Top Banner

of 11

Chemical Engineering Science Volume 51 Issue 20 1996 [Doi 10.1016%2F0009-2509%2896%2900265-5] J.W.a. de Swart_ R.E. Van Vliet_ R. Krishna -- Size, Structure and Dynamics of “Large”

Jun 02, 2018

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/10/2019 Chemical Engineering Science Volume 51 Issue 20 1996 [Doi 10.1016%2F0009-2509%2896%2900265-5] J.W.a. de

    1/11

    Pergamon

    Chemical En~lineerin Science,

    Vol. 51, No. 20, pp. 4619 4629, 1996

    Copyright :~ 1996 Elsevier Science Ltd

    Printed in Great Britain. All rights reserved

    P I t : S 0 0 0 9 - 2 5 0 9 ( 9 6 ) 0 0 2 6 5 - 5 ooo9 2509/96 15.00 + 0.00

    S IZ E, S T R U C T U R E A N D D Y N A M I C S O F L A RG E B U B B L E S

    I N A T W O - D I M E N S I O N A L S L U R R Y B U B B L E C O L U M N

    J . W . A . D E S W A R T , R . E . V A N V L I E T a n d R . K R I S H N A *

    Dep ar tme n t o f Chem ica l Eng ineer ing , Un ivers i ty o f Amste rdam, Nieuw e Ach te rg rach t 166 , 1018 WV

    Amste rdam, The Ne ther lands

    Firs t rece ived 16 N o v e m b e r 1995; rev ised m anuscr ip t rece ived a nd accepted 28 F e b r u a r y 1996)

    bstract This paper repor ts p re l iminary resu l ts o f a study on the hy drodynam ics o f a two-d im ens iona l

    slurry bubble column. Experiments have been carried out with air /paraffin oil s lurries with solids concen-

    t ra t ions o f 0 , 28 .3 and 38 .6 vo l% of porous s i lica pa r t ic les (mean d iamete r o f 38 tam) . Bubb le s izes, bubb le

    coa lescence and bubb le b reak-up ra tes were de te rmined by v ideo image ana lys is . Inc reas ing s lu r ry

    conc entra tion increases the size and size distr ibu tion of the large bubbles, defined here as havin g

    d iamete rs la rge r than 10 mm . Inc reas ing s lu r ry concen t ra t ion reduces the to ta l gas ho ldup to a s ign if ican t

    ex ten t ; th is reduc t ion is to be la rge ly a tt r ibu ted to the des t ruc t ion o f the smal l bubb le popu la t ion , wh ich

    have bubb le d iam ete rs smal le r than 10 mm . Video imag ing exper imen ts lead to new ins igh ts in to the mass

    t rans fe r mechan ism s f rom la rge bubbles. These la rge bubb les a re con t inua l ly coa lesc ing and b reak ing

    up . The coa lescence and b reaku p ra tes were de te rmined by a f rame-by- f rame ana lys is o f the v ideo

    record ings and found to be a t leas t 4 s - t . A popu la t ion mode l fo r mass t rans fe r has been se t up and used to

    es tab l ish tha t f requen t b ubb le -b ubb le in te rac t ions cou ld lead to an o rder o f magn i tude increase in the mass

    transfer rates for the large bub ble class. Cop yrigh t :~ 1996 Elsevier Science Ltd

    Ke y wor ds :

    Bubble columns, large bubbles, small bubbles, bubble size distr ibution, gas holdup, bubble

    coalescence, bubble breakup.

    IN TR O D U C TIO N

    T h e b u b b l e c o l u m n s l u r r y r e a c t o r i s a n a t t r a c t i v e

    r e a c t o r t y p e f o r r e l a t i v e l y s l o w , e x o t h e r m i c l i q u i d

    p h a s e c a t a l y t i c p r o c e s s e s . F o r e x a m p l e , f o r t h e i n d u s -

    t r ia l l y i m p o r t a n t F i s c h e r T r o p s c h s y n t h es i s o f h y d r o -

    c a r b o n s f r o m s y n t h e s i s , F o x ( 1 9 9 0 ) , J a g e r a n d

    E s p i n o z a ( 1 9 9 5 ) a n d D e S w a r t

    e t a l .

    ( 1 9 9 5 ) h a v e c o n -

    c l u d e d t h a t t h e b u b b l e c o l u m n s l u r ry r e a c t o r , o p e r a t -

    i n g in t h e c h u r n - t u r b u l e n t r e g i m e , i s t o b e p r e f e r r e d t o

    t h e m u l t i - t u b u l a r t r i ck l e b e d t e c h n o l o g y o n b o t h t e c h -

    n i c a l a n d e c o n o m i c g r o u n d s . I n t h e c h u r n - t u r b u l e n t

    r e g i m e o f o p e r a t i o n o f a b u b b l e c o l u m n , l a r g e a n d

    s m a l l b u b b l e s a r e k n o w n t o c o - e x is t ( E l l e n b e r g e r

    a n d K r i s h n a , 1 9 9 4 ; K r i s h n a a n d E l l e n b e r g e r , 1 9 9 5 ) .

    T h e l a r g e b u b b l e s , w h i c h h a v e ri s e v e l o c i t i e s t y p i -

    c a l l y o f t h e o r d e r o f 1 .5 m s t , l a r g e l y d i c t a t e t h e g a s

    p h a s e c o n v e r s i o n i n t h e c h u r n - t u r b u l e n t r e g i m e .

    T h o u g h t h e h y d r o d y n a m i c s o f b u b b l e c o l u m n s s l u r ry

    r e a c t o r s h a s b e e n s t u d i e d b y s e v e r a l w o r k e r s [ s e e e .g .

    D e c k w e r e t a l . (1980 , 1992 , 1993) ; Kara e t a l . (1982);

    K o i d e

    e t a l .

    ( 1 9 8 4 ) ; K e l k a r

    e t a l .

    ( 1 9 8 4 ) ; F u k u m a

    e t a l .

    ( 1 9 8 7 ) ; S c h u m p e

    e t a l .

    ( 1 9 8 7 ) ; O ' D o w d

    e t a l .

    (1987);

    B u k u r

    e t al .

    (1987 , 1990) ; Saxena

    e t a l .

    (1992, 1993,

    1 99 5) ; D e S w a r t a n d K r i s h n a ( 1 9 9 5) ] , th e r e i s n o s t u d y

    i n w h i c h t h e c h a r a c t e r i s t i c s o f t h e s e l a r g e b u b b l e s

    h a v e b e e n e l u c i d a t e d . T h e b r o a d o b j e c t i v e o f th e p r e s -

    e n t s t u d y i s to p r d v i d e i n f o r m a t i o n o n t h e s iz e a n d

    s t r u c t u r e o f t h e s e l a r g e b u b b l e s b y us e o f v i d e o

    *Co rrespon ding author. E-m aih krishna@chemeng, chem.

    uva.nl.

    i m a g i n g t e c h n i q u e s i n a t w o - d i m e n s i o n a l c o l u m n .

    A f r a m e - b y - f r a m e a n a l y si s o f t h e v i d e o i m a g e s a l s o

    p r o v i d e d s o m e f r e s h i n s i g h t s i n t o t h e c o a l e s c e n c e -

    b r e a k u p p h e n o m e n o n o f t h e l a r ge b u b b l e p o p u l a -

    t i o n .

    A f u r t h e r i s s u e w h i c h h a s b e e n a d d r e s s e d i n t h i s

    p a p e r i s t h e m a s s t r a n s f e r f r o m l a r g e b u b b l e s . V e r -

    m e e r a n d K r i s h n a ( 19 8 1) m e a s u r e d t h e v o l u m e t r i c

    m a s s t r a n s f e r c o e f f i c i e n ts f r o m t h e l a r g e b u b b l e s i n t h e

    s y s t em n i t r o g e n t u r p e n t i n e a n d f o u n d v a l u e s a b o u t

    a n o r d e r o f m a g n i t u d e h i g h e r t h a n t h a t e x p e c t e d o n

    t h e b a s i s o f t h e v i s u a l l y o b s e r v e d b u b b l e s i z es f o r

    c h u r n - t u r b u l e n t o p e r a t i o n . T h e y a t t r ib u t e d t h e m e a s -

    u r e d h i g h v a l u e s o f m a s s t r a n s f e r c o e f f i c i e n t s t o t h e

    v i o l e n t l y t u r b u l e n t n a t u r e o f t h e l i q u i d p h a s e . I n th e

    p r e s e n t p a p e r , w e e x a m i n e w h e t h e r b u b b l e - b u b b l e

    i n t e r a c t i o n s a r e t h e l i k e l y c a u s e o f t h e p a r a d o x i c a l l y

    h i g h m a s s t r a n s f e r c o e f f ic i e n t s; S i t a n d G r a c e ( 1 98 1 )

    h a v e s h o w n t h a t b u b b l e - b u b b l e i n t e r a c t i o n s in

    a g a s - s o l i d b u b b l i n g f l u i d b e d l e a d s t o a n i m p r o v e -

    m e n t i n t h e i n t e r p h a se m a s s t r a n s fe r r a t e a n d o n e m a y

    w o n d e r i f a n a n a l o g o u s p h e n o m e n o n e x i st s f o r

    g a s l i q u i d (s l u r ry ) b u b b l e c o l u m n s .

