Top Banner
Chemical-Reaction Equilibra ERT 206: Thermodynamics Miss Anis Atikah Ahmad Tel: 04-9763245 Email: anis [email protected]
31

Chemical-Reaction Equilibra ERT 206: Thermodynamics Miss Anis Atikah Ahmad Tel: 04-9763245 Email: anis [email protected].

Jan 17, 2016

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Chemical-Reaction Equilibra ERT 206: Thermodynamics Miss Anis Atikah Ahmad Tel: 04-9763245 Email: anis atikah@unimap.edu.my.

Chemical-Reaction Equilibra

ERT 206: ThermodynamicsMiss Anis Atikah Ahmad

Tel: 04-9763245 Email: anis [email protected]

Page 2: Chemical-Reaction Equilibra ERT 206: Thermodynamics Miss Anis Atikah Ahmad Tel: 04-9763245 Email: anis atikah@unimap.edu.my.

OUTLINE

1. The Reaction Coordinate2. Application of Equilibrium Criteria to Chemical

Reactions3. The Standard Gibbs-Energy Change & the

Equilibrium Constant4. Effect of Temperature on the Equilibrium Constant5. Relation of Equilibrium Constants to Composition6. Multireaction Equilibria

Page 3: Chemical-Reaction Equilibra ERT 206: Thermodynamics Miss Anis Atikah Ahmad Tel: 04-9763245 Email: anis atikah@unimap.edu.my.

1. The Reaction Coordinate

• The general chemical reaction is written as:

is the stoichiometric coefficient * positive (+) for product

* negative (-) for reactant stands for chemical formula

..... 44332211 AvAvAvAv

iv

iA

Page 4: Chemical-Reaction Equilibra ERT 206: Thermodynamics Miss Anis Atikah Ahmad Tel: 04-9763245 Email: anis atikah@unimap.edu.my.

1. The Reaction Coordinate• For reaction:

the stoichiometric numbers are:

If 0.5 mol of CH4 and 0.5 mol of H2O dissappear in reaction;

Thus;0.5 mol of CO and 1.5 mol of H2 are formed.

224 3HCOOHCH

14

CHv 12

OHv 1COv 32Hv

dv

dn

v

dn

v

dn

v

dn ...

4

4

3

3

2

2

1

1Reaction coordinate (the extent

or degree to which a reaction has taken place)

Page 5: Chemical-Reaction Equilibra ERT 206: Thermodynamics Miss Anis Atikah Ahmad Tel: 04-9763245 Email: anis atikah@unimap.edu.my.

The general relation connecting the differential change dni with dε:

Integrating;

Summation over all species;

where

1. The Reaction Coordinate

dvdn ii

0

0

dvdn i

n

n

i

i

i

iii vnn 0

vnn 0 i

inn i

inn00

iivv

Page 6: Chemical-Reaction Equilibra ERT 206: Thermodynamics Miss Anis Atikah Ahmad Tel: 04-9763245 Email: anis atikah@unimap.edu.my.

The mole fraction yi of the species:

1. The Reaction Coordinate

vn

vn

n

ny iiii

0

0

Page 7: Chemical-Reaction Equilibra ERT 206: Thermodynamics Miss Anis Atikah Ahmad Tel: 04-9763245 Email: anis atikah@unimap.edu.my.

Example 1

For a system in which the following reaction occurs:

Assume there are present initially 2 mol CH4, 1 mol H2O, 1 mol

CO and 4 mol H2. Determine expressions for the mole fractions yi

as a function of ε

1. The Reaction Coordinate

224 3HCOOHCH

Page 8: Chemical-Reaction Equilibra ERT 206: Thermodynamics Miss Anis Atikah Ahmad Tel: 04-9763245 Email: anis atikah@unimap.edu.my.

Recall:Example 1-SOLUTION

1. The Reaction Coordinate

vn

vn

n

ny iiii

0

0

224 3HCOOHCH

23111 i

ivv

8411200

iinn

28

24

CHy

28

1

COy28

12

OHy

28

342

Hy

14

CHv 12

OHv 1COv 32Hv

204CHn 1

02OHn 1

0COn 4

02Hn

Page 9: Chemical-Reaction Equilibra ERT 206: Thermodynamics Miss Anis Atikah Ahmad Tel: 04-9763245 Email: anis atikah@unimap.edu.my.

