Top Banner
Chapter 7 Chapter 7 Finite Impulse Finite Impulse Response(FIR) Filter Design Response(FIR) Filter Design
74

Chapter 7 Finite Impulse Response(FIR) Filter Design

Mar 21, 2016

Download

Documents

galena

Chapter 7 Finite Impulse Response(FIR) Filter Design. 1. Features of FIR filter. Characteristic of FIR filter FIR filter is always stable FIR filter can have an exactly linear phase response - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Chapter 7  Finite Impulse Response(FIR) Filter Design

Chapter 7Chapter 7 Finite Impulse Response(FIR) Finite Impulse Response(FIR)

Filter DesignFilter Design

Page 2: Chapter 7  Finite Impulse Response(FIR) Filter Design

2/74

Characteristic of FIR filter

– FIR filter is always stable– FIR filter can have an exactly linear phase response– FIR filter are very simple to implement. Nonrecursive FIR

filters suffer less from the effect of finite wordlength than IIR filters

1. Features of FIR filter1. Features of FIR filter

0

( ) ( ) ( )N

k

y n h k x n k

0

( ) ( )N

k

k

H z h k z

Page 3: Chapter 7  Finite Impulse Response(FIR) Filter Design

3/74

Phase response of FIR filter

– Phase delay and group delay

2. Linear phase response2. Linear phase response

0

( )

( ) ( )

= ( )

Nj T j kT

k

j T j

H e h k e

H e e

where ( ) arg ( )j TH e

p g( )

p

( )g

dd

(1)

(2)

Page 4: Chapter 7  Finite Impulse Response(FIR) Filter Design

4/74

– Condition of linear phase response

( )

( )

Where and is constant Constant group delay and phase delay response

(3)

(4)

Page 5: Chapter 7  Finite Impulse Response(FIR) Filter Design

5/74

• If a filter satisfies the condition given in equation (3)– From equation (1) and (2)

1 0

0

( )

( )sin = tan

( )cos

N

nN

n

h n nT

h n nT

thus

0

0

( )sintan =

( ) cos

N

nN

n

h n nT

h n nT

Page 6: Chapter 7  Finite Impulse Response(FIR) Filter Design

6/74

– It is represented in Fig 7.1 (a),(b)

0

( ) cos sin sin cos 0N

n

h n nT nT

0

( )sin( ) 0N

n

h n nT

( ) ( 1), 0h n h N n n N

/ 2NT

Page 7: Chapter 7  Finite Impulse Response(FIR) Filter Design

7/74

• When the condition given in equation (4) only– The filter will have a constant group delay only– It is represented in Fig 7.1 (c),(d)

( ) ( )h n h N n

/ 2NT

/ 2

Page 8: Chapter 7  Finite Impulse Response(FIR) Filter Design

8/74

Center of symmetry

Fig. 7-1.

Page 9: Chapter 7  Finite Impulse Response(FIR) Filter Design

9/74

Table 7.1 A summary of the key point about the four types of linear phase FIR filters

Page 10: Chapter 7  Finite Impulse Response(FIR) Filter Design

10/74

Example 7-1(1) Symmetric impulse response for linear phase response.

No phase distortion

(2)

( ) ( ) or ( ) ( )h n h N n h n h N n

( ) ( ), 0 , 10h n h N n n N N

(0) (10)(1) (9)(2) (8)(3) (7)(4) (6)

h hh hh hh hh h

Page 11: Chapter 7  Finite Impulse Response(FIR) Filter Design

11/74

• Frequency response ( )H

10

0

2 3 4 5

6 7 8 9 10

5

( ) ( )

= ( )

= (0) (1) (2) (3) (4) (5)

+ (6) (7) (8) (9) (10)

= [ (0)

j T

jk T

k

j T j T j T j T j T

j T j T j T j T j T

j T

H H e

h k e

h h e h e h e h e h e

h e h e h e h e h e

e h

5 4 3 2

2 3 4 5

(1) (2) (3) (4) (5)

+ (6) (7) (8) (9) (10) ]

j T j T j T j T j T

j T j T j T j T j T

e h e h e h e h e h

h e h e h e h e h e

5 5 5 4 4 3 3

2 2

5

( )= [ (0)( ) (1)( ) (2)( )

(3)( ) (4)( ) (5)]

