Top Banner

of 7

Chapter 4 - Dynamic Analysiss

Aug 07, 2018

Download

Documents

azr32
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/20/2019 Chapter 4 - Dynamic Analysiss

    1/16

     

    Chapter 4Dynamic Analysis and Forces

    4.1 INTRODUCTION

    In this chapters…….

     • The dynamics, related with accelerations, loads, masses andinertias.

     __  __ 

    am F 

      ⋅=∑

      __  __ 

    α 

    ⋅=∑  I T 

    In Actators……. • The actator can !e accelerate a ro!ot"s lin#s $or e%ertin& eno&h$orces

      and tor'es at a desired acceleration and (elocity.

    • )y the dynamic relationships that &o(ern the motions o$ thero!ot,

    *i&. 4.1 *orce+mass+acceleration and tor'e+inertia+an&lar

    acceleration relationships $or a ri&id !ody.

  • 8/20/2019 Chapter 4 - Dynamic Analysiss

    2/16

     

    Chapter 4Dynamic Analysis and Forces

    4. -ARANIAN /0CANIC23 A 2ORT O0RI05

    • -a&ran&ian mechanics is !ased on the di6erentiationener&y terms  only, with respect to the system"s (aria!les and time.• De7nition3 L 8 -a&ran&ian, K  8 9inetic 0ner&y o$ the system, P 8:otential  0ner&y, F  8 the smmation o$ all e%ternal $orces $or alinear

    motion, T  8 the smmation o$ all tor'es in a rotationalmotion,   x  8 2ystem (aria!les

     P  K  L   −=

    ii

    i

     x L

     x

     Lt 

     F ∂∂−   

       ∂∂∂∂= ⋅

    ii

    i

     L L

    t T 

    θ θ    ∂∂

    −   

      

     

    ∂∂∂

    = ⋅

  • 8/20/2019 Chapter 4 - Dynamic Analysiss

    3/16

     

    Chapter 4Dynamic Analysis and Forces

    Example 4.1

    *i&. 4. 2chematic o$ a simple cart+sprin&system.

    *i&. 4.; *ree+!ody dia&ram $or the sprint+cartsystem.

    • -a&ran&ianmechanics

    22

    2

    2

    1,

    2

    1

    2

    1kx P  xmmv K    ===

      •2

    2

    2

    1

    2

    1kx xm P  K  L   −=−=

      •

    • Newtonianmechanics 

    . . ..

    .  , ( ) ,

    i

     L d Lm x m x m x kx

    dt x x

    ∂ ∂= = = −

    ∂∂

    kx xm F    +=  ..

     __  __ 

    am F    ⋅=∑kxma F makx F    +=→=−

    • The comple%ity o$ the terms increases as the nm!er o$ de&rees o$$reedom

    Solution

    Deri(e the $orce+acceleration relationship $or the one+de&ree o$ $reedom system.

  • 8/20/2019 Chapter 4 - Dynamic Analysiss

    4/16

     

    Chapter 4Dynamic Analysis and Forces

    Example 4.2

    *i&. 4.4 2chematic o$ a cart+pendlm

    system.

    Solution

    Deri(e the e'ations o$ motion $or the two+de&ree o$ $reedom system.

    In this system…….

      It requires two coordinates, x and . 

    It requires two equations of motion: 

    1. The linear motion of the system.

    2. The rotation of the pendulum.

    +

    +

      +=

    θ θ 

    θ 

    θ θ 

    θ 

    sin00

    sin0

    cos

    cos

    2.2

    .22

    ..

    ..

    222

    221

     gl m

    kx xl m x

    l ml m

    l mmm

     F 

  • 8/20/2019 Chapter 4 - Dynamic Analysiss

    5/16

     

    Chapter 4Dynamic Analysis and Forces

    Example 4.4

    *i&. 4.< A two+de&ree+o$+$reedom ro!otarm.

    Solution

    Usin& the -a&ran&ian method, deri(e the e'ations o$ motion $or thetwo+de&ree o$ $reedom ro!ot arm.

    Follow the same steps as before…….

      alculates the !elocity of the center of

    mass of lin" 2 by differentiatin# its position:

    The "inetic ener#y of the total system is the

    sum of the "inetic ener#ies of lin"s 1 and 2.

      The potential ener#y of the system is the

    sum of the potential ener#ies of the two

    lin"s:

  • 8/20/2019 Chapter 4 - Dynamic Analysiss

    6/16

     

    Chapter 4Dynamic Analysis and Forces

    4.; 0**0CTI0 /O/0NT2 O* IN0RTIA

    •  To 2impli$y the e'ation o$ motion, 0'ations can !erewritten in  sym!olic $orm.