    EX PER IM EN TA L SET U P A N D SY STEMS STU D IED

    A l l e x p e r i m e n t s w e r e c a r ri e d o u t i n a t w o - d i m e n -

    s i o n a l c o l u m n c o n s i s t in g o f t w o p a r a l l e l 7 m m t h i c k

    g l a s s p l a t e s o f 2. 5 m h e i g h t a n d 0 .3 m w i d t h , p l a c e d a t

    a d i s t a n c e o f 0 .0 0 5 m . T h e g a s p h a s e w a s d i s t r i b u t e d

    i n t o t h e c o l u m n b y a g l as s s i n t e r e d p l a t e w i t h a p o r e

    d i a m e t e r o f 2 00 ~t m . T h e c o l u m n w a s e q u i p p e d w i t h

    4619

  • 8/10/2019 Chemical Engineering Science Volume 51 Issue 20 1996 [Doi 10.1016%2F0009-2509%2896%2900265-5] J.W.a. de

    2/11

    4620

    a q u ic k c lo s in g v a lv e p l a c e d n e a r th e g a s d i s t r ib u to r .

    A p re s s u re t a p w a s in s t a l l e d a t 1 . 2 0 m h e ig h t . T h e

    t o t a l g a s h o l d u p w a s d e t e r m i n e d f r o m m e a s u r e m e n t s

    o f t h e s t a t i c p r e ss u r e d r o p u s i n g h i g h a c c u r a c y

    V a l i d y n e D P 1 5 p r e s s u r e tr a n s d u c e r s. A P a n a s o n i c

    D S P c o l o u r C C D c a m e r a w a s p l a c e d p e r p e n d i c u l a r

    to th e c o lu m n a t a d i s t a n c e o f 1 .1 5 m f ro m th e f ro n t

    fa ce . T h e c a m e ra e i th e r r e c o rd e d a t a h e ig h t o f 0. 65 o r

    1 .1 5 m f ro m th e g a s d i s t r ib u t o r p l a t e . A s h u t t e r s p e e d

    o f 1 / 20 0 0 w a s e m p l o y e d t o a v o i d b l u r r i n g o f th e v i d e o

    i m a g e s d u e t o t h e m o t i o n o f t h e g a s b u b b l e s . T o

    i m p r o v e t h e c o n t r a s t b e t w e e n t h e b u b b l e s a n d t h e

    l iq u id p h a s e , t h e t e c h n iq u e o f d i ffu s e b a c k l ig h t in g w a s

    u s e d (L u n d e a n d P e rk in s , 1 9 9 5 ) a n d p p m q u a n t i t i e s o f

    d y e S u d a n g re e n 9 8 8 w e re a d d e d to th e l i q u id . T w o

    1 25 0 W h a l o g e n l a m p s w e r e d i r e c t e d o n a w h i t e p a n e l

    t o p r o v i d e a s m o o t h a n d e v e n b a c k g r o u n d . T h e v i d e o

    s i g n a l p r o d u c e d b y t h e c a m e r a w a s d i g i t i z e d a t a r a t e

    o f 2 5 f r a m e s p e r s e c o n d us i n g a M i r o V I D E O D C I

    d i g i t i z e r b o a r d p l a c e d i n s id e a P C . T h e r e a l t i m e

    s i g n a ls w e re d i r e c t e d t o a S o n y c o l o u r v i d e o m o n i t o r

    f o r o n - l i n e c o n t r o l o f t h e c a m e r a o u t p u t . T h e c a p t u r e d

    i m a g e s w e re t r a n s f e rr e d t o a P C a n d p r o c e s s e d u s i n g

    t h e c o m m e r c i a l i m a g e p r o c e s s i n g s o f t w a r e S C I L - I m -

    a g e TM S C I L - I m a g e

    M

    i s d e v e l o p e d b y t h e C o m p u t e r

    S y s te m s G r o u p o f th e U n i v e rs i ty o f A m s t e r d a m a n d

    T N O I n s t i t u t e o f A p p l i e d P h y s i c s in D e l f t, T h e N e t h -

    e r l a n d s . F ig u re 1 s h o w s th e e x p e r im e n ta l s e tu p s c h e -

    ma t i c a l ly .

    P a r a f f in i c m i n e r a l o i l ( d e n si t y , P L 8 0 0 k g m 3;

    viscos i t y , L = 0 .027 Pa s ; su rface tens ion , cr =

    0 .0 2 8 N m- 1 ) w a s u s e d a s l i q u id p h a s e . A i r w a s u s e d

    J W A D E S W A RT e t a l

    a s th e g a s p h a s e in a l l e x p e r ime n t s a n d p o ro u s s i l i c a

    p a r t i c l e s ( s k e l et o n d e n s i t y = 2 1 0 0 k g m - 3 ; p o r e v o l -

    u m e = 1 . 0 5 m l g - ~ ; p a r t i c l e si z e d i s t r i b u t i o n : 1 0 % ,

    < 2 7 m; 5 0 %, < 3 8 m; 9 0 % , < 4 7 l~m) fo rm e d th e

    s u s p e n d e d s o l i d s. E x p e r i m e n t s w e r e c a r r i e d o u t w i t h

    s o l id s c o n c e n t ra t io n o f 0 , 28 .3 , a n d 3 8 .6 v o l% s o l id s

    (on a gas -free s lu rry bas is ) .

    I M A G E A N A L Y S I S

    A t a g iv e n s u p e r f i c i a l g a s v e lo c i ty U a n d h e ig h t

    a b o v e t h e d i s t r i b u t o r h , o n e e x p e r i m e n t a l r u n f o r

    i m a g e p r o c e s s i n g p u r p o s e s i s p e r f o r m e d . A n e x p e r i -

    me n ta l ru n c o n s i s t s o f t h re e s a m p le s o f e ig h t s e c o n d s ,

    r e s u l t in g in 6 0 0 ima g e s . T h e c a p tu re d im a g e s a re o f

    t h e T a g g e d I n t e r c h a ng e F i l e F o r m a t ( T I F F ) w i t h 2 4

    b i t c o l o r d e p t h a n d a n a s p e c t r a t i o o f 1 :1 . A f t e r

    c a p t u r i n g , t h e i m a g e s a r e s e p a r a t e l y p r o c e s se d u s i n g

    t h e S C I L - I m a g e TM s o f tw a re p a c k a g e . U s in g th i s s o f t -

    w a r e p a c k a g e s e v e r a l i m a g e p r o c e s s i n g s t e p s c a n b e

    a u t o m a t e d , w h i c h i s a n e c e s s it y w h en a n a l y z i n g l a rg e

    a m o u n t s o f d a ta . T h e f i rs t st e p i n t h e i m a g e p r o c e s s i n g

    i s t h e c o n v e r s io n o f t h e 2 4 b i t (t ru e c o lo r ) ima g e s in to

    8 b i t (g ra y s ca l e ) ima g e s . E a c h p ix e l i n th e im a g e h a s

    n o w a s o -c a l l e d g ra y v a lu e r a n g in g f ro m 0 to 2 5 5.

    A g r a y v a l u e o f 0 c o r r e s p o n d s t o b l a c k a n d a g r a y

    v a lu e o f 2 5 5 to w h i t e . A re g io n o f i n t e re s t i s t h e n

    d e f in e d b y c ro p p in g th e im a g e to 2 6 0 2 7 6 p ix e l s ,

    r e p re s e n t in g th e 0. 3 x 0 .3 m w in d o w o f o b s e rv a t io n in

    t h e c o l u m n . O n e p i x e l l e n g t h i s t h e r e f o re a p p r o x i m -

    a te ly e q u a l t o 1 mm d i s t a n c e . A ty p ic a l p i c tu re r e s u l t -

    in g f ro m th e f i r s t ima g e p ro c e s s in g s t e p s i s s h o w n in

    F ig . 2 (a ) fo r t h e a i r /p a ra f f in o i l s y s t e m.

    im a g e c a p t u r i n g v i d e o

    P C

    m o n i t o r

    image processing

    P C

    0 0 0 5 m

    g r a d u a te d - - i

    ru le r

    2 D g l a s s

    c o l u m n

    c V I t

    0 3 0 m

    1 T h

    g x , y) = i f f x , y ) < T h ' (1)

    w h e r e g x , y ) i s t h e g re y l e v e l o f t h e c o r re s p o n d in g

    p ic tu re in th e r e s u l t in g b in a ry im a g e .