[2 (0)cos(5 ) 2 (1)cos(4 ) 2 (2)cos(3 ) 2 (3)c

j T j T j T j T j T j T j T

j T j T j T j T

j T

H e h e e h e e h e e

h e e h e e h

e h T h T h Th

os(2 ) 2 (4)cos( ) (5)]T h T h 5

5 ( )

0

( )= ( )cos( ) ( )j T j

k

H a k k T e H e

where 5

0

( ) = ( )cos( )k

H a k k T

( ) 5 T

Page 12: Chapter 7  Finite Impulse Response(FIR) Filter Design

12/74

(3) 9N (0) (9)(1) (8)(2) (7)(3) (6)(4) (5)

h hh hh hh hh h

9 /2 9 9 7 7 5 3

3 3

9 /2

( )= [ (0)( ) (1)( ) (2)( )

(3)( ) (4)( )]

[2 (0)cos(9 / 2) 2 (1)cos(7 / 2) 2 (2)cos(5 / 2) 2

j T j T j T j T j T j T j T

j T j T j T j T

j T

H e h e e h e e h e e

h e e h e e

e h T h T h T

( )

(3) cos(3 / 2) 2 (4)cos( / 2)]

= ( ) j

h T h T

H e

5

1

( )= ( ) cos[ ( 1/ 2) ]k

H b k k T

where

( ) (9 / 2) T 1 1( ) 2 ( ), 1,2, ,

2 2N Nb k h k k

Page 13: Chapter 7  Finite Impulse Response(FIR) Filter Design

13/74

Transfer function for FIR filter

3. Zero distribution of FIR filters3. Zero distribution of FIR filters

0

( ) ( )N

k

k

H z h k z

0

0

1

( ) ( )

= ( )

= ( )

Nk

k

k N

k N

N

H z h N k z

h k z z

z H z

Page 14: Chapter 7  Finite Impulse Response(FIR) Filter Design

14/74

Four types of linear phase FIR filters– have zero at ( )H z 0z z

0jz re

1 10

jz r e

is real and is imaginary( )h n 0z*

0jz re

* 1 10( ) jz r e

1 1 1 1 1 1(1 )(1 )(1 )(1 )j j j jre z re z r e z r e z

Page 15: Chapter 7  Finite Impulse Response(FIR) Filter Design

15/74

– If zero on unit circle

– If zero not exist on the unit circle

– If zeros on

1, 1/ 1r r

0jz e

1 *0 0

jz e z

1 1(1 )(1 )j je z e z

1 1 1(1 )(1 )rz r z

1z 1(1 )z

Page 16: Chapter 7  Finite Impulse Response(FIR) Filter Design

16/74

Necessary zero

Necessary zero

Necessary zero

Necessary zero

Fig. 7-2.

Page 17: Chapter 7  Finite Impulse Response(FIR) Filter Design

17/74

Filter specifications

4. FIR filter specifications4. FIR filter specifications

peak passband deviation (or ripples)

stopband deviation

passband edge frequency

stopband edge frequency

sampling frequency

p

r

p

r

s

Page 18: Chapter 7  Finite Impulse Response(FIR) Filter Design

18/74

ILPF

Satisfies spec’s

Fig. 7-3.

Page 19: Chapter 7  Finite Impulse Response(FIR) Filter Design

19/74

Characterization of FIR filter

– Most commonly methods for obtaining • Window, optimal and frequency sampling methods

0

( ) ( ) ( )N

k

y n h k x n k

0

( ) ( )N

k

k

H z h k z

( )h k

Page 20: Chapter 7  Finite Impulse Response(FIR) Filter Design

20/74

FIR filter– Frequency response of filter– Corresponding impulse response

– Ideal lowpass response

5. Window method5. Window method

( )IH

( )Ih n

1( ) ( )2

j nI Ih n H e d

1 1( ) 12 2

2 sin( ) , 0, - =

2 , 0

c

c

j n j nI

c c

c

c

h n e d e d

f n n nn

f n

Page 21: Chapter 7  Finite Impulse Response(FIR) Filter Design

21/74

Fig. 7-4.

Page 22: Chapter 7  Finite Impulse Response(FIR) Filter Design

22/74

Truncation to FIR

– Rectangular Window

( ) ( ) ( ) "windowing"Ih n h n w n

12

( )12

) ) )

) )

j j jI

j jI

H(e H (e W(e

H (e W(e d

1 , 0,1,...,( )

0 ,n N

w nelsewhere

Page 23: Chapter 7  Finite Impulse Response(FIR) Filter Design

23/74

Fig. 7-5.