    +

    =

    +

    =

     j

    i

     jjj jii

    ijjiii

     jjj jii

    ijjiii

     j

    i

     jj ji

    ijii

     D

     D

     D D

     D D

     D D

     D D

     D D

     D D

    T .

    1

    .

    2.

    2

    .

    1.22

    .21

    ..

    ..

    2

    1

    θ 

    θ 

    θ 

    θ 

    θ 

    θ 

    θ 

    θ 

  • 8/20/2019 Chapter 4 - Dynamic Analysiss

    7/16 

    Chapter 4Dynamic Analysis and Forces

    4.4 D=NA/IC 0>UATION2 *OR /U-TI:-0+D0R00+O*+*R00DO/ RO)O

    • 0'ations $or a mltiple+de&ree+o$+$reedom ro!ot are (ery lon& andcomplicated, !t can !e $ond !y calclatin& the #inetic and

    potentialener&ies o$ the lin#s and the ?oints, !y de7nin& the -a&ran&ian and!y

    di6erentiatin& the -a&ran&ian e'ation with respect to the ?oint(aria!les.

    4.4.1 9inetic 0ner&y

     

    The "inetic ener#y of a ri#id bodywith motion in three dimension :

    GhV m K  __ 

    2

    2

    1

    2

    1ω +=

     

    The "inetic ener#y of a ri#id bodyin planar motion

    22

    2

    1

    2

    1ω  I V m K    +=

    *i&. 4.@ A ri&id !ody in three+dimensional motionand

    in plane motion.

  • 8/20/2019 Chapter 4 - Dynamic Analysiss

    8/16 

    Chapter 4Dynamic Analysis and Forces

    4.4 D=NA/IC 0>UATION2 *OR /U-TI:-0+D0R00+O*+*R00DO/ RO)O

    4.4.1 9inetic 0ner&y

      The !elocity of a point alon# a robot$s lin" can be defined by differentiatin#the position equation of the point.

    iiii Ri   r T r T  p   0==  The !elocity of a point alon# a robot$s lin" can be defined by differentiatin#

    the position equation of the point.

    ( )   ∑∑∑∑ == = = +=n

    i

    iact ir 

    n

    i

    i

     p

    i

     pT ir iipi   q I qqU  J U Trace K 1

    2)(

    1 1 1   21

    21

  • 8/20/2019 Chapter 4 - Dynamic Analysiss

    9/16 

    Chapter 4Dynamic Analysis and Forces

    4.4 D=NA/IC 0>UATION2 *OR /U-TI:-0+D0R00+O*+*R00DO/ RO)O

    4.4. :otential 0ner&y

     

    The potential ener#y of the system is the sum of the potential ener#ies of each lin".

    ])([1

    0

    1 ∑∑ == ⋅−==n

    i

    iiT 

    i

    n

    i

    i   r T  g m p P 

      The potential ener#y must be a scalar quantity and the !alues in the #ra!ity

    matrix are dependent on the orientation of the reference frame.

  • 8/20/2019 Chapter 4 - Dynamic Analysiss

    10/16 

    Chapter 4Dynamic Analysis and Forces

    4.4 D=NA/IC 0>UATION2 *OR /U-TI:-0+D0R00+O*+*R00DO/ RO)O

    4.4.; The -a&ran&ian

    ( )   r n

    i

    i

     p

    i

    r  p

    ir iip   qqU  J U Trace P  K  L   ∑∑∑= = ==−= 1 1 121

    ])([2

    1

    1

    0

    1

    2)( ∑∑

    ==⋅−−+

    n

    i

    iiT 

    i

    n

    i

    iact i   r T  g mq I   

  • 8/20/2019 Chapter 4 - Dynamic Analysiss

    11/16 

    Chapter 4Dynamic Analysis and Forces

    4.4 D=NA/IC 0>UATION2 *OR /U-TI:-0+D0R00+O*+*R00DO/ RO)O

    4.4.4 Ro!ot"s 0'ations o$ /otion

      The %a#ran#ian is differentiated to form the dynamic equations of motion.

      The final equations of motion for a #eneral multi&axis robot is below.

    i

    n

     j

    n

    k  jijk iact i

    n

     j

     jiji   Dqq Dq I q DT    ∑∑∑= ==

    +++=1 1

    )(

    1

    )(),max(

    T  pi p

    n

     ji p

     pjij   U  J U Trace D

      ∑==)(

    ),,max(

    T  pi p

    n

    k  ji p

     pjk ijk    U  J U Trace D ∑=

    =

    ∑=

    −=n

    i p

     p piT 

     pi   r U  g m D

    where,

  • 8/20/2019 Chapter 4 - Dynamic Analysiss

    12/16 

    Chapter 4Dynamic Analysis and Forces

    Example 4.7

    *i&. 4. The two+de&ree+o$+$reedom ro!ot arm o$0%ample 4.4

    Solution

    Usin& the a$orementioned e'ations, deri(e the e'ations o$ motion $orthe two+de&ree o$ $reedom ro!ot arm. The two lin#s are assmed to !eo$ e'al len&th.