    A p p l i c a t io n o f t h i s t h re s h o ld in g to F ig . 2 (a ) r e s u l t s

    i n t h e b i n a r y i m a g e s h o w n i n F i g . 2 (c ) . T h e e n t r o p y

    m e t h o d f o r t h r e s h o l d i n g a n i m a g e i s p r e f e r a b l e w h e n

    t h e t w o p e a k s i n t h e g r a y l e ve l d i s t r i b u t i o n a r e s e p a r -

    a t e d b y a w id e a n d f l a t v a l l e y . A s th i s i s n o t t h e c a s e in

    th e p re s e n t e x p e r im e n t , t h e th re s h o ld l e v e l i s c h o s e n

    b y v i s u a l i n s p e c t io n a s in d ic a t e d in F ig . 2 (b ) ; d u e to

    t h e s h a r p v a l l e y i n t h e h i s t o g r a m t h e r e i s n o a m b i -

    g u i t y r e g a r d i n g t h e v al u e o f T h . N o t e t h a t n o i m a g e

    e n h a n c e m e n t h a s b e e n a p p l i e d i n o r d e r t o p r e s e r v e a s

    m u c h o f t h e r a w d a t a a s p o s s i bl e . T h e b i n a r y i m a g e

    i s t h e n s u b d iv id e d ( l a b e l l e d ) i n to d i f f e re n t c o m p o -

    n e n t s , b a s e d u p o n a c o n n e c t iv i ty a n a ly s i s . T h e l a s t

    s t e p i n t h e a n a l y s i s o f t h e i m a g e s i s th e m e a s u r e m e n t

    o f th e s h a p e o f e a c h o b je c t i n th e im a g e . O b je c t

    p r o p e r t i e s s u c h a s a r e a , p e r i m e t e r , w i d t h a n d h e i g h t

    c a n b e m e a s u re d . T h e p re s e n t s tu d y i s fo c u s e d o n th e

    a re a o f t h e o b je c t s .

    A f t e r c o m p l e t i o n o f t h e i m a g e a n a l y s i s t h e d a t a

    h a v e to b e p ro c e s s e d . A s th e a s p e c t r a t io o f t h e im a g e s

    i s 1 : 1 , t h e n u m b e r o f p ix e l s t h a t fo rm a n in d iv id u a l

    b u b b l e a r e e a s i l y c o n v e r t e d t o t h e b u b b l e a r e a A b b y

    m u l t ip ly in g w i th a l i n e a r s c a l e f a c to r . T h e e q u iv a le n t

    b u b b l e d i a m e t e r c a n b e c a l c u l a t e d d i re c t l y f r o m t h e

    b u b b l e a r e a :

    d b = X / ~ A ~ .

    (2)

    T h e c a l c u l a t i o n o f th e g a s h o l d u p i n a n i m a g e f o l lo w s

    f ro m :

    2 Aobj

    e , - , 3 )

    Aim

    w h e re A o b j i s t h e a re a o f o n e o b je c t i n p ix e l s a n d

    A im re p re s e n t s t h e to t a l a re a o f t h e im a g e ( i . e .

    2 6 0 x 27 6 = 7 1 , 7 6 0 p ix e ls ) . T h e s a m e e x p re s s io n c a n

    a l s o b e u s e d to c a l c u la t e th e g a s h o ld u p o f a c e r t a in

    bubble s ize c lass ; in th is

    case ob j

    r e p re s e n t s t h e a re a

    o c c u p ie d b y o n e o b je c t i n th a t b u b b le c l a s s . T h e

    p r o c e d u r e w a s f i r s t c a l i b r a t e d b y v i d e o i m a g i n g o b -

    j e c t s ( c i rc l e s, s q u a re s ) o f k n o w n a re a s .

    TOTAL GAS HO LDU P, BUBBLE SIZE AND BUBBLE SIZE

    DISTRIBUTION

    F ig u re 3 s h o w s th e to t a l g a s h o ld u p v s th e s u p e r f i -

    c i a l g a s v e lo c i ty fo r a i r /p a ra f f in s lu r r i e s c o n ta in in g 0 ,

    2 8 .3 a n d 3 8 .6 v o l% s i l i c a p a r t i c l e s . T h e to t a l g a s h o ld -

    u p d e c re a s e s s ig n i f i c a n t ly w i th in c re a s in g s o l id s c o n -

    c e n t r a t i o n . T h e s a m e t r e n d h a s b e e n f o u n d f o r c o l -

    u m n s o f c i r c u l ar c r o s s se c t i o n b y K o i d e e t a l . (1984),

    K a r a

    e t a l .

    (1982) , Ke lkar

    et a l .

    (1984) , De Swart and

    K r i s h n a (1 9 9 5 ) a n d Y a s u n i s h i e t a l . (1986).

    T h e e f fe c t o f t h e s u p e r f i c i a l g a s v e lo c i ty a n d th e

    s o l i d s c o n c e n t r a t i o n o n t h e b u b b l e s i z e d i s t r i b u t i o n

    w a s in v e s t ig a t e d u s in g im a g e a n a ly s i s . F o r e a c h e x -

    p e r i m e n t a l r u n t h e b u b b l e s i z e d i s t r i b u t i o n w a s c a l -

    c u la t e d u s in g 6 0 0 f r a m e s ( c o r re s p o n d in g to 2 4 s v id e o

    r e c o rd i n g ) . T o s h o w t h e g a s h o l d u p s t r u c t u r e t h e

    b u b b l e s i z e d i s t r i b u t i o n s a r e e x p r e s s e d i n i n d i v i d u a l

    g a s f r a c t io n s in th e c o lu m n . F ig u re 4 s h o w s th e in f lu -

    e n c e o f t h e s u p e r f i c i a l g a s v e lo c i ty o n th e b u b b le s i z e

    d i s t r ib u t io n fo r p a ra f f in o i l . In c re a s in g th e s u p e r f i c i a l

    g a s v e l o c it y l e a d s t o f o r m a t i o n o f l a r g e r b u b b l e s a n d

    a l s o in c re a s e s th e b u b b le s i z e d i s t r ib u t io n . In F ig . 5

    th e b u b b le s i z e d i s t r ib u t io n i s s h o w n fo r p a ra f f in o i l

    s lu r r i e s o f 0 , 2 8 .3 a n d 3 8 .6 v o l% c o n c e n t ra t io n . F o r

    th e s e th re e s e r i e s th e s u p e r f i c i a l g a s v e lo c i ty i s k e p t

  • 8/10/2019 Chemical Engineering Science Volume 51 Issue 20 1996 [Doi 10.1016%2F0009-2509%2896%2900265-5] J.W.a. de

    4/11

    4622

    J . W . A . D E S W A R T

    e t a l

    c o n s t a n t a t a v a l u e o f a r o u n d 0 .1 0 m s - 1 . I t c a n b e

    s e e n

    t h a t a s t h e s o l i d s c o n c e n t r a t i o n i s i n c r e a s e d th e

    s m a l l b u b b le s , s m a l l e r t h a n s a y 1 0 m m in s iz e , d i s -

    a p p e a r , t h e i r c o n t r i b u t i o n t o t h e g a s h o l d u p d e c r e a s e s

    s i g n if i c a nt l y . F u r t h e r m o r e , t h e b u b b l e s iz e d i s t r i b u -

    t i o n b r o a d e n s a n d t h e a v e r a g e b u b b l e s i z e b e c o m e s

    l a r g e r . F i g u r e 6 s h o w s t h r e e g r a b b e d , a n d r e t r a c e d ,

    v id e o im a g e s a s v i s u a l s u p p o r t fo r t h i s c o n c lu s io n ;

    f ro m th e s e p i c tu re s i t c a n c l e a r ly b e s e e n th a t t h e

    s m a l l b u b b l e s d i s a p p e a r a n d t h e l a r g e b u b b l e s

    b e c o m e l a r g e r a s t h e s o l i d s c o n c e n t r a t i o n i s i n c r e a se d .

    F r a m e - b y - f r a m e v i s u a l e x a m i n a t i o n o f th e v i d e o

    i m a g e s a l s o r ev e a l e d th a t b u b b l e s s m a l l e r t h a n 1 0 m m

    h a v e t h e b a c k m i x i n g c h a r a c t e r i s t i c s o f t h e l i q u i d

    p h a s e . B u b b l es l a r g e r t h a n 1 0 m m , o n t h e o t h e r h a n d ,

    0.5

    t r a v e r s e d u p t h e c o l u m n v i r t u a l l y i n p l u g f l ow . T h e

    l a r g e b u b b l e p o p u l a t i o n c a n t h e r ef o r e b e d e f in e d a s

    h a v i n g b u b b l e s iz e s la r g e r t h e n 1 0 m m . U s i n g t h e

    S C I L - I m a g e s o f t w a r e a l l o b j e c t s s m a l l e r t h a n

    1 0 r a m c a n b e a u t o m a t i c a l l y r e m o v e d i n o r d e r t o

    fo c u s o n th e l a rg e b u b b le p o p u la t io n ; s ee F ig s 7 (a )

    a n d (b ) . F o r th e 2 8 .3 a n d 3 8 .6 v o l% s lu r ry c o n c e n t ra -

    t i o ns , th e b u b b l e p o p u l a t i o n s m a l l e r t h a n 1 0 m m i s

    v i r t u a l l y d e s t r o y e d c f F ig . 6 ) a n d th e w h o le b u b b le

    p o p u l a t i o n c a n b e c o n s i d e r e d t o b e l a r g e .