Page 24: Chapter 7  Finite Impulse Response(FIR) Filter Design

24/74

Fig. 7-6.

Page 25: Chapter 7  Finite Impulse Response(FIR) Filter Design

25/74

Fig. 7-7.

Page 26: Chapter 7  Finite Impulse Response(FIR) Filter Design

26/74

Table 7.2 summary of ideal impulse responses for standard frequency selective filters

and are the normalized passband or stopband edge frequencies; N is the length of filter

1, cf f 2 f

( )Ih n

( )Ih n

( )Ih n

Page 27: Chapter 7  Finite Impulse Response(FIR) Filter Design

27/74

Common window function types– Hamming window

0.54 0.46cos 2 / , 00 ,

n N n Nw n

elsewhere

3.32 /F N

where N is filter length and

is normalized transition widthF

Page 28: Chapter 7  Finite Impulse Response(FIR) Filter Design

28/74

– Characteristics of common window functions

Fig. 7-8.

Page 29: Chapter 7  Finite Impulse Response(FIR) Filter Design

29/74

Table 7.3 summary of important features of common window functions

Page 30: Chapter 7  Finite Impulse Response(FIR) Filter Design

30/74

– Kaiser window

2

0

0

21

, 0

0 ,

n NIN

w n n NI

elsewhere

2

01

( / 2)( ) 1!

kL

k

xI xk

where typically

where is the zero-order modified Bessel function of the first kind0 ( )I x

25L

Page 31: Chapter 7  Finite Impulse Response(FIR) Filter Design

31/74

• Kaiser Formulas – for LPF design

10

0.4

20log ( )min( , )

0, if 21dB

0.5842( 21) 0.07886( 21), if 21dB 50dB0.1102( 8.7) if

p s

A

A

A A AA A

50dB

7.9514.36AN

F

Page 32: Chapter 7  Finite Impulse Response(FIR) Filter Design

32/74

Example 7-2– Obtain coefficients of FIR lowpass using hamming

window

• Lowpass filter

Passband cutoff frequency

Transition width

Stopband attenuation

Sampling frequency

: 1.5pf kHz

: 0.5f kHz

: 8sf kHz

50dB

sin

2 , 0

2 , 0

cc

I c

c

nf n

h n nf n

/ 0.5 / 8 0.0625sF f f

3.32 / 3.32 / 0.0625 53.12N F

54N

Page 33: Chapter 7  Finite Impulse Response(FIR) Filter Design

33/74

• Using Hamming window( ) ( ) ( )Ih n h n w n 0 54n

( ) 0.54 0.46cos(2 / 54)w n n 0 54n ' / 2 (1.5 0.25) 1.75[ ]c pf f f kHz

' / 1.75 / 8 0.21875c c sf f f

2 sin ( )2 , , 0

2( ) ( )2

2 ,2

c c

I c

c

Nf nNn n N

Nh n n

Nf n

Page 34: Chapter 7  Finite Impulse Response(FIR) Filter Design

34/74

2 0.218750 : (0) sin( 27 2 0.21875)27 2 0.218750.00655

(0) 0.54 0.46cos(0) 0.08(0) (0) (0) 0.00052398

I

I

n h

wh h w

2 0.218751 : (1) sin( 26 2 0.21875)26 2 0.218750.011311

(1) 0.54 0.46cos(2 / 54)0.08311

(1) (1) (1) 0.00094054

I

I

n h

w

h h w

Page 35: Chapter 7  Finite Impulse Response(FIR) Filter Design

35/74

2 0.218752 : (2) sin( 25 2 0.21875)25 2 0.218750.00248397

(2) 0.54 0.46cos(2 2 / 54)0.092399

(2) (2) (2) 0.000229516

2 0.2187526 : (26) sin( 1 2 0.21875)1 2 0.21875

0.312936

I

I

I

n h

w

h h w

n h

Page 36: Chapter 7  Finite Impulse Response(FIR) Filter Design

36/74

(26) 0.54 0.46cos(2 26 / 54)0.9968896

(26) (26) (26) 0.3112226I

w

h h w

27 : (27) 2 2 0.218750.4375

(27) 0.54 0.46cos(2 27 / 54)1

(27) (27) (27) 0.4375

I c

I

n h f

w

h h w

Page 37: Chapter 7  Finite Impulse Response(FIR) Filter Design

37/74

Fig. 7-9.