Multireaction Stoichiometry:

When two or more independent reactions process simultaneously,

Where j serves as the reaction indexanda separate reaction coordinate εj applies to each reaction.

1. The Reaction Coordinate

j jj

j jjii

i vn

vny

0

,0

Page 10: Chemical-Reaction Equilibra ERT 206: Thermodynamics Miss Anis Atikah Ahmad Tel: 04-9763245 Email: anis atikah@unimap.edu.my.

Example 2: Multireaction

Consider a system in which the following reaction occur:

If there are present initially 2 mol of CH4, and 3 mol H2O,

determine expressions for the mole fractions yi as a function of

ε1 and ε2.

1. The Reaction Coordinate

13 224 HCOOHCH

242 2224 HCOOHCH

Recall:

j jj

j jjii

i vn

vny

0

,0

Page 11: Chemical-Reaction Equilibra ERT 206: Thermodynamics Miss Anis Atikah Ahmad Tel: 04-9763245 Email: anis atikah@unimap.edu.my.

Example 2: Multireaction- Solution

1. The Reaction Coordinate

13 224 HCOOHCH 242 2224 HCOOHCH

i CH4 H2O CO CO2 H2

j vj

1 -1 -1 1 0 3 2

2 -1 -2 0 1 4 2

j 204CHn 3

02OHn

Given:

21

21

225

24

CHy21

1

225

COy

21

21

225

232

OHy21

21

225

432

Hy

231111,1 i

ivv

53200

iinn

Recall:

j jj

j jjii

i vn

vny

0

,0

241212,2 i

ivv

21

2

2252

COy

Page 12: Chemical-Reaction Equilibra ERT 206: Thermodynamics Miss Anis Atikah Ahmad Tel: 04-9763245 Email: anis atikah@unimap.edu.my.

• Criterion of equilibrium at constant T & P:– The total Gibbs

energy Gt is a minimum

– Its differential is zero

2. Application of Equilibrium Criteria to Chemical Reactions

Total Gibbs Energy vs Reaction Coordinate

0, PTtnGd

Any reaction that occurs at constant T & P must lead to decrease in the total Gibbs

energy of the system

Page 13: Chemical-Reaction Equilibra ERT 206: Thermodynamics Miss Anis Atikah Ahmad Tel: 04-9763245 Email: anis atikah@unimap.edu.my.

From previous chapter,

Since ,

At constant T and P,

At equilibrium state,

Thus,

3. The Standard Gibbs-Energy Change & The Equilibrium Constant

ii

idndTnSdPnVnGd

dvdn ii

dvdTnSdPnVnGdi

ii

PT

t

PTiii

GnGv

,,

0

,

PT

tG

0i

iiv

Page 14: Chemical-Reaction Equilibra ERT 206: Thermodynamics Miss Anis Atikah Ahmad Tel: 04-9763245 Email: anis atikah@unimap.edu.my.

Recall fugacity of a species in solution;

The fugacity of pure species in its standard state;

The difference between these two equations;

3. The Standard Gibbs-Energy Change & The Equilibrium Constant

iii fRTT ˆln

iii fRTTG ln

(1)

(2)

i

iii f

fRTG

ˆln

i

iii f

fRTG

ˆln (3)

Page 15: Chemical-Reaction Equilibra ERT 206: Thermodynamics Miss Anis Atikah Ahmad Tel: 04-9763245 Email: anis atikah@unimap.edu.my.

Substituting into ;

OR

OR

In exponential form;

where ,

3. The Standard Gibbs-Energy Change & The Equilibrium Constant

i

iii f

fRTG

ˆln 0

iiiv

0ˆln

iiiii ffRTGv

0ˆln

i

v

iiii

i

ffRTGv

RT

Gvff i

ii

i

v

ii

i

ˆln

Kffi

v

ii

i ˆ

RT

GK exp

iiiGvG

Equilibrium constant

Standard Gibbs energy change of

reaction

Depends only on T

Page 16: Chemical-Reaction Equilibra ERT 206: Thermodynamics Miss Anis Atikah Ahmad Tel: 04-9763245 Email: anis atikah@unimap.edu.my.

4. Effect of Temperature on the Equilibrium Constant

The relation between standard heat of reaction and the standardGibbs energy change of reaction;

Integrating;

dT

RTGdRTH

2

2RT

H

dT

RTGd

2

ln

RT

H

dT

Kd

RT

GK exp

TTR

H

K

K 11ln

For exothermic (-ΔH°): As T increases, K decreases.For endothermic (+ΔH°): As T increases, K increases.

