Top Banner

of 22

Chapter4 Detect v2

Jul 06, 2018

Download

Documents

HEG
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/18/2019 Chapter4 Detect v2

    1/22

    Chapter 4

    Photodetectors

  • 8/18/2019 Chapter4 Detect v2

    2/22

    Types of photodetectors:

    Photoconductos

    Photovoltaic

    Photodiodes

    Avalanche photodiodes (APDs)

    Resonant-cavity photodiodes

    MSM detectors

    In telecom we mainly use PINs and APDs.

  • 8/18/2019 Chapter4 Detect v2

    3/22

  • 8/18/2019 Chapter4 Detect v2

    4/22

    Basic operation of a PN photodetector:

    Absorption takes place in 3 places: (1) within depletion region, (2) away

    from it, and (3) near it.

    Those from category (1) generate photocurrent (as done in class)

    Those from category (2) recombine and are not useful

    Those from category (3) diffuse (if they don’t recombine) to the depletion

    region and then generate photocurrent. Diffusion is a slow process,

    however.

    Bottom line: We want to confine the absorption to the depletion region

    A PIN diode has this advantage

  • 8/18/2019 Chapter4 Detect v2

    5/22

     p+

    SiO2

    Electrode

     ρ net

     – eN a

    eN d  x

     x

     E ( x)

     R

     E max

    e – h+

     I  ph

    hυ  > E g

     E 

    n

    Depletion region

    (a)

    (b)

    (c )

    Antireflection

    coating

    V r 

    (a) A schematic diagram of a reverse biased pn junction photodiode. (b) Net space charge across the diode in thedepletion region. N d  and N a are the donor and acceptor 

    concentrations in the p and n sides. (c). The field in thedepletion region.

    Electrode

    V out

    © 1999 S.O. Kasap, Optoelectronics (Prentice Hall)

  • 8/18/2019 Chapter4 Detect v2

    6/22

    e – h+

    i ph(t )

    Semiconductor 

    (a )

     x

    (b)

    (a) An EHP is photogenerated at x = l. The electron and the hole drift in opposite

    directions with drift velocities vh and ve. (b) The electron arrives at time t e = ( L − l)/ve  an

    the hole arrives at time t h = l/vh. (c) As the electron and hole drift, each generates an

    external photocurrent shown as ie(t ) and ih(t ). (d) The total photocurrent is the sum of hole

    and electron photocurrents each lasting a duration t h and t e respectively.

     E 

    l   L − l

    v evhvh

    0   Ll

    e – h+

    t h

    t e

    0

    t h

    t e

    i ph(t )

    i(t )

    0

    t h

    t e

     evh /L + eve /Levh /L

    ie(t )

    ih(t )

    (c )

    (d)

    Charge = e

    evh /L ev e /L

    © 1999 S.O. Kasap, Optoelectronics (Prentice Hall)

  • 8/18/2019 Chapter4 Detect v2

    7/22

    0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8

    Wavelength (µm)

    In0.53Ga0.47As

    Ge

    Si

    In0.7Ga0.3As0.64P0.36

    InP

    GaAs

    a-Si:H

    12

    345 0.9 0.8 0.7

    1×103

    1×104

    1×105

    1×106

    1×107

    1×108

    Photon energy (eV)

    Absorption coefficient (α ) vs. wavelength (λ ) for various semiconductors(Data selectively collected and combined from various sources.)

    α  (m-1)

    1.0

    Figure 5.3

  • 8/18/2019 Chapter4 Detect v2

    8/22

     E

    CB

    VB

     k– k

    Direct Bandgap   E g Photon

     E c

     E v

    (a) GaAs (Direct bandgap)

     E

     k– k

    (b) Si (Indirect bandgap)

    VB

    CB

     E c

     E v

    Indirect Bandgap,  E g

    Photon

    Phonon

    (a) Photon absorption in a direct bandgap semiconductor. (b) Photon absorption

    in an indirect bandgap semiconductor (VB, valence band; CB, conduction band)© 1999 S.O. Kasap, Optoelectronics (Prentice Hall)

  • 8/18/2019 Chapter4 Detect v2

    9/22

    Responsivity ( R) vs. wavelength (λ ) for an ideal photodiode with QE = 100% (η = 1) and for a typiccommercial Si photodiode.

    0 200 400 600 800 1000 12000

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.70.8

    0.9

    1

    Wavelength (nm)

    Si Photodiode

    λ g

    Responsivity (A/W)

    Ideal Photodiode

    QE = 100% ( η  = 1)

    © 1999 S.O. Kasap, Optoelectronics (Prentice Hall)

  • 8/18/2019 Chapter4 Detect v2

    10/22

    Quantum efficiency η, definition.

    Examples of QE for different detectors

    Responsivity: definition: R=η q P/hν = ηλ (in microns) /1.24 units of

    Amps per Watt

    Speed: carrier transport time τtr ; RC-time constant τRC ∆f = 1/2π(τtr +τRC)

    If the photodetector has gain, there is also a buildup time, τb, associated

    with the gain that affects the bandwidth. τb

    Tradeoff between responsivity and bandwidth

  • 8/18/2019 Chapter4 Detect v2

    11/22

     p+

    i-Si   n+

    SiO2

    Electrode

     ρ n et 

     – eN a

    eN d 

     x

     x

     E ( x)

     R

     E o

     E 

    e – h+

     I  p h

    hυ  > E g

    (a)

    (b)

    (c )

    (d)

    V r 

    The schematic structure of an idealized pin photodiode (b) The netspace charge density across the photodiode. (c) The built-in field across the diode. (d) The pin photodiode in photodetection isreverse biased.