Page 38: Chapter 7  Finite Impulse Response(FIR) Filter Design

38/74

Example 7-3– Obtain coefficients using Kaiser or Blackman window

Passband cutoff frequency

Transition region

Sampling frequency

: 1200pf Hz

: 500f Hz

: 10sf kHz

Stopband attenuation : 40dB

passband attenuation : 0.01dB

20log(1 ) 0.01 , 0.00115p pdB

20log( ) 40 , 0.01r rdB

0.00115r p

Page 39: Chapter 7  Finite Impulse Response(FIR) Filter Design

39/74

• Using Kaiser window

7.95 58.8 7.95 70.8214.36 14.36(500 /10000)AN

F

71N

0.1102(58.8 8.7) 5.52 ' / 1,450 /10,000 0.145c c sf f f

2 sin2( ) , 0

2

c c

I

c

Nf nh n n N

Nn

Page 40: Chapter 7  Finite Impulse Response(FIR) Filter Design

40/74

( ) ( ) ( )Ih n h n w n

2 0.1450 : (0) sin( 35.5 2 0.145)35.5 2 0.145

0.00717

In h

2

0

0

0 0

21(0)

(0) 0.023( ) (5.52)

n NIN I

wI I

(0) (0) (0) 0.000164935Ih h w

Page 41: Chapter 7  Finite Impulse Response(FIR) Filter Design

41/74

2 0.1451: (1) sin( 34.5 2 0.145)34.5 2 0.145

0.0001449

In h

2

0

0

0 0

695.52 171 (1.3)

(1) 0.0337975(5.52) (5.52)

II

wI I

(1) ( 1) (1) (1) 0.000004897Ih h h w

Page 42: Chapter 7  Finite Impulse Response(FIR) Filter Design

42/74

2 0.1452 : (2) sin( 34.5 2 0.145)33.5 2 0.145

0.007415484

In h

2

0

0

0 0

695.52 171 (1.8266)(2) 0.04657999

(5.52) (5.52)

II

wI I

(2) ( 2) (2) (2) 0.000345413Ih h h w

Page 43: Chapter 7  Finite Impulse Response(FIR) Filter Design

43/74

2 0.14535 : (35) sin( 0.5 2 0.145)0.5 2 0.145

0.280073974

In h

2

0

0

0 0

15.52 171 (5.51945)(35) 0.999503146

(5.52) (5.52)

IIw

I I

(35) ( 35) (35) (35) 0.279934818Ih h h w

Page 44: Chapter 7  Finite Impulse Response(FIR) Filter Design

44/74

Fig. 7-10.

Page 45: Chapter 7  Finite Impulse Response(FIR) Filter Design

45/74

Summary of window method1. Specify the ‘ideal’ or desired frequency response of filter,2. Obtain the impulse response, , of the desired filter by evaluating the inverse Fourier transform3. Select a window function that satisfies the passband or attenuation specifications and then determine the number of filter

coefficients4. Obtain values of for the chosen window function and the

values of the actual FIR coefficients, , by multiplying by

( )IH

( )Ih n

( )h n

( )w n

( )w n

( )Ih n( ) ( ) ( )Ih n h n w n

Page 46: Chapter 7  Finite Impulse Response(FIR) Filter Design

46/74

Advantages and disadvantages– Simplicity– Lack of flexibility– The passband and stopband edge frequencies cannot be

precisely specified– For a given window(except the Kaiser), the maximum

ripple amplitude in filter response is fixed regardless of how large we make N

Page 47: Chapter 7  Finite Impulse Response(FIR) Filter Design

47/74

Basic concepts– Equiripple passband and stopband

• For linear phase lowpass filters– m+1 or m+2 extrema(minima and maxima)

6. The optimal method6. The optimal method

( ) ( )[ ( ) ( )]IE W H H

min[max ( ) ]E

where m=(N+1)/2 (for type1 filters) or m =N/2 (for type2 filters)

WeightedApprox. error

Weightingfunction

Ideal desiredresponse

Practical response

Page 48: Chapter 7  Finite Impulse Response(FIR) Filter Design

48/74

Ideal responsePractical response

Fig. 7-11.

Page 49: Chapter 7  Finite Impulse Response(FIR) Filter Design

49/74

Fig. 7-12.