Page 17: Chemical-Reaction Equilibra ERT 206: Thermodynamics Miss Anis Atikah Ahmad Tel: 04-9763245 Email: anis atikah@unimap.edu.my.

Equilibrium constant as a function of temperature

Page 18: Chemical-Reaction Equilibra ERT 206: Thermodynamics Miss Anis Atikah Ahmad Tel: 04-9763245 Email: anis atikah@unimap.edu.my.

5. Relation of Equilibrium Constants to Composition

• For Gas Phase Reaction:– The standard state for a gas is the ideal gas state of the

pure gas at the standard-state pressure P° of 1 bar.

– Since the fugacity of an ideal gas is equal to its pressure,

, thus becomes: Kff

i

v

ii

i ˆ

KPfi

v

i

i ˆ

Pfi

Page 19: Chemical-Reaction Equilibra ERT 206: Thermodynamics Miss Anis Atikah Ahmad Tel: 04-9763245 Email: anis atikah@unimap.edu.my.

5. Relation of Equilibrium Constants to Composition

• Since , becomes;

where

• For pressures sufficiently low or temperature sufficiently high, the equilibrium mixture behaves essentially as an ideal gas. Thus,

KP

Py

v

i

v

ii

i

Pyf iii ˆ

KP

Py

v

i

vi

i

1ˆ i

KPfi

v

i

i ˆ

i

ivv

Page 20: Chemical-Reaction Equilibra ERT 206: Thermodynamics Miss Anis Atikah Ahmad Tel: 04-9763245 Email: anis atikah@unimap.edu.my.

5. Relation of Equilibrium Constants to Composition

• For liquid phase reactions:

From previous chapter, . Thus,

Kffi

v

ii

i ˆ

iiii fxf ˆ

i

iii

i

iii

i

i

f

fx

f

fx

f

f ˆ

Can be substituted by Gibbs energy

expression

Page 21: Chemical-Reaction Equilibra ERT 206: Thermodynamics Miss Anis Atikah Ahmad Tel: 04-9763245 Email: anis atikah@unimap.edu.my.

5. Relation of Equilibrium Constants to Composition

• For liquid phase reactions:

Integration of at constant T:

Thus, OR

or

i

iii f

fRTGG ln

PPVdPVGG i

P

P

iii

RT

PPV

f

f i

i

i

ln

iii fRTTG ln

iii fRTTG ln

i

iii f

fRTGG ln

SdTVdPdG

PPVf

fRT i

i

iln

RT

PPV

f

f i

i

i exp

Page 22: Chemical-Reaction Equilibra ERT 206: Thermodynamics Miss Anis Atikah Ahmad Tel: 04-9763245 Email: anis atikah@unimap.edu.my.

5. Relation of Equilibrium Constants to Composition

Substituting into

Since

Thus,

iii

v

iii Vv

RT

PPKx i exp

i

iii

i

i

f

fx

f

f ˆ

RT

PPVx

f

f iii

i

i

exp

ˆ

RT

PPV

f

f i

i

i exp

Kffi

v

ii

i ˆ

K

RT

PPVx

i

v

iii

i

exp

Page 23: Chemical-Reaction Equilibra ERT 206: Thermodynamics Miss Anis Atikah Ahmad Tel: 04-9763245 Email: anis atikah@unimap.edu.my.

5. Relation of Equilibrium Constants to Composition

For low to moderate pressure, the exponential term is close to unity and may be omitted. Thus

If the mixture is an ideal solution, is unity. Therefore,

Kx iv

iii

i

Kx iv

ii Law of mass action

Page 24: Chemical-Reaction Equilibra ERT 206: Thermodynamics Miss Anis Atikah Ahmad Tel: 04-9763245 Email: anis atikah@unimap.edu.my.

5. Relation of Equilibrium Constants to Composition

Example 3The water-gas-shift-reaction,

is carried out under the different sets of conditions described below. Calculate the fraction of steam reacted in each case. Assume the mixture behaves as an ideal gas.

(a) The reactants consist of 1 mol of H2O vapor & 1 mol of CO. The temperature is 1,100 K and the pressure is 1 bar.

(b) Same as (a) except the pressure is 10 bar.(c) Same as (a) except that 2 mol of N2 is included in the reactants.