    T h e a v e ra g e l a rg e b u b b le s i z e in c re a s e s w i th in -

    c re a s in g s u p e r f i c i a l g a s v e lo c i ty a n d s lu r ry c o n c e n t ra -

    t io n ; s e e F ig . 8 . F o r th e 2 8 . 3 v o l% s lu r ry c o n c e n t ra -

    t io n s , t h e a v e ra g e b u b b le s i z e h a s b e e n m e a s u re d a t

    h e ig h t s H = 0 .6 5 a n d 1 . 1 5 m a b o v e th e d i s t r ib u to r .

    T h e r e s u l t s s h o w a s l ig h t i n c re a s e in th e a v e ra g e

    b u b b l e d i a m e t e r w i t h i n c r e a s i n g H , p o i n t i n g t o i n -

    c r e a s i n g c oa l e s c e n c e a s o n e p r o c e e d s u p t h e c o l u m n .

    [ 1

    [ ]

    [ ] c = o

    c = 0 . 2 8 3

    v c . = 0 . 3 8 6

    0 I I

    U l [ m l s ] 0 . 4

    Fig. 3. Influence of increased solids concen tratio n on th e

    total gas holdup with air/paraffin slurries.

    B U B B L E B U B B L E I N T E R A C T IO N S

    I n o r d e r t o g a i n f u r t h e r i n s i g h ts i n t o t h e m e c h a n i s m

    o f m a s s t r a n s f e r f r o m t h e l a r g e b u b b l e p o p u l a t i o n w e

    r e s o r t e d t o a c a r e f u l f r a m e - b y - f r a m e a n a l y s i s o f th e

    v id e o r e c o rd in g s . F ig u re 9 s h o w s e ig h t s e q u e n t i a l p i c -

    t u r e s ( f r a m e s ) t a k e n f r o m a n e x p e r i m e n t a l r u n w i t h

    th e 2 8 . 3 v o l% p a ra f f in o i l s lu r ry a t a s u p e r f i c i a l g a s

    v e lo c i ty o f 0 .0 9 m s - 1. T h e t im e in t e rv a l b e tw e e n th e

    i n d i v i d u a l f r a m e s i s 4 0 m s a n d t h e s m a l l b u b b l e s ,

    s m a l l e r t h a n l 0 m m , h a v e b e e n f i l te r e d o u t . T w o b u b -

    b le s A a n d B a re fo l lo w e d a s th e y r i s e th ro u g h th e

    c o lu m n . I t c a n b e s e e n f ro m f ra m e s 1 to 4 th a t b u b b le

    B r i s e s f a s t e r t h a n b u b b le A . In f r a m e 5 b u b b le

    0 0 1 8

    E

    [ ]

    . . . . . . .

    . . - - '

    . . . . . . '

    i i

    i /

    . .. .. . o . 2 o m s

    . . , ~ U - -

    . . . -

    a b [ m ]

    . -

    0 1 5

    Fig. 4. Influence of the superficial gas velocity on the gas hol dup structure for the system: air/paraffin oil.

    Measurements made at a height H = 0.65 m a bove the dis tributor.

  • 8/10/2019 Chemical Engineering Science Volume 51 Issue 20 1996 [Doi 10.1016%2F0009-2509%2896%2900265-5] J.W.a. de

    5/11

    Large b u b b l e s i n a t w o - d i m e n s i o n a l s l u rr y b u b b le c o l u m n 4623

    0 0 1 8

    . . . . . . . . . . , . , .

    . . - , ' ~ " ~ . . . . . . . .

    . , . . . . . . . .

    . . " ' " i " ~ " " " " " " - . . .

    . . . . .- " " . - " " ' ~ . . . . .. . . . .. . . . .. - . . ~ : . . . . . ~ . . . . . .

    " " " " " " " "

    I

    . . . - . :

    E

    [ ]

    / co =o 386

    / U = 0 0 9 m / s

    . . "

    ~=0

    U = 0 t 1 m / s

    0 2 0

    F i g . 5 . I n f l u en ce o f in crea s ed s o l i d s co n ce n tra t i o n o n th e g a s h o l d u p s t ru c tu re fo r th e s y s t em a i r / p a ra f f i n o i l

    s l urr ie s . M ea s u r em en ts m a d e a t a h e i g h t H = 0 . 6 5 m a b o v e th e d i s t r ib u to r .

    3 0 c m

    c = o

    U = 0 1 1 m / s

    C s = 0 2 8 3

    U = 0 0 9 m / s

    C s = 0 3 8 6 /

    U = 0 0 9 m / s

    F i g . 6 . I n f l u en ce o f in crea s ed p a r t i c l e co n cen tra t i o n : i mp r es s i o n o f th ree re tra ced v i d eo i m a g es o b ta i n ed a t

    0 . 6 5 m a b o v e th e d i s t r ib u to r .

    B r e a c h e s th e w a k e o f b u b b le A a n d c o a l e s c e n c e

    f o l l o w s ; in f r a m e 6 , A a n d B a r e c o a l e s c e d a n d b u b b l e

    A B i s f o r m e d . B u b b l e s D a n d E i n f l a m e 7 c o a l e s c e t o

    f o r m D E i n f r a m e 8 . L e t u s n o w t r a c k t h e h i s t o r y o f

    b u b b l e C i n f r a m e s 1 , 2 , 3 a n d 4 . I n f l a m e 4 b u b b l e

    C b r e a k s u p i n t o b u b b l e s C 1 a n d C 2 .

    T o o b t a i n q u a n t i t a t i v e d a t a o n t h e b u b b l e b r e a k - u p

    a n d c o a l e s c e n c e r a t e s f o r t h e 28 . 3 v o l s l u r r y a t

  • 8/10/2019 Chemical Engineering Science Volume 51 Issue 20 1996 [Doi 10.1016%2F0009-2509%2896%2900265-5] J.W.a. de

    6/11

    4624 J .W .A . DE SWART

    t a l

    Fig. 7. Im age processing: f i ll ing of gaps in the bina ry image (b) remov al of objects sma ller than 10 mm

    from the image.

    0 . 0 7 C , = 0 . 3 8 6, H = 0 .6 5 m / . 1 ~ s ~ . ~ - ~ - - - ~ '

    o .o 6 ~ < ~ v j

    0.0 5 C, = 0.283,H = 1.15 m

    d b , ~ . ~ 0 , 0 4

    [, n ] 0 .0 3 ~ - ~

    = 0 . 65 m ~ 3

    0 , 0 2 [ , C~ = 0 , H = 0 . 65 m

    0 . 0 1

    0 0 0 , 0 5 0 1 0 . 1 5 0 2 0 , 2 5

    u4m/s]

    Fig. 8. Influe nce of superficial gas veloci ty and slurry con-

    cen t ra t ion on the mean d iamete r o f the l a rge bubb le popu-

    la t ion . Measurements a t H = 0 .65 m above the d i s t r ibu to r

    for air /paraff in oi l s lurries for 0, 28.3 and 38.6 vol% slurr ies

    and at H = 1.15 m for the 28.3 vol% slurry.

    a s u p e r f i c i a l g a s v e l o c i t y o f 0 .0 9 m s - 1 , a d e t a i l e d

    f r a m e - b y - f r a m e a n a l y s i s o f t h e 8 - s r e c o r d i n g , e q u i v a -

    l e n t to 2 0 0 f r a m e s , w a s c a r r i e d o u t . F i r s t l y , t h e l a r g e

    b u b b l e p o p u l a t i o n , d e f in e d a s i n d i c a te d a b o v e b y u s -

    i n g a c u t - o f f b u b b l e s i ze o f 1 0 m m , w a s s p l i t u p i n

    6 d i f f e r e n t b u b b l e s i z e c l a s s e s ( 0 .0 1 - 0 .0 2 , 0 . 0 2 - 0 .0 4 ,

    0 .0 4 - 0 .0 6 , 0 . 0 6 - 0 .0 8 , 0 . 0 8 - 0 .1 a n d > 0 .1 m ) . F o r e a c h

    o f t h e s e b u b b l e c l a s s e s , i n d i v i d u a l b u b b l e s w e r e v i s -

    u a l l y tr a c k e d t o d e t e r m i n e t h e d e a t h r a te s , d e f in e d a s

    t h e f r a c t i o n o f t h e g a s h o l d u p i n t h e b u b b l e c l as s

    u n d e r c o n s i d e r a t i o n w h i c h d i s a p p e a r s b y e i th e r c o -

    a l e s c e n c e o r b r e a k - u p t o o t h e r b u b b l e s i z e c l a s s e s .

    A p a r a l l e l a n a l y s i s w a s c a r r i ed o u t t o d e t e r m i n e t h e

    b i r t h r a t e o f a c e r t a i n b u b b l e c la s s, r e p r e s e n t i n g t h e

    c r e a t i o n o f t h e g a s f ra c t i o n p e r s e c o n d b y a p r o c e s s o f

    c o a l e s c e n c e o r b r e a k u p o f o t h e r b u b b l e s i z e cl a ss e s.