Page 50: Chapter 7  Finite Impulse Response(FIR) Filter Design

50/74

– Optimal method involves the following steps• Use the Remez exchange algorithm to find the optimum set of

extremal frequencies• Determine the frequency response using the extremal

frequencies• Obtain the impulse response coefficients

Page 51: Chapter 7  Finite Impulse Response(FIR) Filter Design

51/74

Optimal FIR filer design

0

( ) ( )N

k

k

H z h k z

where ( ) ( )h n h n

/2 /2

1 0

( ) (0) 2 ( )cos ( )cosN N

k k

H h h k k T a k k T

where and , (0) (0)a h ( ) 2 ( )a k h k 1, 2, , / 2k N

Let / 2 / 2sf f T

1

1 , 00 , 0.5

p

r

f fH f

f f

1 , 0

1 , 0.5

p

r

f fW f k

f f

This weighting function permits different peak error in the two band

Page 52: Chapter 7  Finite Impulse Response(FIR) Filter Design

52/74

/22

0

( ) ( ) ( ) cos 2N

j f

k

H f H e a k k f

min[max ( ) ]E f

Find ( )a k

( ) ( )[ ( ) ( )]IE f W f H f H f

where are and 0, pf f ,0.5rf

Page 53: Chapter 7  Finite Impulse Response(FIR) Filter Design

53/74

– Alternation theorem

0, ,0.5p rF f f Let

If has equiripple inside bands and more than m+2 extremal point ( )E f F

then

1( ) ( ) , 0,1, , 1i iE f E f e i l

0 1 ( 1)lf f f l m

,0.50, &max ( )

p rf f fe E f

where

( ) ( )IH f H f

Page 54: Chapter 7  Finite Impulse Response(FIR) Filter Design

54/74

• From equation (7-33) and (7-34)

• Equation (7-35) is substituted equation (7-32)

• Matrix form

( ) ( ) ( ) ( 1) , 0,1,2, , 1ii i I iW f H f H f e i m

0

( ) cos 2 ( ) ( 1) , 0,1,2, , 1( )

mi

i I ik i

ea k kf H f i mW f

0 0 0 0 0

1 1 1 1

!1 1 1 1

1 cos 2 cos 4 cos 2 1/ ( ) ((0)1 cos 2 cos 4 cos 2 1/ ( ) (1)

1 cos 2 cos 4 cos 2 ( 1) / ( ) ( )1 cos 2 cos 4 cos 2 ( 1) / ( )

I

mm m m m

mm m m m

f f mf W f H faf f mf W f a

f f mf W f a mf f mf W f e

1

1

)( )

( )( )

I

I m

I m

H f

H fH f

Page 55: Chapter 7  Finite Impulse Response(FIR) Filter Design

55/74

– SummaryStep 1. Select filter length as 2m+1 Step 2. Select m+2 point in FStep 3. Calculate and e using equation (7)Step 4. Calculate using equation (5). If in some of f , go to step 5, otherwise go to step 6Step 5. Determine m local minma or maxma pointsStep 6. Calculate when

if

( )a k

( )E f ( )E f e

(0) (0), ( ) ( ) / 2h a h k a k 1, 2, ,k m

where 0

( ) ( )N

k

k

H z h k z

Page 56: Chapter 7  Finite Impulse Response(FIR) Filter Design

56/74

– Example 7-4• Specification of desired filter

– Ideal low pass filter– Filter length : 3– –

• Normalized frequency

1[rad],pT 1.2[rad]rT

2k

0 1 20.5 / 2 , 1/ 2 , 1.2 / 2f f f

Page 57: Chapter 7  Finite Impulse Response(FIR) Filter Design

57/74

• From

• Cutoff frequency

1 0.8776 2 (0) 11 0.5403 2 (1) 11 0.3624 1 0

aa

e

0 1 2 0 1( ) ( ) 1, ( ) 0, ( ) ( ) 1/ 2I I IH f H f H f W f W f 2and ( ) 1W f

( ) 0.645 2.32cos 2H f f : not the optimal filter

0 1 21 1.2 0.5

2 2f f f

0 1 2 0( ) 1, ( ) ( ) 0, ( ) 0.5,I I IH f H f H f W f 1 2and ( ) ( ) 1W f W f

(0) 0.645, (1) 2.32,a a 0.196e

Page 58: Chapter 7  Finite Impulse Response(FIR) Filter Design

58/74

1 0.5403 2 (0) 11 0.3624 1 (1) 01 1 1 0

aa

e

(0) 0.144, (1) 0.45,a a 0.306e

( ) 0.144 0.45cos 2H f f : has the minimum

(N=3)

max ( )E f

Page 59: Chapter 7  Finite Impulse Response(FIR) Filter Design

59/74

Fig. 7-13.