    V out

    Electrode

    © 1999 S.O. Kasap, Optoelectronics (Prentice Hall)

  • 8/18/2019 Chapter4 Detect v2

    12/22

  • 8/18/2019 Chapter4 Detect v2

    13/22

    hυ  > E g

     p+ i-Si

    e –    E 

    h+

    W l

    Drift

    Diffusion

    A reverse biased pin photodiode is illuminated with a shortwavelength photon that is absorbed very near the surface.

    The photogenerated electron has to diffuse to the depletionregion where it is swept into the i-layer and drifted across.

    V r 

    © 1999 S.O. Kasap, Optoelectronics (Prentice Hall)

  • 8/18/2019 Chapter4 Detect v2

    14/22

    Operation of PIN diodes

    Properties;

    1. Controllable increase in width of the depletion region (good)

    2. Reduced junction capacitance (reduced RC constant, good for speed)

    3. Diffusion current is reduced due the increase of the depletion region

    width

    4. Higher carrier transport time (bad for speed).

    5. Next step: reduce absorption in doped layers in a PIN by using higher

     bandgap material such as InP (in the case of InGaAs absorber)

    6. This is what PIN heterostructures do

    7. Next thing is to have gain: impact ionization

  • 8/18/2019 Chapter4 Detect v2

    15/22

    š    p+

    SiO2Electrode

     ρ net

     x

     x

     E ( x)

     R

     E 

    hυ  > E g

     p

     I  ph

    e –  h+

    Absorptionregion

    Avalanche

    region

    (a)

    (b)

    (c )

    (a) A schematic illustration of the structure of an avalanche photodiode (APD) biased for avalanche gain. (b) The net space charge density across the photodiode. (c) Thefield across the diode and the identification of absorption and multiplication regions.

    Electrode

    © 1999 S.O. Kasap, Optoelectronics (Prentice Hall)

    n+

  • 8/18/2019 Chapter4 Detect v2

    16/22

    h+

     E 

    š n+  p

    e – 

    Avalanche region

    e – 

    h

    +

     E c

     E v

    (a ) (b)

     E 

    (a) A pictorial view of impact ionization processes releasing EHPs and the resulting avalanche multiplication. (b) Impact of an energeticconduction electron with crystal vibrations transfers the electron's

    kinetic energy to a valence electron and thereby excites it to theconduction band.

    © 1999 S.O. Kasap, Optoelectronics (Prentice Hall)

    V

  • 8/18/2019 Chapter4 Detect v2

    17/22

    E

     N n

    Electrode

     x

     E ( x)

     R

    hυ 

     I  p h

    Absorption

    region

    Avalanche

    region

    InP InGaAs

    h+

    e –  E 

    InP

    P+ n+

    Simplified schematic diagram of a separate absorption and multiplication(SAM) APD using a heterostructure based on InGaAs-InP. P and N  refer to p and n -type wider-bandgap semiconductor.

    V r 

    V out

    © 1999 S.O. Kasap, Optoelectronics (Prentice Hall)

  • 8/18/2019 Chapter4 Detect v2

    18/22

    Modes of Operation of an APD

    • Recall that APDs are photodetectors that haveoptoelectronic gain

    • Linear mode (sub-breakdown):

     photocurrent ∝ optical power e.g., optical communication

    • Geiger mode (post-breakdown): Ideally, eachdetected photon results in breakdown

    e.g., photon counting, coincidencecounting

  • 8/18/2019 Chapter4 Detect v2

    19/22

    Current Photodetectors Needs for Long-haul

    Optical Communication

    • High quantum efficiency at 1.55 µm (beyond

    80%).

    • High speed: 10 Gbps (OC 192) and beyond.

    • Internal gain: ~10-50 (preferred over externalEDFA amplification).

    • Wavelength selectivity (WDM).

    • Low noise (excess noise, dark current).

    • Compactness, reduced cost, OEIC (solid-state).

    Thi M l i li i & Ab i R i

  • 8/18/2019 Chapter4 Detect v2

    20/22

    Thin Multiplication- & Absorption-Region

    APDs• Benefits:

     – High speed (up to 40 GHz +)

     – Low multiplication noise (factor of ~2)

    • similar mechanism as noise suppression in superlattice MQW

    APDs).

     – Higher optimal gain values: better SNR and BER 

     – Breakdown characteristics (Geiger mode)— “not so good”

    • Challenges:

     – Quantum efficiency must be enhanced by employing new structures:

    • Waveguide structures (lateral absorption)• Resonant-cavity structures (vertical absorption)

    • Detection efficiency is low 1.55µm and beyond 

    • Dark current is always a problem

    Ed l d id APD’

  • 8/18/2019 Chapter4 Detect v2

    21/22

    • Edge-coupled waveguide APD’s:

     – Idea: Reduce absorption-region (~0.8 µm or less) width

    without killing quantum efficiency.

     – High gain-bandwidth (> 12 GHz at gain of 10)

     – Reduce charge-space effects

     – Challenge remains: coupling efficiency (QE ~25%)

    InGaAsabsorption

    InAlAs

    multiplicationInP buffer n: InAlAs

    InGaAs cap

    p: InAlAs

    800nm

    p: charge

    InP Substrate

    [Kinsey et al, 00]

      l  i g   h  t

    400 nm

      1  0  µ  m

    800 nm

  • 8/18/2019 Chapter4 Detect v2

    22/22

    • Resonant cavity photodiodes

    n- contact

    }

    InP/InGaAsP

    Bragg reflector 

    InGaAs

    absorption layer n

     p p: InP

    n: InP

    Input light

          .                                                                         

          .                                                                         

          .                                                                        

    i

    •Increase: Quantum efficiency

    •Increase: Bandwidth

    •Wavelength selectivity

    •Drawbacks:•Increased fab. complexity

    •Selectivity may not

     be desirable in someapplications

    [Unlu et al, 1995]