    B y a c l a s s -b y - c l a s s a n a l y s i s o f 2 0 0 c o n s e c u t i v e f r a m e s ,

    t h e b i r t h a n d d e a t h r a t e s w e r e c a lc u l a t e d ; t h e s e a r e

    s h o w n i n F i g . 1 0. I t is to b e n o t e d t h a t f o r e a c h b u b b l e

    c l a ss t h e b i r t h a n d d e a t h r a t e s a r e c l o s e t o e a c h o t h e r ,

    a s w o u l d b e e x p e c te d f o r a s y s t e m a t d y n a m i c e q u i l i b -

    r i u m i n w h i c h t h e b u b b l e s i ze d i s t r i b u t i o n i s p r e s e r-

    v e d . L e t u s d e n o t e s Ri a s t h e r e f r e s h m e n t r a t e , b i r t h o r

    d e a t h r a t e , o f t h e b u b b l e c l a s s i, w i th t h e u n i t s s - 1. W e

    n o t e t h a t t h a t s B i i n c r e a s e s a s t h e s i z e o f t h e b u b b l e

    c l a ss i n c re a s e s . P u t a n o t h e r w a y , l a rg e r s i z ed b u b b l e s

    a r e r e f r e s h e d m o r e o f t e n , d u e t o c o a l e s c e n c e a n d

    b r e a k - u p t h a n s m a l l e r s iz e d b u b b l e s ; th i s i s i n c o n -

    f o r m i t y w i t h o u r i n t u i t i o n . T h e r e f r e s h m e n t f r e q u e n c y

    f o r t h e s m a l l e s t s i z e c l a s s 1 ( w i t h a n a v e r a g e d i a m e t e r

    o f 0 . 0 15 m ) i s a b o u t 4 s - x. T h e r e f r e s h m e n t f r e q u e n c y

    i n c r e a s e s to a b o u t 1 5 s - 1 f o r l a rg e s t b u b b l e s i ze c la s s

    6 ( d ia m e t e r s l a r g e r t h a n 0 .1 m ). L a r g e r s i z ed b u b b l e

    c l a ss e s t h e r e f o r e s u f fe r m o r e fr e q u e n t i n t e r c h a n g e

    w i t h o t h e r b u b b l e c l as s es .

    F u r t h e r , s o m e i d e a o f i n t e r c h a n g e b e t w e e n b u b b l e

    c la s se s w a s o b t a i n e d b y t r a c k i n g t h e n u m b e r o f b u b -

    b l e s i n c la s s i w h i c h b r e a k - u p o r c o a l e sc e i n t o c l a ss j .

    T h e b u b b l e e x c h a n g e m a t r i x f o r t h e 2 8 .3 v o l % s l u r ry

    i s s h o w n i n T a b l e 1. T h i s s h o w s t h a t t h e n u m b e r o f

    b u b b l e s i n v o l v e d i n t h e b u b b l e c la s s i n t e r c h a n g e p r o -

    c e s s d e c r e a s e s w i t h i n c r e a s i n g b u b b l e s i z e c l a ss . I f

    a s u f f i c ie n t ly la r g e n u m b e r o f f r a m e s i s a n a l y z e d , t h e

    b u b b l e e x c h a n g e m a t r i x m i g h t b e ex p e c t e d t o b e s y m -

    m e t r i c ; o u r r e s u l ts i n T a b l e 1 s h o w t h i s m a t r i x t o b e

    n e a r l y s y m m e t r i c .

    S u m m a r i z i n g i n w o r d s t h e f i n d i n g s o f F i g . 1 0 a n d

    T a b l e 1 , w e c a n s a y t h a t l a r g e r b u b b l e s i z e cl a ss e s a r e

    r e f re s h e d m o r e f r e q u e n t l y b u t a s m a l l e r n u m b e r o f t h e s e

    a r e i n v o l v e d i n a n i n t e r c h a n g e p r oc e ss . T h e b u b b l e -

    b u b b l e e x c h a n g e r a t e b e t w e e n a n y t w o c l as s e s c a n b e

    e x p e c t e d t o b e d i c t a t e d b y t h e r e f r e s h m e n t r a t e o f t h e

    s m a l l e r b u b b l e c l a ss s B i . F o r e x a m p l e , i n t e r c h a n g e

    b e t w e e n c la s s es 1 a n d 2 c a n b e e x p e c t e d t o b e a t

    a f requency o f , say , 4 s - 1 .

  • 8/10/2019 Chemical Engineering Science Volume 51 Issue 20 1996 [Doi 10.1016%2F0009-2509%2896%2900265-5] J.W.a. de

    7/11

    3

    c m

    L a r g e b u b b l e s i n a t w o - d i m e n s io n a l s l u r ry b u b b l e c o l u m n

    1

    4625

    4 m s 4 m s 4 m s

    Fig . 9 . E ight c o nse c ut ive f r a m e s of the a i r /28 .3 vol% oi l s lur ry : c oa le sc e nc e of the l a rge bub ble s . Re c orde d

    at a h e igh t of 0.65 m an d a su perf ic ia l gas ve loci ty of 0.09 m s 1.

    B~

    [ s q

    2

    death birth i Cs= 0.283

    rate ~ ~ r a t e [I h=O.65mU=O'O9m/s

    ? u b ? i y c l a ~ y l

    1 2 3 4 5 6

    Bubble Class

    Fig . 10 . B i r th a nd de a th r a te s for d i f f e re nt bubble c la s se s ,

    e xpre s se d a s the f r a c t ion of the ga s holdup of a bubble c la s s

    whic h i s los t (de a th) or ga ine d (b i r th) due , r e spe c t ive ly to

    bre a k up or c oa le sce nc e . Sys te m : a ir /28 .3 vol% oi l s lur ry ,

    r e c orde d a t a he igh t of 0 .65 m a nd a supe r f i c ia l ga s ve loc ity

    of 0.09 m s- i .

    A P O P U L A T I O NB A L A N C EM O D E L F O R M A S ST R A N S F E R

    F R O M L A R G E B U B B L E S

    F o r t h e l a r g e b u b b l e p o p u l a t i o n c o n t a i n i n g

    n b u b b l e s i z e c l a s s e s , w e e n v i s a g e a m a s s t r a n s f e r

    m e c h a n i s m a s p i c t u r e d i n F i g . 1 1 . E a c h b u b b l e c l a s s

    e x c h a n g e s m a s s w i t h t h e l i q u i d ( o r s l u r ry ) p h a s e w i t h

    a t r a n s f e r c o e f f i c i e n t

    kL ~ai .

    F u r t h e r , t o a c c o u n t f o r t h e

    b u b b l e - b u b b l e i n t er a c t io n s w e a ss u m e t h a t e a c h

    b u b b l e c l as s e x ch a n g e s m a s s w i t h e v e ry o t h e r b u b b l e

    c l as s , e i t h e r b y a p r o c e s s o f c o a le s c e n c e o r b r e a k - u p ,

    T a b l e 1 . B u b b l e e x c h a n g e m a t r i x

    Fro m / t o C la s s 1 C la s s 2 C la s s 3 C la s s 4 C la s s 5 C la s s 6

    Class 1 31 16 5 9 4

    Class 2 43 x 30 10 8 10

    Class 3 12 22 l0 4 8

    Class 4 5 9 14 x 2 4

    Class 5 6 7 5 5 x 3

    Class 6 3 7 1 0 0

    N o te :

    T h e n u m b e r s r e p r e s e n t t h e n u m b e r o f b u b b l e s i n

    a c e r ta in s i ze c la s s whic h unde rg o e xc h a nge w i th a d i f f e re nt

    s iz e c la s s . The num be rs we re m e a sure d f r a m e -by- f r a m e for

    a n e ight s e c ond pe r iod ove r 200 f r a m e s of ope ra t ion a t

    supe r f ic ia l ga s ve loc i ty of 0 .09 m s - 1 a nd s lur ry c o nc e nt ra -

    t ion o f 28 .3 vol%.

    w i t h a n e x c h a n g e c o e f f i c i e n t Ei ~, e x p r e s s e d i n t h e

    u n i t s s - 1

    F o r e a c h b u b b l e c l a s s , w e d e f i n e t h e n u m b e r o f

    m a s s t r a n s f e r u n i t s f o r t r a n s f e r t o t h e l i q u i d p h a s e

    k L ia l H

    N T U i - U L a r g e ~ (4)

    w h e r e U L a,g o.i i s t h e s u p e r f i c i a l g a s v e l o c i t y t h r o u g h

    t h e l a rg e b u b b l e p o p u l a t i o n i. T h e n u m b e r o f e x -

    c h a n g e t r a n s f e r u n i t s f o r d ir e c t e x c h a n g e o f m a s s

    b e t w e e n c l a s s e s i a n d j

    E i j e i H

    N E x T U q U L a r g e , ' ( 5 )

    w h e r e E i j i s t h e e x c h a n g e c o e f f i c i e n t b e t w e e n t h e

    b u b b l e c l a ss e s i a n d j . E x c h a n g e o f g a s b e t w e e n t h e

    b u b b l e c l a s s e s d o e s n o t a l t e r t h e i r g a s h o l d u p s ; t h i s

  • 8/10/2019 Chemical Engineering Science Volume 51 Issue 20 1996 [Doi 10.1016%2F0009-2509%2896%2900265-5] J.W.a. de

    8/11

    4626 J.W .A. DE SWART t al .

    Fig. 11. Mass transfer model for transfer from large bubbles involving bubble bubble interchange

    coefficients Eli and transfer coefficients o the liquid phase

    kLia~.

    implies that we have the relation

    E l i 8 i : E j i .