    Follow the same steps as before…….

      'rite the ( matrices for the two lin"s)

    *e!elop the , and for the robot.ij D   ijk  D   i D

     

    The final equations of motion without the actuator inertia terms are the same as below.

    22

    2

    2

    2

    212

    2

    2

    2

    2

    2

    112

    1

    3

    1

    3

    4

    3

    1

    θ θ  

         

      

    ++   

      

    ++=   C l ml mC l ml ml mT 

    ( )   1)(1121221121222222222

    1

    2

    1

    2

    1θ θ θ θ      act  I  glC m glC m glC m l m l m   +++++ 

      

      +

    1)(21222

    2

    22

    2

    212

    2

    2

    2

    22 2

    1

    2

    1

    3

    1

    2

    1

    3

    1θ θ θ   

      act  I  glC m l ml mC l ml mT    ++  

     

     

     

    +  

     

     

     

    +  

     

     

     

    +=

  • 8/20/2019 Chapter 4 - Dynamic Analysiss

    13/16 

    Chapter 4Dynamic Analysis and Forces

    4.B 2TATIC *ORC0 ANA-=2I2 O*RO)OT2

      +osition ontrol: The robot follows a prescribed path without any reacti!e force.

    obot ontrol means +osition ontrol and Force ontrol.

      Force ontrol: The robot encounters with un"nown surfaces and mana#es tohandle the tas" by ad-ustin# the uniform depth while #ettin# the reacti!e force.

    x/ Tappin# a 0ole & mo!e the -oints and rotate them at particular rates tocreate the desired forces and moments at the hand frame.

    x/ +e# Insertion  a!oid the -ammin# while #uidin# the pe# into the hole andinsertin# it to the desired depth.

  • 8/20/2019 Chapter 4 - Dynamic Analysiss

    14/16 

    Chapter 4Dynamic Analysis and Forces

    4.B 2TATIC *ORC0 ANA-=2I2 O*RO)OT2

      To elate the -oint forces and torques to forces and moments #enerated at the  hand frame of the robot.

    T  ! ! ! ! ! ! ! 

     x " # x " #  F $ $ $ m m m =

     x " # x " # x # 

    dx

    d"

    d# % $ $ $ m m m $ dx m #   x

     "

     # 

    δ δ 

    = = + + ∂ ∂ ∂

    - -

    [ ]   [ ] [ ] F  J T    ! T  ! =

    [ ] [ ]   [ ] [ ]θ δ    DT  D F %    T  ! T  !  ==

       f is the force and m is the moment

    alon# the axes of the hand frame.

    The total !irtual wor" at the -ointsmust be the same as the total wor"at the hand frame.

    eferrin# to (ppendix (

  • 8/20/2019 Chapter 4 - Dynamic Analysiss

    15/16 

    Chapter 4Dynamic Analysis and Forces

    4.< TRAN2*OR/ATION O* *ORC02 AND /O/0NT2 )0T500N COORDINAT0*RA/02

      (n equi!alent force and moment with respect to the other coordinate frameby the principle of !irtual wor".

    [ ] [ ] #  " x #  " xT 

    mmm $   $   $   F    =[ ] [ ] #  " x #  " x

    T d d d  D   δ δ δ =

    [ ] [ ] #  &

     " &

     x &

     #  &

     " &

     x &T  &

    mmm $   $   $   F    =[ ] [ ] #  & " & x & #  & " & x &

    T  & d d d  D   δ δ δ =

    [ ] [ ]   [ ] [ ] DT  D F %    &T  &T  ==δ 

      The total !irtual wor" performed on the ob-ect in either frame must be the same.

  • 8/20/2019 Chapter 4 - Dynamic Analysiss

    16/16

    Chapter 4Dynamic Analysis and Forces

    4.< TRAN2*OR/ATION O* *ORC02 AND /O/0NT2 )0T500N COORDINAT0*RA/02

      *isplacements relati!e to the two frames are related to each other by thefollowin# relationship.

    [ ] [ ][ ] D J  D   & & =

      The forces and moments with respect to frame B is can be calculated directlyfrom the followin# equations:

     $  n $   x & ⋅=

     $  ' $   " & ⋅=

     $  ' $   " & ⋅=

    ( )   ][   m p $  nm x & +×⋅=

    ( )   ][   m p $  'm " & +×⋅=

    ( )   ][   m p $  am #  & +×⋅=