(d) The reactants are 2 mol of H2O & 1 mol of CO. Other conditions are the same as in part (a)

(e) Same as (a) except that the temperature is 1,650 K.

gHgCOgOHgCO 222

Page 25: Chemical-Reaction Equilibra ERT 206: Thermodynamics Miss Anis Atikah Ahmad Tel: 04-9763245 Email: anis atikah@unimap.edu.my.

5. Relation of Equilibrium Constants to Composition

Example 3-Solution(a) The reactants consist of 1 mol of H2O vapor & 1 mol of CO. The temperature is

1,100 K and the pressure is 1 bar.

At T=1100 K, 104/T=9.05.From the ln K vs 1/T graph,At 1/T=9.05, ln K =0Thus, K= 1

gHgCOgOHgCO 222

KP

Py

v

i

vi

i

01111 i

ivv

111

10

2

22

OHCO

COH

yy

yy

Page 26: Chemical-Reaction Equilibra ERT 206: Thermodynamics Miss Anis Atikah Ahmad Tel: 04-9763245 Email: anis atikah@unimap.edu.my.

5. Relation of Equilibrium Constants to Composition

Example 3-Solution(a) The reactants consist of 1 mol of H2O vapor & 1 mol of CO. The temperature is

1,100 K and the pressure is 1 bar.

Thus, fraction of steam reacted = 0.5

gHgCOgOHgCO 222

2

1 eCOy

vn

vny iii

0

0

2110 n

2

12

eOHy

22

eCOy

22

eHy

12

22 OHCO

COH

yy

yy

Substitute into

1

1 2

2

e

e

5.0e

Page 27: Chemical-Reaction Equilibra ERT 206: Thermodynamics Miss Anis Atikah Ahmad Tel: 04-9763245 Email: anis atikah@unimap.edu.my.

5. Relation of Equilibrium Constants to Composition

Example 3-Solution(b) Same as (a) except the pressure is 10 bar.

Because v=0, the increase in pressure has no effect on the ideal-gas reaction and εe is still 0.5.

gHgCOgOHgCO 222

KP

Py

i

vi

i

0

Page 28: Chemical-Reaction Equilibra ERT 206: Thermodynamics Miss Anis Atikah Ahmad Tel: 04-9763245 Email: anis atikah@unimap.edu.my.

5. Relation of Equilibrium Constants to Composition

Example 3-Solution(c) Same as (a) except that 2 mol of N2 is included in the reactants.

N2 does not take part in the reaction, and serves only as diluent.

Thus, remain unchanged. Therefore, εe is still 0.5

gHgCOgOHgCO 222

12

22 OHCO

COH

yy

yy

Page 29: Chemical-Reaction Equilibra ERT 206: Thermodynamics Miss Anis Atikah Ahmad Tel: 04-9763245 Email: anis atikah@unimap.edu.my.

5. Relation of Equilibrium Constants to Composition

Example 3-Solution(d) The reactants are 2 mol of H2O & 1 mol of CO. Other conditions are the same as

in part (a)

gHgCOgOHgCO 222

Thus,

Thus, fraction of steam reacted 0.667/2= 0.333

3

1 eCOy

3

22

eOHy

32

eCOy

32

eHy

12

22 OHCO

COH

yy

yy

Substitute into

3120 n

121

2

ee

e

667.0e

Page 30: Chemical-Reaction Equilibra ERT 206: Thermodynamics Miss Anis Atikah Ahmad Tel: 04-9763245 Email: anis atikah@unimap.edu.my.

5. Relation of Equilibrium Constants to Composition

Example 3-Solution(e) Same as (a) except that the temperature is 1,650 K.

At T=1650 K, 104/T=6.06.From the ln K vs 1/T graph,At 1/T=6.06, ln K =-1.15Thus, K= 0.317

gHgCOgOHgCO 222

317.0

1 2

2

e

e

36.0e

Thus, fraction of steam reacted 0.36.Increasing the temperature reduce the conversion.

Page 31: Chemical-Reaction Equilibra ERT 206: Thermodynamics Miss Anis Atikah Ahmad Tel: 04-9763245 Email: anis atikah@unimap.edu.my.

6. Multireaction Equilibra

• For liquid-phase reaction;

• For gas-phase reaction;

• If equilibrium mixture is an ideal gas;

ji

v

ii Kffji ,ˆ rj ,...,2,1

ji

v

i KPfji ,ˆ rj ,...,2,1

j

v

i

vi K

P

Py

j

ji

,