    The bubble refreshment rate sni of class i is then:

    S B i ~ ~ E i j

    j = l , j= ~ 1

    d C g )

    - [ A ] C q ) + B ) C L , 8 )

    d e

    6)

    where is the dime nsional distance along the reactor

    ~ = h / H ) . C g ) is the n-d imension al colum n matrix of

    gas phase concentrations in the individual bubble

    (7) classes, Cgi. The n x n dim ensiona l transfer coefficient

    matrix [A] has the elements

    [A] =

    NTU1 ~ NExTU u

    m j=l

    j l

    NExTU21

    N E x T U 1 2

    NTU2 ~ NExTU2j

    m /=1

    j 2

    NExTU.1 NExTU.2

    .- NExTU1,

    NExTU2.

    NTU.

    m

    NExTU,j

    j = 1

    i n

    , 9 )

    The experimental results on the refreshment rates

    s B i c f Fig. 10) can th en be used i n conj uncti on with

    eqs (6) and (7) to estimate the values of the exchange

    coefficients Eij.

    Assuming plug flow of all the bubble classes, the

    differential equations for mass transfer to a com-

    pletely mixed liquid phase, of uniform concentr ation

    CL can be expressed in n-dimens ionalmatrix notation

    a s

    where m is the dis trib ution coefficient between gas and

    liquid phases.

    The n-dimensionalcolumn matrix (B) has the elements

    B ) =

    NTU1

    NTU2

    NTUn

    (10)

  • 8/10/2019 Chemical Engineering Science Volume 51 Issue 20 1996 [Doi 10.1016%2F0009-2509%2896%2900265-5] J.W.a. de

    9/11

    Large bubb les in a two-d im ens iona l s lu r ry bubb le co lumn

    T o d e m o n s t r a t e t h e i n f lu e n c e o f t h e e x c h a n g e o f g a s

    b e t w e e n t h e c l a s s e s o n t h e o v e r a l l m a s s t r a n s f e r r a t e

    t h e m o d e l o f n l a r g e b u b b l e c l a s s es i s n o w w o r k e d o u t

    i n d e t a i l f o r t h r e e c l a s s es : c l a ss 1 w i t h a b u b b l e

    d i a m e t e r d b, ~ o f 0 .0 1 m , c l a s s 2 w i t h a b u b b l e

    d i a m e t e r

    d b . 2

    o f 0 .0 4 m a n d c l a s s 3 w i t h a b u b b l e

    d i a m e t e r db , 3 o f 0 .1 m . T h e r i s e v e l o c i t y o f t h e 0 .1 m

    b u b b l e s i s e s t i m a t e d f r o m o u r e x p e r i m e n t s a n d e q u a l s

    0 . 95 m s - 1. T h e b u b b l e r i s e v e l o c i t y i s a s s u m e d t o b e

    p r o p o r t i o n a l t o d b a n d s o t h e r i s e v e l o c i t y o f t h e

    0 .0 1 m a n d 0 . 0 4 m d i a m e t e r b u b b l e s c a n n o w b e c a l-

    c u l a t e d t o b e 0 . 3 m s - 1 a n d 0 .6 m s - i , r e s p e c t i v e l y .

    M a s s t r a n s f e r c o e f f i c ie n t s f o r e a c h o f t h e b u b b l e

    a r e e s t i m a t e d f r o m t h e s u r f a c e r e n e w a l

    l a s s e s

    t h e o r y :

    ;

    L i : ( l l )

    7 ~ t c , i

    w h e r e D i s t h e d i f f u s i v i t y a n d t c i s t h e c o n t a c t t i m e

    b e t w e e n g a s a n d l i q u id . T h e c o n t a c t t i m e i s e s t i m a t e d

    f r o m t c . i = d b . i / V b , i f o r e a c h b u b b l e c l a s s . T h e g a s

    h o l d u p s o f th e t h r e e c l a s se s a r e e s t i m a t e d f r o m t h e

    m e a s u r e d g a s h o l d u p s t r u c t u r e s ( e l = 0 . 05 , e 2 = 0 . 0 6 ,

    e 3 = 0 .0 3 ). T h e i n t e r r a c i a l a r e a s a r e c a l c u l a t e d f r o m

    a = 6 e / d b ;

    t h i s y i e l d s a l = 3 0 , a 2 = 9 a n d a 3 =

    1 .8 m 2 m - 3 . T h e s u p e r fi c i al g a s v e l o c i ti e s t h r o u g h

    e a c h b u b b l e c l a s s i s

    V b e ;

    th is y ie ld s ULarge , 1 = 0 .015 ,

    ULa ,gc ,2 = 0 .036 an d ULarge ,3 = 0 .028 m S- 1 .

    S i m u l a t i o n s a r e n o w c a r r i e d o u t f o r c o n d i t i o n s r e l-

    e v a n t fo r th e F i s c h e r - T r o p s c h s y n th e s is . H y d r o g e n

    a b s o r p t i o n f r o m s y n t h e s i s g a s i n t o p a r a f f i n o i l a t

    a p r e s s u r e o f 4 0 b a r a n d a t e m p e r a t u r e o f 5 13 K i s

    c o n s i d e r e d . H y d r o g e n a n d c a r b o n m o n o x i d e a r e p r e s -

    e n t i n t h e s y n g a s f e e d a t a r a t i o o f 2. T h e s u p e r f i c i a l

    g a s v e l o c it y th r o u g h t h e t o t a l l a r g e b u b b l e p o p u l a -

    t i o n , U L a rg c = 0 . 0 7 9 m S - 1 , i s a s s u m e d t o b e c o n s t a n t

    o v e r t h e r e a c t o r h e i g h t H = 30 m . T h e d i f f u s iv i t y

    D a n d d i s t r i b u t i o n c o e f f i c ie n t m o f h y d r o g e n a r e e q u a l

    t o 5 .5 1 0 - 8 m z s - 1 a n d 5 , re s p e c t i v e l y . T h e c o n c e n -

    t r a t i o n o f h y d r o g e n i n t h e l i q u i d p h a s e i s s e t a t

    C L = 4 0 m o l m - 3 a n d i s a s s u m e d t o b e c o n s t a n t

    a l o n g t h e h e i g h t o f t h e r e a c t o r. F r o m t h e d a t a g i v e n i n

    F i g . 1 0 a n d T a b l e 1 , a n d k e e p i n g i n m i n d t h e c o n -

    s t r a i n t s g i v e n b y e q s ( 6 ) a n d ( 7 ) , w e h a v e m a d e r o u g h

    e s t i m a t e s o f t h e v a l u e s o f t h e e x c h a n g e c o e f f i c i e n t s

    E u f o r t h e t h r e e - b u b b l e c l a s s e s : E 1 2 = 3 , E 1 3 = 1 ,

    E 2 x = 2 .5 , E 2 3 = 3 , E a t = 1 .7 a n d E 3 2 = 6 s - 1 . T h e

    r e f r e s h m e n t r a t e s c a l c u l a t e d u s i n g e q . (7 ) f o r t h e t h r e e

    b u b b l e c l a s s e s a r e : s na = 4 , s n2 = 6 . 5 a n d

    SB2

    = 7 .7 S - 1, w h i c h a g r e e s w i t h t h e t r e n d p o r t r a y e d

    i n F i g . 10 . T h e v a l u e s o f t h e n u m b e r s o f m a s s t r a n s f e r

    u n i t s a r e c a l c u l a t e d f r o m e q s ( 4 ) a n d ( 1 1 ) t o b e

    N T U ~ = 8 3 , N T U 2 = 7 .3 a n d N T U 3 = 1 .4 7. T h e c o -

    e f f i c ie n t m a t r i x I -A ] c a n n o w b e c a l c u l a t e d f r o m e q . (9 )

    a n d t h e s e t o f o r d i n a r y l i n e a r d i f f e r e n t i a l e q u a t i o n s ( 8)

    c a n b e s o l v e d t o y i e l d t h e c o m p o s i t i o n p r o f i l e s f o r

    h y d r o g e n i n t he g a s p h a s e a l o n g t h e h e i g h t o f t h e

    r e a c t o r. F i g u r e 1 2 s h o w s t h e d i m e n s i o n l e s s h y d r o g e n

    c o n c e n t r a t i o n

    C o

    H2/Co0 H 2 p r o f il e a l o n g t h e c o l u m n

    h e i g h t. T h e t h r e e p r o f il e s c o i n c i d e w i t h o n e a n o t h e r