Page 60: Chapter 7  Finite Impulse Response(FIR) Filter Design

60/74

Optimization using MATLAB– Park-McClellan– Remez

remez( )b N,F, M

remez( )b N,F, M, WT

where N is the filter order (N+1 is the filter length)

F is the normalized frequency of border of pass band

M is the magnitude of frequency response

WT is the weight between ripples

Page 61: Chapter 7  Finite Impulse Response(FIR) Filter Design

61/74

– Example 7-5• Specification of desired filter

– Band pass region : 0 – 1000Hz– Transition region : 500Hz– Filter length : 45– Sampling frequency : 10,000Hz

• Normalized frequency of border of passband

• Magnitude of frequency response

[0, 0.2, 0.3, 1]F

[11 0 0]M

Page 62: Chapter 7  Finite Impulse Response(FIR) Filter Design

62/74

Table 7-4.

Page 63: Chapter 7  Finite Impulse Response(FIR) Filter Design

63/74

Fig.7-14.

Page 64: Chapter 7  Finite Impulse Response(FIR) Filter Design

64/74

– Example 7-6• Specification of desired filter

– Band pass region : 3kHz – 4kHz– Transition region : 500Hz– Pass band ripple : 1dB– Rejection region : 25dB– Sampling frequency : 20kHz

• Frequency of border of passband

[2500, 3000, 4000, 4500]F

[0 1 0]M

Page 65: Chapter 7  Finite Impulse Response(FIR) Filter Design

65/74

• Transform dB to normal value

• Filter length– Remezord (MATLAB command)

20

20

10 1

10 1

p

p

A

p A

2010

rA

r

where and ripple value(dB) of pass band and rejection band

pArA

Page 66: Chapter 7  Finite Impulse Response(FIR) Filter Design

66/74

Table 7-5.

Page 67: Chapter 7  Finite Impulse Response(FIR) Filter Design

67/74

Fig. 7-15.

Page 68: Chapter 7  Finite Impulse Response(FIR) Filter Design

68/74

Frequency sampling filters– Taking N samples of the frequency response at intervals

of– Filter coefficients

7. Frequency sampling method7. Frequency sampling method

/skF N 0,1, , 1k N

( )h n

1(2 / )

0

1( ) ( )N

j N nk

k

h n H k eN

where are samples of the ideal or target frequency response( ), 0,1, , 1H k k N

Page 69: Chapter 7  Finite Impulse Response(FIR) Filter Design

69/74

– For linear phase filters (for N even)

– For N odd• Upper limit in summation is

12

1

1( ) 2 ( ) cos[2 ( ) / ] (0)

N

k

h n H k k n N HN

where ( 1) / 2N

( 1) / 2N

Page 70: Chapter 7  Finite Impulse Response(FIR) Filter Design

70/74

Fig. 7-16.

Page 71: Chapter 7  Finite Impulse Response(FIR) Filter Design

71/74

– Example 7-7(1) Show the

• Expanding the equation

/2 1

1

1( ) 2 ( ) cos[2 ( ) / ] (0)N

k

h n H k k n N HN

12 /

0

12 / 2 /

0

12 ( ) /

0

1

0

1

0

1( ) ( )

1 ( )

1 ( )

1 ( ) cos[2 ( ) / ] sin[2 ( ) / ]

1 ( ) cos[2 ( ) / ]

Nj nk N

k

Nj k N j kn N

k

Nj n k N

k

N

k

N

k

h n H k eN

H k e eN

H k eN

H k k n N j k n NN

H k k n NN

( )h n is real value

Page 72: Chapter 7  Finite Impulse Response(FIR) Filter Design

72/74

(2) Design of FIR filter– Band pass region : 0 – 5kHz– Sampling frequency : 18kHz– Filter length : 9

Fig. 7-17.

Page 73: Chapter 7  Finite Impulse Response(FIR) Filter Design

73/74

Table 7-6.

1, 0,1,2( )

0, 3,4k

H kk

• Samples of magnitude in frequency

Page 74: Chapter 7  Finite Impulse Response(FIR) Filter Design

74/74

– Window method• The easiest, but lacks flexibility especially when passband and

stopband ripples are different

– Frequency sampling method• Well suited to recursive implementation of FIR filters

– Optimal method• Most powerful and flexible

8. Comparison of most commonly 8. Comparison of most commonly methodmethod