOF MS ES+ 522.597 0.50Da

8162.722.672.49

2.402.34

2.212.18

2.06

2.74

022106_ESIPOS_PR_006 1: TOF MS ES+ 468.46 0.50Da

3.22e32.21

2.18

2.182.05

1.951.84

2.23 2.482.49 2.682.75

022106_ESIPOS_PR_006 1: TOF MS ES+ 470.46 0.50Da

5.72e32.232.202.06

1.96

1.841.72

2.542.53 2.63 2.77

022106_ESIPOS_PR_006 1: TOF MS ES+ 442.446 0.50Da

2.54e32.21

2.182.05

2.042.021.83

1.70

2.232.26

2.322.41

2.55 2.72

XIC Silica C18 1.8 μm 2.1 x 50 mm at 90 °C

Page 43: Chromatographic Advances for Pharmaceutical Analysisquimica.udea.edu.co/~carlopez/cromatohplc/hplc_devcelop_methods... · Chromatographic Advances for Pharmaceutical Analysis Robert

©2007 Waters Corporation 43

Column BleedColumn Bleedeffect of temperatureeffect of temperature

01285603310C02 2_1 x 100 mm 90 C 1 MeCN01285603310C02 2_1 x 100 mm 90 C 1 MeCN

Time0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50

%

0

100

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50

%

0

100

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50

%

0

100

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50

%

0

100

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50

%

0

100020806_ESIPOS_PR_044 1: TOF MS ES+

550.622 0.50Da5.40e3

2.59

2.55

2.35

020806_ESIPOS_PR_044 1: TOF MS ES+ 350.253 0.50Da

1.87e31.91

1.89

020806_ESIPOS_PR_044 1: TOF MS ES+ 236.165 0.50Da

1.23e31.471.44

1.40

020806_ESIPOS_PR_044 1: TOF MS ES+ 224.01 0.50Da

2.31e32.99

1.681.75

2.082.18

3.06

020806_ESIPOS_PR_044 1: TOF MS ES+ 151.045 0.50Da

5813.00

1.931.791.73

1.48 2.09 2.193.04

ACQUITY BEH C18 Column

Page 44: Chromatographic Advances for Pharmaceutical Analysisquimica.udea.edu.co/~carlopez/cromatohplc/hplc_devcelop_methods... · Chromatographic Advances for Pharmaceutical Analysis Robert

©2007 Waters Corporation 44

ConclusionConclusion

High temperature LC and UPLC® allow faster separation

Efficiency is not improved at higher temperatures

Higher column temperature need higher flow rates

Higher temperatures enable the use of longer columns

Alternative solvents can be used at higher temperatures for unique selectivity

Column bleed can be an issue at higher temperatures—ACQUITY® BEH offers the minimal column bleed.

Narrow peaks require fast scanning UV and MS detectors

Page 45: Chromatographic Advances for Pharmaceutical Analysisquimica.udea.edu.co/~carlopez/cromatohplc/hplc_devcelop_methods... · Chromatographic Advances for Pharmaceutical Analysis Robert

©2007 Waters Corporation 45

Inform 2007Where is it located and how do I registerInform 2007Inform 2007Where is it located and how do I registerWhere is it located and how do I register

Waters premier Laboratory Informatics symposium where users can network with colleagues, share experiences, and gain valuable insights into how to best deploy and use Waters Informatics suite of solutions

—May 7-10, 2007

—Miami Marriott Biscayne Bay

Three-day event with optional tutorials

—Monday: (2) ½ Day Tutorial Session—Tuesday – Thursday: Symposium

Download the agenda and register at:

—Waters booth - 3641

—www.inform2007.com

Fill out a seminar evaluation form and enter the raffle to win a Gold Package registration* for Inform 2007 which includes all tutorials and workshops -a $1595 value

One drawing daily. Winner will be notified.

* Prize covers conference registration only

Page 46: Chromatographic Advances for Pharmaceutical Analysisquimica.udea.edu.co/~carlopez/cromatohplc/hplc_devcelop_methods... · Chromatographic Advances for Pharmaceutical Analysis Robert

©2007 Waters Corporation 46

Evaluation FormEvaluation FormEvaluation Form

We Appreciate your Opinion

Please complete Evaluation FormQualify for drawing to win a $25 AMEX gift card (drawn at end of this session – must be present to win)

AND

Qualify to win a “Gold Package” registration to Inform 2007 ($1595 value; one winner per day; winner to be notified post-Pittcon)

Thank You!