    4627

    C g H 2

    C g o ~

    1

    0 8

    0 6

    0 . 4

    0 . 2

    0 01.2

    0

    X 0 .01 m bubb le c lass 1

    0 0 . 0 4 n bubble class2

    [ ] 0.10m bubble class 3

    I

    1 0 1 . 4 0 1 . 6 1 0 1 8 1 1

    Fig . 12. Re la t ive hydrogen conce n t ra t ion as a fun c t ion o f

    ax ia l pos i tion in a F ischer T ropsch s lu r ry reac to r opera t ing

    at a superficial gas velo city of 0 .079 m s- L M odel c alcu-

    lations based on a three bubble class and interaction coeffi-

    c ien ts a s shown in the f igu re . The con t inuous l ine co r res -

    ponds to the ensemble average concen t ra t ion ca lcu la ted

    from eq. (12).

    a n d t h e c o n v e r s i o n a t t h e r e a c t o r o u t l e t i s 6 8 % . T h e

    c o n v e r s i o n b e h a v i o u r o f t h e t h r e e b u b b l e c l as s s y s te m ,

    w i t h 0 . 01 , 0 . 0 4 a n d 0 .1 m d i a m e t e r b u b b l e s i s f o u n d t o

    b e e q u i v a l e n t t o t h a t o f a s i n g le b u b b l e c l a s s s y s t e m o f

    d i a m e t e r 0 .0 2 1 m m o v i n g t h r o u g h t h e r e a ct o r a t

    a s u p e r f i c i a l g a s v e l o c i t y U

    =

    ULarg,1

    ~-

    ULarge.2 4-

    U L a r g e , 3

    = 0 .0 7 9 m s 1 . P u t a n o t h e r w a y , d u e t o f r e -

    q u e n t b u b b l e - b u b b l e i n t e r c h a n g e , t h e e ff e c ti v e b u b b l e

    d i a m e t e r s f o r t h e 0 . 0 4 a n d 0 . 1 m d i a m e t e r c l a s s e s a r e

    r e d u c e d t o a b o u t 0 .0 2 . T h i s i m p l i e s a n e n h a n c e m e n t

    f o r t h e 0 .1 m b u b b l e c l a s s o f fi v e .

    I n o r d e r t o f u r t h e r d e m o n s t r a t e t h e s i g ni f i ca n c e o f

    t h e b u b b l e - b u b b l e i n t e r c h a n g e , w e a l so c a r r ie d o u r

    s i m u l a t i o n s t a k i n g a l l t h e e x c h a n g e c o e f f i c i e n t s E u t o

    b e z e ro . T h e g a s p h a s e c o n c e n t r a t i o n p r o f il e s f or t h e

    t h r e e b u b b l e c l a s s e s i n t h i s c a s e a r e s h o w n i n F i g . 1 3 .

    T h e 0 . 0 1 m b u b b l e c l a s s e q u i l i b r a t e s w i t h t h e l i q u i d

    p h a s e v e r y q u i c k l y w h e r e a s w e s e e t h a t t h e c o n v e r s i o n

    o b t a i n e d f r o m t h e 0.1 m b u b b l e c l a s s i s e x t r e m e l y

    l i m i t e d . A l s o s h o w n i n F i g . 13 is t h e w e i g h t e d a v e r a g e

    c o n c e n t r a t i o n p r o f il e o f t h e b u b b l e e n s e m b l e c a l -

    c u l a t e d f r o m :

    ULarge i C

    d C g _ ~ U g , i. ( 12 )

    - ~ i = 1

    T h e o v e r a l l c o n v e r s i o n a c h i e v e d b y t h e e n s e m b l e i s

    o n l y 4 3 e /o , s i g n i f i c a n t l y l o w e r t h a n t h a t o b t a i n e d t a k -

    i n g i n t e r a c ti o n s i n t o a c c o u n t .

    A f u r t h e r p o i n t t o n o t e i s t h a t t h e r e f r e s h m e n t

    f r e q u e n c i es d u e t o c o a l e s c e n c e o r b r e a k - u p a r e o f th e

    s a m e o r d e r o f m a g n i t u d e a s t h e D a n c k w e r t s s u r fa c e

    r e n e w a l f r e q u e n c i e s fo r m a s s t r a n s f e r. F o r a b u b b l e o f

    0 .1 m d i a m e t e r t h e D a n c k w e r t s s u r f a c e r e n e w a l f r e-

    q u e n c y i s c a l c u l a t e d t o b e o f t h e o r d e r o f 3 s - 1 w h i l e

    w e s e e f r o m F i g . 1 0 t h a t t h i s b u b b l e c l a s s i s r e fr e s h e d

    a t t h e r a t e o f 1 5 s - 1 . T h i s i m p l i e s t h a t d u r i n g t h e t i m e

    s p a n o f u n s t e a d y - s t a t e t r a n s f e r t o t h e l i q u i d p h a s e ,

    a b u b b l e w o u l d l o s e i t s i d e n t i t y , r e s u l t i n g i n a f u r t h e r

  • 8/10/2019 Chemical Engineering Science Volume 51 Issue 20 1996 [Doi 10.1016%2F0009-2509%2896%2900265-5] J.W.a. de

    10/11

    4628 J.W.A. DE

    ~ : ~ .IC C L F | T Q I J s ] Z ] q Z L F n

    . ,.~ , ~ . ~ , ~ 4 _ t z ~ ~ . , ~ F

    ~'~ ......

    2

    c o . ~ 0 . 6 ~ ~ ? ~ + ~ ; L ' ; ~ ; . . . . . " - - - ? . .. .

    C o ,.2 f

    . :~ 'XXX,~,

    X 0 . 0 1 m b u b b l e

    cl ~

    1

    0 . 2 0 0 . 0 4 m b u b b le c l a8 8 2

    [ ] 0 . 1 0 i l l b u b b l e c l a s s 3

    0 I I . I I , I , I

    0 0 2 0 4 0 6 0 18 1

    Fig. 13. Relative hydrogen concentration as a function of

    axial position in a Fischer Tropsch slurry reactor for the

    three bubble class without bubble bubble interchange. Also

    shown in dashed lines are calculations of the ensemble aver-

    aged concentrations along the reactor height following

    eq. (12).

    S W AR T et al

    cates coalescence-breakup rates of the order of

    10-30 s- ~, providing some confirmat ion of our two-

    dimensi onal results.

    Another aspect which deserves further study is the

    influence of the particle size and shape on the bu bble

    hydrodynamics; in a recent study by Tsuchiya and

    Fur umo to (1995) the influence of particle shape has

    been emphasised.

    A

    Ab

    A i m

    Aobj

    B

    Cg

    eo

    enhancement of the mass transfer coefficient

    kL

    esti-

    L

    mated to be of the order of a factor 2. A detailed mass Cs

    transfer model needs to be set up to take this also into

    db

    account. A combination of bu bble- bubble inter-

    change and enhanced kL due to accelerated surface db Large

    renewal leads to an order of magnit ude increase in the D

    mass transfer coefficient above that estimated from Eu

    conventional treatments ignoring bubble bubble

    interactions, h

    Vermeer and Kr ishna (1981) in a study of mass H

    transfer from large bubbles with the system air/tur- kL

    pentine had attributed the measured (paradoxically) m

    high values of mass transfer coefficients to the violent- NT U

    ly turbul ent nature of the liquid phase. We can now NEx TU

    establish, albeit qualitatively, that frequent SB

    bub ble -bu bbl e exchanges are the most likely cause of tc

    high mass transfe r rates. Th

    U

    ULarge i

    C O N C L U S I O N S

    We have gained some insight into the hyd rodyna m-

    Uay

    ics of slurry bubble columns. Increasing slurry con-

    centrat ion reduces the total gas holdup; this reduction

    Vb

    is to be largely attributed to the destruction of the

    small bubbl e populati on, which have bubble dia-

    meters smaller than l0 mm. Incre asing slurry concen-

    tratio n increases the size and size distrib ution of the

    large bubbles. A frame-by-frame analysis of the

    video images shows that there is frequent bubble

    coalescence and breakup. With the aid of a popula-

    tion model for mass transfer we have established that

    this could lead to an order of magnitude increase in

    the mass transfer for the larger bubble sizes.

    In view of the demonstrated significance of

    bubbl e-bubb leinte racti ons n a two-dimensional col- #

    umn, we consider it vital to confirm this phen omen on H2

    in a three-dimensional colum n with the aid of say i

    tomograph ic techniques or fibre optic probes. A re- L

    cent study, using video imaging techniques, by Large

    Stewart (1995) of bubb le inte racti ons in a three-di- 0

    mension al colum n of 0.2 x 0.2 m cross section indi- 1,2,3

    N O T A T I O N

    interfacial area per unit volume of disper-

    sion, m 2 m 3

    transfer coefficient matrix defined by eq. (7)

    bubble area, m z

    total area of the image, pixels

    area of one object in an image, pixels

    column matrix defined by eq. (8)

    gas phase concentration, mol m-3

    gas phase concentration at inlet to reactor,

    mol m- 3

    liquid phase concentrat ion, mol m 3

    solids volume fraction in gas free slurry

    bubble diameter of the large bub ble popula-

    tion, m

    mean bubble diameter of dilute phase, m

    liquid phase diffusivity, m e s- t

    exchange coefficient of bubb le class i with

    bubble class j, s 1

    height above the gas distributor, m

    height of expanded bed, m

    liquid phase mass transfer coefficient, s-

    dis tribut ion coefficient

    number of transfer units

    number of exchange transfer units

    refreshment rate (birth or death rate), s-t

    contact time, s

    threshold grayscale value

    superficial gas velocity, m s-

    superficial velocity of gas through the large

    bubble population i, m s-

    superficial velocity of gas through the small

    bubbles, m s

    rise velocity of the large bubble po pulatio n,

    m s 1

    Greek letters

    e gas voidage

    ~lL liquid viscosity, Pa s

    ,DE liqu id dens ity, kg m- 3

    a surface tens ion of liquid phase, N m 1

    axial coordinate,

    h / H

    Subscripts

    referring to gas phase

    hydrogen

    ith bub ble class

    referring to liquid phase

    referring to the large bubble population

    referring to ent rance to reactor

    referring to bubble classes

  • 8/10/2019 Chemical Engineering Science Volume 51 Issue 20 1996 [Doi 10.1016%2F0009-2509%2896%2900265-5] J.W.a. de

    11/11

    L a r g e b u b b l e s i n a t w o - d i m e n s io n a l s l u r ry b u b b l e c o l u m n

    R E F E R E NC E S

    Buku r , D . B . , Pa te l , S. A . a nd Ma the o , R . , 1987, Hy-

    d r o d y n a m i c s t u d i e s in F i s c h e r - T r o p s c h d e r i v e d w ax es i n

    a b u b b l e c o l u m n . Chem. Engng Commun. 60 63 78.

    Buk ur , D . B . , Pa te l, S . A . a nd D uly , J . G . , 1990, Ga s hold up

    a nd so l ids d i spe r s ion in a thre e pha se s lur ry bubble c o l -

    u m n . A . I . C h . E . J . 36, 1731-1735.

    Deckwer, W.-D. , 1992, Bubble Column Reactors . Wiley, New

    York .

    Deckwer, W.-D. , Louis i , Y. , Zaidi , A. and Ralek, M. , 1980,

    H y d r o d y n a m i c p r o p e r t i e s o f t h e F i s c h e r - T r o p s c h s l u rr y

    process . Ind. Engng Chem. Process Des. Dev. 19, 699 708.

    De c kwe r , W. -D . a nd Sc hum pe , A ., 1993, Im p rove d tool s for

    b u b b l e c o l u m n r e a c t o r d e s ig n a n d s c a le - u p. Chem. Enqng

    Sci. 4 8 889 911.

    De S wart , J . W. A. and Krish na , R. , 199 5, Effec t of par t ic les

    c o n c e n t r a t i o n o n t h e h y d r o d y n a m i c s o f b u b b l e c o l u m n

    s lur ry r e a c tor s . Chem. Engng Res . Des. Trans. lns tn Chem.

    E n g n g 73, 308 313.

    De Sw art , J . W. A., Krish na , R. and Sie , S. T. , 1995, Selec t ion,

    de s ign a nd sc a le up of the F i sc he r Trop sc h r e a c tor . Stud-

    ies in Surface Scien ce and C atalys is . Elsevier , Amsterdam,

    in press .

    E l le nbe rge r , J . a nd K r i shna , R . , 1994, A Un i f i e d a pproa c h to

    the s c a le up of ga s - so l id f lu id iz e d a nd ga s l iqu id bubble

    c olum n re a c tor s . Chem. Engng Sci . 49, 5391 5411.

    Fox, J . M. , 1990, F i sc h e r -Tro psc h r e a c tor s e le c tion . Catal.

    Le t t . 7, 281 292.

    Fuk um a , M. , Muro ya m a , K . a nd Ya sunish i , A . , 1987, Prop -

    e r t ie s o f b u b b l e s w a r m i n a s l u r ry b u b b l e c o l u m n . J. Chem.

    E n g n g J a p a n 20 28 33.

    Gon z a le s , R . C . , a nd Wintz , P . , 1987, Digi ta l Image Proc e s s -

    ing 2 n d E d i t i o n . A d d i s o n W e s l e y P u b l i s h i n g C o m p a n y ,

    O n t a r i o , C a n a d a .

    Ja ge r , B . a nd Espinoz a , R ., 1995, Adv a nc e s in low te m pe r -

    a t u r e F i s c h e r - T r o p s c h s y n t h es i s. Catal . Today 23, 17 28.

    Ka pu r , J . N ., Sa ho o, P . K . a n d W ong, A . K . C . , 1985, A ne w

    m e thod for gra y- le ve l p ic ture thre shold ing us ing the e n-

    t r o p y o f t h e h i s t o g r a m . Comput. Graphics Image Process.

    2 9

    273--285.

    Kara , S. , Kelkar , B. G. , Shah, Y. T. and Carr , N. L. , 1982,

    H y d r o d y n a m i c s a n d a x i a l m i x i n g i n a t h r e e -p h a s e b u b b l e

    c o l u m n . Ind. Engng Chem. Process Des. Dev. 21,584 594.

    Ke lka r , B . G . , Sha h , Y . T . a nd C a r r , N . L . , 1984, Hy drod yn-

    a m ic s a nd a xia l m ixing in a thre e -pha se bubble c o lum n.

    4629

    Effects of s lurry prope rt ies . Ind. Engng Chem. Process Des.

    Dev. 23, 308--313.

    Koide , K . , Ta ka z a wa , A . , Kom ura , M. a nd Ma tsuna ga , H . ,

    1 9 8 4 , G a s h o l d - u p a n d v o l u m e t r i c l i q u i d - p h a s e m a s s

    t r a ns fe r coe ff ic ie n t in so l id- suspe n de d bu bble c o lum ns . J .

    Che m. Engng J apan 17, 459~.66.

    Kr i shna , R . a nd E l le nbe rge r , J ., 19 95, A uni f i e d a ppro a c h

    to the s c a le up of f lu id iz e d m ul t ip ha se r e a c tor s .

    Chem. Engng Res . Des. Trans. Ins tn Chem. Engng 73,

    217 221.

    Lunde , K . a nd Pe rk ins , R . J ., 1995, A m e thod for the de ta i l e d

    s t u d y o f b u b b l e m o t i o n a n d d e f o r m a t i o n . Proc. 2nd Int .

    Conj . on Mul t iphase F low ' 95 Kyo to , J a pa n , pp .

    AV17 AV24.

    O'Dowd, W. , Smith, D. N. , Ruether , J . A. and Saxena, S. C. ,

    1987, Ga s a nd so l ids be h a vio ur in a ba f f le d a nd unba f f l e d

    s l u r ry b u b b l e c o l u m n . A . I . C h . E . J . 33, 1959-1970.

    S a x e n a, S . , 1 9 9 5 , B u b b l e c o l u m n r e a c to r s a n d

    Fisc he r Trops c h synthe s i s . Catal. Rev. Sci. Eng. 37,

    227- 309.

    Sa xe na , S . C . a nd Ra o, N . S . , 1993, Es t im a t ion of ga s hold up

    i n sl u r r y b u b b l e w i t h i n t er n a l s: n i t r o g e n - t h e r m i n o l - m a g -

    neti te system. Powde r Te c hnol . 75, 153 158.

    Sa xe na , S . C . , Ra o , N . S . a nd Thim m a pura m , P . R . , 1992,

    G a s p h a s e h o l d u p i n s lu r r y b u b b l e c o l u m n s f o r t w o - a n d

    three-phase systems. Chem. Engn 9 J . 49, 151 159.

    Sc hum pe , A . , Sa xe na , A . K . a nd Fa ng, L . K . , 1987,

    Ga s / l iqu id m a ss t r a ns fe r in a s lur ry bub ble c o lum n. Chem.

    Engng Sci . 42, 1787 1796.

    Sit , S. P. and Grace , J . R., 1981 , Effec t of bub ble int erac t ion

    on in te rpha se m a ss t r a ns fe r in ga s f lu id iz e d be ds . Chem.

    Engng Sci . 36, 327 335.

    S te wa r t , C . W, 1995, Bub ble in te ra c t ion in low-vi sc os i ty

    l iquids . In t . J . Mul t iphase F low 21, 1037 1046.

    T s u c h i y a, K . a n d F u r u m o t o , A ., 1 9 9 5 , T o r t u o s i t y o f b u b b l e

    r ise pa th in a l iquid sol id f luidized bed: effec t of par t ic le

    sha pe . A . I . C h . E . J . 41, 1368-1374.

    Ve rm e e r , D . J . a nd Kr i shna , R . , 1981, Hy drod yna m ic s a nd

    m a s s t r a n s f e r i n b u b b l e c o l u m n s o p e r a t i n g i n t h e c h u r n -

    turb ule nt r eg im e. Ind. Engng Chem. Process Des. Dev. 20,

    475 482.

    Ya sunish i , A . , Fuk um a , M. a nd Mu roya m a , K . , 1986,

    M e a s u r e m e n t o f b e h a v i o u r o f g as b u b b l e s a n d g a s h o l d u p

    in a s lur ry bubbl e c o lum n by a du a l e le c t rore s is t iv i ty

    probe . J . Chem. Engng Japan 19, 444~449.